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Summary 

Path dependent counterparty credit risk exposure modeling poses challenges. In this paper, we 

discuss practical models for consistent and accurate estimation of counterparty credit exposure 

involving path-dependent derivatives. We derive analytical formulas for standalone expected 

exposure (EE), potential future exposure (PFE) and unilateral CVA for swap, swaption and 

barrier option. These formulas are of practical importance to financial institutions that use 

standalone exposure profiles, as well as to facilitate model validation and benchmarking. 

1 Introduction 

Modeling counterparty credit risk exposure involving path-dependent instruments poses 

significant challenges. The main issue is that, at the valuation date, the actual type of a path-

dependent instrument at future times is unknown at the valuation date. This is referred to as 

instrument aging. This kind of aging differs from the shortening of the instrument’s time-to-

maturity because time-to-maturity change does not alter instrument type.  

 

Broadly speaking, there are two kinds of path-dependency. The first kind is what can be termed 

as automatic exercise, or European exercise, where an instrument either terminates or becomes an 

instrument of a different type if some predetermined condition is met during the life of the option. 

Under automatic exercise, no decision is required and exercise is automatic. Examples of 

automatic exercise include barrier options and physically settled European swaptions. The second 

kind can be loosely called optimal exercise, or American exercise, where the exercise decision is 

based on the principle of payoff maximization. Examples include American and Bermudan style 

options. Modeling American exercise is much more involved than modeling European exercise. 

In this paper, we focus on the automatic exercise. 

 

Lomibao and Zhu (2006) proposed a conditional valuation method for the type of path-dependent 

options whose future values can be expressed as either a sum or a product of two terms where one 

term depends only on the path history and the other term is the future mark-to-market value of the 

option and is independent of the history. The model was presented based on the Direct-Jump to 

Simulation (DJS) scenario generation approach.  

 

With DJS, the scenario at time t is generated independently whereas with the pathwise approach 

an entire path is simulated. While the two approaches theoretically generate the same distribution, 

the pathwise approach is more accurate for path-dependent derivatives as it can take into account 

the path information. 
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A more fundamental issue with the method is the inconsistency between European swaption 

exercise probability estimation and the underlying swap valuation which we will discuss in 

section 4. 

In this paper, we present an alternative model for the estimation of the swaption exercise 

probability. The model is based on a one-factor short rate model. Since a single short rate process 

generates risk scenario for both swaption and swap, swaption exercise probability is consistent 

with the swap valuation. 

 

Using barrier option as prototype, we extend the approach of Lomibao and Zhu (2006) to 

pathwise scenario generation, and show that taking into consideration of path information can 

significantly increase accuracy without significant overhead. 

 

We also provide analytical EE and PFE formulas for swap, European swaption and barrier option. 

While practical portfolio exposure calculation most likely requires Monte Carlo simulation, 

standalone exposures on single instrument is still important. First, it is useful to compare 

standalone exposure with marginal or incremental exposure for a trade. Second, analytical 

exposure formulas are valuable for counterparty credit risk model benchmarking and validation.  

 

The rest of the paper is organized as follows. Section 2 outlines exposure and CVA definitions 

and formulations. Section 3 describes an analytic interest rate swap exposure model in which the 

accrued interest is stochastic. Building on the results of section 3, section 4 deals with the 

European swaption exposures where we present a model for estimating the swaption exercise 

probability that is consistent with the underlying swap valuation. We derive analytic formulas for 

exposure calculation. In section 5, we discuss an accurate method for barrier option exposure as 

well as analytic exposure formulas. Section 6 concludes the paper. Details of derivation are 

provided in the appendixes. 

2 Exposure Definition 

Throughout this paper, we shall use superscripts Q to denote the pricing measure, and P to 

symbolize the scenario generation measure. Since pricing is usually under the risk-neutral (RN) 

measure, Q generally refers to the RN measure. The scenario measure P may be either real-world 

(RW) or RN depending on the context. For instance, trading book CVA requires RN scenarios 

and hence P is also RN, whereas PFE and EE for capital purpose generally require RW scenarios 

and hence P is RW.
2
 

 

Consider a counterparty portfolio with cashflow        on dates           . The portfolio 

mark-to-market value at future time t is  

 

                                         (2.1) 

 

where                           is the next cashflow date after t. Note that          

and        is included in the current exposure (CE), because cashflow on or after counterparty 

default would normally be part of the default settlement. For example, net accrued interest in an 

interest rate swap is included in the CE on the payment date.     is the augmented P-measure 

filtration generated by the scenario model, meaning that     contains the information up to t along 

a specific path. Alternatively, we can think of     as path identification.                      is 

the stochastic discount factor under the Q-measure and differs from the zero-coupon bond (ZCB) 

price defined as  

                                                 
2
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                               .      (2.2) 

 

In a scenario/revaluation model framework, an important issue is the consistency between 

scenario and pricing. In such a framework, the pricing is conditioned on the scenario path    . 

Ideally,        should match the scenario interest rate curves if possible.  

 

When using a term structure model (eg, LMM and HJM model) to generate interest rate scenario, 

by construct, the scenario filtration     contains the whole simulated yield curve which can be 

used as the initial yield curve for arbitrage pricing model. As a result,        matches exactly the 

scenario interest rate curve when conditioned on    , provided that the pricing model takes the 

initial curve as input. Take, for example, the Hull-White model (Hull and White 1990) as the 

pricing model. The mean-reversion speed and the volatility are calibrated at time 0. The reversion 

level can then be used to match the scenario yield curve at time t. 

 

If the interest rate scenarios are generated by a short rate model, then the short rate    , not the 

yield curve, is the risk scenario. The short rate     says nothing about the scenario yield curve at 

time t. In this case, one strategy is to calibrate the pricing model to the initial market condition, 

and then use the calibrated pricing model to generate the yield curve        defined in (2.2). This 

is the strategy we assume to derive the analytic exposure formulas later in this paper. 

 

The current exposure at time t, which is the maximum amount the bank is at risk should the 

counterparty default immediately, is defined as                        . The expected 

exposure (EE) and negative expected exposure (NEE) are defined by 

 

                                                             (2.3) 

 

EE is the maximum credit loss to the bank should the counterparty default, and NEE is the 

maximum benefit to the bank should the bank default. NEE is required for DVA calculation. It is 

important to note that, as indicated by (2.1) and (2.3), the portfolio value      is evaluated under 

the measure Q while EE and NEE are evaluated under the measure P.  

      is conditioned on augmented scenario filtration    , and hence is dependent on a specific 

scenario path, or is pathwise.       is the average value of       over all such scenario paths 

conditional on the information at time 0. As such,       is a deterministic function of time. For 

capital purpose, P is typically RW,
3
 while for trading book CVA, P is risk-neutral because CVA 

is a market price of the counterparty credit risk and is often hedged by the bank. EE in the context 

of CVA is easier than EE for capital purpose in the sense CVA requires only risk-neutral measure 

whereas risk calculation requires two measures. However, CVA is generally hedged so sensitivity 

to market risk factors are also important. 

 

The PFE for confidence level α is defined as 

 
                                   
                                    (2.4) 
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(2.4) shows that         is the zero-floored  -percentile of the portfolio value distribution at t 

seen at time 0. The second expression in (2.4) indicates that PFE is similar to VaR where the 

similarity stems from the fact that both are quantile measures. 

 

Remark 2.1: Contrary to some belief,         can actually be less than      , because         
dose not account for the distribution tail beyond the confidence level  , whereas       accounts 

for the entire distribution. For example, consider a forward contract on a stock, the EE and PFE 

are 

 

                                                                           
 

where          . Suppose         , then if                                         , we 

have          , ie,               for all    . 

 

CVA is the price adjustment due to the possibility of counterparty default causing financial loses 

to the non-defaulting party. Since it is a price adjustment, CVA should be evaluated under the Q-

measure. A comprehensive CVA model would account for such effects as first-to-default, wrong-

way risk, collateralization, etc. The first-to-default effect has been shown to be significant (Brigo 

et al 2011), and is also shown to be non-negligible in the presence of a credit rating trigger (Zhou 

2013). Neglecting the first-to-default in CVA is equivalent to assuming the bank is default-free. 

Wrong-way risk can be dominant for certain types of portfolio. Nevertheless, we do not consider 

these effects in this paper. Under the simplifying assumptions outlined above, the unilateral CVA 

at time t is defined as 

                                         

                                             (2.5) 

 

where    is the default time of the counterparty under the P-measure, T is the final maturity of the 

counterparty portfolio,    is the loss-given-default (LGD).        is the Q-measure cumulative 

default probability of the counterparty conditional on surviving to t.         implies that CVA 

vanishes after the counterparty default.         depends on the simulated “market” condition    . 

 

The traditional trading book CVA is equal to        , 
                                         (2.6) 

 

When cashflows are all positive,
4
 then                                               , and 

(2.6) can be simplified as 

                                                             (2.7) 

 

where        is the risk-neutral counterparty default probability which can be inferred from either 

the market credit spread if the counterparty has liquid CDS trades or rating-based generic credit 

spread otherwise. Since the counterparty is alive today, we have         . 

 

                                                 
4
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In the above discussion, we have used P-measure and Q-measure to symbolize the Monte Caro 

scenario generation and instrument pricing. But we did not impose any relationship between the 

two measures. It is desirable to treat the two measures as distinct because the scenario model may 

be calibrated to the historical volatility while the pricing model is calibrated to the market implied 

volatility. 

3 Interest Rate Swaps 

Fixed-for-floating interest rate swaps and European swaptions are the most widely traded OTC 

derivatives. Global banks have substantial swap books. Swaps are also convenient cases for 

counterparty exposure model validation due to its simplicity. While frequently used as an 

example in literature and often among the first instruments to be covered in a newly developed 

CCR system, there still appears to be a practical need for a detailed, rigorous exposition on the 

profile of swap value and exposure.  

 

In this section, we discuss in detail swap valuation and exposure. We pay special attention to the 

jump in swap value across a payment date because it is the primary reason that swap exposure 

profile exhibit a sawtooth pattern.  

Consider an interest rate swap exchanging the Libor for a fixed rate K. The swap starts at       

and ends at      , with the floating rate payment dates         and the fixed rate payment 

dates           . Assuming Libor fixing and discounting,
5
 the future mark-to-market 

swap value to the fixed rate payer is 

 

                                                                                                                                                              (3.1) 

 

where              .                         and                         are 

the next fixed and floating rate payment dates, respectively.      and      are continuous from the 

left in order for the accrued interests to be included in the exposure. It is important to point out 

that                                  . Since t is a simulation date, the zero-coupon bond        
is known for all T. But                  may be unknown because         is generally not a 

simulation date. As a result,                  is either approximated or modeled. Stein and Lee 

(2010) assumed that                  is equal to the time 0 forward value, which is equivalent to 

assuming the spot Libor at         to be its time 0 forward value. We will discuss a model for                  in Appendix B.  

 

In (3.1),             and              are values of a forward swap and a tail (seasoned) swap, 

respectively. The tail swap can be expressed a forward swap starting at       plus a net interest 

accrued to      . To fix the idea, we assume that any fixed date is also a floating,                     implying            . Thus 

 

                                                 
5
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6 

 

                                                                                                                            (3.2) 

 

The top line in (3.2) is the value of the spot   -maturity swap with the floating payment dates                    and the fixed rate payment dates                   . The bottom line represents 

the net accrued interest from the last floating and fixed dates to t which we will discuss below. 

 

Noticing that                                     is the spot Libor for period           
which is known when conditioned on    , the bottom line in (3.2) can be rewritten as 

  

                                                                                                  (3.3) 

 

(3.3) shows that the net accrued interest at time t is equal to the floating coupon of the original 

swap for                 adjusted for the portion that is included in the new swap minus the fixed 

coupon accrued from the last fixed payment date        . It is easy to see that if              , 
then                                                      , the full net coupon on the original 

swap, whereas if                , then         . In other words, immediately before a 

payment date,     is the full accrued coupon, whereas immediately after a payment, the accrued 

interest is zero.  

 

Put another way,          is continuous everywhere except at the coupon payment dates    and   . Let T be either a floating date    or a fixed date   , then the swap value is left continuous,                        , and right limited,                         . This is a consequence 

of how      and      are defined. It is easy to verify that           if   is a payment date for 

both fixed and floating legs. 

  

The change in swap value across a floating rate payment date    is  

 

                                                                              (3.4) 

 

(3.4) implies that the pathwise value of a payer swap decreases by                   after a float 

payment (one less future receipt), and increases by            after a fixed payment (one less 

future payment). The jump magnitude depends on the difference between the fixed and floating 

rates and their respective accrued periods. This jump is the reason why swap exposure profile 

typically exhibits a sawtooth pattern.  

 

The change in the pathwise swap value over the time interval           is  

 

                                                                                            (3.5) 
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where                             . (3.5) is due entirely to diffusion effect and passage of 

time. Its effect on the exposure profile is gradual and smooth. 

 

Define the forward swap rate and annuity for a   -maturity swap that starts at     with fixed 

payment dates              and floating payment dates              
                            ,                                                         (3.6) 

  

The forward swap rate for the original swap is        , and the swap rate for the first line of (3.2) 

is       . With (3.6), we can recast the swap value (3.1) into 

                                                                                                                         (3.7) 

 

By virtue of (2.3) and (3.1), the standalone EE for the payer swap is 

 

                                                                                                                  (3.8) 

 

where 

                                                                                                          (3.9) 

 

A positive (negative) NAI reduces (increases)       and hence increases (decreases) the exposure 

of the tail swap. It is possible for       to be negative when K is low or                    is high. 

 

It is important to point out that although the top line of (3.8),                           , 
resembles a European swaption, but it is not. The primary reason is that it is the undiscounted 

expectation. In addition, if the two measures are different,         is not a martingale under a 

measure equivalent to the P-measure. 

 

In Appendix A, we will discuss analytic formulas for valuation of (3.8) based on the one-factor 

Hull-White model, where (A.7) is for                     and (A.24) for                     . 
These formulas are valuable for validation, benchmarking and impact assessment. In the 

remainder of this section, we discuss casting                      as a forward starting swaption 

that may facilitate calculation under the Libor Market Model. 

 

Brace and Womersley (2000) showed that               is a low variance martingale and can be 

approximated by its time 0 value. Thus, the effective strike can be approximated as  

 

                                                                                                                    (3.10) 
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(3.8) and (3.10) suggest that                      could be mathematically considered as a 

forward starting swaption with the strike being a linear function of the Libor resetting at        . 

Evaluation of (3.8) with stochastic strike given by (3.10) should take into account the correlation 

between the spot swap rate        and the spot Libor                   , as well as the forward 

swaption volatility skew. Stein et al (2010) assumed                                 to assess the 

difference in CVA between the forward swap (no        in (3.8)) and the tail swap. However, the 

impact of this assumption on EE and PFE was not addressed, which can be potentially substantial 

for long-dated swaps. This impact can be accessed using the method in Appendices A and B. 

4 Physically Settled European Swaptions 

Unlike swaption pricing that ends at the swaption expiration, the exposure of a physically settled 

swaption can persist long after the option has expired. While what happens after the swaption 

expiry date is irrelevant to the option pricing, it has major impact on the exposure. To make the 

matter even more complicated, whether the swaption would be exercised and hence becoming the 

swap is not known a priori, making European swapition exposure path-dependent, even though 

the option itself is not. As such, a key element of modeling physically settled European swaption 

exposure is estimating the probability of swaption exercise. 

  

We consider a swap-settled European payer swapion that gives the option holder the right to enter 

into the swap paying fixed rate K where the swap terms are specified in the previous section. The 

future value of the European swaption is 

                                                                                                                                    (4.1) 

 

where      is the indicator function. The bottom line of (4.1) means that if the swap value at    is 

not positive, the option is not exercised and there is no exposure afterwards. On the other hand, if 

the swap value at    is positive, the option turns into a tail swap and the exposure persists until the 

swap maturity   . 

 

The standard front office model for European swaption is the Black-Scholes model  

 

                                                               (4.2) 

 

where  

 

                                                         (4.3) 

 

with   
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It is important to note that              and              are evaluated on the same scenario path. 

When    is a simulation node,              is available from the simulation and thus computation 

of the exercise indicator                   poses no problem. On the one hand, a practical 

portfolio typically contains many European swaptions with differing expiry dates. On the other 

hand, a CCR system normally has a fixed simulation date grid. As a result, it is likely that most 

swaption maturities are not on the simulation date grid. Consequently, the pathwise exercise 

indicator                   must be estimated. Since this indicator is a pathwise variable, it 

requires to be computed only once per scenario path. 

 

Let the simulation date grid be denoted by                and assume           , the 

indicator                   under the P-measure may be directly sampled conditional on     . 

Given that            , this indicator takes value 1 with probability                        . 
Thus, we have                                          , and the swaption value (4.1) can be 

rewritten as 

                                                                                                                       (4.4) 

 

Direct simulation is inefficient in large scale computation, a practical approach is to estimate                        . Since                                , then                 
0|    =    0; 0> |    , the conditional exercise probability may be modeled using either the 

swap value or the swap rate. In some case, swap value may be more convenient as we will show 

below. 

 

In an influential paper, Lomibao & Zhu (2006) proposed a conditional valuation approach for 

modeling EE of path-dependent instruments. Their method is intended for the type of path 

dependent derivatives where the future value of the option can be expressed as either a product 

(cf. (4.4)) or a sum of future MTM value and a term that depends only on the path history.
6
 Here, 

future MTM value is the price at a future date of a newly issued instrument of the same type as 

the original instrument, and hence is independent of the path. The path-dependent term is 

irrelevant to the pricing, but is essential to exposure calculation. The central theme of the method 

is to use the Brownian bridge theory to estimate the path-dependenct term. When applied to 

estimate the swaption exercise probability                    , it is assumed that the all   -

maturity co-terminal swap rates follow a common lognormal process. This enables to link the 

swap rates of two distinct co-terminal swaps by                                            . If          is known from the simulation,          can be estimated using a Brownian bridge 

between 0 and the simulation date   .  

 

The method is elegant, simple and efficient. However, for swap-settled European swaption, it 

lacks theoretical justification as it is inconsistent with the swap pricing. First,         is the swap 

rate of an N period swap underlying the swaption, and         is the swap rate for a           
                                                 
6
 This excludes the American and Bermudan style options for which such separation is impossible. 
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period swap. (3.6) indicates that         and         generally cannot follow the same lognormal 

process. To illustrate the point, consider a 6-month swaption into a one-year swap receiving 6 

month Libor flat with semi-annual payment. Suppose the simulation time nodes are 6 months 

apart then we get      = one year.       is the one-year swap rate which is a weighted average 

of two adjacent forward 6-month Libor spanning the one-year swap, while       is the 6-month 

forward Libor for the last 6-month of the one-year swap. Clearly, the one year swap rate and the 

6-month Libor generally do not follow the same process. Second, since         and         
represent swaps of different tenors, they should have different volatilities, irrespective of 

measure. This raises the question of which volatility   to use for the Brownian bridge model. 

Third, these issues are likely exacerbated by the fact that a typical counterparty portfolio contains 

many swaps and swaptions. 

 

The above analysis suggests that estimation of                         should be consistent with 

the swap pricing, which in turn suggests that a method may be based on the scenario and pricing 

models. In the following, we discuss a simple, practical method for consistent calculation of the 

exercise probability. 

 

Suppose that the interest rate scenarios are generated by the short rate model 

                                     (4.5) 

 

where      is an increasing function. If      , (4.5) represents the Vasicek model, while            is the exponential Vasicek model.  

 

Suppose that we have another (risk-neutral) short rate model to calculate the zero bond price (2.2) 

which we denote by           . The actual bond pricing formula is not important to our exposition 

except that            is a decreasing function of     which is satisfied by any sensible interest rate 

model.7  

 

Since the swap value at the swaption expiry date 

 

                                                              (4.6) 

 

is a strictly increasing function of     , there is an unique value    such that               . This 

implies that                   if and only if        .8 In other words, the payer swaption is 

exercised iff        . The critical rate    is unique for a given swap, and needs to be computed 

once. 

 

Using the Brownian bridge technique, the swaption exercise probability is 

 

                                                             

                                                 
7
 For affine models,                              where        is a positive functions of t and T. 

8
 For receiver swap,                     iff        . 
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                                                    (4.7) 

 

The derivation is provided in Appendix C. Here we summarize some important characteristics of 

(4.7) due to mean reversion 

- The coefficient    and    are positive with         where the equality holds only at the 

bridge endpoints. Given      and   , they depend only on the mean-reversion speed   .  

-                . 
-      is proportional to    and                , but the variance         is not a quadratic 

function of t. 

- The standard Brownian bridge results with constant drift (Shreve 2004) is recovered 

when     . 

Let        , (4.7) shows that                              if                   . The same 

holds for      . These limiting cases indicate that (4.7) is consistent when    is a simulation 

date in which case we know for sure whether there will be a swap after the expiry date. The 

probability of one or zero can only be attained at the two end points. Therefore, the swaption 

exposure post expiry date must be less than that of the underlying swap.  

 

For the non-trivial case where           , (4.7) indicates that the higher are the values of           and/or        , the greater is the exercise probability, and vice versa. The interest rate 

volatility is important to the exercise probability. Clearly,                          when     , regardless of the values of             and   . For large interest rate volatility, one should 

expect substantial difference in exposure between the swaption and the underlying swap. For 

small volatility, the exercise should be close to one if                                    and 

close to zero otherwise. These characteristics may be useful for model validation purpose. 

Finally, the conditional exercise probability is independent of the interest rate drift which is an 

artifact of the Brownian bridge as the drift is implicit in the values at the two bridge endpoints. 

 

Substituting (4.4) into (2.3), the EE of a standalone European swaption is 

 

                                                                                                                                                      (4.8) 

 

The swaption exposure prior to the expiration date may be calculated as follows. Suppose that             is valued using (4.2), then 

                                                              (4.9) 

 

where                          is given by (4.3). The annuity         and swap rate          
are defined in (3.6).  

 

We now assume that pricing uses the Hull-White model, from (A.3) in appendix A, we have 
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                                                (4.10)                                                                    (4.11) 

 

This mean that, under the Hull-White model,                                 is a function of 

the scenario short rate    . Furthermore, if the scenario model is given by (4.5), then  

 

                                                                 (4.12) 

 

Hence, 

                                                                                       

           (4.13) 

 

Because              
 dominates as      , the integral can be computed on a finite range. A semi-

analytic model for                                       is given by (A.35) in Appendix A. 

 

By virtue of (2.6) and (2.7), the standalone unilateral CVA of a swap-settled swaption is equal to 

 

                                                                                               (4.14) 

5 Barrier Options 

A barrier option, including one-touch option, is path-dependent. If the underlying state variable 

reaches some pre-defined barrier level during the life of the barrier option, the option either 

ceases to exist (knocked out) or becomes a standard European option (knocked in). Modeling 

barrier option exposure is complicated because the future instrument type of a today’s barrier 
option depends on what happens between now and then. A barrier option today may or may not 

be a barrier option tomorrow. In other words, barrier option exposure depends on the instrument 

aging. In the previous section, we discussed a model for the swap-settled European swaption 

exposure. European swaption exposure calculation requires monitoring the underlying swap value 

only at the option expiry date. In contrast, barrier option exposure requires continuous monitoring 

of the entire option life.  

 

Consider a European up-and-out stock call option with rebate (UOR) with the terminal payoff  

 

                                        (5.1) 
 

where              is the running maximum of the stock price, H is the barrier level,       is 

the strike, and R is the rebate amount if the stock price    crosses H before the expiry date T.     represents an UO call option while     is a one-touch cash-or-nothing option that pays 

out R at the expiry T if    reaches H during the option life and nothing otherwise. When     

and        , (5.1) represents a European capped option where it is a call option but pays     should the barrier be reached before expiration, capping the maximum payoff at    . 
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The future MTM price of the UOR option is 

                                                            (5.2) 

 

It is the price of a new UOR option issued at time t when stock price is    . The first term is a 

standard up-and-out barrier option that pays nothing if the barrier is crossed during the life of the 

option. The second term is a one-touch option representing a contingent rebate. It is emphasized 

here that            depends only on the spot price     provided that      , and is independent of 

the path. It differs from the future value (5.4). In the Black-Scholes world, the UOR option price 

is (Shreve 2004) 

 

               
                                                                                                                                                              

  
 (5.3) 

 

where                is defined in (4.3),                              . The interest rate is 

given by                  . 
 

When it comes to modeling barrier option exposure, two issues must be addressed. The first is the 

determination of the option type at simulation dates. This can partially be resolved by pathwise 

simulation. If the stock price exceeds the barrier H on any simulation date, the barrier option 

ceases to exist afterwards. However, stock price monitoring at simulation dates dose not account 

for the possibility that the stock price may go above and comes back below the barrier between 

simulation dates, especially when simulation dates are far apart. This leads to the second issue, 

quantification of the pathwise barrier survival probability, which is the focus of this section. The 

lack of underlying state variable monitoring is a main reason that pathwise method is preferable 

to the DJS method for scenario path generation. 

 

The future value of the UOR option is 

                                                            (5.4) 

 

The future value of a today’s UOR option is a weighted average of a new UOR option and the 
rebate depending on whether the stock has hit the barrier by that time. If            , the UOR 

option survives and the value is given by (5.2). Otherwise, the option has been knocked out and 

the value is the time t value of the rebate R.  

 

Assuming continuous monitoring, the survival indicator           takes value 1 with the 

conditional barrier survival probability               . The superscript P indicates that the 

probability is under the P-measure.  

 

Hence, the future value of the UOR option can be estimated as 

                                                          (5.5) 

 

The path history     determines the conditional survival probability               . 
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Given a simulation date grid               , the stock price at a simulation date      is 

known from the stock path simulation. For example, we know the stock price         on every 

simulation date    of the path  . If           for some k, then             for     . 

 

The discrete monitoring of barrier crossing ignores the possibility that the barrier may be crossed 

between simulation dates. For barrier option exposure calculation, monitoring stock price at the 

simulation dates is insufficient.  

 

Assuming that the real-world stock price follows a lognormal process 

 

                                   (5.6) 

 

Conditional on             and          ,          is a Brownian bridge for          . The 

survival probability is then the probability of the maximum of the Brownian bridge staying below 

H. This conditional probability is (Glasserman 2004) 

 

                                                                                     (5.7) 

 

As expected, the conditional survival probability decreases as the stock volatility increases since a 

higher volatility makes barrier crossing more likely. In addition, the closer to H is        and/or     , 

the smaller is the conditional survival probability as it is more likely that the stock price crosses 

the barrier. 

 

The pathwise barrier survival indicator            at the simulation date    can be calculated 

recursively by
9
 

 

                                                                     

                                                                                 (5.8) 

 

where, by definition,                         . Since           is available from the 

stock price path simulation, we have                    if        for some    . Clearly, the 

pathwise barrier survival probability given in (5.8) is smaller than the DJS-based barrier survival 

probability which is equal to                                               . 
 

Because the UOR option value (5.4) is always positive, the standalone EE is 

  

                                                                              (5.9) 

 

where 
 

                                                 
9
 In the DJS, the barrier survival probability is                                              (Lomibao and 

Zhu 2006). It is non-zero if       , whereas (5.8) indicates that this probability is zero if the stock price 

crosses the barrier at any simulation dates prior to   , ie, if there is     such that       . 
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                                                                                                                                       (5.10) 

 

It is well known that the probability of barrier crossing before time t is (Shreve 2004) 

 

                                                             (5.11) 

 

The P-measure joint density function of                  is (Shreve 2004) 
 

                                                     
      (5.12) 

 

Recognizing that            depends on      not        , and    , we have 

 

                                                                                                      (5.13) 

 

Carrying out the inner integral analytically, we obtain 

 

                                                                                              (5.14) 

 

(5.14) can be calculated on a finite interval because         dominates as     .  

 

(5.9), (5.10) and (5.14) form a semi-analytic model for standalone EE of UOR option. The only 

model dependent part is the scenario model (5.6) which is widely used in the financial industry 

for stock price scenario generation. (5.14) can be used to benchmark simulation based EE. 

 

Utilizing the following relationships 

 

                                                                                                                                                (5.15) 

  

we obtain 

 
                                                        
 

where            is the current price of the UOR option which may be calculated using either (5.3) 

or some other barrier pricing model. 

 

The standalone UCVA of UOR option is 
 

                                         

                                              (5.16) 
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The only condition underlying (5.16) is that the counterparty default is uncorrelated with the 

UOR option value, ie, no wrong-way-risk. 

 

Remark 5.1: (5.16) indicates that, if     and interest rate is deterministic, the standalone EE 

of UOR option can be simplified to 

 

                                   (5.17) 

6 Conclusions 

In this paper, we presented a practical model for estimating the probability that a European 

swaption is exercised and becomes a swap. The salient point is that the model is consistent with 

the valuation of the underlying swap in that the factors driving the swaption and the underlying 

swap are the same short rate, thereby avoiding the need for a separate process as required by the 

swap rate model of Lomibao and Zhu (2006). Though the model is presented under a one-factor 

short rate model framework, it could be extended to other one-factor model, such as LMM or 

HJM model.  

 

We have discussed a practical method to handle the path-dependency in the barrier options. The 

model can be incorporated into any scenario/revaluation framework for counterparty exposure 

and CVA. It is more accurate than the one-step simulation counterpart because it takes into 

account all information available from the path simulation and the probability of barrier crossing 

is conditioned on the two closest simulation dates. 

 

We have provided analytic formulas for standalone EE, PFE and CVA for swap, European 

swaption and barrier option. These formulas have practical utility as the Hull-White model is 

widely used in the financial industry and hence can be used as benchmarks for model validation 

for Monte Carlo results should converge to the analytic results. 

 

Finally, we have specifically distinguished between pricing and scenario measures, which is one 

of the crucial differences between CVA and real-world risk measures. Since large scale systems 

for counterparty credit risk practically require MC simulation, it is important to use a single set of 

scenarios for both risk factor projection and instrument pricing.  
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Appendix A: Swap Exposure in Hull-White Model 

Let the interest rate scenarios be generated by the Vasicek model 

 

                                (A.1)  

 

The zero coupon bond price defined by (2.2) under the one-factor Hull-White model is   

 

                                                   (A.2) 

 

where 

 

                                                                         (A.3) 

                                (A.4) 

 

The pricing model parameters are calibrated to the initial yield curve        and the initial option 

market. 

 

By virtue of (2.3), the forward swap EE is 

 

                                                                           (A.5) 

 

Since for                    decreases with increasing    , there exists a critical value       such that 

(Jamshidian 1989) 

 

                                                           (A.6) 

 

The critical value    requires numerical procedure but is a deterministic function of t. Clearly, 

only part of the distribution where           contributes to the EE. This is expected for a payer 

swap where an increase in interest rate benefits the fixed rate payer. The interest rate effect is 

reversed for a receiver swap where the EE contribution comes from       . Having found the 

critical rate   , (A.5) becomes 

                                                                        (A.7) 

 

where 

 

                                                                                                      (A.8) 

 

for                   , and                  with 
                                                   .   (A.9) 
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The PFE for the forward swap can be also evaluated analytically. It can be shown that the forward 

payer swap value increases with increasing    , ie, 
                  . This indicates that the PFE 

corresponds to the α-percentile of the    -distribution conditional. In other words, the PFE is 

                                             (A.10) 

 

where                                 is the inverse standard cumulative normal distribution 

function. 

 

Tail swap exposure is more involved due to the presence of stochastic accrued interest. The tail 

swap EE is given by 

                                                     (A.11) 

 

where           is the standard bivariate normal density function, and the correlation is 

 

                                                                                  (A.12) 

The zero-coupon bond prices in the tail swap formula (3.1) are 

 

                                                               
    (A.13) 

                                                            (A.14) 

 

with                  and                                    . 

 

Given     or equivalently x,              is an increasing function of          or y. This means that                iff         where 

                                                                                                    (A.15) 

 

with      defined in (A.18) below.  

 

The right-hand-side of (A.15) is a decreasing function of x. The higher is the    , the lower is the 

threshold       such that               . As a result, (A.11) becomes 

                                                        (A.16) 

 

Since only                  depends on y, we integrate with respect to y to yield 
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 (A.17) 

where  

 

 

    
                                                                                                                                                                                                                                                                                                                             

     (A.18) 

Using (A.15) to (A.18), we obtain  

 

                                                                                           (A.19) 

 

with 

                                                                              (A.20)                                                                       (A.21) 

 

where 

    
                                                                                                                                                                                                                                                              

  (A.22) 

 

Thus, computation of                amounts to computing the integrals  

 

                                                                               (A.23) 

 

with                            . Since                       , the error can be made 

arbitrarily small,             . For example,             . 

 

Substituting all these into (A.16) results in 
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  (A.24) 

 

We now describe a model for the swaption PFE at     . From (2.4), we have 

 

                                                                (A.25) 

 

By virtue of (A.18), we have the set relation 

                                                              (A.26) 

 

Using the conditional distribution               , we have 

 

                                                                      
                                                            (A.27) 

 

Substituting (A.22) into (A.21), we see that         is the solution of the integral equation 

 

                                                               (A.28) 

where     , a and c are given in (A.18), and            is given in (A.14). If           then set          . 

 

We now discuss an analytic model for swaption EE at     . In section 2.3, we show that there is 

a critical short rate    such that                iff        . Following the same argument, the 

swaption EE at      can be casted as 

 

                                                                                       (A.29) 

 

where                        is independent of both x and y.  

  

In (A.29),           is the joint three-dimensional standard normal density function 

 

                                                           (A.30) 

 

where correlation matrix is  
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                                                                                                  (A.31) 

 

with                                                                       , particularly,       defined in (A.12). 

 

Similar to (A.16), we can reduce (A.29) to a 1D integration. To this end, we first obtain 

 

                                                                                    (A.32) 

 

where                                   is the conditional density function. 

 

The parameters are defined as 

 

    
  
    
                                                                                                                                                                                                                                             

     (A.33) 

  

Defining the function 

                                             

                                                                      (A.34) 

 

where                             , the swaption EE at      can be expressed as 

                                                     

                                                           (A.35) 

 

where the parameters a and c are defined in (A.18). 

 

Remark A: The above results may help explain the potential complexity of Bermudan swaption 

exposure modeling. Suppose we have a swap-settled swaption where it is automatically exercised 

on two future dates,    and   . The option expiry date is   . If the swap value is not positive on   , the swaption continues. Clearly, the swaption EE at      involves 4 correlated interest rates 
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at                . Even without the optimal exercise, the dimensionality of the problem increases 

as the number of exercise dates. The optimal exercise feature further requires look back. 

Appendix B:                  conditional on     

The tail swap value (3.1) depends on                  which may not be available since         

may not be a simulation node. In this section, we discuss a model for                  given in 

(A.13). 

 

Let      and    be the simulation dates closest to         such that                  , then  

conditional on        and     , we simulate (A.13). The value of this conditional sampling is 

                                                                                (B.1) 

 

Again, the scenario short rate          can be modeled as a Brownian bridge. Setting             and        in (C.12), we have  

                                                      (B.2) 

 

where  

                                                                 (B.3) 

 

Substitution of (B.2) into (B.1) results in 

 

                                                                                                             
 (B.4) 

Appendix C: European Swaption Exercise Probability 

We provide derivation for the European swaption exercise probability (4.7) where the scenario 

short rate evolution is governed by (4.5). To lighten notation, we drop the superscript P, and all 

variables are understood to be under the P-measure. 

 

Let         , then (4.5) gives 

 

                                               (C.1) 

 

where   is a standard normal random number and  

                                        (C.2) 

 

The covariance function is 

                                                            (C.3) 
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(C.3) shows that       and    are joint normal with the covariance matrix 

 

                                                                                           

 

The conditional distribution of    is (Glasserman 2004) 

 

                                                          (C.4) 

 

where 

                                              (C.5)                                                         (C.6)                              (C.7)                                   (C.8)                                   (C.9) 

 

Since                    , we obtain                             . This means 

that (C.4) indeed defines a Brownian bridge.  

 

For standard Brownian motion with constant drift, the Brownian bridge has a linear drift and a 

quadratic variance (Shreve 2004). In this case, the Brownian bridge may be considered as an 

interpolation between the two endpoints. However, these do not hold for (4.5) as stated in section 

4. First, the mean function      is not a linear interpolation of the endpoints. The residual term in 

(C.6) is not zero, ie,                 . Second, the variance function         is much more 

complex than a quadratic function. It can be shown that when    ,      approaches a linear 

function and         approaches a quadratic function. 

 

It can be shown that  
                                    (C.10) 

 

Thus, it is more instructive to rewrite (C.6) with     being equal to 
                           (C.11) 

 

The correction term     represents a convexity adjustment due to mean reversion of the Brownian 

motion. Thus, for mean reversion process, the reversion speed has an impact on the BB’s mean. 
(C.10) shows that the mean-reversion level also affects the mean function.  The initial value, 

however, has no bearing on the Brownian bridge. 

 

Based on (C.5) to (C.11), (C.4) becomes 

 

                                          (C.12) 

 

Let          where    is the critical rate such that               . As explained in section 2.3, 

this is equivalent to                   . By virtue of (C.12) and            , we obtain 
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                                                        (C.13) 

 

This completes the derivation of (4.7). 


