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Abstract

We consider the optimal nonlinear income taxation problem in a dynamic,
stochastic environment when the government cannot change the tax rule as
uncertainty resolves. Due to such a stationarity constraint, our taxation prob-
lem is reduced to a static one over an expanded type space. We strengthen the
argument in the static model that the zero top marginal tax rate result is of little
practical importance because it is actually relevant only when the top earner in
the initial period receives the highest shock in every subsequent period. Under
a general stochastic structure such that the support of types moves over time,
all people’s allocations are almost surely distorted in any period.
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1 Introduction

Since the New Dynamic Public Finance was inaugurated, progress has been made

in clarifying what the optimal dynamic nonlinear income tax looks like. This
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agenda aims to extend the seminal work of Mirrlees (1971), who studies optimal

income taxation in a static environment, to dynamic, stochastic environments.1

Dynamic tax rules are in effect dynamic contracts because taxpayers have pri-

vate information about their labor productivity, so the optimal dynamic income

tax rule is generally complicated: it is non-stationary and depends on the entire

history of income declared for any taxpayer. However, it is questionable whether

governments can implement such complex tax rules because making tax rules time-

dependent and tracking histories of income would entail large administrative and

compliance costs. Indeed, neither of our governments (i.e., the US and Japanese

governments) is tracking income histories for taxation.

In view of this observation, we contribute to the New Dynamic Public Finance

literature by considering optimal dynamic income taxation when the government

faces a stationarity constraint that the tax rule cannot be changed over time. That

is, the government can use only stationary tax rules. Moreover, stationarity of

tax rule implies that the tax cannot depend on histories of income. Indeed, the

government using a stationary tax rule can look at only current incomes, just as it

can only look at current incomes in the initial period. Naturally, we also assume

that the government makes a full commitment to its (stationary) tax rule. That is,

once the tax rule is determined in the initial period, the government cannot switch

to another stationary tax rule afterwards. We are assuming that such commitment

is not only possible, but perhaps unavoidable, due to political deadlock over the

issue of tax policy, as in the US right now.2 Thus, we may interpret our planner’s

problem on a politician’s short time-scale. Although our assumptions might be

extreme, we believe that it is important and useful to have a sense about what the

optimal dynamic income tax looks like when the set of tax rules is limited to ones

that are feasible in practice.

We consider a finite horizon discrete time model in which the government

would like to maximize the equal-weight utilitarian social welfare function. Our

economy is heterogeneous as we begin with a non-trivial exogenous type distribu-

tion where type here is people’s earning ability.3 People receive stochastic shocks

1See Kocherlakota (2010) for an overview of this literature.
2Indeed, the US government has not changed its income tax system in a major way since 1986.

The Japanese government is more flexible, but it has not changed its income tax system in a major
way since 2007. Therefore, once the tax systems are fixed, they persist for some time.

3If we do not fix the initial type distribution, the model has identical agents facing uncertainty,
which is like a macro model. However, as long as we consider the equal-weight utilitarian social
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in each period such that the larger the value of the shock, the higher the earning

ability is. We focus on idiosyncratic shocks, but the process of shock is general.4

Regarding intertemporal resource allocation, we assume that the government can

save or borrow from an outside party so that it considers a single aggregate resource

constraint. However, we show that the government cannot allow agents to save or

borrow at all because allowing them to save or borrow requires the government to

look at histories.

Although the analytical characterizations and even numerical analysis of the

optimal dynamic tax system are difficult in general, we can analytically characterize

the optimal tax system because our problem can be reduced to a static one due to

the stationarity of the tax rule.5 Specifically, this is because under the stationarity

constraint, the tax rule depends on only the current income and (as we show)

individual saving or borrowing is not allowed, so we can regard an agent living

for T periods as distinct agents in each period and for each shock. Therefore, we

can directly apply the arguments for static models to our model.

A famous result in the static optimal income taxation is that the top marginal

tax rate is zero. That is, the top earner’s marginal tax rate is zero. However, we cast

doubt on its policy relevance. In our dynamic stochastic economy, the support of

types will move over time, and a direct application of the static arguments implies

that the marginal tax rate is zero at the top of the expanded type space, or the union

of supports over time. Thus, if the maximum earning ability increases over time,

the zero top marginal tax result would apply only when the top earner in the initial

period receives the largest possible value of the shock in every period.6 Although

one can argue that the fraction of people who face the zero marginal tax rate is

small in the static model, our result strengthens this. Indeed, whereas the top

earner certainly exists in a static economy, an individual who eventually attains

welfare function, the distinction is not essential for the optimal tax rule as Farhi and Werning (2013)
illustrate.

4In particular, the initial type and subsequent shocks can be correlated for each agent. In the
empirical literature regarding earning risk, it has been found that idiosyncratic shocks are highly
persistent. See, for example, Storesletten et al. (2004).

5Naturally, gaining tractability in this way widens the analytical insights about optimal dynamic
income taxation we could derive. For example, if we assumed the quasi-linear utility, we could
conduct comparative static analysis as in Weymark (1987).

6The policy relevance of the zero top marginal tax rate result has also been questioned from
other perspectives. For example, it has been pointed out that the result depends on the shape of
type distribution (see, e.g., Diamond, 1998; Diamond and Saez, 2011).
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the highest possible income, to whom the zero marginal tax rate applies, does not

necessarily exist ex post in our dynamic, stochastic economy.

The stationarity constraint has a non-negligible impact on equilibrium outcomes

of new dynamic public finance models. Battaglini and Coate (2008), who consider

history-dependent non-stationary tax rules, show that the marginal tax rate is

zero if an agent is currently, or has at some point been, the top earner. Thus, an

individual who is the top earner in all periods faces the zero marginal tax rate in

every period. Evidently, their tax rule takes full advantage of the fact that it can be

history-dependent and non-stationary. In our model, as we have stated, such an

individual faces the zero marginal tax rate only in the terminal period. Moreover,

we observe that the structure of stochastic shock can also have a non-negligible

impact. Because Battaglini and Coate (2008) consider a two-state Markov process,

the support of types is fixed over time. Thus, their result implies that the fraction

of people whose allocation is distorted vanishes as the time horizon increases. On

the other hand, in our model, the support of types generally moves over time, and

all people’s allocations are almost surely distorted in any period.

Regarding the past literature that is relevant to our work, one of the most general

treatments of optimal nonlinear income taxation in a dynamic, stochastic economy

is Kocherlakota (2005). In his model, both idiosyncratic and aggregate shocks

are present, and no restriction is imposed on the processes of shocks. Albanesi

and Sleet (2006) consider optimal taxation in a dynamic stochastic economy with

i.i.d. idiosyncratic shocks. They show that the constrained-efficient allocation can

be implemented as a competitive equilibrium with an indirect mechanism that

depends on only current wealth and current labor income. Battaglini and Coate

(2008), as we have already mentioned, consider a dynamic stochastic economy

where idiosyncratic shocks evolve as a two-state Markov process. Although the

stochastic structure is simplified, they address the effects of people’s risk attitude

and the time-consistency of the optimal tax rule.7

There has been some work that shares our motivation and studies tax rules that

are more realistic than fully optimal rules in dynamic economies. It has been found

that simple tax rules can achieve sizable welfare gains. Weinzierl (2011) considers

history-independent non-stationary tax rules, which he calls age-dependent tax

7In a two-period deterministic environment, Berliant and Ledyard (2014) study a history-
dependent non-stationary tax rule while addressing time-consistency.

4



rules, in a dynamic, deterministic economy.8 Golosov et al. (2013) study a realistic

pension system in which income tax is history-independent and retirement benefits

are inspired by the actual US system. Farhi and Werning (2013) consider a dynamic

stochastic economy with idiosyncratic shocks that evolve as a Markov process, and

study history-independent tax rules. Compared to their work, we consider even

simpler tax rules that are stationary while the evolution of idiosyncratic shocks is

not limited to a Makov process.

The rest of this paper proceeds as follows. In Section 2, we state the basic

structure of the model, present our problem, and characterize the second-best tax

rule. Section 3 contains our conclusions and discusses subjects for future research.

Proofs omitted from the main text are provided in an Appendix.

2 The Model

We consider a finite horizon model with a unit mass of agents. The economy

lasts for T+1 periods. In period 0, each agent is endowed with type w ∈W0 ⊆ R++,

where W0 is a (non-degenerate) closed interval, distributed with density function

fw. However, there are idiosyncratic shocks to the agents’ types in the subsequent

periods. At the beginning of period 1, an element of zT = {zt}
T
t=1
∈ ZT is drawn

for agent with type w according to a density function f (zT |w) where Z ⊆ R is a

(non-degenerate) closed interval. What we are trying to capture here is the latent

ability of workers that is not observed by others. We assume that the draw of

the entire vector zT conditional on w is i.i.d. among people and the law of large

numbers holds.9 Thus, f (zT,w) ≡ f (zT |w) fw(w), which is the joint density of zT and

w, denotes the density of agents having type w in the initial period and getting

shock zT. Note that, although shocks for all T periods are drawn in the initial

period, the agent only learns them as time goes on. Specifically, in period t, the

agent for whom zT was drawn in the initial period observes the history (w, zt),

where zt is the vector of the first t elements of zT (i.e., zt = {zs}
t
s=1

).

8Gaube (2010) also discusses age-dependent tax rules. Because his main interest lies in the
time-consistency of tax rules, he focuses on a two-period model.

9Kocherlakota (2005), for example, also makes these assumptions. Regarding the law of large
numbers, there are some technical issues for the case of continuum of i.i.d. random variables (Judd,
1985). However, Sun (2006) provides a solution to this issue by presenting a probability space in
which the law of large numbers holds.
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If an agent is endowed with type w in the initial period, his type will change to

wt ≡ ϕt(w; zT) in period t with ϕt : W0 × ZT → R++ where ϕt(w; zT) is continuously

differentiable and monotone increasing in w and zs (s ≤ t) but constant in zs (s > t).

For example, if we consider a linear technology, ϕt(w; zT) = w +
∑t

s=1 zs. Let

Wt =
{

w′ ∈ R : ∃(w, zT) ∈W0 × ZT,w′ = ϕt(w; zT)
}

. (1)

That is, let Wt be the range of ϕt. Because ϕt is continuous and W0×ZT is connected

and compact, Wt is a closed interval. Moreover, the strict monotonicity of ϕt

implies that Wt is non-degenerate. Wt is the type space in period t, and we assume

Wt−1∩Wt , ∅ for any t ≥ 1.10 For later use, we also define the expanded type space

W =
∪T

t=0 Wt.

The agents supply labor and consume the good produced under constant re-

turns to scale in each period. As is usual in optimal taxation models, they face a

trade-off between consumption and leisure. The utility function is

U
(

{ct, ℓt}
T
t=0

)

=

T
∑

t=0

ρtu(ct, ℓt) (2)

where ℓt ∈ [0, 1] is labor in period t, ct is consumption in period t, and ρ > 0

is the discount factor. We assume that u(c, ℓ) is twice continuously differentiable

and strictly concave as well as increasing in c, and decreasing in ℓ. Moreover, we

assume that leisure 1 − ℓ is a noninferior good.11 In our model, type represents

the earning ability of agents. That is, if the labor supply of agent w is ℓ, his gross

income is given by y = wℓ.

Before proceeding, let us summarize the regularity conditions we have imposed:

Assumption 1 (Regularity conditions).

1. W0 ⊂ R++ and Z ⊆ R are non-degenerate closed intervals;

2. ϕt(w; zT) is positive, continuously differentiable, monotone increasing in w and zs

(s ≤ t) as well as constant in zs (s > t); Wt−1 ∩Wt , ∅ for any t ≥ 1;

3. u(c, ℓ) is twice continuously differentiable, strictly concave as well as increasing in

c, and decreasing in ℓ; leisure 1 − ℓ is a noninferior good.

10If ϕt(w; 0) = w where 0 is the T-dimensional null vector, 0 ∈ Z is sufficient for this.
11Hellwig (2007) presents another assumption that is a cardinal property of u instead of the

assumption that leisure is a noninferior good, which is an ordinal property.
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We suppose that there is a risk-free bond market with interest rate R > 0 where

b is the bond holding of an agent. Then, letting τ be a (lump-sum) component of

an income tax, an agent’s budget constraint in period t is

ct + bt+1 = yt − τt + (1 + R)bt. (3)

The government would like to maximize social welfare. In this paper, we

consider the following utilitarian social welfare function:

SW =

∫

W0

∫

ZT

U
(

{ct, yt/wt}
T
t=0

)

f (zT,w)dzTdw. (4)

Since the one-period utility function is strictly concave and leisure is a noninferior

good, it follows that redistribution is desirable under the utilitarian welfare function

(Seade, 1982). The planner would like to carry out redistribution through income

taxes, but he cannot observe the agents’ types. Thus, the government needs to

design a mechanism that makes the agents reveal their true types.

We consider a direct mechanism in which agents report their types and the

government specifies the combination of consumption c, gross income y, and bond

holding b for each report in each period. In general, the rule for specifying the

allocation (c, y, b) could be non-stationary and depend on histories of reports.

However, because our planner faces a stationarity constraint, he cannot enforce

non-stationary tax rules. Moreover, as a consequence, he looks at only current

reports, just as he can only look at current reports in the initial period. There-

fore, we focus on allocation rules described by function x( · ) = (c( ·), y( · ), b( · )) with

x : W → R2
+ × R such that the allocation rule in period t is the restriction of x to

Wt.
12

Since the planner cannot observe the agents’ types, he faces incentive compat-

ibility (IC) constraints that require that the agents do not misreport their types.

Let

v(x(w′),w) = u(c(w′), y(w′)/w). (5)

This is the one-period utility that an agent of type w obtains when he reports w′.

Since the agents report their types in each period, the IC constraints are imposed

12We note that the government is aware of the stationarity constraint, so once it chooses its
allocation rule, it knows the rule cannot be changed, and accounts for this when choosing the rule.
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in each period. Recall that Wt, the range of ϕt, is the type space in period t for t ≥ 1.

The IC constraint in the last period is then given by

∀w ∈WT, v (x(w),w) ≥ v (x(w′),w) for all w′ ∈WT. (ICT)

On the other hand, the IC constraint in period t ∈ {0, 1, 2, ...,T − 1} is given by

∀w ∈Wt, v(x(w),w) +
∑

s≥t+1

ρs

∫

ZT

max
w̃∈Ws

v(x(w̃), ϕs(w; zT)) f (zT |w)dzT

≥ v(x(w′),w) +
∑

s≥t+1

ρs

∫

ZT

max
w̃∈Ws

v(x(w̃), ϕs(w; zT)) f (zT |w)dzT for all w′ ∈Wt (ICt)

Because our mechanism does not depend on history, the report in the current period

does not affect the expected continuation payoff, i.e.,

∑

s≥t+1

ρs

∫

ZT

max
w̃∈Ws

v(x(w̃), ϕs(w; zT)) f (zT |w)dzT

does not depend on the report in period t. As a result, the IC constraint in period t

reduces to

∀w ∈Wt, v(x(w),w) ≥ v(x(w′),w) for all w′ ∈Wt.

Although we have included bond holding in the mechanism above, there is an

important result regarding to what extent the government facing the stationarity

constraint can control individual saving or borrowing. Note that, under the sta-

tionarity constraint, the tax rule, which is induced by an allocation rule via (3), also

must be stationary and history-independent. However, this will imply that the

government cannot allow saving or borrowing:

Proposition 1. Under Assumption 1, the government facing the stationarity and incentive

compatibility constraints cannot allow agents to save or borrow. That is, b(w) = 0 for all

w ∈W.

The proof can be found in the Appendix. The logic behind this result is pretty

simple. Suppose that, in period t − 1, there are agents having types wt−1 and w′
t−1

respectively, and both of them become type wt in period t. Under the monotonicity

ofϕt, such agents exist. By incentive compatibility, they truthfully report their types

in each period. By the budget constraint, the period-t tax on the agent who changes
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from wt−1 to wt is then τ(wt) = y(wt) − c(wt) − b(wt) + (1 + R)b(wt−1). Because of the

stationarity constraint, the tax on the agent who changes from w′
t−1

to wt is also τ(wt),

but the budget constraint implies that τ(wt) = y(wt) − c(wt) − b(wt) + (1 + R)b(w′
t−1

).

Thus, we must have b(wt−1) = b(w′
t−1

). The assumption Wt−1 ∩Wt , ∅ then enables

us to use induction, and, in particular, we obtain b(w) = 0 for all w ∈ W because

b(wT) = 0 by the terminal condition. Note that this argument does not depend on

the utility function. In particular, Proposition 1 holds regardless of people’s risk

attitude (i.e., whether they are risk-neutral or risk-averse).

There are two remarks about this result. First, because our revenue constraint

is integrated over time, as we will see, the government can save and borrow for

the agents. However, the stationarity constraint leaves no room for saving and

borrowing not because the government borrows and saves for the consumers, but

because it cannot actually address the intertemporal wedge.13 Indeed, Farhi and

Werning (2013) also have a revenue constraint integrated over time, but according

to their simulations, bond holdings are not zero. Second, we can see that the

stochastic shocks are important for the argument above. Due to the shocks, each

state can be reached by several agents who generally have different histories. When

the government would like to address the intertemporal wedge, it is impossible for

the government to take care of these agents’ situations simultaneously due to the

stationarity constraint.14

In view of Proposition 1, we henceforth drop the notation for the bond holding

and let x( · ) = (c( · ), y( · )). In addition to the IC constraints, the government faces a

resource constraint: it needs to finance G in units of consumption good through the

tax. This revenue could be used for a public good that is fixed in quantity (and thus

in cost) or the public good could enter utility as an additively separable term. We

assume that the government can borrow or save at rateρ. Because τ(w) = y(w)−c(w)

by Proposition 1, the government then faces the following resource constraint (RC):

G ≤

∫

W0

(

y(w) − c(w)
)

fw(w)dw +

T
∑

t=1

ρt

∫

W0

∫

ZT

(

y(wt) − c(wt)
)

f (zT,w)dzTdw. (RC)

13The intertemporal wedge is related to Euler equation, or intertemporal substitution. See, for
example, Kocherlakota (2004).

14Kapicka (2006) studies optimal income taxation in a dynamic, deterministic model where people
can allocate their time to human capital investment. Focusing on steady states, the government can
specify (constant) investment levels for each agent even though it faces a stationarity constraint.
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Suppose that an agent is endowed with type w in the initial period. Let

V(x( · ),w) =

∫

ZT

U
(

{c(wt), y(wt)/wt}
T
t=0

)

f (zT |w)dzT. (6)

where wt = ϕt(w; zT). This is the expected lifetime utility that the agent obtains by

reporting truthfully in each period. Then, the planner’s problem is given by

max
x( · )

∫

W0

V(x( · ),w) fw(w)dw

s.t. (RC) and (ICt) for all t.

(7)

For reference, the first-best allocation rule x∗( · ) maximizes the utilitarian welfare

function subject to the resource constraint only, assuming that the government

knows the type of each agent at each time.

In addition to the regularity conditions stated above, we make the following

assumption on the one-period utility function u:

Assumption 2 (Spence-Mirrlees single crossing property: SCP). ∀(c, y,w) ∈ R2
+×W,

−wuc(c, y/w)/uℓ(c, y/w) is increasing in w.15

Here is the key idea of our work. When we solve the problem (7), we exploit the

fact that our mechanism is time-invariant and does not depend on history, and we

consider a time-separable utility function and the utilitarian social welfare function.

Therefore, the problem can be reduced to a static problem in which the total mass

of agents is expanded to
∑T

t=0 ρ
t. That is, each person in each period is considered

to be a different person in the static model. Utilitarianism with the time-separable

utility gives us the equivalence. Then, we take the standard approach for static

optimal income taxation problems to solve the problem (7). That is, we consider a

relaxed problem in which the IC constraints are replaced with weaker conditions

and invoke the fact that a solution to the relaxed problem is also a solution to the

original problem under Assumption 2.16

It might be more straightforward to consider an indirect mechanism in which

15This assumption is equivalent to assuming that the consumption good is a normal good. See
p. 182 of Mirrlees (1971).

16This argument crucially depends on the fact that mechanism is static. Otherwise, general
assumptions like the single crossing property that connect the relaxed problem to the original one
are not known (Farhi and Werning, 2013).
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the agents report their incomes and the government specifies income taxes for each

report. However, because bond holding cannot be allowed by Proposition 1, it

readily follows that Hammond’s (1979) result applies to our problem because, as

we will see, our problem reduces to a static one. That is, characterizing the direct

mechanism is equivalent to designing a tax rule τ( · ) and letting each agent choose

his income yt and consumption ct = yt − τ(yt).

Let w = min W and w = max W (thus, W = [w,w]). Moreover, recall that

x∗( · ) is the first-best allocation rule that maximizes social welfare subject to the

resource constraint. The main properties of the planner’s allocation rule are then

summarized in the following proposition.

Proposition 2. Under Assumptions 1 and 2, (i) x(w) ≤ x∗(w) for any w ∈W with equality

at w = w.17 If y(w) is strictly increasing at w = w, x(w) = x∗(w). Moreover, if y(w) > 0,

then x(w) ≪ x∗(w) for any w ∈ (w,w); (ii) τ′(y(w)) = 0 and if y(w) is strictly increasing

at w = w, τ′(y(w)) = 0. Moreover, if y(w) > 0, then τ′(y(w)) ∈ (0, 1) for any w ∈ (w,w).

The proof can be found in the Appendix. Property (i) states that the allocation

is first-best at the top of W and if income is strictly increasing at the bottom of W,

the allocation is also first-best there. In addition, no allocation can be distorted

upward from the first-best allocation and in particular, if income is positive, the

allocation is distorted downward from the first-best allocation in the interior of W.

Property (ii) states that the marginal tax rate is zero at the top of W and if income

is strictly increasing at the bottom of W, the marginal tax rate is also zero there. On

the other hand, if income is positive, the marginal tax rate is more than 0 but less

then 1 in the interior of W.

By Proposition 2, as long as everyone works so that y(w) > 0 for all w ∈ W, the

allocation is generally first-best and the marginal tax rate is zero only at the top of

the expanded type space W. Thus, if max Wt increases over time,18 no one’s allocation

is generally first-best and no one’s marginal tax rate is zero in the first T periods nor the

last period except when the type of the top earner in the initial period reaches w = max W.

This is possible only when the top earner in the initial period remains top in every

period. In practice, the planner may set the marginal tax rate at zero for the type

w, but the probability of anyone achieving this type is zero.

17x(w) ≤ x∗(w) means c(w) ≤ c∗(w) and y(w) ≤ y∗(w).
18This holds for linear technology ϕt(w; zT) = w +

∑t
s=1 zs when max Z > 0.
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This would strengthen the argument in the static model that the zero top

marginal tax result is relevant to only a small fraction of people (i.e., the top

earner). Indeed, whereas someone certainly faces the zero marginal tax rate in a

static economy, that is not true here. As in a static model, an agent faces the zero

marginal tax rate when he attains the highest possible income, but this very top

earner does not always exist ex post in our dynamic, stochastic economy.

Moreover, it would be worth pointing out that the results above are in sharp

contrast with those of Battaglini and Coate (2008) in which the shock follows a

Markov chain over two states (high and low). Under their tax rule, the allocation

is distorted only when people’s type is currently and has always been low. That is,

the allocations of agents who are currently, or have at some point been, high types

are first-best. Therefore, the fraction of people whose allocations are distorted is

decreasing over time. However, their results crucially depend on the following

facts: the support of types is fixed over time, and the tax rule can depend on

history. In our model, the support of types generally moves over time, and the tax

rule can depend on only the current income. As a result, all people’s allocations

are almost surely distorted in any period.

3 Conclusion

We consider the optimal dynamic income taxation problem faced by a gov-

ernment that cannot change the tax rule over time. Because of the stationarity

constraint, we could reduce our problem to a static one and analytically character-

ize the second-best tax rule. We argued that the zero top marginal tax result is of

little importance in practice because it would apply only when the top earner in

the initial period receives the largest value of the shock in every period. This is a

probability zero event, so ex post we ensure a positive tax rate for the top type.19

Regarding the stationarity of the tax rule, we have made an extreme assumption:

the government cannot make its tax rule time-dependent and thus its tax rates

cannot be history-dependent at all. It might be more realistic to consider the

situation in which the government can make its tax rule time-dependent or look at

19In this paper, we consider a finite-horizon model. Technically speaking, we use optimal control
theory, so by replacing terminal conditions with transversality conditions, we would be able to
extend both Propositions 1 and 2 to an infinite-horizon model.
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past histories at some cost.

Moreover, because we considered i.i.d. idiosyncratic shocks, we could obtain

a single resource constraint by invoking the law of large numbers. Besides the

stationarity of the tax rule, this was also crucial for our results. In fact, if the agents

face the common aggregate shocks, their types are correlated with each other, and

the analytical approach of this paper will fail to apply. These should be subjects of

future research.

Finally, although we characterized an optimal tax rule, we did not address its

existence. This can probably be proved using the results of Berliant and Page (2001)

for static optimal income taxes.

Appendix

Proof of Proposition 1. We argue by backward induction. First, b(WT) = {0} by the

terminal condition (i.e., in the last period, no one will save and borrowing is not

permitted because people cannot repay). Now, suppose b(Wt) = {0} where t ≤ T.

Let wt−1 ∈ Wt−1, and take w′
t−1
∈ Wt−1 that belongs to an ε-neighborhood of wt−1.

Then, there exist (w, zT), (w′, z′T) ∈ W0 × ZT such that wt−1 = ϕt−1(w; zT) and w′
t−1
=

ϕt−1(w′; z′T) respectively, and |wt−1 − w′
t−1
| < ε. Let (y, z−t) = (z1, ..., zt−1, y, zt+1, ..., zT).

Then, because Z is a non-degenerate closed interval and ϕt(w; y, z−t) is continuous

in y, we can take wt ∈ [ϕt(w; z, z−t), ϕt(w; z, z−t)] ∩ [ϕt(w
′; z, z′−t), ϕt(w

′; z, z′−t)] for

sufficiently small ε > 0 where z = min Z and z = max Z.

Then, because the stationary tax rule can depend on only the current state

and agents always truthfully report their types by incentive compatibility, τ(wt) =

y(wt)−c(wt)−b(wt)+(1+R)b(wt−1) and τ(wt) = y(wt)−c(wt)−b(wt)+(1+R)b(w′
t−1

), and

thus b(wt−1) = b(w′
t−1

). Therefore, b is constant in a neighborhood of wt−1. However,

because wt−1 is arbitrary, we deduce that b is continuous on Wt−1. We then obtain

the desired result because b is zero on Wt−1 ∩Wt by assumption. �

Proof of Proposition 2. We show that due to the stationarity constraint, our problem

can be reduced to a static problem and then invoke the results of Hellwig (2007) who

analyzes a static optimal taxation problem under the utilitarian welfare function.

As in Hellwig (2007), we consider a relaxed problem by replacing the IC constraint

13



with a weaker condition that is called the downward IC constraint:

∀w ∈Wt, v (x(w),w) ≥ v (x(w′),w) for all w′ ∈ {w̃ ∈Wt : w̃ ≤ w} . (IC′t)

for each t. Thus, the downward IC constraint takes care of only downward devia-

tions. By Lemma 6.2 of Hellwig (2007), x( · ) with nondecreasing c( · ) satisfies (IC′t) if

and only if dv(x(w),w)

dw
≥ vw(x(w),w) for all w ∈Wt. Thus, when we solve the problem,

we impose the constraints that c(w) is nondecreasing and dv(x(w),w)

dw
≥ vw(x(w),w) on

W =
∪T

t=0 Wt instead of the downward IC constraints.

Next, we rewrite the welfare function as

∫

W0

V(x( · ),w) fw(w)dw

=

∫

W0















v(x(w),w) +

T
∑

t=1

ρt

∫

ZT

v(x(wt),wt) f (zT |w)dzT















fw(w)dw

=

∫

W0

v(x(w),w) fw(w)dw +

T
∑

t=1

ρt

∫

Wt

v(x(wt),wt) ft(wt)dwt

where ft(w) =
∫

ZT f (zT, ϕ−1
t (w; zT))

dϕ−1
t (w;zT)

dw
dzT. Let fw be an extension of fw to W (i.e.,

fw(w) = fw(w) on W0 and fw(w) = 0 on W \W0). Similarly, let ft be an extension of

ft to W. Then, the above expression reduces to

∫

W

v(x(w),w)g(w)dw (8)

where g(w) ≡ fw(w) +
∑T

t=1 ρ
t ft(w). Likewise, the resource constraint is reduced to

G ≤

∫

W

τ(w)g(w)dw. (9)

Therefore, our relaxed problem is given by

max
x( · )

∫

W

v(x(w),w)g(w)dw

s.t. G ≤

∫

W

τ(w)g(w)dw,

c(w) is nondecreasing and dv(x(w),w)

dw
≥ vw(x(w),w) on W.

(10)
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On the other hand, Hellwig (2007) considers a standard static optimal taxation

problem. Specifically, in our notation, his problem is written as

max
x( · )

∫

W0

v(x(w),w) fw(w)dw

s.t. G ≤

∫

W0

τ(w) fw(w)dw,

c(w) is nondecreasing and dv(x(w),w)

dw
≥ vw(x(w),w) on W0.

(11)

Hence, we can see that our problem can be viewed as a static problem in which the

total mass of agents is
∑T

t=0 ρ
t, the support of type distribution is W, and the welfare

weight for type w is g(w), and therefore, the arguments of Hellwig (2007) directly

apply. In particular, the property (i) follows from Theorem 6.1 and the property (ii)

from Theorems 4.1 and 6.1 of Hellwig (2007). �
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