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Abstract: This paper analyses the statistical distribution of war sizes. Using the 

method recently proposed by Clauset, Shalizi, and Newman (2009), we find 

moderate support for a Pareto-type distribution (power law), using data from 

different sources (COW and UCDP) and periods. A power law is a plausible 

model for the size distribution of a pool of all wars and a sample of wars in 

many years, although the log-normal distribution is a plausible alternative model 

that we cannot reject. The random growth of conflicts could generate both types 

of distribution. We study the growth rates of battle deaths and random growth 

cannot be rejected for most of the distribution, although the results also reveal a 

clear decreasing pattern; the growth of deaths declines faster if the number of 

initial deaths is greater. 
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1. Introduction 

In one of the first analyses of the statistics of war, Richardson (1948) studied the 

variation of the frequency of fatal quarrels with magnitude. He collected a data set for 

violent incidents (wars and homicides), measured by the number of victims, from 1820 

to 1945, and his calculations revealed that the relationship between magnitude (size) 

and frequency (number) of both wars and small crime incidents could be satisfactorily 

fitted by a straight decreasing line with a negative slope, suggesting a power law 

function. This striking empirical regularity could have important implications, but it has 

remained almost unexplored from either a theoretical or an empirical point of view for 

many years.  

Only a few papers follow Richardson’s approach (Roberts and Turcotte 1998; 

Cederman 2003; Clauset, Young, and Gleditsch 2007), and they also find evidence of 

power law behaviour. Roberts and Turcotte (1998) find a power law dependence of 

number on intensity, taking into consideration several alternative measures of the 

intensity of a war in terms of battle deaths, using Levy’s (1983) data set of 119 wars 

from 1500 to 1974 and Small and Singer’s (1982) data set of 118 wars from 1816 to 

1980. Cederman (2003) finds strong support for a power law distribution, using 

interstate war data from 1820 to 1997 from the Correlates of War Project. Based on this 

empirical evidence, he also proposes an agent-based model of war and state formation 

that exhibits the same kind of power law regularities. Clauset, Young, and Gleditsch 

(2007) extend Richardson’s analysis to study the frequency and severity of terrorist 

attacks worldwide since 1968, also finding a linear relationship between the frequency 

and the severity of these deadly incidents. 

The results of these studies are similar to Richardson’s original result. However, 

as Levy and Morgan (1984) point out, all these studies focus on the distribution of all 

wars rather than on the wars occurring in a given period, although the frequency of wars 

in a given period is also assumed to be inversely related to their seriousness. Levy and 

Morgan (1984) try to address this latter point by calculating Pearson correlation indexes 

between frequency and intensity, finding a negative correlation. They use Levy’s (1983) 

data set for wars between 1500 and 1974, aggregating wars in 25-year periods.  

Finally, there is another strand of related literature. All the studies previously 

mentioned use between-conflict data, but other papers (Bohorquez et al. 2009; Johnson 



 2

et al. 2011) focus on within-conflict incidents (attacks). Surprisingly, these studies 

conclude that the size distribution or timing of within-conflict events is also power law 

distributed. Bohorquez et al. (2009) show that the sizes and timing of 54,679 violent 

events reported as part of nine diverse insurgent conflicts exhibit remarkable 

similarities. In all cases, the authors cannot reject the hypothesis that the size 

distribution of the events follows a power law, but they can reject log-normality. They 

build on this empirical evidence to propose a unified theoretical model of human 

insurgency that reproduces these features, explaining conflict-specific variations 

quantitatively in terms of the underlying rules of engagement. Johnson et al. (2011) 

uncover a similar dynamic pattern using data about fatal attacks by insurgent groups in 

both Afghanistan and Iraq and by terrorist groups operating worldwide. They estimate 

the escalation rate and the timing of fatal attacks, finding that the average number of 

fatalities per fatal attack is fairly constant in a conflict. Furthermore, when they 

calculate the progress curve, they obtain a straight line, which is best fitted by a power 

law.  

This paper contributes to the literature in several ways. First, in the spirit of 

Richardson (1948), we estimate the distribution of a pool of all wars. Second, using 

yearly data, we estimate the war size distribution by year from 1989 to 2010 to 

determine whether differences exist between the overall distribution of all wars and the 

year-by-year distribution (Clauset, Young, and Gleditsch (2007) carry out a similar 

analysis for terrorist attacks by year). Using Clauset, Shalizi, and Newman’s (2009) 

methodology, we find that the power law is a plausible fit in most of the cases, but there 

is a plausible alternative model, the log-normal distribution. Finally, we study the 

behaviour of the growth rates for those conflicts that last longer than one period. We 

empirically test random growth, which could generate both types of distribution, Pareto 

and log-normal. 

The paper is organised as follows. Section 2 introduces the databases that we 

use. Section 3 contains the statistical analysis of war size distribution and its evolution 

over time, and Section 4 concludes. 

2. Data 

We measure war size using the number of recorded battle deaths, that is, the 

battle-related combatant fatalities. The data come from two international data sets: the 
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Correlates of War (COW) (Version 4.0) (2010) Project and the Uppsala Conflict Data 

Program (UCDP/PRIO) Armed Conflict Dataset (Version 5) (2011). 

We consider wars in which the government of a state was involved in one form 

or another. The COW Project distinguishes three kinds of state wars: interstate 

(between/among states), intra-state (within states), and extra-state (between/among a 

state(s) and a non-state entity). According to the COW war typology, a war must have 

sustained combat, involve organised armed forces, and result in a minimum of 1,000 

battle-related combatant fatalities within a 12-month period; for a state to be considered 

a war participant, the minimum requirement is that it has either to commit 1,000 troops 

to the war or to suffer 100 battle-related deaths. This requisite condition was established 

by Small and Singer (1982). Interstate wars are those in which a territorial state is 

engaged in a war with another state. Intra-state wars are wars that predominantly take 

place within the recognized territory of a state; they include civil, regional, and 

intercommunal wars. Finally, extra-state wars are those in which a state is engaged in a 

war with a political entity that is not a state, outside the borders of the state. Extra-state 

wars are of two general types: colonial and imperial. The COW data cover 95 different 

interstate wars from 1823 to 2003, 190 intra-state wars from 1818 to 2007, and 162 

extra-state wars from 1816 to 2004.
1
 Thus, the COW data set covers all the conflicts 

over a long period and enables us to estimate the size distribution of a large pool of 

modern wars. 

The UCDP/PRIO Armed Conflict Dataset is a joint project between the Uppsala 

Conflict Data Program at the Department of Peace and Conflict Research, Uppsala 

University, and the Centre for the Study of Civil War at the International Peace 

Research Institute in Oslo (PRIO). The UCDP defines conflict as ‘a contested 

incompatibility that concerns government and/or territory where the use of armed force 

between two parties, of which at least one is the government of a state, results in at least 

25 battle-related deaths’.
2
 There are two important differences between the UCDP and 

the COW data. First, the UCDP data set includes four different types of conflict: 

extrasystemic, interstate, internal, and internationalised internal. Second, the UCDP data 

                                                 
1 More information about war classifications and the lists of interstate, intra-state, and extra-state wars 

included in the database can be found in Sarkees and Wayman (2010). 
2 More information about the UCDP/PRIO Armed Conflict Dataset can be found in Gleditsch et al. 

(2002). The data set is available to download from http://www.pcr.uu.se/research/ucdp/datasets/. 
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set contains information about conflicts by year from 1989 to 2010. Thus, we can 

estimate the year-by-year size distribution.  

The data presented by the UCDP are based on information taken from a 

selection of publicly available sources, printed as well as electronic. The sources include 

news agencies, journals, research reports, and documents from international and 

multinational organisations and NGOs. Global, regional, and country-specific sources 

are used for all countries. The basic source for the collection of general news reports is 

the Factiva news database (previously known as Reuters Business Briefing), which 

contains over 8,000 sources. There is not usually much information available on the 

exact number of deaths in a conflict, and the media coverage varies considerably from 

country to country. However, the fatality estimates given by the UCDP are based on 

publicly accessible sources. 

The project uses automated events data search software that makes it possible to 

retrieve all the reports containing information about individuals who have been killed or 

injured. Each news report is then read by UCDP staff, and every event that contains 

information about individuals who have been killed is coded manually into an events 

data set. Ideally, these individual figures are corroborated by two or more independent 

sources. These fatalities are later aggregated into low, high, and best estimates for every 

calendar year. The lack of available information means that it is possible that there are 

more fatalities than the UCDP high estimate, but it is very unlikely that there are fewer 

than the UCDP best estimate. Here we use the best estimate figure in all cases. 

Table 1 shows the sample sizes for each year and the descriptive statistics. There 

is a decrease in the number of ongoing armed conflicts over time, and this decrease is 

especially marked in the last few years (the average number of wars by year from 1989 

to 2000 is 43.8, while in the 2001–2010 period it is 33.3). Moreover, the conflicts in the 

last few years have been less intense: the average number of battle deaths per war also 

decreases over time.  

Roberts and Turcotte (1998) suggest that a pool of wars from different periods 

(like the COW data set) can be criticised because the global population changes 

substantially over a long time period. The same number of battle deaths would not 

represent the same war intensity if there had been a huge change in the world 

population. Some authors try to correct for this by using relative measures of size: Levy 



 5

(1983) defines the intensity of a war as the number of battle deaths divided by the 

population of Europe in millions at the time of the war, because estimates of the total 

world population may not be reliable for early periods. In this paper, we also define a 

relative measure of size as the ratio of battle deaths to the sum of the populations (in 

thousands) of the combatant countries of the conflict in the year of the start of the 

conflict.
3
 Population data are also taken from the COW Project.

4
 This ratio represents 

the number of deaths per thousand inhabitants in the countries involved in the war. 

However, note that this normalisation is not necessary when all the conflicts take place 

in the same period.  

3. Results 

3.1 War size distribution 

Let S  denote the war size (measured by the recorded battle deaths); if this is 

distributed according to a power law, also known as a Pareto distribution, the density 

function is 
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scaling parameter) and S  is the number of battle deaths in the war at the truncation 

point, which is the lower bound to the power law behaviour. It is easy to obtain the 

expression a
SAR

−⋅= , which relates the empirically observed rank R  (1 for the largest 

conflict, 2 for the second largest, and so on) to the war size. As Clauset and Wiegel 

(2010) point out, one of the properties of the power law is that there is no qualitative 

difference between large and small events; multiplying the argument ( S ) by some 

factor λ  results in a change in the corresponding frequency that is independent of the 

argument. 

This expression is applied to the study of very varied phenomena, such as the 

distribution of the number of times that different words appear in a book (Zipf 1949), 

the intensity of earthquakes (Kagan 1997), the losses caused by floods (Pisarenko 

                                                 
3 The author thanks one anonymous referee for this suggestion. 
4 The COW Project includes a fourth category of war, wars between or among non-state entities. We 

exclude these wars (62 observations) from our analysis because in these cases it is not possible to quantify 

the populations involved on either side of the conflict (or even the population of the region in which the 

combat occurred, since COW only distinguishes six major areas), and thus no relative measure of size can 

be calculated. 
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1998), forest fires (Roberts and Turcotte 1998), city size distribution (Soo 2005), and 

country size distribution (Rose 2006). 

Taking natural logarithms, we obtain the linear specification that is usually 

estimated: 

uSaAR +−= lnlnln ,   (1) 

where u  represents a standard random error ( ( ) 0=uE  and ( ) 2σ=uVar ) and Aln  is a 

constant. The greater the coefficient â , the more homogeneous are the war sizes. 

Similarly, a small coefficient (less than 1) indicates a heavy-tailed distribution. 

However, this regression analysis, which is commonly used in the literature, presents 

some drawbacks that have been recently highlighted by Clauset, Shalizi, and Newman 

(2009); of these, the main one is that the estimates of the Pareto exponent are subject to 

systematic and potentially large errors.
5
 

Therefore, to estimate the power laws, we use the innovative method proposed 

by Clauset, Shalizi, and Newman (2009). This has been used to fit power laws to 

different data sets; Clauset, Shalizi, and Newman (2009) apply it to find moderate 

support for the power tail behaviour of the intensity of wars from 1816 to 1980, 

measured as the number of battle deaths per 10,000 of the combined populations of the 

warring nations (data sets from Roberts and Turcotte 1998 and Small and Singer 1982), 

and the behaviour of the severity of terrorist attacks worldwide from February 1968 to 

June 2006, measured as the number of deaths directly resulting from the attacks (data 

from Clauset, Young, and Gleditsch 2007). They also use this method with other data 

sets from many very different fields (e.g., the human populations of US cities in the 

2000 US Census, the intensity of earthquakes occurring in California between 1910 and 

1992, or the number of ‘hits’ received by websites from America Online Internet service 

customers in a single day). In a recent work, Brzezinski (2014) uses this methodology to 

study the power law behaviour of the upper tails of wealth distributions, using data on 

the wealth of the richest persons taken from the ‘rich lists’ produced by business 

magazines. 

                                                 
5 Preliminary results obtained from the OLS estimation of Eq. (1) indicate that the power law provides a 

very good fit to the real behaviour of the whole distribution (all the observations) for our pool of COW 

wars (using deaths and relative deaths) and the yearly UCDP data set. The estimated 
2

R  is greater than 

0.9 in all cases, and the estimated Pareto exponent is always less than 1, indicating that the distribution is 

heavy-tailed; this means that the average war loss is controlled by the largest conflicts. However, as 

indicated in the main text, these OLS results are not robust (Clauset, Shalizi, and Newman 2009). 
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The maximum likelihood (ML) estimator of the Pareto exponent is:  
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The ML estimator is more efficient than the usual OLS line regression if the underlying 

stochastic process is really a Pareto distribution (Gabaix and Ioannides 2004; Goldstein, 

Morris, and Yen 2004). Clauset, Shalizi, and Newman (2009) propose an iterative 

method to estimate the adequate truncation point ( S ). The exponent a  is estimated for 

each SSi ≥  using the ML estimator (bootstrapped standard errors are calculated with 

1,000 replications), and then the Kolmogorov–Smirnov (KS) statistic is computed for 

the data and the fitted model. The S  lower bound that is finally chosen corresponds to 

the value of iS  for which the KS statistic is the smallest.
6
 

Figure 1 shows the results for the COW data, covering all state (inter-, intra-, 

and extra-state) wars from 1816 to 2007. The data, plotted as a complementary 

cumulative distribution function (CCDF), are fitted by a power law, and its exponent is 

estimated using the ML estimator. For illustrative purposes, a log-normal distribution is 

also fitted to the data by maximum likelihood (the blue dotted line). The optimal lower 

bound for both distributions is estimated using Clauset, Shalizi, and Newman’s (2009) 

method. The black line shows the power law behaviour of the upper tail distribution. 

The first graph shows the battle deaths’ distribution, with an estimated Pareto exponent 

of 1.74 for ≥deaths 9,540, and the second displays the relative deaths, with a scaling 

parameter of 1.90 for ≥deathsrelative 0.60. The power law appears to provide a good 

description of the behaviour of the distribution. In contrast, the fit of the log-normal 

distribution is poor, especially for the highest observations. Nevertheless, visual 

methods can lead to inaccurate conclusions (González-Val, Ramos, and Sanz-Gracia 

2013), especially at the upper tail, because of large fluctuations in the empirical 

distribution (Clauset and Woodard 2013), so next we conduct statistical tests on the 

goodness of fit. 

Clauset, Shalizi, and Newman (2009) propose several goodness-of-fit tests. In 

the same way as Brzezinski (2014), we use a semi-parametric bootstrap approach. The 

                                                 
6 The power laws and the statistical tests are estimated using the poweRlaw R package developed by 

Colin S. Gillespie (based on the R code of Laurent Dubroca and Cosma Shalizi and the Matlab code of 

Aaron Clauset) and the Stata codes developed by Michal Brzezinski, which are all freely available on 

their webpages. 
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procedure is based on the iterative calculation of the KS statistic for 1,000 bootstrap 

data set replications. This method samples from observed data and checks how often the 

resulting synthetic distributions fit the actual data as poorly as the ML-estimated power 

law. Thus, the null hypothesis is the power law behaviour of the original sample for 

SSi ≥ . Nevertheless, this test has an unusual interpretation because, regardless of the 

true distribution from which our data were drawn, we can always fit a power law. 

Clauset, Shalizi, and Newman (2009) recommend the conservative choice that the 

power law is ruled out if the p-value is below 0.1: ‘that is, it is ruled out if there is a 

probability of 1 in 10 or less that we would merely by chance get data that agree as 

poorly with the model as the data we have.’ Therefore, this procedure only allows us to 

conclude whether the power law is a plausible fit to the data. Table 2 shows the results 

of the tests; the p-values of the test for both COW samples, deaths and relative deaths, 

are higher than 0.1, confirming that the power law is a plausible approximation to the 

real behaviour of the data. This evidence confirms Cederman’s (2003) results and the 

original result of Richardson (1948). 

Finally, we also compare the linear power law fit with the fit provided by 

another non-linear distribution, the log-normal distribution, using Vuong’s model 

selection test to compare the power law with the log-normal.
7
 The test is based on the 

normalised log-likelihood ratio; the null hypothesis is that the two distributions are 

equally far from the true distribution, while the alternative is that one of the test 

distributions is closer to the true distribution. High p-values indicate that one model 

cannot be favoured over the other, and this is the conclusion reached with the COW data 

– see Table 2. Overall, using Clauset, Shalizi, and Newman’s (2009) terminology, we 

obtain moderate support for the power law behaviour of our pool of wars: the power law 

is a plausible fit but there is a plausible alternative as well. 

Remember that this is the distribution of a pool of all wars over a long period. 

Next, we use the yearly UCDP data set to estimate the war size distribution by year 

from 1989 to 2010. We fit a power law for each period of our yearly sample of wars; 

Figure 2 displays the results for two representative years (1998 and 2007) of the two 

                                                 
7 In Figures 1 and 2, the lower bound for both distributions (log-normal and power law) is calculated 

using Clauset, Shalizi, and Newman’s (2009) method. The lower bounds can be different, but to compare 

the distributions the threshold must be the same for both distributions, so to run the test we use the same 

lower bound, the estimated value corresponding to the power law.  
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possible cases.
8
 In 1998, the distribution seems clearly non-linear and the power law fit 

is poor, while in 2007, the power law provides a good fit to the real behaviour of the 

distribution. The latter one is the predominant case, because the power law is rejected in 

only 8 of the 22 years considered. Figure 3 summarizes the results of the estimates by 

year, showing the estimated Pareto exponent and the results of the goodness-of-fit test 

at the 10% significance level (the p-values are reported in Table 2); most of the 

rejections are located in the first periods of our sample. Moreover, the results of 

Vuong’s model selection test (Table 2) indicate that the fit provided by the power law is 

not significantly better than the log-normal fit in any year. However, these year-by-year 

results must be interpreted with caution; these sample sizes by year are small and 

Clauset, Shalizi, and Newman (2009) warn that their method can break down in small 

samples, for which a lack of statistical power can make low p-values inherently 

unlikely. 

Although in some years the standard error of the scaling parameter is high 

because the number of observations above the estimated truncation point is low, the 

estimated values fluctuate between 2 and 2.5. These values are similar to those obtained 

by Clauset, Young, and Gleditsch (2007) and Clauset, Shalizi, and Newman (2009) in 

their analysis of terrorist attacks. Clauset, Young, and Gleditsch (2007) develop a 

theoretical model to explain this power law pattern.
9
 Their model is a variation of the 

Reed and Hughes (2002) mechanism of competing exponentials, which yields to a 

power law distribution for the observed severities. The scaling parameter depends on 

the growth rate for attacks and the hazard rate imposed on events by states, and, making 

some assumptions (equal rates with a slight advantage to states due to their longevity 

and large resource base), the model generates 5.2≈a . Clauset and Wiegel (2010) 

provide an alternative theoretical explanation, generalising the model of Johnson et al. 

(2005). This model, which is based on the notion of self-organised criticality and which 

describes how terrorist cells might aggregate and disintegrate over time, also predicts 

that the distribution of attack severities should follow a power law form with an 

exponent of 2.5. 

3.2 Growth analysis 

                                                 
8 The results for all the years are available from the author upon request. 
9 Saperstein (2010) and Clauset, Young, and Gleditsch (2010) discuss the implications of Clauset, Young, 

and Gleditsch’s (2007) model. 
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The above results show what we consider to be a snapshot of the size 

distribution of wars from 1989 to 2010. For each year, we obtain the estimated 

coefficients of the Pareto exponent and conduct a goodness-of-fit test that indicates the 

plausibility of the power law model in many cases. The literature that studies the 

distribution of financial assets (Gabaix et al. 2006) and of firm (Sutton 1997) and city 

(Gabaix 1999) sizes usually concludes that this kind of Pareto-type distribution is 

generated by a random growth process. Moreover, there is another plausible alternative 

model that we could not reject in the previous empirical analysis, the log-normal 

distribution. Random growth rates of conflicts could generate both types of distribution 

– log-normal and Pareto – if there is a lower bound to the distribution (which can be 

very low) (see Gabaix 1999).
10

 The hypothesis usually tested is that the growth of the 

variable is independent of its initial size (the underlying growth model is a 

multiplicative process).
11

 To check whether this is true for war sizes, we carry out a 

dynamic analysis of growth rates using two different non-parametric tools. The UCDP 

data set enables us to calculate the yearly growth rates of battle deaths for conflicts that 

lasted for more than one year. We define ig  as the growth rate ( )1lnln −− itit SS  and 

normalise it (by subtracting the contemporary mean and dividing by the standard 

deviation in the relevant year), where itS  is the ith war’s size (battle deaths).
12

 We build 

a pool with all the growth rates between two consecutive years; there are 639 battle 

deaths–growth rate pairs in the period 1989–2010. 

First, we study how the distribution of growth rates is related to the distribution 

of initial battle deaths (Ioannides and Overman 2004). Figure 4 shows the stochastic 

kernel estimation of the distribution of normalised growth rates, conditional on the 

distribution of initial battle deaths at the same date. To make the interpretation easier, 

the contour plot is also shown. The plot reveals a slight negative relationship between 

the two distributions, although there is a great deal of variance. However, most of the 

observations are concentrated in two peaks of density; the higher one corresponds to 

conflicts with a small number of deaths (below 5 on the logarithmic scale, i.e. fewer 

than 150 casualties) and the lower one to the less numerous group of conflicts with a 

                                                 
10 Only a small change from the log-normal generative process yields a generative process with a power 

law distribution, that is, a bounded minimum that acts as a lower reflective barrier to the multiplicative 

model (Gabaix 1999, Mitzenmacher 2004).  
11 In the firm and city size literature this hypothesis is called ‘Gibrat’s law’. 
12 The growth rates need to be normalised because we are considering growth rates from different periods 

jointly in a pool. 
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high number of battle deaths (7 on the logarithmic scale, which means around 1,100 

casualties). Note that the conditional distribution of growth rates is equal to zero for 

both types of war, indicating that both distributions are independent for most of the 

observations. 

To gain a clearer view of the relationship between growth and initial battle 

deaths, we also perform a non-parametric analysis using kernel regressions (Ioannides 

and Overman 2003). This consists of taking the following specification: 

( ) iii smg ε+= ,    

where ig  is the normalised growth rate and is  the logarithm of the ith war’s number of 

initial battle deaths. Instead of making assumptions about the functional relationship m , 

( )sm̂  is estimated as a local mean around point s  and is smoothed using a kernel, which 

is a symmetrical, weighted, and continuous function in s .  

To estimate ( )sm̂ , the Nadaraya–Watson method is used, as it appears in Härdle 

(1990, Chapter 3), based on the following expression: 

( )
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where hK  denotes the dependence of the kernel K  (in this case an Epanechnikov) on 

the bandwidth h . We use the bandwidth 5.0=h .
13

 As the growth rates are normalised, 

if the growth was independent of the initial number of deaths, the non-parametric 

estimate would be a straight line on the zero value and values different from zero would 

involve deviations from the mean. 

The results are shown in Figure 5. The graph also includes the bootstrapped 95% 

confidence bands (calculated from 500 random samples with replacement). The 

estimates confirm the negative relationship between size and growth observed in Figure 

4, although we cannot reject the premise that the growth is different from zero (random 

growth) for most of the distribution. Nevertheless, the decreasing pattern is clear: the 

greater the number of initial deaths, the lower the growth rate. This points to a certain 

degree of convergence (mean reversion) across wars, which we can interpret as 

                                                 
13 The results using Silverman’s optimal kernel bandwidth were similar. 
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evidence of the ‘explosive’ behaviour of conflicts, because the greater the number of 

initial deaths, the faster the decline in the growth of deaths.  

Gabaix and Ioannides (2004) explain how random growth can be compatible 

with a degree of convergence in the evolution of growth rates, by putting forward what 

they call deviations from random growth that do not affect the distribution. We can 

adapt their theoretical framework to war growth. We start from: 

( ) itititit tXSS εμ +=− − ,lnln 1 ,   (2) 

where itX  is a possibly time-varying vector of the characteristics of war i ; ( )tX it ,μ  is 

the expectation of war i ’s growth rate as a function of the specific conflict 

characteristics at time t ; and itε  is white noise. In the simplest specification, itε  is 

independently and identically distributed over time (this means that itε  has a zero mean 

and a constant variance that is uncorrelated with isε  for st ≠ ) and ( )tX it ,μ  is constant. 

Gabaix and Ioannides (2004) consider two types of deviation, relaxing both 

assumptions. We are interested in the consequences of relaxing the assumption of an 

i.i.d. itε , assuming constant ( ) μμ =tX it , . The following stochastic structure for itε  is 

assumed: 1−−+= itititit b ηηε , where itb  is i.i.d. and itη  follows a stationary process. 

Replacing in (2), we obtain:  

0

1

0lnln iit

t

s

isiit btSS ηημ −++=− ∑
=

. 

The term ∑ =

t

s isb
1

 gives a unit root in the growth process (hence random 

growth), while the term itη  can have any stationarity. According to Gabaix and 

Ioannides (2004), this means that we can obtain a Pareto-type distribution even if the 

war growth process contains a mean reversion component, as long as it contains a non-

zero unit root component. 

4. Conclusions 

Richardson’s (1948) seminal study established a negative relationship between 

the frequency and the severity of wars, introducing a new empirical regularity. The aim 

of this paper is to provide robust evidence for or against Richardson’s claim. 
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First, we estimate the distribution of a pool of all wars using COW state (inter-, 

intra-, and extra-state) war data from 1816 to 2007. Our estimates confirm Cederman’s 

(2003) results and the original result of Richardson (1948); the power law provides a 

plausible fit to the real behaviour of the distribution. Second, using UCDP yearly data, 

we estimate the war size distribution by year from 1989 to 2010, finding that a power 

law cannot be rejected in most of the periods. Furthermore, the estimated values 

fluctuate around 2.5, a value similar to that of other studies that have analysed terrorist 

attacks. If we add that some studies conclude that the size distribution and timing of 

within-conflict events is also power law distributed (Bohorquez et al. 2009; Johnson et 

al. 2011), all this evidence points to a universal pattern across and within war sizes. 

Nevertheless, the log-normal distribution is a plausible alternative model that we cannot 

reject in any case. 

Finally, a study of the growth rates of battle deaths reveals that random growth 

cannot be rejected for most of the distribution, which could explain the resulting Pareto 

(power law) or log-normal size distribution. Nevertheless, a clear decreasing pattern is 

also observed: the greater the number of initial deaths, the faster the decline in the 

growth of deaths, although this mean reversion behaviour can be compatible with 

random growth.  

References  

Bohorquez, J. C., S. Gourley, A. R. Dixon, M. Spagat, and N. F. Johnson. 2009. 

“Common Ecology Quantifies Human Insurgency.” Nature 462: 911–914. 

Brzezinski, M. 2014. “Do wealth distributions follow power laws? Evidence from ‘rich 

lists’. ” Physica A 406: 155–162. 

Cederman, L.-E. 2003. “Modeling the Size of Wars: From Billiard Balls to Sandpiles.” 

The American Political Science Review 97(1): 135–150. 

Clauset, A., C. R. Shalizi, and M. E. J. Newman. 2009. “Power-law Distributions in 

Empirical Data.” SIAM Review 51(4): 661–703. 

Clauset, A., and F. W. Wiegel. 2010. “A Generalized Aggregation-Disintegration 

Model for the Frequency of Severe Terrorist Attacks.” Journal of Conflict 

Resolution 54(1): 179–197. 

Clauset, A., M. Young, and K. S. Gleditsch. 2007. “On the Frequency of Severe 

Terrorist Events.” The Journal of Conflict Resolution 51(1): 58–87. 



 14

Clauset, A., M. Young, and K. S. Gleditsch. 2010. “A Novel Explanation of the Power-

Law Form of the Frequency of Severe Terrorist Events: Reply to Saperstein.” 

Peace Economics, Peace Science and Public Policy 16(1), Article 12. 

Clauset, A., and R. Woodard. 2013. “Estimating the Historical and Future Probabilities 

of Large Terrorist Events.” The Annals of Applied Statistics 7(4): 1838–1865. 

Correlates of War (Version 4.0). 2010. http://www.correlatesofwar.org/ 

Gabaix, X. 1999. “Zipf’s Law for Cities: An Explanation.” Quarterly Journal of 

Economics 114(3): 739–767. 

Gabaix, X., P. Gopikrishnan, V. Plerou, and H. E. Stanley. 2006. “Institutional Investors 

and Stock Market Volatility.” The Quarterly Journal of Economics 121(2): 461–

504. 

Gabaix, X., and Y. M. Ioannides. 2004. “The Evolution of City Size Distributions.” In 

Handbook of Urban and Regional Economics, Vol. 4, edited by J. V. Henderson 

and J. F. Thisse, 2341–2378. Amsterdam: Elsevier Science. 

Gleditsch, N. P., P. Wallensteen, M. Eriksson, M. Sollenberg, and H. Strand. 2002. 

“Armed Conflict 1946–2002: A New Dataset.” Journal of Peace Research 39(5): 

615–637. 

Goldstein, M. L., S. A. Morris, and G. G. Yen. 2004. “Problems with Fitting to the 

Power-law Distribution.” The European Physical Journal B – Condensed Matter 

41(2): 255–258. 

González-Val, R., A. Ramos, and F. Sanz-Gracia. 2013. “The Accuracy of Graphs to 

Describe Size Distributions.” Applied Economics Letters 20(17): 1580–1585. 

Härdle, W. 1990. Applied nonparametric regression. Econometric Society Monographs. 

Cambridge: Cambridge University Press. 

Ioannides, Y. M., and H. G. Overman. 2003. “Zipf’s Law for Cities: An Empirical 

Examination.” Regional Science and Urban Economics 33: 127–137. 

Ioannides, Y. M., and H. G. Overman. 2004. “Spatial Evolution of the US Urban 

System.” Journal of Economic Geography 4(2): 131–156. 

Johnson, N., S. Carran, J. Botner, K. Fontaine, N. Laxague, P. Nuetzel, J. Turnley, and 

B. Tivnan. 2011. “Pattern in Escalations in Insurgent and Terrorist Activity.” 

Science 333: 81–84. 

Johnson, N. F., M. Spagat, J. Restrepo, J. Bohorquez, N. Suarez, E. Restrepo, and R. 

Zarama. 2005. “From Old Wars to New Wars and Global Terrorism.” 

arXiv:physics/0506213 [physics.soc-ph]. 



 15

Kagan, Y. Y. 1997. “Earthquake Size Distribution and Earthquake Insurance.” 

Communications in Statistics. Stochastic Models 13(4): 775–797. 

Levy, J. S. 1983. War in the Modern Great Power System, 1495–1975. Lexington: 

University Press of Kentucky.  

Levy, J. S., and T. C. Morgan. 1984. “The Frequency and Seriousness of War.” Journal 

of Conflict Resolution 28(4): 731–749. 

Mitzenmacher, M. 2004. “A Brief History of Generative Models for Power Law and 

Lognormal Distributions.” Internet Mathematics 1(2): 226–251. 

Pisarenko, V. F. 1998. “Non-linear Growth of Cumulative Flood Losses with Time.” 

Hydrological Processes 12(3): 461–470. 

Reed, W. J., and B. D. Hughes. 2002. “From Gene Families and Genera to Incomes and 

Internet File Sizes: Why Power Laws are so Common in Nature.” Physical Review 

E, 66: 067103. 

Richardson, L. F. 1948. “Variation of the Frequency of Fatal Quarrels with Magnitude.” 

Journal of the American Statistical Association 43(244): 523–546. 

Roberts, D. C., and D. L. Turcotte. 1998. “Fractality and Self-organized Criticality of 

Wars.” Fractals 6(4): 351–357. 

Rose, A. K. 2006. “Cities and Countries.” Journal of Money, Credit and Banking 38(8): 

2225–2245. 

Saperstein, A. M. 2010. “A Comment on the Power Law Relation Between Frequency 

and Severity of Terrorist Attacks.” Peace Economics, Peace Science and Public 

Policy 16(1), Article 7. 

Sarkees, M. R., and F. W. Wayman. 2010. Resort to War: A Data Guide to Inter-State, 

Extra-State, Intra-state, and Non-State Wars, 1816–2007. Washington, DC: CQ 

Press. 

Small, M., and J. D. Singer. 1982. Resort to Arms. Beverly Hills: Saga Publications. 

Soo, K. T. 2005. “Zipf’s Law for Cities: A Cross-country Investigation.” Regional 

Science and Urban Economics 35: 239–263. 

Sutton, J. 1997. “Gibrat’s Legacy.” Journal of Economic Literature 35(1): 40–59. 

Uppsala Conflict Data Program (UCDP/PRIO) Armed Conflict Dataset (Version 5). 

2011. http://www.pcr.uu.se/research/ucdp/datasets/ 

Zipf, G. 1949. Human Behaviour and the Principle of Least Effort. Cambridge, MA: 

Addison-Wesley. 



 16

Table 1. Armed conflict battle deaths: descriptive statistics by year 

 

Year Observations Mean Size 
Standard 

Deviation 
Minimum Maximum Max. Location 

1989 43 1,256.651 3,023.588 25 18,403 Ethiopia 

1990 50 1,631.6 5,057.416 25 30,633 Ethiopia 

1991 51 1,372.471 3,436.919 25 21,790 Iraq, Kuwait 

1992 53 676.2453 1,142.743 25 4,989 Bosnia-Herzegovina

1993 45 852.6889 1,955.79 25 12,054 Angola 

1994 47 727.0213 1,505.68 25 8,829 Afghanistan 

1995 41 698.7318 1,249.098 25 5,061 Afghanistan 

1996 41 591.0732 955.7285 25 3,533 Turkey 

1997 39 927.3075 1,948.249 25 10,033 Congo 

1998 40 881.8 1,297.505 25 4,891 Sudan 

1999 39 2,035.283 7,521.621 25 47,192 Eritrea, Ethiopia 

2000 37 2,016.649 8,161.813 25 50,000 Eritrea, Ethiopia 

2001 36 603.6111 800.9718 25 3,407 Sudan 

2002 32 551.4063 787.1231 25 3,947 Nepal 

2003 30 697.5001 1,512.132 25 8,202 

Australia, Iraq, 

United Kingdom, 

United States of 

America 

2004 32 566.6875 891.6652 25 3,499 Iraq 

2005 32 358.0313 533.4645 25 2,364 Iraq 

2006 33 527.2122 853.8419 25 3,656 Iraq 

2007 35 487.7714 1,049.312 25 5,828 Afghanistan 

2008 37 738.6217 1,586.588 25 8,413 Sri Lanka 

2009 36 858.3056 1,805.982 25 8,162 Sri Lanka 

2010 30 640.6 1,425.88 25 6,374 Afghanistan 

 

Source: UCDP Battle-related deaths dataset v5 (2011), available at: 

www.pcr.uu.se/research/ucdp/datasets/  
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Table 2. Power law fit 

 

Data Lower bound Pareto exponent Power law test 

Power law vs. 

log-normal 

 S  â  Standard error p-value p-value 

COW pool 1816–2007, deaths 9540 1.74 0.11 0.18 0.49 

COW pool 1816–2007, relative deaths 0.60 1.90 0.12 0.58 0.26 

UCDP yearly data:      

1989 25 1.42 0.07 0.00 0.30 

1990 1058 2.11 0.30 0.81 0.67 

1991 25 1.45 0.06 0.01 0.46 

1992 25 1.48 0.07 0.02 0.17 

1993 53 1.54 0.09 0.22 0.18 

1994 935 2.48 0.43 0.58 0.59 

1995 97 1.65 0.12 0.03 0.24 

1996 25 1.52 0.08 0.09 0.32 

1997 25 1.49 0.08 0.22 0.26 

1998 25 1.45 0.07 0.00 0.54 

1999 1403 2.26 0.40 0.98 0.65 

2000 1010 2.14 0.35 0.92 0.66 

2001 72 1.59 0.11 0.00 0.57 

2002 1086 3.54 1.04 0.96 0.66 

2003 478 2.27 0.37 0.71 0.68 

2004 25 1.50 0.09 0.01 0.31 

2005 1046 4.71 1.66 0.95 0.69 

2006 191 1.99 0.22 0.67 0.50 

2007 69 1.74 0.14 0.56 0.31 

2008 295 1.91 0.23 0.93 0.46 

2009 353 2.05 0.26 0.53 0.70 

2010 175 1.83 0.21 0.95 0.50 

 

Note: The lower bound and the Pareto exponent are estimated using Clauset, Shalizi, 

and Newman’s (2009) methodology. The power law test is a goodness-of-fit test. H0 is 

that there is power law behaviour for SSi ≥ . The power law vs. log-normal test is 

Vuong’s model selection test, based on the normalized log-likelihood ratio: H0 is that 

both distributions are equally far from the true distribution while HA is that one of the 

test distributions is closer to the true distribution. 
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Figure 1. The intensity of wars from 1816 to 2007, 447 observations 
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Note: COW inter-, intra-, and extra-state war data (v4.0). The data are plotted as a 

complementary cumulative distribution function (CCDF). 
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Figure 2. War size distribution in 1998 and 2007 
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Note: UCDP Battle-related deaths dataset v5 (2011). The data are plotted as a 

complementary cumulative distribution function (CCDF). 
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Figure 3. Power law fit, UCDP yearly data 

 

 

 

Notes: UCDP Battle-related deaths dataset v5 (2011). The Pareto exponent is estimated 

using Clauset, Shalizi, and Newman’s (2009) methodology. The graph also shows the 

results of the power law goodness-of-fit test for the 10% significance level.  
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Figure 4. Stochastic kernel, battle deaths to growth rates 

 
Note: UCDP Battle-related deaths dataset v5 (2011), 639 observations. 
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Figure 5. Kernel estimate of growth (bandwidth 0.5), 639 observations 
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Note: UCDP Battle-related deaths dataset v5 (2011). 

 

 

 


