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Abstract

Through an orthogonalized impulse-response analysis, I studied the relationship between the variance

risk premium, market variance and stock correlations in the French stock market from September 2002

through September 2006, using high frequency data-based measures. Variance risk premium is estimated

using realized variances and index options-implied variances and used as a state vector to proxy investors’

perceived uncertainty. I found that a shock to variance risk premium causes long lasting increases in the

market variance pointing to the limitedness of investors’ information-processing capacity. At the same

time, the shock generates consecutive increases in realized correlations between individual stocks and the

market portfolio. I propose then a possible explanation for the asymmetric/counter-cyclic behaviour of

stock correlations.

Keywords: Limited Attention, Asymmetric Correlations, Variance Risk Premium, High-frequency Econo-

metrics, Impulse-Response Analysis

1 Introduction

The analysis of comovement between stock returns is of crucial importance in financial risk management as

it has important practical implications in asset allocation. A higher correlation among stocks implies lower

gains from portfolio diversification. It has been acknowledged that correlations between stock returns do not

remain constant over time, tending to decline in bull markets and to rise in bear markets (Lin et al. (1994),

De Santis and Gerard (1997), Bollerslev et al. (1998), Ang and Bekaert (1999), Moskowitz (2003)). Using

the extreme value theory, Longin and Solnik (2001) show that the correlation of large negative returns is

much larger than the correlation of positive returns. Ang and Chen (2002) show that the correlation between

the U.S. stocks and the aggregate market return is much higher in the market downturns than during the

upside movements. Ledoit et al. (2003) show that the level of correlation changes depending on the phase of

the business cycle.

In a recent paper Ang, Chen and Xing (2006) found the evidence that downside correlations are higher

than the upside correlations, while such an asymmetry is not observed in conditional betas, suggesting that

that conditional correlations may be better able to capture the asymmetric nature of risk than conditional

betas. Increasing market volatility and decreasing idiosyncratic volatilities in down markets (Duffee (1995))

inhibit conditional betas from fully capturing this asymmetry1.

The impact of uncertainty shocks or news is also considered in the literature to study time-varying

cross-moments. Kroner and Ng (1998) show that the conditional covariance between large-firm returns and

small-firm returns tends to be higher following bad news about large firms than good news. Peng (2005)

1See Braun, Nelson, and Sunier (1995), and Chou and Engle (2000) for some work on asymmetric betas.
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and Peng and Xiong (2006) develop models where information-processing capacity constraints force investors

to make attention allocation decisions. When investors with limited attention tend to ignore firm-specific

information, return comovements increase more than that can be explained by the fundamentals. Building on

these models, Peng et al. (2007) show that after a macroeconomic shock that affect market-wide uncertainty,

investors focus their limited attention to processing market-level information. Only subsequently, after they

reduce the market uncertainty to a reasonable level, they shift their attention back to processing firm-specific

information.

Recently emerged literature on high-frequency data econometrics provides alternative ways of estimating

daily realized covariance and correlation statistics in a non-parametric fashion (Andersen et al. (2001b, 2003)

and Barndorff-Nielsen and Shepard (2004a, 2004b)). These new techniques ensure us to avoid using arbitrary

and wide estimation windows to estimate such statistics. Importantly, it has been shown that the realized

correlation statistics delivers approximate normality after a simple transformation. Andersen et al. (2001b)

show that there is a "volatility effect in correlation": return correlations tend to rise on high-volatility days.

In this paper, the relationship between shocks to traders’ perceived level of uncertainty and realized cor-

relations is studied through an orthogonalized impulse-response analysis. Variance risk premium, defined

as the difference in expected variances under risk-neutral and physical measures2, is used to capture in-

vestors’ attitudes towards uncertainty3. A standardized shock to variance risk premium is shown to cause

a statistically significant and long-lasting increase in the market return variance pointing to limitedness of

investors’ information-processing capacity4. Realized correlations are derived from high-frequency data on

48 stocks in the French market following the method developed by Andersen et al. (2001b) and Barndorff-

Nielsen and Shepard (2004a, 2004b). Except for six stocks, correlations of individual stocks with the market

portfolio increase significantly in the day of the shock. Generally, these increases die out in three days fol-

lowing the shock. Similar increases in correlations are observed also between equiweighted sectoral portfolios

and between portfolios of large and small stocks. These results suggest that the limitedness of investors’

information-processing capacity may be an important factor behind the observed asymmetric correlations.

The reminder of the paper is organized as follows. Section 2 introduces the methodology used to construct

the measures of variance risk premium and realized correlations. Sources and statistical properties of the

used data are given in Section 3. Section 4 describes the VAR methodology and presents estimation results.

Section 5 concludes.

2See, among others, Demeterfi, Derman, Kamal, and Zou (1999), Britten-Jones and Neuberger (2000), Jiang and Tian (2005)
and Carr and Wu (2008).

3Investors demand more compensation for risk when they perceive that the danger of big shocks to the state of economy
is high (Bollerslev, Tauchen and Zhou (2009), Dreschler and Yaron (2009). Variance risk premium is shown to be procyclical,
increasing in market downturns that are characterized by high volatility and high risk aversion (Bolllerslev et al. (2010), Bakshi
and Madan (2006)). Thus, variance risk premium may constitute an appropriate state variable for the correlation analysis.

4See Kahnemann (1973) and Pashler (1998) for reviews of psychological research on this subject.
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2 Variance Risk Premium and Realized Correlation Measures

The variance risk premium is the compensation for variance risk that stems from the randomness of return

variances. It is defined as the difference between the conditional expectation of the future variance under

physical and risk-neutral measures over the [t, t+∆] time interval,

V RPt = EP(V art,t+∆ | Ft)− EQ(V art,t+∆ | Ft) (1)

where EP(·) and EQ(·) denote the time t expectation operator under the physical and risk-neutral measures

respectively. These measures can not be directly observed in practice and have to be fairly approximated.

To start with, suppose that (n+ 1)∆ equidistant price observation are available over the ∆ time interval

and let pi(∆/n) denote the ith log-price observation. The realized variance, RVn
t,t+∆, is computed by summing

the squared high-frequency returns over the [t, t+∆] time-interval:

RVn
t,t+∆ ≡

n
∑

i=1

[

pt+i(∆

n
) − pt+(i−1)(∆

n
)

]2

(2)

It follows then by the theory of quadratic variation, for increasingly finer sampling frequencies, or n → ∞,

the realized variance approximates arbitrarily the unobserved integrated variance, Vt,t+∆.5

lim
n→∞

Vn
t,t+∆

a.s
−→ Vt,t+∆ ≡

∫ t+∆

t

Vsds = Vart,t+∆ (3)

However, a host of microstructure effects (e.g. irregular trading, discreteness of prices, bid/ask bounce

etc.)6 prevents us from sampling the underlying returns too frequently. An intermediate sampling frequency,

say five, ten, seventeen and a half or thirty minutes is employed in order to strike a reasonable balance

between confounding market microstructure effects by sampling too frequently and misestimating the actual

return variance when sampling too infrequently7. In this paper, I adopt five-minutes sampling frequency

which is the most commonly used frequency in the literature.

The last term in equation 1, the risk-neutral expectation of the future variance can be computed using

option prices. In the case that the underlying asset price is continuous, it can be expressed in a model-free

fashion as a weighted average, or integral, of a continuum of a fixed d-maturity options8.

5See, among others, Andersen and Bollerslev (1998), Comte and Renault (1998), Barndorff-Nielsen and Shephard (2002a,
2002b) and Andersen et al. (2001a, 2003).

6See, among others, Bai et al. (2001), Andreou and Ghysels (2002), Hansen and Lunde (2006) and Bandi and Russel(2005).
7See, for exemple, Barucci and Reno (2002), Ait-Sahalia et al. (2005), Andersen et al. (2003), Areal and Taylor (2002), Corsi

et al. (2001), Bandi and Russell (2005), Bai et al. (2001), Andreou and Ghysels (2002), Bollen and Inder (2002) and Hansen
and Lunde (2006).

8See, Demeterfi, Derman, Kamal, and Zou (1999) and Britten-Jones and Neuberger (2000). See also, Jiang and Tian (2005)
and Carr and Wu (2007) for extensions to the case where the asset is a general jump-diffusion.
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EQ
t (V art,t+∆) = 2

∫

∞

0

C(t+∆,K)− C(t,K)

K2
dK (4)

where C(t,K) denotes the price of a European call option maturing at time t with strike price K.

Methods used to construct a proxy for the physical expectation vary in practice. Carr and Wu (2008) use

the ex-post forward realized variance defined in equation (2) to substitute for the expected return variance.

Drechsler and Yaron (2008) use lagged implied and realized variances to forecast the expected variance.

Todorov (2009) estimates the physical measure in a semi-parametric framework. Bollerslev et al. (2009)

uses a multi-frequency auto-regression with multiple lags and Zhou (2010) uses a simple auto-regression with

twelve lags to estimate the objective expectation of the return variance. Following Zhou (2010), I use twelve

lags autoregressive estimate and, in order to construct a daily variance risk premium series, I applied this

auto-regression for every day of a month.

Recently, Andersen et al. (2001b) and Barndorff-Nielsen and Shepard (2004a, 2004b) proposed new

methods of estimating covariance and correlations between asset returns using intraday price observations.

As mentioned earlier, these methods are fully non-parametric and model-free.

Consider a bivariate semimartingale log-price process (x∗, y∗). The quadratic covariation between x∗ and

y∗ is defined as

[x∗, y∗](t) = p− lim
n→∞

n
∑

j=0

{x∗(tj)− x∗(tj−1)}{x
∗(tj)− x∗(tj−1)} (5)

for any sequence of partitions t0 < t1 < . . . < tn with supj{tj+1 − tj} → 0 for n → ∞.

Under certain conditions defined in Barndorff-Nielsen and Shepard (2004b) the above expression gives

the integrated covariance.

[x∗, y∗](t) =

∫ t

0

Σx,y(u)d(u) (6)

where Σx,y(u)d(u) denote the spot covariance between x and y. One can thus define the realized covariance

estimator for day i as the sum of the cross-products of intraday returns, xj,i, yj,i, using five-minutes sampling

frequency.

[x∗, y∗](i) ≡

n
∑

j=1

xj,iyj,i (7)

Obviously, this covariance measure moves with the volatility of its components. It would be therefore

trivial to analyse the behaviour of covariances in high volatility periods. Instead, one can use the correlation
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measure which is a standardized version of the covariance statistics.

ρ(xy),i =

∑n
j=1 xj,iyj,i

√

∑n
j=1 x

2
j,iy

2
j,i

(8)

3 Data and Summary Statistics

As mentioned above, the variance risk premium series that I employ as a proxy for the investors’ perceived

uncertainty is based on the risk-neutral and objective measures of future index variance. The variance risk

premium estimated for the estimation period that spans from September 2002 through September 2006.

For the risk-neutral measure I used the the squared VCAC index that is directly available from the NYSE

Euronext since January 2000. The VCAC index is based on the CAC40 index options covering the out-of-

the-money strike prices for the near and next term maturities and constructed following the widely used VIX

methodology of the Chicago Board of Options Exchange9. This model-free implied volatility is proved to

be a better approximation to the risk-neutral expectation of the integrated volatility than the Black-Scholes

implied volatility. This new measure has also a practical advantage: since the VCAC index is constructed

for replicating the risk-neutral volatility of a fixed 30 days maturity, with monthly data there are no issues

with telescoping option maturities.

The realized variance series on which the objective measure of future index variance is based are calculated

summing the five-minute squared returns on the CAC40 index within one-month interval. Trading on the

CAC40 starts at 9:00am and continues till 5:30pm. A typical month with 22 trading days has thus 22×102 =

2246 five-minute subintervals. The high frequency data for the CAC40 index is provided by the Euronext

until the end of 2004. For the rest, NYSE Euronext provides only the tick-by-tick transaction prices for

all securities. I employed a slightly modified version of the tick method of Dacorogna et al. (2001) to pick

out the security prices at each intraday interval. These prices are then used to construct the CAC40 index

values.10

In order to have a daily-standardized estimate of the variance risk premium, the monthly estimates of

expected variances under risk-neutral and objective measures are divided by 22.

NYSE Euronext provides also the intraday transaction prices of individual assets with different capital-

izations. Among 250 stocks, I have collected data concerning 48 stocks, 36 of which are classified as large

9This method is developed by Demeterfi et al. (1999).
10Begining from December 1st, 2003, index is calculated on the basis of the of the free-float capitalization instead of the

market capitalization. The details for this new calculation method can be found on www.euronext.com. The list of the CAC40
index components as well as their number of shares and their free float and the capping factor which is taken into account in
the calculation are periodically updated and published on the website.
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stocks/blue chips and 12 are as mid and small caps11. These assets are also grouped in sectors following the

first level ICB categorisation given in NYSE Euronext site. In the data set, there are 14 stocks in Consumer

Services sector, 7 in Technology, 12 in Industrials and 15 in Consumer Goods sector. Table 1 reports selected

stocks’ names and symbols with their sectoral and capitalisation-based groupings. I constructed also an

equiweighted portfolio of these 48 stocks and defined it as the market portfolio. Then, using equation (8)

above, I calculated correlations between individual stocks and the market portfolio along with the correlations

between the capitalisation-based portfolios and between the sectoral portfolios.

4 Estimation Strategy and Results

The empirical analysis focuses on the responses of both the market portfolio variance and the realized cor-

relations to artificially generated shocks to investors’ percieved uncertainty. To asses these responses, I first

estimate a series of bivariate VAR’s formulated as follows:

Yt = C +
P
∑

p=1

ΦpYt−p + ǫt (9)

where Φ1,Φ2, . . . ,Φp are matrices (2x2) containing the VAR parameters to be estimated, C is a (2x1)

vector of model constants and ǫt is a vector of innovations. In this model, the variance-covariance matrix

of the innovations, Ω = E(ǫtǫ
′

t), can be a non-diagonal matrix reflecting the fact that the innovations be

contemporaneously correlated. Yt, Yt−1, . . . Yt−p are (2x1) vectors containing the variables used in estimations.

For all of the estimations, the state variable, the variance risk premium constitutes the first element of these

vectors. For each estimation, the VAR order, p, is determined depending on the Akaike Information Criterion.

To ensure approximate normality for the VAR model I take the logarithm of variance risk premium and the

market portfolio variance. For the realized correlations I take the following the Fisher-z transformation that

transforms correlations to approximate normality.

Zcorr(xy) = ln
1 + ρ(xy)

1− ρ(xy)
(10)

Once the stability condition is satisfied, the VAR model in equation (9) can be transformed in an infinite

order moving average vector model.

Yt = C +

∞
∑

j=0

Ψjǫt−j (11)

11In order to ensure a reasonable degree of liquidity I selected assets with more than 3000 transaction observations by month.
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where the (2x2) moving average coefficient matrices, Ψj obey the recursion Ψj = Φ1Ψj−1 +Φ2Ψj−2 . . .+

ΦpΨj−p with Ψ0 an identity matrix.

When Ω is not diagonal, the fact that the innovations in the second elements of VAR’s tend to move

with the innovation generated in the variance risk premium series prevents us from isolating the effect of

the latter. Given that Ω is positive definite, there exists a unique diagonal matrix D with positive values

along the diagonal and a unique lower triangular matrix A such that Ω = ADA′. One can then define a

standardized shock process, ut = A−1ǫt, which is diagonal resulting in the following alternate moving average

representation:

Yt = C +

∞
∑

j=0

ΨjAǫt−j (12)

Depending on this representation, an orthogonalized impulse-response function is defined as the effect of

ith component of a standardized shock process, ui,t, on the process Yj,t at lag n.

∂Yj,t+n

∂ui,t
= {ΨjA}ji (13)

where, the lower triangular matrix, A, which must be used to estimate the orthogonalized impulse-

responses are calculated using Cholesky decomposition.

The estimation results are given in Table 2. The first row of the table reports responses of the logarithm of

the market portfolio’s return variance (LMPV) to a standardized shock to perceived market-wide uncertainty

as proxied by the logarithm of the variance risk premium (LVRP). The response of LMPV on the day of

the shock is 0.054 and is statistically significant. This can be considered as a trivial result when we refer to

well documented effect of uncertainty resolution on price fluctuations12. Since the magnitude of uncertainty

resolution determines the degree of asset fluctuations, a positive shock to perceived uncertainty will increase

the market volatility.

Under efficient market hypothesis, a market-wide shock should cause immediate adjustment of the asset

prices. That is, as the investors can resolve uncertainty instantaneously, the full impact of a shock to LVRP

should be reflected in LMPV immediately after the shock is observed. In other words, under this hypothesis

there should be no significant responses of LMPV after the day of the shock. Related results are at odds with

this efficiency hypothesis: responses of LMPV are all positive and statistically significant in all the five days

following the shock tending to decline in the last two days. This impulse-response trajectory is consistent

with the hypothesis that investors have limited information-processing capacity. Investors can only resolve a

12See, for example, Epstein and Turnbull (1980), Veronesi (1999), Brennan and Xia (2001) that link uncertainty resolution
process and price fluctuations via Bayesian updating of investors’ prior beliefs upon new information
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finite amount of uncertainty per day.

The other rows of the Table 2 show how this limit on information-processing capacity affects correlation

structure in the market. Except for six stocks among forty-eight, a shock to LVRP increases the realized

correlations between the individual stocks and the market portfolio in the day of the shock. Generally, this

increase in realized correlations can be observed up to three subsequent days with very few statistically

significant decreases thereafter up to five days. After a market-wide shock that increases the perceived

uncertainty, investors allocate their attention to resolve the market-wide uncertainty which carries more

weight in investors’ portfolios (Peng (2005), Peng and Xiong (2006), Peng et al. (2007)) and the weight of

the market-level uncertainty in the total variance of individual stocks increases. Moreover, since they can

not resolve this uncertainty instantaneously because of their limited information-processing capacity, realized

correlations between the individual stocks and the market portfolio remain high in the subsequent days.

As a consequence, individual stocks tend to move more with the market portfolio, limiting the gains from

diversification when investors are most in need of these gains i.e., during high volatility periods.

Results concerning the realized correlations between four sectoral portfolios and between two capitalization-

based portfolios are given in the last seven rows of the Table 2. Realized correlations increase contemporane-

ously with the shock to LVRP and in the three or four subsequent days. The effect of the limit on information

processing capacity gives rise to an increase in the realized correlations between assets irrespective of their

sectoral or capitalization-based characteristics.

5 Conclusion

In this paper, I have analysed the effect of a shock to investors’ perceived uncertainty, as proxied by the

variance risk premium, on stock comovements in the French stock market. Variance risk premium measure is

derived from CAC40 intraday index levels and index options prices. Daily variance, covariance and correlation

measures are also computed basing on high-frequency trade data concerning 48 individual stocks of different

sectors and capitalization levels. Then an equiweighted portfolio of these 48 stocks is constructed to define

the market portfolio.

Orthogonalized impulse-responses show that a shock to variance risk premium causes long lasting increases

in the market variance pointing to the limitedness of investors’ information-processing capacity. As investors

can not resolve the market-wide uncertainty instantaneously, the increases in market portfolio variance persist

for several days following the shock. When the market-wide uncertainty increases, investors concentrate more

heavily on resolving the uncertainty about the market factor at the expense of asset specific factors, as the

market factor tends to carry more weight in investors’ portfolios. In consequence, individual stocks tend to

8



be more correlated with the market portfolio as shown in the paper.

The results allow us to propose the limitedness of investors’ information-processing capacity as a possible

cause of the increases in stock correlations during market downturns. This phenomenon of asymmetric

correlations plays an important role during financial crisis limiting diversification opportunities when investors

are most in need of the gains stemming from diversification.
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Table 1: List of Selected Stocks

Stock Name Symbol Sector Compartment

TF1 TFI Consumer Services Blue Chips

CARREFOUR CA Consumer Services Large Caps

VIVENDI VIV Consumer Services Large Caps

AIR FRANCE-KLM AF Consumer Services Large Caps

PUBLICIS GROUPE S.A. PUB Consumer Services Large Caps

LAGARDERE S.C.A. MMB Consumer Services Large Caps

CASINO GUICHARD CO Consumer Services Large Caps

SODEXO SW Consumer Services Large Caps

ACCOR AC Consumer Services Large Caps

PPR PP Consumer Services Large Caps

CLUB MEDITARENEE CU Consumer Services Mid-Caps

CANAL + AN Consumer Services Mid-Caps

HAVAS HAV Consumer Services Mid-Caps

THOMSON TMS Consumer Services Mid-Caps

ALCATEL-LUCENT ALU Technology Large Caps

ATOS ORIGIN ATO Technology Large Caps

CAP GEMINI CAP Technology Large Caps

DASSAULT SYSTEMES DSY Technology Large Caps

NEOPOST NEO Technology Large Caps

STMICROELECTRONICS STM Technology Large Caps

ALTEN ATE Technology Mid-Caps

GFI INFORMATIQUE GFI Technology Small Caps

SAFRAN SAF Industrials Blue Chips

THALES HO Industrials Blue Chips

ZODIAC AEROSPACE ZC Industrials Blue Chips

BOUYGUES EN Industrials Large Caps

LAFARGE LG Industrials Large Caps

SAINT GOBAIN SGO Industrials Large Caps

SCHNEIDER ELECTRIC SU Industrials Large Caps

VALLOUREC VK Industrials Large Caps

ALTRAN TECHN. ALT Industrials Mid-Caps

CARBONNE LORRAINE CRL Industrials Mid-Caps

INGENICO ING Industrials Mid-Caps

HAULOTTE GROUPE PIG Industrials Mid-Caps

UBISOFT ENTERTAIN UBI Consumer Goods Blue Chips

REMY COINTREAU RCO Consumer Goods Blue Chips

S.E.B SK Consumer Goods Blue Chips

BIC BB Consumer Goods Blue Chips

HERMES INTL RMS Consumer Goods Large Caps

L’OREAL OR Consumer Goods Large Caps

LVMH MC Consumer Goods Large Caps

MICHELIN ML Consumer Goods Large Caps

PERNOD RICARD RI Consumer Goods Large Caps

PEUGEOT UG Consumer Goods Large Caps

RENAULT RNO Consumer Goods Large Caps

BENETEAU BEN Consumer Goods Mid-Caps

FAURECIA EO Consumer Goods Mid-Caps

VALEO FR Consumer Goods Mid-Caps
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Table 2: Orthogonalized Impulse Responses to Shocks in LVRP
Responding variables are given in the first column. LMPV in the first row indicates the logarithm of the
market portfolio variance. Fisher-z transformed correlations of individual stocks with the market portfolio
are indicated by the symbol of the relevant stock. The last seven rows concern the responses of Fisher-
z transformed correlations between sectoral and capitalization-based portfolios. G, S, T and I represent
Consumer Goods, Consumer Services, Technology and Industrial Sectors respectively. BL-MS is used to
indicate the correlation between the portfolio of Blue Chips and Large Caps and the portfolio of Mid-Caps
and Small Caps. Significance at the 10%, 5% and 1% levels is indicated by *, ** and *** respectively.

Variable Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

LMPV 0.0544 *** 0.0478 *** 0.0538 *** 0.0518 *** 0.0365 *** 0.0229***

TFI 0.0147 *** 0.0055 0.0107 0.0156 * -0.0096 -0.0029

CA 0.0490 *** 0.0202 ** 0.0186 ** 0.0187 ** 0.0142 0.0093

VIV 0.0503 *** 0.0008 0.0277 *** 0.0262 *** 0.0061 -0.0092

AF 0.0260 *** 0.0069 *** 0.0059 ** 0.0056 ** 0.0054 ** 0.0051 **

PUB 0.0213 *** 0.0113 0.0178 ** 0.0158 * -0.0080 0.0057

MMB 0.0179 *** 0.0131 0.0195 ** 0.0165 * 0.0105 0.0160 *

CO 0.0175 *** 0.0189 ** 0.0066 0.0180 ** 0.0027 0.0026

SW 0.0066 *** 0.0106 0.0198 ** 0.0099 0.0094 -0.0018

AC 0.0114 *** 0.0145 0.0083 0.0233 ** 0.0099 0.0015

PP 0.0269 *** 0.0099 0.0231 ** 0.0283 *** 0.0046 0.0047

CU 0.0072 *** -0.0015 -0.0019 -0.0018 -0.0017 -0.0017

AN -0.0090*** -0.0013 -0.0076 -0.0107 -0.0041 -0.0074

HAV 0.0160 *** 0.0013 0.0131 * 0.0052 -0.0158 ** -0.0044

TMS 0.0358 *** 0.0050 0.0233 ** 0.0176 * 0.0137 -0.0031

ALU 0.0413 *** 0.0189 ** 0.0302 *** 0.0256 *** 0.0242 ** -0.0032

ATO 0.0225 *** 0.0119 *** 0.0114 *** 0.0109 *** 0.0105 *** 0.0100 ***

CAP 0.0299 *** 0.0176 * 0.0120 0.0123 0.0158 * -0.0116

DSY 0.0220 *** -0.0111 0.0057 0.0156 * 0.0070 ** 0.0048 **

NEO 0.0085 *** -0.0006 -0.0009 -0.0009 -0.0008 -0.0008

STM 0.0426 *** 0.0284 *** 0.0524 *** 0.0320 *** 0.0133 -0.0207 **

ATE 0.0045 *** 0.0057 ** 0.0056 ** 0.0054 ** 0.0051 0.0049 **

GFI 0.0065 *** 0.0107 0.0057 0.0153 * 0.0053 * 0.0053 *
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Table : Table 2 (Continued) : Orthogonalized Impulse Responses to Shocks in LVRP

Variable Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

SAF 0.0073 *** -0.0012 0.0001 0.0094 0.0076 *** 0.0075 ***

HO 0.0142 *** 0.0087 0.0153 * 0.0208 ** -0.0058 -0.0029

ZC 0.0072 *** 0.0019 0.0028 0.0085 0.0051 0.0095

EN 0.0289 *** -0.0020 0.0257*** 0.0171 * 0.0120 -0.0085

LG 0.0290 *** 0.0191 ** 0.0237 ** 0.0167 * 0.0154 0.0059

SGO 0.0222 *** 0.0004 0.0184 * 0.0196 ** -0.0020 0.0062

SU 0.0285 *** 0.0167 * 0.0235 *** 0.0159 * 0.0042 -0.0112

VK 0.0206 *** 0.0144 * 0.0146 * 0.0145 * 0.0144 0.0143

ALT 0.0219 *** 0.0264 *** 0.0334 *** 0.0231 ** 0.0234 ** -0.0046

CRL -0.0067 *** -0.0008 -0.0004 -0.0003 -0.0003 -0.0003

ING 0.00346 ** -0.0027 -0.0032 -0.0031 -0.0030 -0.0028

PIG 0.0033 ** 0.0035 0.0034 0.0032 0.0031 0.0029

UBI 0.0096 *** 0.0016 0.0008 0.0007 0.0007 0.0006

RCO -0.0023 0.0115 -0.0029 -0.0054 -0.0097 -0.0202 ***

SK -0.0042 *** -0.0002 -0.0001 -0.0001 -0.0001 -0.0001

BB -0.0076 *** -0.0061 -0.0115 -0.0136 * -0.0004 -0.0025

RMS 0.0044 *** 0.0026 0.0024 0.0022 0.0021 0.0021

OR 0.0122 *** 0.0203 ** 0.0338 *** 0.0392 *** 0.0020 0.0034

MC 0.0219 *** 0.0170 * 0.0350 *** 0.0285 *** 0.0102 -0.0023

ML 0.0199 *** -0.0016 0.0209 ** 0.0267 *** -0.0006 -0.0021

RI 0.0147 *** -0.0052 -0.0010 0.0075 *** 0.0052 * 0.0062 **

UG 0.0272 *** 0.0046 0.0370 *** 0.0267 *** -0.0026 -0.0118

RNO 0.0246 *** 0.0104 0.0321 *** 0.0269 *** 0.0082 -0.0085

BEN 0.0135 *** 0.0125 * 0.0115 0.0027 0.0017 0.0009

EO -0.0125 *** -0.0020 -0.0010 -0.0009 -0.0008 -0.0008

FR 0.0174 *** -0.0041 0.0155 *** 0.0013 0.0018 0.0022

G-S 0.0417 *** 0.0236 ** 0.0303 *** 0.0313 *** 0.0030 0.0030

G-T 0.0400 *** 0.0009 0.0313 *** 0.0332 *** 0.0265 *** -0.0121

G-I 0.0366 *** 0.0071 0.0236 ** 0.0274 *** 0.0031 -0.0083

S-T 0.0509 *** 0.0238 ** 0.0323 *** 0.0379 *** 0.0203 ** -0.0032 *

S-I 0.0399 *** 0.0224 ** 0.0421 *** 0.0297 *** 0.0196 * -0.0016

T-I 0.0320 *** 0.0214 ** 0.0204 ** 0.0328 *** 0.0141 -0.0000

BL-MS 0.0411 *** 0.0162 * 0.0337 *** 0.0313 *** -0.0018 0.0070
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