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A B S T R A C T  

 

Sudan is one of the countries which economy depends on rain fed agriculture and also facing 

recurring cycles of natural drought. For many decades, recurrent drought, with intermittent 

severe droughts, had become normal phenomenon in Sudan. This paper presents linear 

stochastic models known as multiplicative seasonal autoregressive integrated moving 

average model (SARIMA) used to simulate monthly rainfall in Gadaref station, Sudan. For 

the analysis, monthly rainfall data for the years 1971–2010 were used. The seasonality 

observed in ACF and PACF plots of  monthly rainfall data was removed using first order 

seasonal differencing prior to the development of the SARIMA model. Interestingly, the 

SARIMA (0,0,5)x(1,0,1)12 model developed here was found to be most suitable for 

simulating monthly rainfall over the  Gadaref station. This model is considered appropriate 

to forecast the monthly rainfall to assist decision makers establish priorities for water 

demand, storage and distribution. 

 
 

I .  I N T R O D U C T I O N  

 
Gadaref

1
 region lies in east central part of Sudan, at the border with Ethiopia. The mean 

annual rainfall in this region, during the last four decades, is 617 mm. The annual number of 

rainy days, (rainfall > 1 mm), is 111 days and the  mean annual reference potential 

evapotranspiration (ETO) using Penman/Monteith criterion for the region is about 2283mm 

(Le Houérou, 2009). The region experiences very hot summer and temperature in the region 

reaches up to 45
o 

C in May. Generally the dry periods are accompanied with high 

temperatures, which lead to higher evaporation affecting natural vegetation and the 

agriculture of the region along with larger water resources sectors. Annual potential 

evapotranspiration exceeds annual precipitation in this region. The rainfall exceeds 

                                                           

1
 The word Gedarif (Gadaref, El Gadarif, Qadarif ) is derived from the Arabic phrase All 

Gada-Ye-rif, meaning: he who had finished selling or buying should leave 

mailto:hishamdr@yahoo.com
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evapotranspiration only in August and September (Etuk and Mohamed, 2014).The climate in 

the Gedaref is semi-arid with mean annual temperature near 30o C (Elagib and Mansell, 

2000). 

 

A few researchers who have modeled rainfall drought using Standardized Precipitation 

Index (SPI) as a drought indicator by SARIMA methods in recent times are Mishra and 

Desai (2005) and Durdu (2010). For instance, Mishra and Desai (2005) fitted a SARIMA (1, 

0, 0) x (1, 1, 1) 6 model to simulate and forecast SPI-6 in Kansabati river basin, India. Durdu 

(2010)  modeled the SPI-6 for Buyuk Menderes river basin located in the western part of 

Turkey and fitted a SARIMA(1, 0, 0)x(2, 0, 1) 6 to it.  

 

Time series model development consists of three stages identification, estimation, and 

diagnostic checking (Box and Jenkins, 1970). The identification stage involves transforming 

the data (if necessary) to improve the normality and stationary of the time series to 

determine the general form of the model to be estimated. During the estimation stage the 

model parameters are calculated. Finally, diagnostic test of the model is performed to reveal 

possible model inadequacies to assist in the best model selection. 
 
 

 

 

 

 

 

 

I I .  M E T H O D O L O G Y  
 

 

For more than half a century, Box–Jenkins ARIMA linear models have dominated many 

areas of time series forecasting. Autoregressive (AR) models can be effectively coupled with 

moving average (MA) models to form a general and useful class of time series models called 

autoregressive moving average (ARMA) models. In ARMA model the current value of the 

time series is expressed as a linear aggregate of p previous values and a weighted sum of q 

previous deviations (original value minus fitted value of previous data) plus a random 

parameter, however, they can be used when the data are stationary (Mishra and Desai 2005).  

A time series is said to be stationary if it has constant mean and variance. This class of 

models can be extended to non-stationary series by allowing differencing of data series. 

These are called autoregressive integrated moving average (ARIMA) models. 

 

Often time series possess a seasonal component that repeats every s observations. For 

monthly observations s = 12 (12 in 1 year), for quarterly observations s = 4 (4 in 1 year). In 

order to deal with seasonality, ARIMA processes have been generalized: The 

full ARIMA model is called the SARIMA, a seasonal differencing element. The 

regular ARIMA includes the AR polynomial and the MA polynomial the SARIMA model 

incorporates both non-seasonal and seasonal factors in a multiplicative model.  One 

shorthand notation for the model is ARIMA(p, d, q) × (P, D, Q)S, with p = non-seasonal AR 

order, d = non-seasonal differencing, q = non-seasonal MA order, P = seasonal AR 

order, D = seasonal differencing, Q = seasonal MA order, and S = time span of repeating 

seasonal pattern. 

 

Without differencing operations, the model could be written more formally as 

 

Φ(BS)φ(B)(xt - μ) = Θ(BS)θ(B)wt                                                                                    (1) 

 

The non-seasonal components are: 
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AR:  φ(B) = 1 - φ1B - ... - φpB
p
 

MA:  θ(B) = 1 + θ1B + ... + θqB
q
 

 

The seasonal components are: 
 

Seasonal AR:  Φ(BS
) = 1 - Φ1B

S
 - ... - ΦPB

PS
 

Seasonal MA:  Θ(BS) = 1 + Θ1B
S
 + ... + ΘQB

QS
 

 
 

Note that on the left side of equation (1) the seasonal and non-seasonal AR components 

multiply each other, and on the right side of equation (1) the seasonal and non-seasonal MA 

components multiply each other. 

 

ARIMA (1, 0, 0) × (1, 0, 0)12 
 

The model includes a non-seasonal AR(1) term, a seasonal AR(1) term, no differencing, no 

MA terms and the seasonal period is S = 12, the non-seasonal AR(1) polynomial is φ(B) = 1 

- φ1B. the seasonal AR(1) polynomial is Φ(B12) = 1 - Φ1B12. 

 

The model is (1 - Φ1B12)(1 - φ1B)(xt - μ) = wt.                                                                                    (2) 

 

If we let zt = xt - μ (for simplicity), multiply the two AR components and push all but zt to the 

right side we get  

 

zt = φ1zt-1 + Φ1zt-12 + (-Φ1φ1)zt-13 + wt.                                                                                                         (3) 

 

This is an AR model with predictors at lags 1, 12, and 13. 

 

R can be used to determine and plot the PACF for this model, with φ1=.6 and Φ1=.5. That  

PACF (partial autocorrelation function) 

 

In this study, SARIMA models were used to simulate droughts based on the procedure of 

models developments. The models are applied to simulate droughts using (SPI) series in 

Gadaref region, (SPI-6 = SPI for 6 month).  

 

After identifying models, it is needed to obtain efficient estimates of the parameters. These 

parameters should satisfy two conditions namely stationary and invariability for 

autoregressive and moving average models, respectively. The parameters should also be 

tested whether they are statistically significant or not. The parameters values are associated 

with standard errors of estimate and related t-values. 
 

 
The drought events were calculated using the SPI. The data series from 1971 to 2010 were 

used for model development for SPI-6 series.  

 

There are two software packages which are used for time series analysis. These programs 

are the SPSS 19 package and Eviews6.  
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I V .  R E S U L T S  A N D  D I S C U S S I O N   

  

Time series plot was conducted using the raw data, SPI 6_Gadaref, to assess its stability. 

The assessments results are shown in fig. 1 it is clearly depicted that the time series are 

stationary. 
 

 

 

FIG. 1: SPI 6 OF GADAREF STATION TIME SERIES 1971-2010  

 
 

Stationary is also confirmed by the Augmented Dickey-Fuller Unit Root Test (ADF test) on 

the data. The ADF test was conducted on the entire data.  Table 2 shows ADF test results. 

ADF test value -7.29548 less than critical vales -3.9778, -3.4194, -3.1323 all at 1%, 5%, and 

10% respectively. This indicates that the series is stationary.  

 

TABLE 2: ADF UNIT ROOT TEST (SPI6-GADAREF) 

Station Variable ADF test 
Level of 

Confidence 
Critical 
Value 

Probability Result 

Gadaref SPI_6 -7.29548 

1% -3.9778 0.0000 

stationary 5% -3.4194 0.0000 

10% -3.1323 0.0000 
 

In this step, the model that seems to represent the behaviour of the series is searched, by the 

means of autocorrelation function (ACF) and partial auto correlation function (PACF), for 

further investigation and parameter estimation. The behaviour of ACF and PACF is to see 

whether the series is stationary or not. 

For modelling by ACF and PACF methods, examination of values relative to auto regression 

and moving average were made. An appropriate model for estimation of SPI_6 values for 

the station was finally found. 
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Figure 2 shows the ACF and PACF, which have been estimated for SPI-6 for Gadaref 

station. Many models for Gadaref stations, according to the ACF and PACF of the data, 

were examined to determine the best model .The model that gives the minimum Akaike 

Information Criterion (AIC) and Schwarz Criterion (SC) is selected as best fit model, as 

shown in Table 3. 

 

FIG. 2: ACF AND PACF PLOT FOR GADAREF STATION (SPI_6) SERIES 

              
Autocorrelation Partial Correlation  AC PAC Q-Stat Prob 

       .|***** | .|***** | 1 0.710 0.710 240.58 0.000 

.|****  | .|.     | 2 0.515 0.021 367.28 0.000 

.|***   | .|.     | 3 0.381 0.016 436.84 0.000 

.|**    | .|.     | 4 0.264 -0.036 470.20 0.000 

.|*     | *|.     | 5 0.110 -0.147 476.05 0.000 

*|.     | **|.     | 6 -0.087 -0.235 479.71 0.000 

*|.     | .|*     | 7 -0.095 0.168 484.06 0.000 

*|.     | .|.     | 8 -0.074 0.065 486.67 0.000 

*|.     | .|.     | 9 -0.074 -0.001 489.31 0.000 

.|.     | .|.     | 10 -0.055 0.042 490.78 0.000 

.|.     | .|.     | 11 -0.021 -0.004 490.99 0.000 

.|.     | .|.     | 12 0.032 -0.028 491.49 0.000 

.|.     | .|.     | 13 0.071 0.066 493.93 0.000 

.|.     | .|.     | 14 0.046 -0.063 494.98 0.000 

.|.     | .|.     | 15 0.030 -0.030 495.42 0.000 

.|.     | .|.     | 16 0.027 0.027 495.77 0.000 

.|.     | .|.     | 17 0.032 0.033 496.29 0.000 

.|.     | .|.     | 18 0.016 -0.011 496.42 0.000 

.|.     | .|.     | 19 -0.014 0.002 496.51 0.000 

.|.     | *|.     | 20 -0.049 -0.093 497.72 0.000 

*|.     | *|.     | 21 -0.089 -0.088 501.65 0.000 

*|.     | .|.     | 22 -0.112 -0.006 507.92 0.000 

*|.     | .|.     | 23 -0.144 -0.035 518.29 0.000 

*|.     | .|.     | 24 -0.154 0.000 530.14 0.000 

       
       

 

 
TABLE 3: COMPARISON OF AIC FOR SELECTED MODELS, (SPI6_GADAREF) 

Variable Station Model AIC 

SPI_6 Gadaref 

ARIMA(1,0,0) 2.104 

ARIMA(1,0,1) 2.108 

ARIMA(2,0,1) 2.113 

ARIMA(2,0,2) 2.102 

ARIMA(0,0,1) 2.335 

ARIMA(0,0,5) 2.010 

SARIMA(0,0,5) (1,0,0) 2.036 

SARIMA(0,0,5) (1,0,1) 1.999 

SARIMA(0,0,5) (0,0,1) 2.104 

SARIMA(1,0,0) (1,0,1) 2.092 
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The ACF and PACF correlograms, Fig. 2, and the coefficient are analyzed carefully and the 

SARIMA model chosen is    SARIMA (0,0,5) (1,0,1), as shown in table 3. 

After the identification of the model using the AIC and SC criteria, estimation of parameters 

was conducted. The values of the parameters are shown, in table 4. The result indicated that 

the parameters are all significant since their p-values is smaller than 0.05 and should be used 

in the model.  
 

TABLE 4: SUMMARY OF PARAMETER ESTIMATES AND SELECTION CRITERIA (AIC), 

(SPI6_GADAREF) 

Variable Coefficient Std. Error t-Statistic Prob. 

AR(12) -0.875450 0.025327 -34.56547 0.0000 

MA(1) 0.697188 0.043122 16.16768 0.0000 

MA(2) 0.514251 0.050715 10.14007 0.0000 

MA(3) 0.408934 0.052794 7.745840 0.0000 

MA(4) 0.402012 0.050717 7.926640 0.0000 

MA(5) 0.394849 0.043373 9.103536 0.0000 

SMA(12) 0.951476 0.013937 68.27071 0.0000 

     R-squared 0.573186 Mean dependent var 0.024048 

Adjusted R-squared 0.567557 S.D. dependent var 0.992582 

S.E. of regression 0.652726 Akaike info criterion 1.999716 

Sum squared resid 193.8532 Schwarz criterion 2.062376 

Log likelihood -454.9345 Hannan-Quinn criter. 2.024386 

Durbin-Watson stat 2.000692    

Inverted AR Roots .96+.26i .96-.26i .70+.70i .70-.70i 

 .26-.96i .26+.96i -.26-.96i -.26+.96i 

 -.70-.70i -.70-.70i -.96+.26i -.96-.26i 

Inverted MA Roots .96+.26i .96-.26i .70-.70i .70+.70i 

 .47-.68i .47+.68i .26-.96i .26+.96i 

 -.26+.96i -.26-.96i -.41-.73i -.41+.73i 

 -.70-.70i -.70-.70i -.82 -.96-.26i 

 -.96+.26i   

 

As considered in table 4 the model SARIMA (0,0,5) (1.0.1) has been selected as the one 

with min AIC. The model has been identified and the parameters have been estimated. The 

model verification is concerned with checking the residuals of the model to see if they 

contain any systematic pattern which still can be removed to improve the chosen ARIMA. 

All validation tests are carried out on the residual series. The tests are summarized briefly in 

the following paragraph. 

 

For a good model, the residuals left over after fitting the model should be white noise. This 

is revealed through examining the autocorrelations and partial autocorrelations of the 

residuals of various orders. For this purpose, the various correlations up to 24 lags have been 

computed. The ACF and PACF of residuals of the model are shown in figure 3.  

 

Most of the values of the RACF and RPACF lies within confidence limits except very few 

individual correlations appear large compared with the confidence limits. The figure 

indicates no significant correlation between residuals. 
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Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       
       

       .|.     |        .|.     | 1 -0.001 -0.001 0.0001  

       .|.     |        .|.     | 2 -0.005 -0.005 0.0110  

       .|.     |        .|.     | 3 0.025 0.025 0.2931  

       .|.     |        .|.     | 4 -0.009 -0.009 0.3302  

       .|.     |        .|.     | 5 -0.012 -0.012 0.3967  

       .|.     |        .|.     | 6 -0.022 -0.023 0.6310  

       .|.     |        .|.     | 7 -0.039 -0.039 1.3437  

       .|.     |        .|.     | 8 0.018 0.018 1.4908 0.222 

       *|.     |        *|.     | 9 -0.076 -0.076 4.2551 0.119 

       .|.     |        .|.     | 10 -0.015 -0.014 4.3686 0.224 

       .|.     |        .|.     | 11 -0.022 -0.026 4.6047 0.330 

       .|.     |        .|.     | 12 -0.003 -0.001 4.6100 0.465 

       .|*     |        .|*     | 13 0.098 0.096 9.1690 0.164 

       .|.     |        .|.     | 14 0.017 0.015 9.3048 0.232 

       .|.     |        .|.     | 15 -0.046 -0.048 10.337 0.242 

       .|.     |        .|.     | 16 -0.013 -0.025 10.415 0.318 

       .|.     |        .|.     | 17 -0.005 -0.005 10.427 0.404 

       .|.     |        .|.     | 18 0.028 0.027 10.815 0.459 

       .|.     |        .|.     | 19 0.027 0.031 11.167 0.515 

       .|.     |        .|.     | 20 -0.039 -0.037 11.899 0.536 

       .|.     |        .|.     | 21 0.002 -0.006 11.900 0.614 

       .|.     |        .|.     | 22 -0.016 -0.009 12.022 0.677 

       .|.     |        .|.     | 23 -0.052 -0.044 13.317 0.649 

       .|.     |        .|.     | 24 0.044 0.045 14.266 0.648 

       
       

 
 

FIG. 3: THE ACF AND PACF OF RESIDUALS FOR SPI-6 FOR GADAREF STATION 

MODEL   
 

The Ljung-Box Q-statistic is employed for checking independence of residual.  From figure 

3, ones can observe that the p-value is greater than 0.05 for all lags, which implies that the 

white noise hypothesis is not rejected. 

 

The Breusch-Godfrey Serial Correlation LM test accepts the hypothesis of no serial 

correlation in the residuals, as shown in table 5. Durbin Watson statistic, (DW=1.999764), 

also indicated that there is no serial correlation in the residuals.  
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Table No. 5: The Breusch-Godfrey Serial Correlation LM test (SPI6_Gadaref) 

 

Breusch-Godfrey Serial Correlation LM Test:  

     
     

F-statistic 0.030213     Prob. F(2,453) 0.9702 

Obs*R-squared 0.001942     Prob. Chi-Square(2) 0.9990 

     
     

 

 

Breusch-Godfrey Serial Correlation LM Test:  

     
     

F-statistic 0.760940     Prob. F(12,443) 0.6909 

Obs*R-squared 9.272109     Prob. Chi-Square(12) 0.6795 

     
     

 

 

The Q-statistic and the LM test both indicated that the residuals are none correlated and the 

model can be used. Since the coefficients of the residual plots of ACF and PACF are lying 

within the confidence limits, the fit is good and the error obtained through this model is 

tabulated in the table 6. The graph showing the observed and fitted values is shown in figure 

(6.4). 
 

TABLE NO. 6: ERRORS MEASURES OBTAINED FOR THE MODEL ARIMA (0,0,5) , 

(SPI6_GADAREF) 

 

Error Measure Value 

RMSE 0.662 

MAE 0.487 

R squared 0.557 

 
 

 

Figure 4 shows a very close agreement between the fitted model and the actual data. 

Histogram of residuals for SPI_6 is shown in figure 5. This histogram shows that the 

residuals are normally distributed. This signifies residuals to be white noise.  
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FIG.4: ACTUAL AND FITTED VALUES SARIMA (0, 0, 5)(1.0.1) , (GADAREF, SPI_6) 

 
 

The graph of the (Q-Q) plot for the residual data look fairly linear, the normality 

assumptions of the residuals hold, as shown in fig. 6. 

 
FIG. 5: HISTOGRAMS OF RESIDUALS FOR SPI_6 GADAREF STATION 

 

FIG. 6:  (Q-Q) PLOT OF RESIDUALS FOR SPI_6 FOR GADAREF STATION 

-3

-2

-1

0

1

2

3

-4

-2

0

2

4

1975 1980 1985 1990 1995 2000 2005 2010

Residual Actual Fitted

0

10

20

30

40

50

60

70

80

90

-2 -1 0 1 2

Series: Residuals
Sample 1972M06 2010M11
Observations 462

Mean       0.007362
Median   0.004298
Maximum  2.599692
Minimum -2.052816
Std. Dev.   0.648422
Skewness   0.021672
Kurtosis   3.808087

Jarque-Bera  12.60649
Probability  0.001830

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Quantiles of RESID

Q
ua

nt
ile

s 
of

 N
or

m
al



10 

 

The K–S test is used to test the normality of residuals. It is observed that the Dcal is less than 

Dtab at 5% significant level, shown in Table 6,(  = 0.102 > 0.05).This test satisfies that the 

residuals are normally distributed. 
 

TABLE NO 6: K-S TEST CALCULATION OF RESIDUALS FOR SPI_6 SERIES, (GADAREF) 

Kolmogorov-Smirnov Test 

Most Extreme Differences (Dcal) 0.057 

Dtable 0.063 
  

One can note that all the model coefficients are statistically significant, each being more 

than twice its standard error. The regression is very highly significant with a p-value of 

0.0000, as high as 55.7% of the variation in data is accounted for by the fitted model. Figure 

3 shows that the residuals are uncorrelated. Figure 4 shows a very close agreement between 

the fitted model and the data. Therefore the fitted model is adequate. Fitted to the SPI_6 for 

Gadaref station is the SARIMA (0, 0, 5) (1.0.1) model. Using various alternative arguments 

it has been shown to be adequate.  

 

 

I I I .  C o n c l u s i o n  

  

In this paper linear stochastic model known as multiplicative seasonal autoregressive 

integrated moving average model (SARIMA) was used to simulate droughts in Gadarif 

region, Sudan. The models are applied to simulate droughts using Standardized Precipitation 

Index (SPI) series, the results show that the fitted model is adequate  to the SPI_6 for 

Gadaref station is the SARIMA (0, 0, 5) (1.0.1) model. 
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