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Abstract   

This article investigates stock-forex markets interdependence in MENA countries for the period 

spanning from February 26, 1999 to June 30, 2014. The analysis has been performed through 

three competing models; the VAR-CCC-GARCH model, the VAR-BEKK-GARCH model and the 

VAR-DCC-GARCH model. Our findings confirm that both markets are interdependent and 

corroborate with stock and flow oriented approaches. We find also that, comparing to optimal 

weights, hedge ratios are typically low, which denote that hedging effectiveness is quite good. 

Estimation of hedging effectiveness allow concluding that the incorporation of foreign 

exchange in a full stock portfolio increase the risk-adjusted return while reducing its variance. 

We note here that the forex market is overweighed for both portfolio designs and hedging 

strategies. More importantly, this evidence holds for all countries as well as for all considered 

models. These findings open up new insights for managerial and governmental policy 

purpose. 

Keys words: MENA markets, Foreign exchange, flow oriented model, portfolio balance 

approach, volatility spillovers, portfolio designs, hedging effectiveness.  
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1. Introduction  

 

The current framework of liberalized capital flows, internationalized stock markets and 

sustained international diversification has led stocks and foreign exchange (forex) markets to 

be ever more interdependent. For instance, in order to pay for stocks from a particular 

country, one must first have the local currency of that country. So the increased demand for a 

given currency causes the value of that currency to appreciate. On the other hand, selling 

home currency increases its supply, which drives its value lower. When the outlook for a 

certain stock market is looking good, international money flows in. Then again, when the 

stock market is struggling, international investors take their money out and look for a better 

place to park their funds. Accordingly, the country with the stronger stock market could lead 

to a rise in value of its currency while the country with the weaker stock market will have a 

depreciating value of the national currency. Consequently, strong stock market leads to strong 

currency but weak stock market leads to weak currency.  

The forex markets have truly become a global market, bigger than any other security 

markets. So when thinking about the association between stocks and forex markets, we 

actually have to think globally. This fact is akin to commodities market which has gradually 

acquired a global feature. Indeed, crude oil, metals, wheat, corn, sugar have become with 

global influence specially when denominated in US dollars and as well related to the forex 

markets. We state here that the existing empirical studies support a close association between 

forex and commodities market.  

Equity markets can also influence forex markets in another way; a weak national 

currency favors domestic exporters to be cheaper and competitive abroad. This fact helps 

stimulate growth and profits of those exporters. When earnings are growing, equity markets 

are likely to do well. Of course, the situation tends to occur in equity markets backed by the 

major global currencies such as USD, EUR, JPY, GBP, etc. The investigation of volatility 

spillovers should also look for return dynamics and attempt to ensure cost-effectiveness of 

findings for managerial purposes and hedging effectiveness as well as regulatory policies.  

The aim of this study is to shed light on interdependence mechanisms between stock 

and forex markets. We focus on linkages in return and volatility and try to establish a global 

analysis. The special awareness for forex markets, rather than for other financial, real or 

commodity markets, is motivated by their special features that investors may get. As stated 

above, when we think forex we think globally. That is to say, forex never sleeps, go long or 

short horizons, offer low trading costs, unmatched liquidity, availability of leverage, 
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international exposure etc. We link the forex market to a set of MENA stock markets that are 

recognized as financially emergent and have growing economic sectors with sustainable trade 

activities, technology transfer as well as regional and international cooperation. Accordingly, 

we consider that the selected markets are representative of a wide range of economic sectors 

and financial raised area.  

The used econometric methodology, for this analysis, is a VAR-GARCH approach of Ling 

and McAleer (2003). We try to perform the analysis using VAR-CCC-GARCH, VAR-DCC-GARCH 

and VAR-BEKK-GARCH competing specifications. One of the main advantages of those 

specifications is that they let to investigate the inter-markets return dynamics and the 

conditional volatility spillovers. Additionally, the model provides meaningful estimates of the 

unknown parameters which tell about innovations and shock transmissions effect. It allows us 

to detect the outcome of forex market events on the stock market returns, on foreign market 

exchange returns and on both forex-stock inter-market. On the whole, we beg the following 

questions: are foreign exchange and stock markets interdependent in MENA countries? and 

what lessons to get for managerial purposes?  

We run three VAR-GARCH models to investigate correlations through inter-markets 

return dynamics and conditional volatility spillovers. We studied the conditional correlations 

between markets and tried to get optimal weights, hedging ratios and hedging effectiveness 

for portfolio management purposes. The three models confirm the interdependence between 

stock and forex markets for mean and variance equations and support both stock oriented 

approach of Branson et al., (1977) and flow oriented approach of Dornbusch and Fisher 

(1980). This evidence point out that both stock and forex markets are weakly efficient and tell 

about short-term predictability. The findings corroborate statement of recent studies and 

confirm rejection of weak-form informational efficiency of international stock-forex markets 

(we cite, Shambora and Rossiter, 2007; Elder and Serletis, 2008; Arouri et al., 2011b).  

For portfolio management, we find that comparing to optimal weights, hedge ratios are 

typically low, which denote that hedging effectiveness is quite good. Estimation of hedging 

effectiveness allow concluding that the incorporation of foreign exchange in a full stock 

portfolio increase the risk-adjusted performance while reducing its variance. We note here 

that the forex market is overweighed either for portfolio designs or for hedging strategies. 

More importantly, this evidence holds for all countries as well as for all considered models. 

This present paper differs from previous studies in few aspects. First, several prior 

studies focused on the interaction between the two market returns using cointegration and 

granger causality tests and in some cases incorporates the effect of exogenous economic and 
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financial variables. Although recent studies on markets interdependency focus on both return 

and volatility spillover channels and make use of simple VAR-GARCH specification model we 

confirm that the cross-markets correlation of conditional shocks were absent in so far as the 

CCC for returns across markets was very weak and not statistically significant. At the same 

line, we find that the estimates of DCC model are for all time significant, which is far from 

supporting empirically the assumption of constant conditional correlations. This highlights the 

evidence of dynamic conditional correlations between the selected markets. Consequently, we 

try here to run four competitive specifications to perform our findings. Second, we implement 

our investigation on MENA emerging markets which have a contribution in global economic 

growth. Indeed, those economies are exporters (oil, manufactures, minerals…) as well as 

importers (engine, technology transfer…), accommodate international labors and have regular 

international money transfer. Especially oil exporter countries enjoy huge surpluses on trade 

balance, current accounts, and national incomes and have helpful fiscal policies. Furthermore, 

these countries expressed an effort of reform and modernization of their economic and 

financial systems. Third, we develop the investigation in view of an international investor and 

run an implicit test of financial integration using the Eurodollar parity as proxy for foreign 

exchange market and do not account for the local currency against a major global currency. 

Fourth, currency is more often being included as an asset in international investment 

portfolios. The Mean-Variance approach recommends that the expected return is implied by 

the variance of the portfolio. So the accurate variability of a given portfolio requires a 

successful estimate of the correlation between stock prices and exchange rates. Understanding 

the link between currency rates and other assets in a portfolio is then fundamental for the 

performance of the fund. Hence, we go away to demonstrate the managerial usefulness of our 

findings through an assessment of their effect on portfolio designs and hedging effectiveness. 

Finally, the study provides an implicit service which allows comparing between stock and 

forex markets for managerial and governmental executive purpose.  

The remainder of the paper is organized as follows. Section 2, presents a brief literature 

review. Section 3, outlines the empirical methodology. Section 4, describes the data’s 

statistical properties and discusses empirical results. Section 5, presents the implications for 

portfolio management and section 6, concludes the study.  

2. Theory and literature review   

Empirical literature focusing on markets interdependencies states that international markets 

are interdependent through two channels: corporate cash-flows and stock prices. In the same 
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line, Classical economic theory assumes that stock prices and exchange rates can interact and 

then supports the two approaches.  

The first approach is flow oriented models (Dornbusch and Fisher, 1980), which suggest 

that movements in exchange rates cause movements in stock prices. In terms of causality 

terminology, it is uni-directional Granger causality. In macroeconomic perspective, stock 

prices correspond to the present value of firm’s expected future cash flows. So, under the 

hypothesis of market efficiency, stock prices would reflect any phenomenon that affects a 

firm’s cash flow that has been associated with changes in the value of the exchange rate. We 

notice here that the growing use of hedging instruments, such as derivatives is likely to shrink 

currency movements’ shocks on firm’s earnings. The second approach is stock oriented or 

portfolio balance approach (Branson et al., 1977) which supports the reverse direction and 

assumes that stock prices may affect exchange rates. In Granger terminology, stock prices 

movements Granger-cause exchange rates behavior through capital account transactions. 

Consequently, stock and forex markets are interacting in different ways but note that various 

aspects such as market liquidity and integration-segmentation level, market imperfection, 

international trade are likely to boost or lessen this fact. Therefore, empirical analysis of the 

extent, depth and direction of interdependence between stock and forex markets states that the 

relationship should exist.  

Early studies by Aggarwal (1981) and Soenen and Hennigar (1988) provide evidence in 

support of the flow model. Later studies shows that market interdependence exist and are 

conducted by both return series and volatility innovations. For instance, Eun and Shim (1989) 

show that around 26 percent of the error variance of stock market returns can be explained by 

innovations in other stock markets, and, not surprisingly, report that the US market is the most 

influential stock market. King and Wadhwani (1990) support the transmission of information 

across markets through volatility innovations which results in a contagion effect. Chiang et al. 

(2000), show that national Asian stock market returns are positively associated with the value 

of the national currency. Likewise, Sabri (2004) focused on the increasing volatility and 

instability of emerging markets and points out that stock trading volume and currency 

exchange rate are the most positively correlated with the emerging stock price changes. Kanas 

(2000), examines the interdependence of stock returns and exchange rate changes within the 

national economy in six developed countries (namely, USA, UK, Japan, Germany, France and 

Canada) and confirm the existence of cointegration between stock and exchange markets. The 

author observed the evidence of spillover from stock returns to exchange rate changes for all 

countries except for Germany but no volatility spillovers from exchange rate changes to stock 
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returns for all the countries. Conversely, Bodart and Reding (2001) examined the effect of 

exchange rate on expected industry return and volatility and show that the effect of forex 

spillovers on stock markets exist but is it quite small and affirm that exchange rate changes is 

influenced by the exchange rate regime, the direction and the magnitude of exchange market 

shocks. Nieh and lee (2001) found no significant long-run relationship between stock prices 

and exchange rates in G7 countries, using both Engel-Granger and Johansen’s cointegration 

tests. Bhattacharya and Mukherjee (2003) study causal relationship between exchange rate 

and stock index in India and support the absence of causal relationship between stock market 

index and exchange rate. Mote later, Ramasamy and Yeung (2005) stipulate that the reason 

for the divergent empirical results is that the nature of the interaction between stock and 

currency markets is sensitive to business cycles and wider economic factors, as well as market 

and economic structures.  

Pan et al. (2007) examined this relationship for seven East Asian countries over the 

period 1988 to 1998, and found a bidirectional causal relation for Hong Kong before the 1997 

Asian crises and unidirectional causal relation from exchange markets to stock markets for 

Japan, Malaysia, and Thailand but from stock markets to exchange markets for Korea and 

Singapore. During the Asian crises, only a causal relation from exchange market to stock 

market is seen for all countries except for Malaysia. At the same time, Erbaykal and Okuyan 

focused on that question in 13 developing economies using different time periods and found 

causality relationship for eight economies, unidirectional from stock market to exchange 

market in the five cases and bidirectional for the remaining three. Dilrukshan et al. (2009), 

support the evidence of a positive co-integrating relationship in the Australian context which 

corroborate with the stock oriented (or portfolio balance model), that is, stock market 

movements cause forex market changes. At the same, Agrawal et al. (2010), finds negative 

correlation between Nifty stock market returns and exchange rates and highlights 

unidirectional Granger Causality relationship running from the former towards the latter 

supporting the stock oriented approach. More recently, Other studies found the absence of 

cointegration between stock prices and exchange rates include Zubair (2013), Okpara and 

Odionye (2012), Zia and Rahman (2011) etc. In overall, even though the theoretical 

explanation may seem obvious at times, empirical results have always been mixed and 

existing literature is inconclusive on the right features of this interdependence. However, we 

state here that while empirical tests are plausible and apparent they either test interdependence 

between return dynamics using return series or interdependence between volatility effects 

using conditional variances. We attempt to run various VAR-GARCH specification models to 
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join the first and the second conditional moments and provide meaningful estimates of the 

unknown parameters.   

3. The empirical methodology 

The interdependence is the evidence of movements of information flows between markets 

which get their delivery from correlation in the second moment (volatility effect) more better 

that through correlation in the first moment (return dynamics). The better proxy for 

information is the conditional volatility (we cite for instance, Clark (1973), Tauchen and Pitts 

(1983) and Ross (1983)). However, in the framework of out aiming, we try to study the 

interdependence between stocks and forex markets and focus on possible feedback. 

Accordingly, we consider that a heteroscedastic autoregressive specification is appropriate for 

the aims of this research.  

We make use of the VAR–GARCH model, of Ling and McAleer (2003) which has been 

applied by Chan et al. (2005, 2011) and Hammoudeh et al. (2009), Arouri et al. (2012), Mensi 

et al.(2014) for miscellaneous economic topics, to explore the interdependence between return 

dynamics and volatility transmission. We present separately the conditional mean equation 

specification and the conditional variance equation specification in the multivariate 

framework. The former describe the return channel spillover and the later is considered for the 

variance spillover with three competitive models: the CCC-, the DCC- and the BEKK-

GARCH(1,1).  

3.1. The conditional mean equation specification  

The return channel spillover is represented by a VAR(1) model as follows: 

t1tt c          

Where, 

   FX

t

S

tt r,r . 
S
tr and 

FX

tr are the logarithmic returns on stock market return indices and 

returns on foreign exchange indices at time t, respectively. foreign exchange indices  are 

the Eurodollar parity ; 

  is is (2 x 2) matrix of coefficients to be estimated of the form 











2212

2111 ; The 

coefficients ϕ11 and ϕ22 provide the measures of own-mean spillovers, while the 

coefficients ϕ21 and ϕ12 measure the cross-mean spillovers.  

(Eq. 1) 
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   FX

t

S

tt , , 
S

t and 
FX

t  are, respectively, the residuals of the mean equations for stock 

and forex returns. They are assumed to be serially uncorrelated but with non-nul 

covariances )0)(E( FX

t

S

t  .  

3.2. The conditional variance equation specification 

The dynamics of conditional volatility is modeled by three MVGARCH class models. The first 

model includes the multivariate CCC-GARCH developed by Bollerslev (1990) with constant 

correlations between markets which allow to easy estimation and inference of the conditional 

volatility and the conditional correlation. The second specification is the DCC-GARCH model 

introduced by Engle (2002), as generalization of CCC model, which allow obtaining different 

perspective of correlation through modeling wide variance-covariance matrices and to time 

varying cross-market comovements.  

The third specification is the full BEKK-GARCH model of Engle and Kroner (1995), 

which consider volatility persistence within each market and cross-volatility spillover 

between markets. The residuals of the mean equation are defined as follows:  

ttt h  ~ )h,0( t  

1t

2

1tt hch    

   FX

t

S

tt , refers to (2 x 1) vector iid random vectors; 

  FX

t

S

tt h,hdiagh  , with 
S

th  and 
FX

th  are the conditional variances of 
S

tr and 
FX

tr

respectively which are given by Eq. (4) and Eq. (5) :  

FX

1tFX

2FX

1tFX

S

1tS

2S

1tSS

S

t h)(h)(ch    

S

1tS

2S

1tS

FX

1tFX

2FX

1tFXFX

FX

t h)(h)(ch    

 

In matrix representation, it will be: 











































































FX

1t

S

1t

1FX2FX

2S1S

2FX

1t

2S

1t

1FX2FX

2S1S

FX

S

FX

t

S

t

h

h

)(

)(

c

c

h

h

 

Eqs. (4) and (5) show how volatility is transmitted through time and across the stock and 

forex market indices. The cross value of the error terms (
2S

1t ) and (
2FX

1t ) represents the return 

innovations in the stock indices across the corresponding forex markets at time (t−1) and 

represents short run persistence (or the ARCH effect of past shocks), which captures the 

(Eq. 6) 

(Eq. 2) 

(Eq. 3) 

(Eq. 4) 

(Eq. 5) 
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impact of the direct effects of shock transmission. The presence of (
S

1th  ) and (
FX

1th  ) captures 

the volatility spillovers or interdependencies between stock markets and forex markets. It 

accounts for the long-run persistence (or the GARCH effects of past volatilities). We 

remember that the reciprocal effect allows to volatility of one market to be affected by its own 

past shock and volatility but also by past shock and volatility of other markets.  

The conditional covariance between the stock returns and forex returns may be derived as 

follows: 

tttt DRDH   ;  FXFX

t

SS

tt h,hdiagD   

Where, 
FX,S

ttR   is the (2 x 2) matrix containing the conditional constant correlations (CCC). 

We note that the CCC is a restrictive assumption in so far as the conditional correlation is 

assumed to be constant while the conditional variances are varying. Apparently, this 

assumption is unfeasible for real financial time series.  

The conditional variances and covariances are given by: 




















FX

t

S

t

FX,S

t

FX

1tFX

2FX

1tFXFX

FX

t

S

1tS

2S

1tSS

S

t

hhh

h)(Ch

h)(Ch

 

The positiveness of the ARCH and GARCH coefficients is not required to get a positive definite 

matrix (Bollerslev, 1990). This process is covariance stationary when the roots of 

2det ( ) 0I A B    are outside the unit circle of the complex plan, where I2 is (2 x 2) 

identity matrix and 












FX

S

0

0
A   and  













FX

S

0

0
B . 

The DCC-GARCH(1,1) of Engle (2002) overcomes the restrictive assumption of the CCC by 

allowing the conditional correlation matrix to be time varying. Consequently, Rt is the matrix 

of time-varying conditional correlations given by:  

    2

1

tt
2

1

t

FX,S

tt )Q(diagQ)Q(diag)(R
   

Rt is the (2 × 2) symmetric positive-definite matrix which depends on squared standardized 

residuals   ( t /
ttt h  ), their unconditional variance-covariance matrix ( Q ) and its own 

lagged value as represented as follows:  

1t1t1tt QQ)1(Q    

Where, α and β are non-negative scalars as it is 1 .  

(Eq. 7) 

(Eq. 8) 

(Eq. 9) 

(Eq. 10) 
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Subsequently, the conditional variance-covariance matrix of the DCC-GARCH(1,1) 

specification (Eq. 7) will be: 





























FXFX

t

SFX

t

FXS

t

FX,S

t

FXS

t

SFX

t

FX,S

t

SS

t

FXFX

t

FXS

t

SFX

t

SS

t

tttt

hhh

hhh

hh

hh
DRDH  

We then make use of another class of GARCH processes that model the conditional 

covariance matrix Ht rather than the conditional correlations. The BEKK-GARCH class model 

defines the conditional variance-covariance matrix (Ht) as follows: 

BBHAACCH 1t1t1tt
        

The element C is a (2 × 2) upper triangular matrix of constants for the pair of markets ; A is a 

(2 × 2) matrix of coefficients that capture the effects of own and cross-market shocks; and B 

is a (2 × 2) matrix of coefficients that capture the own volatility persistence and the volatility 

transmissions between stock and forex markets.  

In view of that, the conditional variance and covariance processes take the following forms: 





















SFX

1tFXS

FX

1t

S

1tFXSSFX

SFX

t

FX

1t

2

FX

2FX

1t

2

FXFX

FX

t

S

1t

2

S

2S

1t

2

SS

S

t

hCh

h)(Ch

h)(Ch

 

Where, S

th and FX

th are the conditional variances of 
S

tr and 
FX

tr . Eq. (13) thus shows that direct 

volatility transmission between stock returns forex market returns is not possible since the 

conditional volatility of each market depends only on its own shocks and its long-run 

persistence. This volatility model is covariance stationary when 12

S

2

S  , 12

FX

2

FX   and 

1FXSFXS  . 

The estimation of the conditional variances and covariances allows computing the optimal 

weights of a stock-forex portfolio as well as the optimal hedge ratios. We note that in order to 

be aware from the fact that normality condition is often rejected for economic and financial 

series we follow Ling and McAleer (2003), and use the quasi-maximum likelihood estimation 

(QMLE) method to estimate parameters of the model.  

4. Descriptive statistics and empirical results 

4.1. Sources of data and descriptive statistics  

Our sample data are monthly return indices of eight national MENA stock markets (namely, 

Bahrain, Egypt, Kuwait, Morocco, Kingdom of Saudi Arabia, Oman, Qatar and United Arab 

(Eq. 11) 

(Eq. 12) 

(Eq. 13) 
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Emirates,) and the Eurodollar exchange rate series. The sample period is spanning from 

February 26, 1999 to June 30, 2014. The data of stock markets are sourced from MSCI while 

the Eurodollar is from the European central bank, ECB, website.  

We use monthly data for a number of motivations; first, monthly data allows focusing 

on strategic long term dealing while weekly and daily data fit well on short-term/medium 

tactical dealing. Second, some potential biases arising from the bid-ask bounce, non-

synchronous trading days, days of the week, weekend effects, 5 or 7 days a week are far from 

being discussed with monthly data. We prove the chosen sample period by the intention to 

cover the global recessions and special events, to account for several sub-periods of economic 

growth and, of course, the recent global financial crisis which mark an observable separate 

dynamic pattern since 2007. Moreover, stock and forex returns are computed by taking the 

natural logarithm of the ratio of two consecutive prices. 

Table 1 reports the descriptive statistics of monthly returns. We note that they are 

globally similar to the findings of previous studies. First, market returns are significantly 

departed from the normality hypothesis according to the Jarque – Bera test. Second, the 

analysis of stationarity using the Augmented Dickey – Fuller (ADF) unit root test clearly 

shows that the distribution of market returns is stationary at the 1% level, since the calculated 

ADF values are strictly below the critical threshold. The correlation structure of monthly 

return series is examined using the Ljung–Box autocorrelation test of lags orders between 6 

and 12. The results suggest that stock returns are relatively not autocorrelated. Finally, the 

Engle’s (1982) test for conditional heteroscedasticity rejects the null hypothesis of no ARCH 

effect in monthly returns which lends support to the use of GARCH specification. 

4.2. Stock markets and Forex in MENA countries  

MENA markets share some common characteristics which are useful to explore. They have 

made progress in liberalizing trade, opening their financial systems and adopting market-

based financial systems. Indeed, capital markets of the region are focusing on the 

establishment of financial centers and the diversification of their financial instruments in local 

markets. However, some heterogeneity deserves to be noted such as age and size of some 

markets relative of others, the level of retail investment and the domination of few sectors. 

Table 2, displays some keys features. 
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4.3. Return dynamics and volatility transmissions : results and discussion  

The empirical analysis is conducted on eight return indices and seven bivariate VAR-GARCH 

models (systems). Each system consists in the stock versus forex market return indices. We 

then present and discuss the results of return dynamics and volatility transmission.  

The interdependencies and volatility spillovers between pairs of markets are 

summarized in tables, 3 to 5, for the three VAR-GARCH class models. The computed constant 

conditional correlations (CCC) between the stock and forex market return indices are all 

significantly positive except for Kuwait and Saudi Arabia. It ranges between 30.23% for 

Morocco and 15.74% for Egypt. This evidence suggests factual and mutual interdependence 

between markets which allows for diversification opportunities as well as hedging strategies.  

Taking a close look at the mean equations we observe that stock returns depend on their 

own one period lagged return with the exception for Bahrain, Saudi Arabia, Qatar and UAE. 

On the contrary, forex market return indices are independent from their own past except for 

KSA. What deserves to be mentioned is that one lagged stock market return significantly 

affects all the current forex markets return except for Morocco, Qatar and UAE. This fact 

supports the stock oriented or portfolio balance approach of Branson et al. (1977). In the 

opposite direction, only Kuwait lagged forex market do not affect the current stock market 

returns and opposes the flow oriented model of Dornbusch and Fisher (1980). This evidence 

point out that both stock and forex markets are weakly efficient and tell about the possible 

success of short-term predictability. The findings corroborate statement of recent studies and 

confirm rejection of weak-form informational efficiency of international stock-forex markets 

(we cite, Shambora and Rossiter, 2007; Elder and Serletis, 2008; Arouri et al., 2011b).  

On the subject of the conditional variance equation, common patterns are observed for 

both stock and forex markets. In fact, ARCH and GARCH coefficients are significant for number 

of cases. The current conditional volatility of stock market is significantly affected by both 

own past volatility and the one lagged volatility of forex markets except for Morocco and 

Oman for only stock market conditional variance. So past stock market’s conditional volatility 

helps significantly predict current forex markets GARCH terms solely in Morocco and Oman. 

Consequently, there are no effective mutual effects between stock and forex GARCH terms.  

ARCH terms exhibit relatively more better patterns and prove that current conditional 

volatility depends with own past shocks except for Bahrain and Kuwait. We state that past 

own and bidirectional shocks are leading volatility spillovers between stock and forex markets 

and then help predicting future pricing behaviors. Comparing to GARCH terms, ARCH 
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coefficients have relatively small size which allow inferring that conditional volatility does 

not react simultaneously to impulses on own and bidirectional shocks. They are likely to 

progress steadily over time regarding substantial effects of past volatility, as indicated by the 

large values of GARCH terms. We state that the current findings seem to be plausible and 

corroborate recent empirical investigations focusing on oil and stock sectors, and stock and 

commodities markets. We cite, inter alia, Arouri et al.(2011ab, 2012), Chang et al. (2011), 

Mensi et al. (2013, 2014).  

Results of diagnostic tests based on standardized residuals are shown in each estimation 

table. We find that departure from normality and autocorrelation are reduced to a great extent 

than those presented in Table 1 of statistical properties of return series. More prominently, 

standardized residuals do not exhibit remaining ARCH effects. Therefore, the bivariate 

VAR(1)-GARCH (1,1) model fits better to capture the bidirectional dynamics between stock 

and forex markets.  

Interpretation of the conditional mean equation makes it possible to confirm the 

obtained results from the CCC specification model with slightly superior effect regarding 

values of the significant coefficients. Indeed, return dynamics of forex significantly affect 

stock market returns except for Kuwait and corroborate with the flow oriented approach. We 

may explain this fact by the exchange rate regime of Kuwaiti Dinar (KWD) comparing to the 

other cases in our sample. Reciprocally, the stock market return indices have an effect on 

forex markets except for Morocco, Qatar and UAE.  

On the subject of the conditional variance equation, the DCC specification confirms the 

effect of forex past volatility on the current stock market’s volatility especially for Oman. The 

effect of stock market conditional volatility is persistent on the Bahraini, Saudi and Qatari 

stock markets while for the forex is solely persistent on GCC countries. The results seem to be 

plausible in so far as GCC countries are providers of oil denominated in US dollars, have a 

regular large part in international trade and stacking up official foreign exchange reserves in 

major global currencies such as dollars, Euros, Pound, and Yen). For illustration, look upon 

the total volume of public financial assets, including official reserves in addition to assets held 

by public investment vehicles, the GCC states presently dispose of an estimated USD 1.8 tr of 

which Saudi Arabia and the United Arab Emirates together hold almost 75%. These assets 

amount to USD 45,000 per inhabitant, which exceeds the per capita public wealth of China, 

for example, by a factor of 15. (Sources: OPEC, IMF, OECD Researches).  

Taking a close look at the mean equations on the estimates of the VAR-BEKK-GARCH 

class models (Table 5), we observe that the current stock return significantly depends on the 
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own one month lagged return and those of forex markets. This result illustrates the evidence 

of short-term predictability in some stock price changes through time. As for the cross-

markets mean interdependencies, we state that results were mixed and confirm the weak-form 

of informational efficiency but help predict the trend of stock market pricing behavior. This 

statement corroborate those observed by Mensi et al.(2014) using DCC-GARCH and BEKK-

GARCH class model for dynamic spillovers between international prices commodities markets.  

Regarding the conditional variance equations, the current conditional volatility of the 

stock and forex markets is closely associated with owns past shocks (a11 and a22) and past 

conditional volatility (b11 and b22). For spillover mechanisms, the cross-markets shock effects 

(a12, a21) are found for stock market which significantly affect forex in Egypt and Morocco 

and Oman (a12) and for foreign exchange market shocks that affect stock market current 

pricing on Morocco, Oman and Qatar (a21). So stock-forex shocks are perfectly 

interdependent in Egypt, Morocco and Oman. We state here that Morocco has a special 

pattern regarding the own and bilateral effects between stock and forex shocks. The 

conditional volatility of Kuwaiti, Moroccan and Qatari Forex markets are the solely that affect 

current stock market pricing volatility (b21). Reciprocally, stock market conditional volatility 

does not affect forex markets except for Saudi and Omani forex markets (b12).  

At the same, own conditional variances are still influencing on both stock and forex 

markets.  Stock market conditional volatility remains influencing for Bahrain, Egypt, Saudi 

Arabia, Qatar and UAE (b11) and for Morocco, Saudi Arabia, Oman, Qatar and UAE (b22).  

Figures 1, display the dynamics of conditional correlations obtained from the DCC-

GARCH and BEKK-GARCH class models. The conditional correlations are time-varying and 

marked by common blips. The significant fluctuations reach their high level during the recent 

global financial crisis with a peak in, 2010 Q2 and 2011 Q3. Conversely, they mark a number 

of dips such as in, 2003 Q2 (Irak war) and Q3, 2008 Q4 (Subprime crisis), 2012 Q2 (the 

recent global recession). At the same, the BEKK-GARCH specification exhibit a continuous 

evolving over time with rising and falling periods.  

The observed irregularity in some relationship can be explained by special features of a 

number of markets, their microstructure, efficiency and especially their exchange rate regimes 

as well as baskets of currencies which are pegged to.  

For comparison, although both the DCC and BEKK estimates evolve similarly over time 

and increase in recent years, the magnitude of the DCC dynamics is slighter than those 

observed from the BEKK specification. The current findings confirm those obtained by recent 
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empirical studies such as Schmidbauer and Rösch (2012) and Mensi et al.(2014), who study 

the effect of OPEC news announcement on energy-markets volatility and dynamic spillovers. 

5. Implications for portfolio management /structure and hedging 

We capitalize on estimation results to draw attention to the managerial implication in view of 

an international investor. We compute optimal portfolio weights and hedge ratios and seek to 

appraise the diversification strategy using the hedging effectiveness statistics.  

5.1. Optimal portfolio weights 

According to Kroner and Ng (1998), the optimal weights of holding stock market indices and 

the forex are given by: 
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Where, 
stock,forex

tw  denotes the weight of forex market index in the one-dollar portfolio of two 

assets at time t. 
stock

th  and 
forex

th refer to conditional variances of stock market return indices 

and forex return index respectively. The term 
stock,forex

th  is the conditional covariance between 

the stock and forex markets at time t. The weight of the stock market index in the considered 

portfolio is obtained by computing the (
stock,forex

tw1 ). Statistics for the portfolio weights are 

computed from fitting the cited three VAR(1)-GARCH(1,1) class models. 

5.2. Hedging strategy  

Portfolio designs might be likened to early hedging strategy against adverse progress of price 

indices. A timely strategy is also available for investor to the extent that he can decide on the 

optimal hedge ratio for his portfolio. In that framework, the hedging question consists of 

identifying how much a long position (buy) in one dollar in stock market should be hedged by 

a short position (sell) in βt dollar in forex market. We follow Kroner and Sultan (1993) and 

use the hedge ratio which takes the following form:  
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(Eq. 14) 

(Eq. 15) 

(Eq. 16) 
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Table 6, summarize the statistics of portfolio designs for three competing specifications of 

VAR-GARCH class model. 

As shown in table 6, the hedge ratios are typically low, signifying that hedging effectiveness 

involving stock and forex markets is quite good, allow inferring that the incorporation of 

foreign exchange in a diversified portfolio of stocks increase the risk-adjusted performance.  

Optimal weights in the hedged portfolios vary substantially across stock and forex but slightly 

differ across the used class models. This results corroborate with those obtained by recent 

empirical studies such as Arouri et al.(2011b). Values of wt range between 0,84 for UAE in 

VAR-BEKK-GARCH model and 0,97 for Egypt in the VAR-DCC-GARCH class model.  

On the whole, we observe that, to maximize the risk adjusted return of the same one-

dollar stock-forex portfolio, international investor should hold, on average, fewer financial 

assets (i.e., stock) with mean value of wt = 91%. When hedging with forex market, he is 

supposed to overweight financial assets on Moroccan market (wt = 94%) but to underweight 

on Saudi or Omani markets (wt = 86%). This finding suggests that the forex market provide a 

substantial alternative way for higher benefits as well as hedging of such position. We state 

that the three class models point out equivalent findings with and relatively smaller values for 

BEKK specification. The found results confirm those obtained by major recent investigations 

such as Arouri et al.(2011b).  

As for hedge ratios, we find that they are varying between markets but slightly between 

the three competing class models. Average values are ranging between 0.01 for Kuwait using 

VAR-CCC-GARCH and 0.13 for Morocco using VAR-BEKK-GARCH model. Greatest values of βt 

are found for Morocco (ranging between 12.46% and 13.63%) but smallest values are 

observed for Kuwait (ranging between 1% and 8.62%).   

Interpretation of the present results makes it possible to deduce that the forex market is 

overweighed either for portfolio designs or for hedging strategies. The VAR-DCC-GARCH class 

models overweighed forex assets than stocks to build or hedge positions on the international 

portfolio. We assume that the current findings offer several insights for short hedgers. First, 

the low ratios suggest that portfolio investment risk can be hedged by taking a short position 

in stock markets. For instance, the largest ratio, 0.1363, is for Morocco from the DCC-

GARCH model, meaning that one-dollar long (buy) in the forex market index should be 

shorted (sell) by 13.63 cents of stock index.  
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5.3. Diversification and hedging effectiveness  

As cited here before, we actually draw on the estimated optimal parameters (weights and 

hedging ratios), to manage and simulate global portfolio diversification and to learn about the 

hedging effectiveness. We use the estimates of three VAR-GARCH class models to conceive 

two portfolios: a first full-stocks portfolio (PFI) and a second stock-forex weighted portfolio 

(PFII). We try to test the contribution of a weighted stock-forex portfolio to the unhedged 

stock portfolio (PFI).  

As decision rule, we control for the effectiveness of the diversification strategy by 

comparing the realized risk and return characteristics of the considered portfolios. We make 

use of the realized hedging errors of (Ku et al., 2007) which is presented as follows:  

unhedg

hedgunhedg

var

varvar
HE


       

Where, var
unhedg

 and var
hedg

 denote the variances of the unhedged and hedged portfolios 

respectively. A higher value of HE ratio represent a better hedging effectiveness in terms of 

the portfolio’s variance reduction, and consider the associated investment method as 

successful hedging strategy.  

Table 7 present summary statistics of the diversification strategy of weighted portfolios 

as well as values of the hedging effectiveness ratio. We consider the non diversified portfolios 

and incorporate forex assets to implement diversification strategy and assess the reward-to-

risk and the hedging effectiveness for each portfolio.   

The results, in Table 7, provide evidence that adding forex assets to the diversified portfolios 

lessens its variance and gets better the risk-adjusted return ratios. More importantly, this 

evidence holds for all countries as well as for all considered models.  

From the perspective of return, the full stocks unhedged portfolio provides the best risk-

adjusted return ratios in five out of eight pairs of stock-forex portfolios. From the perspective 

of variance, our findings show that hedging strategies involving stock and forex markets 

allow reducing the variance of the portfolio. The reduction of variance ranges from 67.1% 

(Kuwait in the bekk specification) to 93.8% (Qatar in the bekk specification). The variance 

reduction is then significantly different between countries, but remains relatively stable across 

the three var-garch class models. The portfolio variance is reduced, or the hedging 

effectiveness is greater, when the BEKK-GARCH and DCC-GARCH models are used. However, 

we state here that the BEKK-GARCH is the best one. Chang et al. (2011), Arouri et al.(2011) get 

to the same finding as regards the superior ability of bivariate diagonal BEKK-GARCH over the 

(Eq. 17) 
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DCC-GARCH and CCC-GARCH when examining the optimal hedging effectiveness between 

crude oil spot and futures markets and between oil prices and stock sector returns 

respectively. We state here that the current findings are plausible and economically 

interpretable and provide practical usefulness for portfolio management as well as for 

governmental policy making.  

6. Conclusion  

Learning about the relationship between stocks and forex markets is fundamental for several 

reasons. First, decisions about monetary and fiscal policy might be affected by such 

relationship. When policy-makers depreciate national currency so as to boost domestic 

exporters, they may depress the stock market. Accordingly, expansionary monetary or 

contractionary fiscal policies that target the interest rate and the real exchange rate should 

consider the positive effect of a booming stock market on aggregate demand (Gavin, 1989). 

Second, the nature of tie between the two markets help predict trend of the exchange rate and 

then advocate multinational corporations to deal with their exposure to foreign exchange rate 

risk. Third, currency is most of the time built-in as an asset in investment portfolios and the 

performance of the portfolio is closely associated with the understanding of the link between 

the incorporated assets. In the framework of portfolio analysis, the Mean-Variance approach 

suggests that the expected return is implied by the variance of the portfolio which requires 

accurate estimates of the correlation between stock prices and exchange rates. We note that 

the magnitude of this correlation may change when the stock prices are the trigger variable or 

when the forex are the trigger variable. Finally, the understanding of the stock-forex 

relationship may prove helpful to foresee a crisis. So awareness about such interdependence 

between the two markets would set off precautionary action before the spread of a crisis (we 

cite for instance, Khalid and Kawai, 2003; Ito and Yuko, 2004).  

We focused on the third reason and run three VAR-GARCH models to a best estimate of 

correlations through inter-markets return dynamics and conditional volatility spillovers. We 

studied the conditional correlations between markets and tried to get optimal weights, hedging 

ratios and hedging effectiveness for portfolio management purposes. The three models 

confirm the interdependence between stock and forex markets for mean and variance 

equations and support both stock oriented approach of Branson et al., (1977) and flow 

oriented approach of Dornbusch and Fisher (1980). This evidence point out that both stock 

and forex markets are weakly efficient and tell about short-term predictability. The findings 

corroborate statement of recent studies and confirm rejection of weak-form informational 
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efficiency of international stock-forex markets (we cite, Shambora and Rossiter, 2007; Elder 

and Serletis, 2008; Arouri et al., 2011b).  

For portfolio management, we find that comparing to optimal weights, hedge ratios are 

typically low, which denote that hedging effectiveness is quite good. Estimation of hedging 

effectiveness allow concluding that the incorporation of foreign exchange in a full stock 

portfolio increase the risk-adjusted performance while reducing its variance. We note here 

that the forex market is overweighed either for portfolio designs or for hedging strategies. 

More importantly, this evidence holds for all countries as well as for all considered models. 

We state that the current findings corroborate with previous studies and provide practical 

usefulness for portfolio management as well as for governmental policy making.  
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Table 1. Statistical properties for monthly return series 

 
Mean Std. Dev. Skewness Kurtosis Jarque-Bera 

ADF 
Statistics 

Q(6) Q(12) ARCH (6) ARCH (12) 

FOREX 0.111 2.604 0.001 2.938 0.022 -10.101+++      15.600++ 19.407+ 2.932+++ 1.748+ 

Bahreïn -0.096        6.439       -0.963 6.494 96.224+++ -5.163+++ 48.639+++    51.852+++ 3.819+++ 2.141++ 

Egypt  0.560 9.298       -0.411 5.498 41.812+++ -10.326+++ 26.625+++    27.645+++ 0.313 0.581 

Kingdom of 

Saudi Arabia 
 0.827 8.486 -1.015 5.287 56.523

+++ 
-9.678

+++ 
10.778

+ 
     16.336 9.936

+++ 
4.693

+++ 

Kuwait  0.362 6.289 -0.727 4.675 29.764+++ -8.069+++ 29.332+++    34.069+++ 2.716++ 2.059++ 

Morocco  0.397 5.843 -0.053 4.061 6.869++ -13.175+++ 7.536      11.235 2.792++ 1.635+ 

Oman  0.584 5.992 -1.658 11.797 534.11+++ -5.382+++ 43.365+++    71.164+++ 2.323++ 1.110 

Qatar  1.060 9.806 0.023 6.616 79.012
+++ 

-9.674
+++ 

5.567      10.761 6.070
+++ 

3.149
+++ 

United Arab 
Emirates 

0.381 6.118       -0.392 5.218 33.471+++ -10.375+++ 35.992+++ 42.170+++ 4.319+++ 2.477+++ 

Notes: The table presents basic statistics of monthly returns. Columns 1 to 5 are reserved to the mean (%), the standard deviation (%), the skewness, the kurtosis and the 

Jarque and Bera normality test statistics. Q (6) and Q (12) are statistics of the Ljung-Box autocorrelation test applied on returns with lags between 6 and 12. ARCH (6) and 

ARCH (12) are the statistics of the conditional heteroskedasticity test proposed by Engle (1982), using the residuals of the AR (1) model. ADF is the statistics of the ADF unit 

root test proposed by Dickey and Fuller (1981). The ADF test is conducted without time trend or constant. +, ++ and +++ denote that the null hypothesis of tests (no-

autocorrelation, normality, no-stationarity and homogeneity) are rejected at, respectively, 5% and 1% levels. 
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Table 2. MENA stock exchanges and forex markets  

         Bahrain    Egypt Kuwait Morocco   Oman   Qatar      S.       
Arabia 

   UAE 

Panel A. Stock markets   

Market cap. (USD bn) 21,522 73,167 109,500 55,714 38,746 197,100 602,500 220,200 

# listed companies  47 236 216 57  131 43 168 122 

Market cap. over GDP 66% 21% 57% 61% 27% 72% 59% 26% 

Share turnover velocity 1,5% 19% 4,8%  1.7% 4,1% 11% 33,7% 15,9% 

Weight in AMF index 1.01 4.64 8.71 4.11 2.27 15.05 42.77 17.56 

Ownership structure  State-

owned 

Public 

institution 

State 

owned 

Mutuali-

sed 

State 

owned 

State 

owned 

State 

owned 

State 

owned 

 Exchange rate per USD 0.377 7.152 0.282 8.193 0.385 3.641 3.750 3.673 

Panel B. Forex Arrangements   

Bahrain Peg to the US dollar since October 1965. 

Egypt De facto crawling band (±5%) around US dollar/Multiple rates until October 8, 1991, and 

De facto moving peg to US dollar/Multiple rates. 

Kuwait Official peg to the US dollar with official band ±3.5% -de facto ±-1% until May 19, 2007. 

De facto peg to US dollar, Officially pegged to an undisclosed basket of currencies. 

Morocco Moving band around euro (±2% band. officially pegged to a basket of currencies) until 

October 2000 and then De facto crawling peg to euro. 

Oman Official peg to the US dollar since January 2002. 

Qatar Until march 1975, Quatar Riyal replaces Quatar/Dubai Riyal. And then officially pegged 

to the IMF’s SDR. 
S. Arabia De facto peg to the US dollar. 

U. A. Emirates Since January 1990, officially Peg to US dollar. 

Notes: Informations are sourced from the Arab Monetary Fund (AMF) and world Federation of Exchanges 

(WFE). December 2014.  
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Table 3. Estimation of VAR-CCC-GARCH model  
 Bahrain Egypt Kuwait KSA Morocco Oman Qatar UAE 

 Stock Forex  Stock Forex Stock Forex Stock Forex Stock Forex Stock Forex Stock Forex Stock Forex 

Panel A: Conditional mean Equation 

Constant 
0.0163 

(0.9505) 
-0.0351 
(0.9626) 

0.1194 
(0.5258) 

0.7116 
(0.3095) 

-0.0055 
(0.9839) 

0.0237 
(0.9699) 

0.0466 
(0.7953) 

0.0356 
(0.9415) 

0.1089 
(0.5103) 

- 0.2311 
(0.5727) 

0.0665 
(0.7364) 

0.7922 
(0.1620) 

0.0004 
(0.9984) 

0.0364 
(0.9250) 

0.0389 
(0.8294) 

0.0389 
(0.9192) 

Stock{1} 
0.0146 

(0.7133) 
0.2596* 
(0.0897) 

0.0358* 
(0.0757) 

0.2801*** 
(0.0000) 

0.1104*** 
(0.0007) 

0.2398* 
(0.0840) 

-0.0061 
(0.7417) 

0.2706*** 
(0.0028) 

0.1028*** 
(0.0005) 

- 0.0464 
(0.6142) 

0.0908*** 
(0.0053) 

0.2983*** 
(0.0069) 

0.0114 
(0.5406) 

-0.0137 
(0.9143) 

0.0050 
(0.8679) 

0.1523 
(0.2091) 

Forex {1} 
0.2865** 
(0.0455) 

0.1026 
(0.7055) 

0.2463** 
(0.0027) 

-0.1213 
(0.6301) 

0.1209 
(0.3098) 

0.0031 
(0.9909) 

0.2562** 
(0.0018) 

0.5995** 
(0.0197) 

0.1968*** 
(0.0080) 

0.1325 
(0.4756) 

0.1878* 
(0.0962) 

-0.1836 
(0.4838) 

0.1065* 
(0.0850) 

0.0301 
(0.8817) 

0.2712*** 
(0.0004) 

0.0372 
(0.8265) 

Panel B: Conditional variance equation  

constant 
2.3216 

(0.4601) 
17.0634 
(0.2691) 

1.8039 
(0.6432) 

26.5637*** 
(0.0000) 

2.8381 
(0.2712) 

8.4002 
(0.3646) 

2.1156 
(0.2175) 

0.6528 
(0.9236) 

2.2906 
(0.3056) 

31.0981*** 
(0.0000) 

1.2204 
(0.5556) 

5.8088*** 
(0.0000) 

5.0388 
(0.3762) 

1.2719 
(0.8540) 

2.5063 
(0.1955) 

3.1496 
(0.6216) 

2stock
1t )(   

-0.0223 
(0.3756) 

0.1057 
(0.2374) 

0.0257 
(0.8047) 

0.0191 
(0.5888) 

0.0281 
(0.1348) 

0.0570 
(0.2371) 

-0.0307* 
(0.0542) 

0.0540* 
(0.0801) 

- 0.0064 
(0.8967) 

0.0657** 
(0.0388) 

0.0048 
(0.9531) 

0.0425 
(0.3149) 

-0.129*** 
(0.0000) 

0.0406* 
(0.0895) 

-0.0132 
(0.7277) 

0.0928 
(0.1646) 

2.forex

1t )(   
-0.1769 
(0.7449) 

0.2980 
(0.3074) 

0.6523*** 
(0.0001) 

-0.0182 
(0.7759) 

-0.0410 
(0.9287) 

0.2521 
(0.1019) 

0.0637 
(0.8811) 

0.3389* 
(0.0564) 

0.3868 
(0.1578) 

0.1959* 
(0.0709) 

- 0.817*** 
(0.0000) 

0.3525*** 
(0.0014) 

0.3334 
(0.4788) 

0.8301*** 
(0.0059) 

-0.0665* 
(0.8342) 

0.2325** 
(0.0446) 

stock

1th   
0.5953 

(0.3194) 
-0.1090 
(0.9327) 

0.6344 
(0.7099) 

-0.0493 
(0.9771) 

0.3753 
(0.5698) 

-0.0065 
(0.9988) 

0.5829 
(0.1401) 

0.0451 
(0.9614) 

1.0867*** 
(0.0001) 

- 0.8123 
(0.3509) 

0.7849* 
(0.0646) 

- 0.1172 
(0.7420) 

0.9057 
(0.2033) 

0.0505 
(0.8238) 

0.5005 
(0.1919) 

0.0214 
(0.9782) 

forex

1th   
-0.0034 
(0.9997) 

0.2401 
(0.7234) 

-0.0059 
(0.9998) 

0.6465 
(0.5935) 

0.0011 
(0.9999) 

0.5272* 
(0.0869) 

0.0324 
(0.9986) 

0.06956*** 
(0.0006) 

- 4.311*** 
(0.0060) 

0.2457 
(0.2513) 

- 0.0444 
(0.9885) 

0.5664** 
(0.0153) 

-0.0337 
(0.9960) 

0.4811*** 
(0.0097) 

-0.0208 
(0.9972) 

0.6776*** 
(0.0058) 

CCC 0.2218 (0.0000) 0.1574 (0.0328) 0.0242 (0.7852) 0.0495 (0.5099) 0.3023 (0.0000) 0.1707 (0.0515) 0.1600 (0.0629) 
-814.6019 

11.5500 

0.1751 (0.0213) 
-963.0643 

10.6528 
Log-likelihood  -762.7686 -1061.6715 -762.8359 -798.2069) (-965.6961) -755.9713 

AIC 10.8301 11.7247 10.8588 11.3223 10.6815 10.7357 

LB1 Q(12) 

LB2 Q(12) 

9.2075 (0.6851) 
16.5629 (0.1668) 

7.2922 (0.8377) 
12.9911 (0.3697) 

12.5798 (0.4003) 
9.2254 (0.6836) 

10.5476 (0.5680) 
2.9089 (0.9962) 

11.6434 (0.4747) 
14.5194 (0.2688) 

10.7716 (0.5486) 
21.2940 (0.0462) 

10.9007 (0.5374) 
7.8954 (0.7933) 

5.4690 (0.8405) 
18.1451 (0.1114) 

McLeod-Li1(12) 

McLeod-Li2(12) 

30.3486 (0.0025) 
11.8226 (0.4600) 

14.9063 (0.2466) 
10.1516 (0.6027) 

22.0954 (0.0365) 
2.7162 (0.9972) 

23.7317 (0.0221) 
4.8668 (0.9623) 

11.5594 (0.4817) 
5.6500 (0.9327) 

28.1153 (0.0053) 
4.5435 (0.9715) 

24.8762 (0.0154) 
11.6743 (0.4722) 

18.1827 (0.1103) 
8.9137 (0.7103) 

McLeod-Li1
2(12) 

McLeod-Li2
2(12) 

18.4657 (0.1023) 

4.9262 (0.9604) 

13.4214 (0.3392) 

5.4457 (0.9414) 

16.3466 (0.1759) 

1.5299 (0.9999) 

21.0456 (0.0497) 

4.5108 (0.9724) 

5.3721 (0.9444) 

1.1297 (0.9999) 

11.9347 (0.4509) 

1.7555 (0.9997) 

18.9362 (0.0901) 

5.4030 (0.9431) 

15.0066 (0.2411) 

11.9881 (0.4466) 

Usable Obs. 144 184 144 144 184 144 144 144 
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Table 4. Estimation of VAR-DCC-GARCH model 
 Bahrain Egypt Kuwait KSA Morocco Oman Qatar UAE 

 Stock Forex Stock Forex Stock Forex Stock Forex Stock Forex Stock Forex Stock Forex Stock Forex 

Panel A: Conditional mean equation 

Constant 
0.0658 

(0.7604) 
0.1584 

(0.7720) 
0.0446 

(0.8043) 
0.3148 

(0.6546) 
-0.0427 
(0.8401) 

-0.0085 
(0.9857) 

0.0025 
(0.9895) 

0.0404 
(0.9384) 

0.1400 
(0.3798) 

0.0371 
(0.9281) 

0.1118 
(0.5457) 

0.2561 
(0.5685) 

0.0489 
(0.876) 

0.0629 
(0.9689) 

0.0281 
(0.896) 

- 0.0285 
(0.9598) 

Stock{1} 
0.0200 

(0.6142) 
0.326*** 
(0.0099) 

0.0404** 
(0.0489) 

0.198*** 
(0.0069) 

0.118*** 
(0.0013) 

0.2297** 
(0.0448) 

- 0.0177 
(0.2643) 

0.2354** 
(0.0235) 

0.083*** 
(0.0006) 

- 0.0716 
(0.3488) 

0.075*** 
(0.0097) 

0.2166** 
(0.0442) 

0.0092 
(0.668) 

0.0554 
(0.6799) 

- 0.017 
(0.676 

0.0792 
(0.6412) 

Forex {1} 
0.275*** 
(0.0077) 

0.0210 
(0.9259) 

0.266*** 
(0.0005) 

0.1011 
(0.6852) 

0.1541 
(0.1658) 

- 0.0116 
(0.9612) 

0.240*** 
(0.0028) 

0.4157** 
(0.0511) 

0.287*** 
(0.0001) 

0.2215 
(0.1953) 

0.257*** 
(0.0000) 

0.2490 
(0.2239) 

0.31** 
(0.031) 

0.0960 
(0.7689) 

0.21** 
(0.021) 

0.0539 
(0.8078) 

Panel B: Conditional variance equation  

Constant 
2.4613* 
(0.0751) 

12.9424 
(0.2698) 

5.7208* 
(0.0515) 

63.2913* 
(0.0516) 

1.9514 
(0.3913) 

2.3747 
(0.6546) 

2.219*** 
(0.0008) 

1.7239 
(0.5596) 

4.0287 
(0.1167) 

29.08*** 
(0.0002) 

7.773*** 
(0.0000) 

17.67*** 
(0.0001) 

2.2194 
(0.106) 

1.3048 
(0.569) 

3.6548 
(0.307) 

3.7865 
(0.2274) 

2stock
1t )(   

-0.0451 

(0.5869) 

0.0908 

(0.3165) 

- 0.0717 

(0.3214) 

-0.0075 

(0.7567) 

- 0.0476 

(0.5763) 

0.0366 

(0.6377) 

0.0145 

(0.8251) 

0.069*** 

(0.0020) 

- 0.0368 

(0.6135) 

- 0.0166 

(0.6754) 

- 0.0872 

(0.3296) 

- 0.0185 

(0.2782) 

- 0.013 

(0.905) 

0.06*** 

(0.0000) 

- 0.016 

(0.697) 

0.0939 

(0.1541) 

2forex

1t )(   
-0.0266 
(0.9445) 

0.2028 
(0.2454) 

0.7656* 
(0.0745) 

0.1351 
(0.1962) 

0.0783 
(0.8495) 

0.1732 
(0.1289) 

0.0436 
(0.9489) 

0.4018* 
(0.0651) 

0.5636* 
(0.0765) 

0.1460 
(0.2877) 

0.5396* 
(0.0659 

0.1169 
(0.2787) 

- 0.015 
(0.979) 

0.663** 
(0.0349) 

0.0191 
(0.962) 

0.278** 
(0.0499) 

stock
1th   

0.389*** 
(0.0006) 

0.2023 
(0.7483) 

- 0.2726 
(0.6701) 

0.2692 
(0.2152) 

0.5656 
(0.4367) 

0.0894 
(0.8695) 

0.565*** 
(0.0010) 

- 0.0279 
(0.7130) 

- 0.5845 
(0.1225) 

1.1244* 
(0.0729) 

- 0.6018 
(0.1956) 

0.2639 
(0.6031) 

0.60** 
(0.037) 

- 0.0343 
(0.6681) 

0.2671 
(0.762) 

0.0186 
(0.9718) 

forex

1th   
-0.0169 

(0.9944) 

0.4025 

(0.4548) 

3.0053 

(0.1734) 

-0.1616 

(0.7357) 

0.3706 

(0.9030) 

0.732*** 

(0.0003) 

0.0257 

(0.9878) 

0.649*** 

(0.0000) 

- 2.0514 

(0.2389) 

0.0767 

(0.8017) 

-7.46*** 

(0.0000) 

0.593*** 

(0.0000) 

- 0.013 

(0.994) 

0.58*** 

(0.0002) 

0.0306 

(0.989) 

0.62*** 

(0.0046) 

DCC 

k1 

k2

 

 
0.0991 (0.5393) 
0.1803 (0.8356) 

 
0.1997 (0.0362) 
0.4667 (0.0665) 

 
0.1445 (0.2883) 
0.0052 (0.9813) 

 
0.4277 (0.0011) 
(0.0050 (0.9745) 

 
0.0567 (0.1459) 
0.8889 (0.0000) 

 
0.1493 (0.0032) 
0.0615 (0.7997) 

 
0.2031 (0.2121) 
0.2693 (0.7339) 

 
0.1302 (0.3742) 
0.1165 (0.8141) 

Log-likelihood -765.1253 -1060.4683 -762.2775 -793.3358 -962.2343 -749.8800 -809.8965 -961.8312 

AIC 10.8767 11.7225 10.8372 11.2685 10.6547 10.6650 11.4985 10.6503 

LB1 Q(12) 

LB2 Q(12) 

8.7687 (0.7226) 
15.8286 (0.1992) 

7.3749 (0.8319) 
11.7284 (0.4677) 

12.1142 (0.4366) 
9.6258 (0.6487) 

11.6208 (0.4766) 
3.2559 (0.9935) 

9.0980 (0.6945 
14.0358 (0.2984) 

12.6056 (0.3983) 
18.6268 (0.0979) 

7.5944 (0.8160) 
6.7756 (0.8721) 

6.7628 (0.8729) 
20.4911 (0.0583) 

McLeod-Li1(12) 

McLeod-Li2(12) 

27.5908 (0.0063) 
9.3495 (0.6728) 

16.2684 (0.1793) 
11.7218 (0.4683) 

24.0838 (0.0198) 
3.2829 (0.9932) 

22.6661 (0.0307) 
4.6339 (0.9691) 

11.2826 (0.5049) 
6.8378 (0.8681) 

26.2042 (0.0100) 
7.9747 (0.7871) 

32.1193 (0.0013) 
8.1291 (0.7750) 

18.4061 (0.1039) 
8.3975 (0.7533) 

McLeod-Li1
2(12) 

McLeod-Li2
2(12) 

16.2825 (0.1786) 

4.2024 (0.9795) 

14.5811 (0.2651) 

6.3560 (0.8971) 

17.2963 (0.1388) 

6.5065 (0.8884) 

19.1929 (0.0840) 

4.0312 (0.9829) 

8.8613 (0.7147 

1.8458 (0.9996) 

20.5176 (0.0579) 

3.0638 (0.9951) 

22.2641 (0.0347) 

2.2462 (0.9989) 

16.3647 (0.1751) 

13.3086 (0.3470) 

Usable Obs. 144 184 144 144 184 144 144 144 
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Table 5. Estimation of VAR-BEKK-GARCH model   

 Bahrain Egypt Kuwait KSA Morocco Oman Qatar UAE 

Panel A: Conditional mean equation   

Constant 0.3486 (0.1175) 0.0975 (0.5878) 0.1344 (0.4954) 0.2222 (0.2784) 0.1812 (0.2631) 0.2353 (0.2317) 0.2327 (0.2271) 0.1451 (0.4354) 

Stock{1} 0.0141 (0.7021) 0.0326 (0.1254) 0.0970*** (0.0030) 0.4146* (0.0880) 0.1421*** (0.0005) 0.0303 (0.4629) 0.0072* (0.0787) 0.0338 (0.2902) 

Forex {1} 0.1874* (0.0985) 0.2599*** (0.0016) 0.2281** (0.0185) 0.2295** (0.0177) 0.2522*** (0.0025) 0.2167** (0.0145) 0.2897*** (0.0042) 0.2410*** (0.0062) 

Constant 0.9524* (0.0587) 0.5795 (0.4090) 0.7568* (0.0946) 1.5624** (0.0037) 0.1885** (0.0125) 0.4199 (0.4146) 1.0297** (0.0491) 0.0832 (0.9834) 

Stock{1} 0.2657* (0.0510) 0.2093** (0.0117) 0.1589* (0.0795) 0.1447 (0.1091) 0.0227 (0.7458) 0.1665* (0.0951) 0.0093* (0.0930) 0.2053** (0.0484) 

Forex {1} - 0.0507 (0.7982) 0.1291 (0.6642) -0.1351 (0.5814) 0.2897 (0.2585) 0.1270 (0.5284) 0.1874 (0.4787) 0.3105 (0.1525) 0.2652 (0.1031) 

Panel B: Conditional variance equation   

C(1,1) 1.0833 (0.1445) 0.6327 (0.7633) 1.2479 (0.1328) 1.7936*** (0.0001) 0.9041 (0.3694) 1.9334*** (0.0000) 0.5474 (0.2447) 1.2382 (0.1894) 

C(2,1) 2.0271 (0.6568) 5.1875 (0.1974) -1.9585 (0.6569) 0.6882 (0.5775) - 3.1140 (0.6290) 0.4427 (0.6796) 0.5563 (0.4439) 1.1802 (0.1477) 

C(2,2) 3.3758 (0.3321) 0.1642 (0.0215) -0.0161** (0.0396) 0.2711**  (0.0231) 0.4028** (0.0194) 0.0863 (0.1684) - 0.3930* (0.0742) 0.0494* (0.0840) 

A(1,1) 0.2565 (0.0992) 0.1968 (0.1617) 0.0924 (0.6603) 0.2723* (0.0624) 0.4690*** (0.0001) - 0.1327 (0.5062) 0.1813* (0.0569) 0.2035* (0.0557) 

A(1,2)  - 0.0400 (0.9013) 1.0921 (0.0460) 0.3211 (0.3544) 0.6505 (0.1298) 0.9741*** (0.0002) 1.1305*** (0.0001) - 0.2685 (0.2014) 0.1854 (0.3803) 

A(2,1)
 

0.0309 (0.5943) 0.0480 (0.1349) 0.0673 (0.1903) 0.0311 (0.3176) - 0.2610 (0.0000) 0.1909** (0.0116) 0.0377** (0.0199) 0.0431 (0.3018) 

A(2,2) 0.6841***(0.0000) 0.3324 (0.0106) 0.5371*** (0.0002) 0.5557*** (0.0000) - 0.0500 (0.5995) 0.2862*** (0.0029) 0.5685*** (0.0000) 0.4003*** (0.0008) 

B(1,1) 0.8230 (0.0004) 0.9331 (0.0021) 0.4198 (0.2247) - 0.4159 (0.3200) - 0.1649 (0.6045) - 0.2031 (0.4765) 0.9434*** (0.0000) 0.8162*** (0.0038) 

B(1,2) - 0.3631 (0.7743) - 0.5027 (0.8362) 2.0424 (0.2127) - 1.2894*** (0.0017) 0.5178 (0.4901) - 1.3841*** (0.0034) - 0.1077 (0.2421) - 0.3326 (0.2685) 

B(2,1) 0.0158 (0.8657) - 0.0421 (0.5098) - 0.2667 (0.0544) - 0.0866 (0.1399) 0.2931** (0.0114) - 0.0585 (0.5362) - 0.0710* (0.0575) - 0.0131 (0.7203) 

B(2,2) 0.3820 (0.2101) 0.6683 (0.1519) 0.0492 (0.8323) 0.7604*** (0.0000) 0.6291* (0.0546) 0.6924*** (0.0005) 0.8722*** (0.0000) 0.8916*** (0.0000) 

Log-likelihood - 767.9282 -1061.7300 - 763.3982 -797.6446 - 963.3516 -756.8657 - 809.0373 -965.6217 

AIC 10.9018 11.7253 10.8388 11.3145 10.6560 10.7481 11.4727 10.6806 

LB1 Q(12) 

LB2 Q(12) 

12.1756 (0.4317) 
16.5943 (0.1655) 

7.2659 (0.8395) 
10.2249 (0.5962) 

9.4568 (0.6635) 
10.2097 (0.5976) 

11.8644 (0.4566) 
5.1607 (0.9524) 

8.1319 (0.7747) 
11.0309 (0.5263) 

12..0358 (0.4428) 
27.7195 (0.0061) 

9.2216 (0.6839) 
8.5481 (0.7410) 

7.1182 (0.8497) 
17.0558 (0.1475) 

McLeod-Li1(12) 

McLeod-Li2(12) 

20.0621 (0.0659) 
11.5907 (0.4791) 

15.8440 (0.1985) 
13.1086 (0.3612) 

22.6780 (0.0306) 
5.2598 (0.9487) 

24.6051 (0.0168) 
4.8905 (0.9615) 

5.1907 (0.9513) 
11.7388 (0.4669) 

27.0981 (0.0075) 
21.3676 (0.0452) 

26.5418 (0.0090) 
9.6769 (0.6443) 

18.6812 (0.0965) 
7.0676 (0.8531) 

McLeod-Li1
2(12) 

McLeod-Li2
2(12) 

10.1747 (0.6006) 
5.8007 (0.9258) 

15.3474 (0.2230) 
8.5989 (0.7367) 

17.1087 (0.1456) 
3.3331 (0.9927) 

13.4152 (0.3396) 
2.4799 (0.9982) 

6.3985 (0.8947) 
4.1367 (0.9808) 

23.6482 (0.0227) 
9.5855 (0.6523) 

15.5248 (0.2131) 
4.9006 (0.9612) 

17.2415 (0.1407) 
5.1044 (0.9544) 

Usable Obs. 144 184 144 144 184 144 144 144 
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Table 6. Summary statistics for optimal weights and hedge ratios  

Portfolio 
Weights & hedge 

ratios 

VAR-CCC-

GARCH 

VAR-DCC-

GARCH 

VAR-BEKK-

GARCH 

Bahrain/forex  
ωt 0.9167 0.9332 0.8977 

βt 0.0906 0.1074 0.0778 

Egypt/forex 
ωt 0.9662 0.9753 0.9651 

βt 0.0797 0.0582 0.0420 

Kuwait/forex 
ωt 0.8706 0.9238 0.8619 

βt 0.0095 0.0862 0.0370 

Morocco/forex 
ωt 0.9444 0.9308 0.9409 

βt 0.1246 0.1363 0.1291 

Kingdom of Saudi 
Arabia/forex 

ωt 0.8873 0.9099 0.9093 

βt 0.0176 0.0548 0.0621 

Oman/forex 
ωt 0.8672 0.8881 0.8749 

βt 0.0627 0.1051 0.0607 

Qatar/forex 
ωt 0.8959 0.9118 0.8865 

βt 0.0583 0.0823 0.0737 

UAE/forex 
ωt 0.8627 0.8912 0.8473 

βt 0.0818 0.1098 0.0618 

Notes: The data are summary statistics for average values of optimal weights (wt ) and hedge ratios (βt) for stock-

forex portfolio using conditional variance and covariance estimated from three competitive volatility spillover 

models for a bivariate specification. 
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Table7. Diversification and hedging effectiveness  

  

Mean 
Std. 

Dev. 

Risk-

adjusted 

return 
(x100) 

HE Mean 
Std. 

Dev. 

Risk-

adjusted 

return 
(x100) 

HE 

   Bahrain/Forex Morocco/Forex 

PF1. -0.0968 6.4392 -1.5033 ─ 0.3970 5.8430 6.7945 ─ 

PF2. VAR-CCC-GARCH 0.0937 2.5600 3.6591 0.8419 0.1269 2.5761 4.9261 0.806 

PF2. VAR-DCC-GARCH 0.0971 2.5094 3.8701 0.8481 0.1308 2.4798 5.2742 0.820 

PF2. VAR-BEKK-GARCH 0.0114 1.9758 0.5747 0.9058 0.1279 2.9742 4.3003 0.741 

PF3.  0.1110 2.6040 4.2627 ─ 0.1110 2.6040 4.2627 ─ 

 

Egypt/Forex Oman/Forex 

PF1. 0.5600 9.2980 6.0228 ─ 0.5850 5.9930 9.7614 ─ 

PF2. VAR-CCC-GARCH 0.1262 2.5842 4.8827 0.9228 0.1739 2.5192 6.9048 0.823 

PF2. VAR-DCC-GARCH 0.1221 2.5953 4.7043 0.9221 0.1640 2.5022 6.5559 0.826 

PF2. VAR-BEKK-GARCH 0.1267 2.5168 5.0330 0.9267 0.1743 4.2850 3.9743 0.489 

PF3.  0.1110 2.6040 4.2627 ─ 0.1110 2.6040 4.2627 ─ 

 

Kuwait/Forex Qatar/Forex 

PF1. 0.3630 6.2890 5.7720 ─ 1.0603 9.8066 10.8121 ─ 

PF2. VAR-CCC-GARCH 0.1436 2.4271 5.9168 0.851 0.2098 2.6920 7.7942 0.925 

PF2. VAR-DCC-GARCH 0.1302 2.5198 5.1671 0.839 0.1947 2.6870 7.2471 0.925 

PF2. VAR-BEKK-GARCH 0.1458 3.6092 4.0397 0.671 0.2187 2.4409 8.9617 0.938 

PF3.  0.1110 2.6040 4.2627 ─ 0.1110 2.6040 4.2627 ─ 

 

KSA/Forex UAE/Forex 

PF1. 0.8280 8.4864 9.7568 ─ 0.3810 6.1180 6.2275 ─ 

PF2. VAR-CCC-GARCH 0.1918 4.3047 4.4557 0.743 0.1481 2.5324 5.8471 0.829 

PF2. VAR-DCC-GARCH 0.1756 4.5199 3.8851 0.716 0.1404 2.4962 5.6236 0.834 

PF2. VAR-BEKK-GARCH 0.1760 3.2413 5.4309 0.854 0.1502 2.0331 7.4875 0.890 

PF3.  0.1110 2.6040 4.2627 ─ 0.1110 2.6040 4.2627 ─ 
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Figure 1. Correlation between FOREX and MENA stock markets with different estimated models. 
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Correlation between FOREX AND KSA (VAR-DCC-GARCH)
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Correlation between FOREX AND OMAN (VAR-bEKK-GARCH)
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