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BOOTSTRAPPING THE PORTMANTEAU TESTS IN WEAK

AUTO-REGRESSIVE MOVING AVERAGE MODELS

By Ke Zhu

Chinese Academy of Sciences

This paper uses a random weighting (RW) method to bootstrap

the critical values for the Ljung-Box/Monti portmanteau tests and

weighted Ljung-Box/Monti portmanteau tests in weak ARMA mod-

els. Unlike the existing methods, no user-chosen parameter is needed

to implement the RW method. As an application, these four tests

are used to check the model adequacy in power GARCH models.

Simulation evidence indicates that the weighted portmanteau tests

have the power advantage over other existing tests. A real example

on S&P 500 index illustrates the merits of our testing procedure. As

one extension work, the block-wise RW method is also studied.

1. Introduction. After the seminal work of Box and Pierce (1970) and Ljung

and Box (1978), the portmanteau test has been popular for diagnostic checking in the

following ARMA(p, q) model:

yt =
p∑

i=1

φiyt−i +
q∑

i=1

ψiεt−i + εt,(1.1)

where εt is the error term with Eεt = 0. Conventionally, we say that model (1.1) is

weak when {εt} is an uncorrelated sequence, and that model (1.1) is strong when {εt}
is an i.i.d. sequence; see, e.g., Francq and Zaköıan (1998) and Francq, Roy, and Zaköıan

(2005). In the earlier decades, many portmanteau tests are proposed for strong ARMA

models, and among them, the most famous ones are the Box-Pierce statistic Qm and

Ljung-Box statistic Q̃m which are defined respectively by

Qm = n
m∑

k=1

ρ̂2
k and Q̃m = n(n + 2)

m∑

k=1

ρ̂2
k

n − k
,(1.2)

where n is the length of the series {yt}, m is a fixed positive integer, and ρ̂k is the

residuals autocorrelation at lag k. When Eε2
t < ∞, the standard analysis in Box and

Pierce (1970) or McLeod (1978) showed that the limiting distribution of Qm or Q̃m

can be approximated by χ2
m−(p+q) in strong ARMA models, although Q̃m usually has

a better finite sample performance for small n. In view of this, people more or less

regard that the limiting distribution of Qm or Q̃m is independent to the data structure

(or asymptotically pivotal in other words), and hence both test statistics can be easily
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implemented in practice. Recently, Fisher and Gallagher (2012) proposed a weighted

Ljung-Box statistic Qm for strong ARMA models based on the trace of the square of

the m-th order autocorrelation matrix, where

Qm = n(n + 2)
m∑

k=1

(m − k + 1)

m

ρ̂2
k

n − k
.(1.3)

Compared with Q̃m, this new weighted Ljung-Box statistic is numerically more stable

over m, and its limiting distribution can be approximated by a gamma distribution. For

more discussions on portmanteau tests in strong ARMA models, we refer to McLeod

and Li (1983), Peña and Rodŕıguez (2002, 2006), Li (2004), and many others.

Although the aforementioned portmanteau tests have been well applied in indus-

tries, their asymptotic properties are valid only for strong ARMA models; see, e.g.,

Romano and Thombs (1996). Till now, more and more empirical studies have revealed

that the independence structure of error terms {εt} in model (1.1) may be restrictive

especially for economic and financial series. For instance, Bollerslev (1986) used an

AR(4)-GARCH(1, 1) model to study the GNP series in U.S.; Franses and Van Dijk

(1996) studied several stock market indexes by AR(1)-GJR(1, 1) models; Zhu and Ling

(2011) found that a MA(3)-GARCH(1, 1) model is necessary to fit the world oil prices;

see also Tsay (2005) for more empirical evidence. Moreover, Francq and Zaköıan (1998)

and Francq, Roy, and Zaköıan (2005) indicated that many nonlinear models have an

ARMA representation with dependent error terms. Thus, it is meaningful to consider

the diagnostic checking for weak ARMA models.

So far, a huge literature has focused on testing the dependence of time series. Next,

we briefly review some of important results. For the observable series, Deo (2000) con-

structed some spectral tests of the martingale difference hypothesis; Lobato (2001)

proposed an asymptotically pivotal test to detect whether the observable series is un-

correlated; Escanciano and Velasco (2006) extended the method in Durlauf (1991) to

testing the martingale difference hypothesis, taking into account both linear and non-

linear dependence; Escanciano and Lobato (2009) derived a data-driven portmanteau

test which is applicable in the conditionally heteroskedastic series but with no need to

choose m. For the residual series, Hong and Lee (2005) considered a generalized spec-

tral test which is valid for semi-strong ARMA models; Escanciano (2006) tested the

martingale difference hypothesis by introducing a parametric family of functions as in

Stinchcombe and White (1998); moreover, based on some marked residual processes,

the Cramér-von Mises test and Kolmogrove-Smirnov test were studied in Escanciano

(2007) towards the same goal. However, none of aforementioned tests can be applied

to the residuals of weak ARMA models.

To solve this problem, Romano and Thombs (1996) and Horowitz, Lobato, Nankervis,

and Savin (2006) used the block-wise bootstrap to estimate the asymptotic covariance

matrix of autocorrelations for the observable series. Francq, Roy, and Zaköıan (2005)
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used the VAR method in Berk (1974) to estimate the asymptotic covariance matrix

of Q̃m in weak ARMA models. However, both estimation procedures have the dis-

advantage of requiring the selection of some user-chosen parameters as indicated by

Kuan and Lee (2006). Moreover, they used the self-normalization method to propose

a robust M test which is asymptotically pivotal and independent to user-chosen pa-

rameters. This robust M test is applicable for testing serial correlations in weak AR

models. Recently, Shao (2011a) proved the validity of the spectral test in Hong (1996)

for detecting serial correlations in weak ARMA models. Although the spectral test is

consistent, it still requires the selection of kernel function and its related bandwidth.

In this paper, we bootstrap the critical values for Q̃m and Qm in weak ARMA mod-

els by a random weighting (RW) method. Unlike the existing methods, no user-chosen

parameter is needed to implement this new method. Particularly, it is applicable when

εt is a martingale difference (i.e., E(εt|Ft−1) = 0 with Ft = σ(εs; s ≤ t)). Hence, the

RW method is valid when εt has the often observed ARCH-type structure, i.e.,

εt = ηt

√
ht,(1.4)

where ηt is i.i.d. innovation, and ht ∈ Ft−1 is the conditional variance of εt. Meanwhile,

we can show that the bootstrapped critical values for Q̃m and Qm are valid for Monti’s

(1994) portmanteau test M̃m and weighted Monti portmanteau test Mm in Fisher

and Gallagher (2012), respectively, where both M̃m and Mm are based on a vector

of residuals partial autocorrelations. As a byproduct, the standard deviation of m-th

residuals (partial) autocorrelation can be calculated from our RW approach. Hence, the

classical plot of residuals (partial) autocorrelations with the corresponding significance

bounds is available for weak ARMA models. As an application, we then use all four

portmanteau tests to check the adequacy of power GARCH models. Simulation studies

are carried out to assess the finite-sample performance of all tests. A real example on

S&P 500 index illustrates the merits of our testing procedure. As one extension work,

a block-wise RW approach is also proposed to bootstrap the critical values for all tests,

and its validity is justified.

This paper is organized as follows. Section 2 proposes the RW approach to bootstrap

the critical values for four portmanteau tests. Section 3 applies these tests to check the

model adequacy in power GARCH models. Simulation results are reported in Section

4. A real example is given in Section 5. An extension work on the block-wise RW

approach is provided in Section 6. Concluding remarks are offered in Section 7. All of

proofs and some additional simulation results are given in the on-line supplementary

document.

2. Random weighting approach. Denote θ = (φ1, · · · , φp, ψ1, · · · , ψq)
′ be the

unknown parameter of model (1.1). Let θ0 be the true value of θ and the parameter

space Θ be a compact subset of Rs , where R = (−∞,∞) and s = p + q. We make

the following two assumptions:
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Assumption 2.1. θ0 is an interior point in Θ and for each θ ∈ Θ, φ(z) , 1 −
∑p

i=1 φiz
i 6= 0 and ψ(z) , 1 +

∑q
i=1 ψiz

i 6= 0 when |z| ≤ 1, and φ(z) and ψ(z) have

no common root with φp 6= 0 or ψq 6= 0.

Assumption 2.2. {yt} is strictly stationary with E|yt|4+2ν < ∞ and

∞∑

k=0

{αy(k)}ν/(2+ν) < ∞

for some ν > 0, where {αy(k)} is the sequence of strong mixing coefficients of {yt}.

Assumption 2.1 is the condition for the stationarity, invertibility and identifiability of

model (1.1). Assumption 2.2 from Francq, Roy, and Zaköıan (2005) gives the necessary

conditions to prove our asymptotic results, and it is satisfied by many weak ARMA

models, e.g.,

(a) yt = ayt−1 + εt and εt = ηtηt−1;

(b) yt = aεt−1 + εt and εt = ηtηt−1;

(c) yt = ηt + byt−1ηt−2,which admits a weak MA(3) representation:

yt = εt + cεt−3 as shown in Francq and Zaköıan (1998),

where ηt ∼ N(0, 1) is i.i.d. white noise, |a| < 1, |b| < 1, and αy(k) in each aforemen-

tioned model tends to zero exponentially fast.

Next, given the observations χn , {y1, · · · , yn}, we consider the least squares esti-

mator (LSE) θ̂n of θ0, defined by

θ̂n = arg min
Θ

L̃n(θ), where L̃n(θ) =
1

n

n∑

t=1

ε̃2
t (θ) ,

1

n

n∑

t=1

l̃t(θ),

and ε̃t(θ) is defined recursively by

ε̃t(θ) = yt −
p∑

i=1

φiyt−i −
q∑

i=1

ψiε̃t−i(θ)

with ε̃0(θ) = ε̃−1(θ) = · · · = ε̃−q+1(θ) = y0 = y−1 = · · · = y−p+1 = 0.

Denote ε̂t , ε̃t(θ̂n) be the residual of model (1.1). Then, the residuals autocorrela-

tion at lag k is

ρ̂k =

∑n
t=k+1 ε̂tε̂t−k∑n

t=1 ε̂2
t

.

Theorem 2.1 below gives the limiting distributions of Q̃m in (1.2) and Qm in (1.3), and

under the same conditions, its proof (omitted here) follows directly from the one for

Theorem 2 in Francq, Roy, and Zaköıan (2005). In addition, the limiting distribution

of Q̃m in Theorem 2.1 is the same as the one in Theorem 2 of Francq, Roy, and Zaköıan

(2005), and it reduces to the one in Li (1992, p.436) when model (1.1) is strong.
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To state Theorem 2.1 precisely, some notations are needed. Define εt(θ) recursively

by

εt(θ) = yt −
p∑

i=1

φiyt−i −
q∑

i=1

ψiεt−i(θ),

i.e., εt(θ) = ψ−1(B)φ(B)yt, where B is the back shift operator. Then,

∂εt(θ)

∂θ
=

(
νt−1(θ), · · · , νt−p(θ), ut−1(θ), · · · , ut−q(θ)

)′
,

where νt(θ) = −φ−1(B)εt(θ) and ut(θ) = ψ−1(B)εt(θ). Particularly, εt(θ0) = εt and

∂εt

∂θ
,

∂εt(θ0)

∂θ
=

∞∑

i=1

εt−iλi,

where λi = (−φ∗
i−1, · · · ,−φ∗

i−p, ψ
∗
i−1, · · · , ψ∗

i−q)
′, and coefficients φ∗

i and ψ∗
i are from

expansions: φ−1(z) =
∑∞

i=0 φ∗
i z

i and ψ−1(z) =
∑∞

i=0 ψ∗
i z

i with φ∗
i = ψ∗

i = 0 for i < 0.

Moreover, let σ2 = Eε2
t and define the following matrixes:

I = 4 lim
n→∞

1

n
E

(
n∑

t=1

n∑

t′=1

εtεt′
∂εt

∂θ

∂εt′

∂θ′

)
= 4

∞∑

i=1

∞∑

j=1

Γ(i, j)λiλ
′
j ,

J = 2 lim
n→∞

1

n
E

(
n∑

t=1

∂εt

∂θ

∂εt

∂θ′

)
= 2σ2

∞∑

i=1

λiλ
′
i,

Rm = (Rij)1≤i, j≤m with Rij = σ−4Γ(i, j),

Sm = (s1, · · · , sm) with sk =
∞∑

i=1

Rikλi,

Λm = (λ1, · · · , λm), and

Σ = Rm + Λ′
mJ −1IJ −1Λm − 2σ2Λ′

mJ −1Sm − 2σ2S ′
mJ −1Λm,(2.1)

where

Γ(l, l′) =
∞∑

h=−∞

E (εtεt−lεt+hεt+h−l′) .(2.2)

Here, Γ(l, l′) is meaningful by Assumptions 2.1-2.2 and Lemma A.1 in Francq, Roy,

and Zaköıan (2005), and it satisfies Γ(l, l′) = Γ(−l,−l′) = Γ(−l′,−l). Note that Σ is

the same as Σρ̂m
in Theorem 2 of Francq, Roy, and Zaköıan (2005).

Theorem 2.1. Suppose that Assumptions 2.1-2.2 hold and model (1.1) is weak

and correctly specified. Then, (i)

√
nρ̂ →d N(0,Σ) and W (

√
nρ̂) →d N(0,WΣW ) as n → ∞,
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where →d denotes the convergence in distribution, ρ̂ = (ρ̂1, · · · , ρ̂m)′, the matrix Σ is

defined in (2.1), and

W = diag

{
1,

√
(m − 1)/m,

√
(m − 2)/m, · · · ,

√
1/m

}

is a diagonal matrix; (ii) furthermore, it follows that

Q̃m →d

m∑

i=1

ξ̃miZ
2
i and Qm →d

m∑

i=1

ξ̄miZ
2
i as n → ∞,

where Z1, · · · , Zm are independent N(0, 1) variables, ξ̃m = (ξ̃m1, · · · , ξ̃mm)′ is the

eigenvalues vector of the matrix Σ, and ξ̄m = (ξ̄m1, · · · , ξ̄mm)′ is the eigenvalues vector

of the matrix WΣW .

Remark 2.1. By using a consistent estimate Σ̂ of Σ, it may be more natural to

construct the test statistic nρ̂′Σ̂−1ρ̂, which has an asymptotic distribution χ2
m from

Theorem 2.1. This test statistic is calculable if Σ is non singular. However, as shown

in Francq, Roy, and Zaköıan (2005), Σ may be (or close to) singular in some cases.

To overcome this difficulty, Francq, Roy, and Zaköıan (2005) used the spectral decom-

position to express the limiting distribution of Q̃m, while Duchesne and Francq (2008)

used the generalized inverses and {2}-inverses of Σ to construct the portmanteau test.

In this paper, both methods are valid, and we follow the method in Francq, Roy, and

Zaköıan (2005) for simplicity.

Remark 2.2. When yt follows a strong ARMA model, McLeod (1978) proved

that the limiting distribution of Q̃m can be approximated by a χ2
m−(p+q) distribution,

and Fisher and Gallagher (2012) proved that the limiting distribution of Qm can be

approximated by a Gamma(a, b) distribution with

a =
3

4

m(m + 1)2

2m2 + 3m + 1 − 6m(p + q)
and b =

2

3

2m2 + 3m + 1 − 6m(p + q)

m(m + 1)
.(2.3)

However, simulation studies in Section 4 showed that these approximations will lead

to an over-rejection problem in weak ARMA models.

From Theorem 2.1, we know that both statistics Q̃m and Qm are applicable when Σ

can be consistently estimated. This is usually accomplished by either the kernel-based

method in Newey and West (1987) or the VAR method in Francq, Roy, and Zaköıan

(2005). However, both methods require picking up some user-chosen parameters, and

hence it turns out that the testing results are sensitive to these user-chosen parameters;

see, e.g., Kuan and Lee (2006). In this section, we now introduce a random weighting

(RW) approach to bootstrap the critical values for Q̃m and Qm. This novel method

gives an estimator of Σ, but it avoids selecting any user-chosen parameter. Its detailed

procedure is as follows:
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step 1. Generate a sequence of positive i.i.d. random weights {w∗
1, · · · , w∗

n}, inde-

pendent of the data, from a common distribution with mean and variance both equal

to 1, and then calculate θ̂∗n via

θ̂∗n = arg min
Θ

L̃∗
n(θ), where L̃∗

n(θ) =
1

n

n∑

t=1

w∗
t l̃t(θ);

step 2. Calculate ∆ = W ∗[
√

n(ρ̂∗ − ρ̂)] with ρ̂∗ = (ρ̂∗1, · · · , ρ̂∗m)′, where

ρ̂∗k =

∑n
t=k+1 w∗

t ε̂
∗
t ε̂

∗
t−k∑n

t=1 ε̂∗2t

with ε̂∗t = ε̃t(θ̂
∗
n), and the diagonal matrix

W ∗ =

{
Im or W̃ ∗ for Q̃m

W or W
∗

for Qm

,(2.4)

where Im ∈ Rm×m is the identity matrix,

W̃ ∗ = diag





√
n + 2

n − 1
,

√
n + 2

n − 2
, · · · ,

√
n + 2

n − m



 ,

and

W
∗

= diag





√
n + 2

n − 1
,

√
n + 2

n − 2

m − 1

m
, · · · ,

√
n + 2

n − m

1

m



 ;

step 3. Repeat steps 1-2 J times to get {∆(1), · · · ,∆(J)}, and then compute its

sample variance-covariance matrix Σ∗; furthermore, simulate N i.i.d. random sam-

ples {z(j)
1 , · · · , z

(j)
m }N

j=1 from the multivariate normal distribution N(0, Im), and then

calculate the sequence {K(j)}N
j=1 via

K(j) =
m∑

i=1

ξ∗miz
(j)
i ,

where (ξ∗m1, · · · , ξ∗mm)′ is the eigenvalues vector of the matrix Σ∗;

step 4. Choose α upper percentage of {K(j)}N
j=1 as the critical value of Q̃m or Qm

at any given significance level α.

Particularly, when p = q = 0, we set ε̂t = ε̂∗t = yt for all t in step 2. The p-value of

Q̃m or Qm can be calculated by #(K(j) > Q̃m)/N or #(K(j) > Qm)/N , respectively.

We now offer some remarks on the RW method. First, the RW method as a variant of

the traditional wild bootstrap in Wu (1986) was initially proposed by Jin, Ying, and

Wei (2001). So far, it has been widely used for statistical inference in regression and

time series models, when the asymptotic covariance matrix of certain estimator can

not be directly estimated; see, e.g., Chen, Ying, Zhang, and Zhao (2008), Chen, Guo,

Lin, and Ying (2010), Li, Leng, and Tsai (2014), Li, Li, and Tsai (2014), and Zhu
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and Ling (2015). Second, the random weight w∗
t can from the standard exponential

distribution as used in Section 4, the Bernoulli distribution such that

P

(
w∗

t =
3 −

√
5

2

)
=

1 +
√

5

2
√

5
and P

(
w∗

t =
3 +

√
5

2

)
=

√
5 − 1

2
√

5
,

and many others. Although theoretically it is unknown how sensitive is the RW method

to the distribution of w∗
t , simulation studies in the on-line supplementary document

imply that our testing results are robust to the distribution of w∗
t . Third, although

Im and W̃ ∗ (or W and W
∗
) are close to each other when n is large, we expect that

the finite sample performance of Q̃m (or Qm) based on W̃ ∗ (or W
∗
) may be better for

small n.

To justify the validity of the bootstrapped critical value from the RW method, two

more assumptions are needed:

Assumption 2.3. E(w∗
t )

2+κ0 < ∞ for some κ0 > 0.

Assumption 2.4. For l, l′ ≥ 1,

∞∑

h=−∞,h 6=0

E (εtεt−lεt+hεt+h−l′) = 0.

Assumption 2.3 gives one mild condition for w∗
t . Assumption 2.4 restricts the depen-

dent structure of εt, and it is equivalent to say that the infinite series Γ(l, l′) in (2.2)

collapses to just one summand with the index h = 0 (i.e., E(ε2
t εt−lεt−l′)). Particularly,

when εt is a martingale difference including the special case as in (1.4), we know that

Assumption 2.4 holds. To capture the dependence structure of εt beyond Assumption

2.4, a block-wise technique is necessary, and we will study it in Section 6.

We now are ready to state our main result:

Theorem 2.2. Suppose that Assumptions 2.1-2.4 hold and model (1.1) is weak

and correctly specified. Then, conditional on χn,

√
n(ρ̂∗ − ρ̂) →d N(0, Σ) in probability

as n → ∞, where Σ is defined in (2.1).

Remark 2.3. By Theorem 2.2, it follows that conditional on χn,

W̃ ∗[
√

n(ρ̂∗ − ρ̂)] →d N(0,Σ) and W
∗
[
√

n(ρ̂∗ − ρ̂)] →d N(0,WΣW )

in probability as n → ∞. In view of this, when J is large, the matrix Σ∗ in step 3 of

RW method provides a good estimator of Σ (or WΣW ) for Q̃m (or Qm), and hence

our bootstrapped critical values from the RW method are asymptotically valid.
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In the end, we show that our RW method can be also used for the portmanteau test

M̃m in Monti (1994) and the weighted portmanteau test Mm in Fisher and Gallagher

(2012), where

M̃m = n(n + 2)
m∑

k=1

π̂2
k

n − k
and Mm = n(n + 2)

m∑

k=1

(m − k + 1)

m

π̂2
k

n − k

with π̂k being the residuals partial autocorrelation at lag k. Here, π̂k is calculated by

the Durbin-Levinson algorithm as follows:

π̂k =
ρ̂k − (ρ̂1, · · · , ρ̂k−1)R̂

−1
k−1(ρ̂k−1, · · · , ρ̂1)

′

1 − (ρ̂1, · · · , ρ̂k−1)R̂
−1
k−1(ρ̂1, · · · , ρ̂k−1)′

,

where R̂k = (ρ̂|i−j|)i,j=1,2,··· ,k is the Toeplitz matrix. As for Theorem 2.1, we can easily

show that
√

nπ̂k =
√

nρ̂k + op(1), and hence the following theorem is straightforward:

Theorem 2.3. Suppose that the conditions in Theorem 2.1 hold. Then, (i)

√
nπ̂ →d N(0, Σ) and W (

√
nπ̂) →d N(0,WΣW ) as n → ∞,

where π̂ = (π̂1, · · · , π̂m)′; (ii) furthermore, it follows that M̃m and Mm have the same

liming distributions as Q̃m and Qm, respectively.

Remark 2.4. Besides the portmanteau tests aforementioned, the kernel-based spec-

tral test Hn in Hong (1996) has also been widely used for testing series correlations

of {εt} in model (1.1), where

Hn =
n−1∑

j=1

[k(j/pn)]2ρ̂2
j

with k(·) being the kernel function and pn(> 0) being the bandwidth. When k(·) satisfies

Assumption 2.1 in Shao (2011a) and pn satisfies the condition that log n = o(pn) and

pn = o(n1/2), Shao (2011a) proved that if model (1.1) is weak and correctly specified,

nHn − pnC(k)√
2pnD(k)

→d N(0, 1) as n → ∞,(2.5)

where C(k) =
∫ ∞
0 [k(x)]2dx and D(k) =

∫ ∞
0 [k(x)]4dx. From (2.5), we know that the

limiting null distribution of Hn depends on k(·) and pn. Note that unlike the lag m in

the portmanteau test, it is difficult to interpret pn in Hn. Simulation studies in Section

4 below imply that the size/power performance of Hn is very sensitive to the choice of

pn. Thus, Hn may be of limited value in applications, without a data-driven/computer

intensive selection of pn. When p = q = 0 in model (1.1), Lee and Hong (2001) used

the cross-validation procedure of Beltrao and Bloomfield (1987) to select pn; when

model (1.1) is strong, Hong and Lee (2003) studied the plug-in data-driven method as

in Hong (1999) but still requiring the selection of a preliminary user-chosen bandwidth
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p̄; when εt in model (1.1) is a martingale difference with conditional heteroscedasticity

of unknown form, Hong and Lee (2005) re-studied this plug-in method; however, when

model (1.1) is weak, how to construct and theoretically study a good data-driven method

for Hn is still an open question, and we leave it for future study.

Note that the limiting distribution of
√

nπ̂ is the same as the one of
√

nρ̂. Thus, when

model (1.1) is strong, the limiting distribution of M̃m (or Mm) can be approximated

by a χ2
m−(p+q) (or Gamma(a, b)) distribution as in Remark 2.2, but when model (1.1)

is weak, the bootstrapped critical values for Q̃m and Qm should be used for M̃m and

Mm, respectively. In addition, it is worth noting that the standard deviation of ρ̂i (or

π̂i), denoted by sdi, can be calculated by

sdi =
√

Σ∗
ii/n,

where Σ∗
ii is the i-th main diagonal entry of Σ∗ for i = 1, 2, · · · ,m. Consequently, the

classical plot of residuals (partial) autocorrelations with the corresponding significance

bounds are available in weak ARMA models, where the significance lower and upper

bounds for ρ̂i (or π̂i) at level α are Φ−1[(1−α)/2]sdi and Φ−1[(1+α)/2]sdi, respectively.

Here, Φ−1(·) is the inverse of the cdf of N(0, 1) distribution. As shown in Romano

and Thombs (1996), the traditional significance bounds for strong ARMA models are

misleading when {εt} in model (1.1) are dependent. Our significance bounds generated

from the RW method are now valid for weak ARMA models, and hence they are

practically important. We will illustrate this by one real example in Section 5.

3. Model checking in Power GARCH models. Since Engle (1982), ARCH-

type models have become the most important tools to modeling economic and financial

data sets. The power GARCH model as one of ARCH-type models describes that the

power of conditional volatility depends on the past information and changes over time.

Specifically, the power GARCH(r, s) (denoted by PGARCH(r, s)) model is defined as

yt = ηt

√
ht and h

δ
2
t = w +

r∑

i=1

αi|yt−i|δ +
s∑

i=1

βih
δ
2
t−i,(3.1)

where δ > 0, w > 0, αi ≥ 0, βi ≥ 0, and ηt is i.i.d. innovation with mean zero and

variance one. Model (3.1) as a special case of the asymmetric power GARCH models

introduced by Ding, Granger, and Engle (1993) was first proposed by Higgins and

Bera (1992). When δ = 2, model (3.1) reduces to the GARCH model in Bollerslev

(1986), and when δ = 1, it reduces to the absolute value GARCH model in Taylor

(1986) and Schwert (1989). For more discussions on ARCH-type models, we refer to

Bollerslev, Chou, and Kroner (1992) and Francq and Zaköıan (2010).

So far, PGARCH models have been widely applied in practice; see, e.g., McKenzie

and Mitchell (2002), Giot and Laurent (2004), and the references therein. However,

except GARCH model (i.e., δ = 2), the diagnostic checking tools for model (3.1) are
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rare. In the sequel, we briefly review some related works. Li and Mak (1994) proposed

a portmanteau test to detect the adequacy of GARCH models based on the squared

residuals {η̂2
t }; Carbon and Francq (2011) extended their work to detect the adequacy

of asymmetric PGARCH models; Li and Li (2005) considered the model checking in

GARCH models by using the absolute residuals {|η̂t|}; see also Li and Li (2008) and

Chen and Zhu (2015) for other portmanteau tests in GARCH models. In this section,

we apply Q̃m, Qm, M̃m, and Mm to check the adequacy of model (3.1).

Assume that τ , (E|ηt|δ)1/δ(> 0) is well defined. Then, we can re-parameterize

model (3.1) as

yt = η∗t

√
h∗

t , (h∗
t )

δ
2 = w∗

1 +
r∑

i=1

α∗
i |yt−i|δ +

s∑

i=1

βi(h
∗
t−i)

δ
2 ,(3.2)

where w∗
1 = wτ−δ, α∗

i = αiτ
−δ, and η∗t = ηtτ

−1. Moreover, by (3.2), a direct calculation

gives us that

|yt|δ = w∗
1 +

max(r,s)∑

i=1

(α∗
i + βi)|yt−i|δ + vt −

s∑

i=1

βivt−i,(3.3)

where we set α∗
i = 0 if i > r and βi = 0 if i > s, and vt = (h∗

t )
δ
2 (|η∗t |δ−1) is a martingale

difference. From (3.3), we know that if model (3.1) is well specified, the mean-adjusted

series ỹt , |yt|δ − E|yt|δ admits a weak ARMA(max(r, s),s) representation:

ỹt =

max(r,s)∑

i=1

α̃iỹt−i + vt −
s∑

i=1

βivt−i,(3.4)

where α̃i = α∗
i +βi. Thus, we can check the adequacy of model (3.1) by Q̃m, Qm, M̃m,

and Mm, which are calculated from model (3.4). Denote α̃(z) , 1−∑max(r,s)
i=1 α̃iz

i and

β(z) , 1 − ∑s
i=1 βiz

i. We have the following corollary:

Corollary 3.1. Suppose that (i) Assumption 2.1 holds with φ(z) and ψ(z) being

replaced by α̃(z) and β(z), respectively; (ii) Assumption 2.2 holds with yt being replaced

by ỹt. Then, if model (3.1) is correctly specified, the conclusions in Theorems 2.1 and

2.3 hold, where Q̃m, Qm, M̃m, and Mm are calculated from model (3.4).

We now offer some remarks of Corollary 3.1. First, it is worth noting that a sufficient

condition for condition (ii) in Corollary 3.1 can be found in Carrasco and Chen (2002).

Second, since model (3.4) is not a strong ARMA model but a weak ARMA model with

a martingale difference error term, the critical values of these four tests should be

obtained by the RW method. Third, it is necessary to point out that our portmanteau

tests are infeasible to check the adequacy of some asymmetric ARCH-type models,

which do not have a weak ARMA representation like (3.4).
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4. Simulation study. In this section, we examine the finite-sample performance

of Q̃m, Qm, M̃m and Mm. For Q̃m, we denote it by Q̃
(1)
m , when we choose its critical

value to be the upper percentage of χ2
m−(p+q) as in strong ARMA models, while we

denote it by Q̃
(2)
m (or Q̃

(3)
m ), when we choose its critical value to be the one from the

RW method with W ∗ = Im (or W̃ ∗ as in (2.4)). For Qm, we denote it by Q
(1)
m , when

we choose its critical value to be the upper percentage of Gamma(a, b) as in (2.3),

while we denote it by Q
(2)
m (or Q

(3)
m ), when we choose its critical value to be the one

from the RW method with W ∗ = W (or W
∗

as in (2.4)). Likewise, we can define M̃
(i)
m

and M
(i)
m for i = 1, 2, 3. In all calculations, we set the significance level α = 5% and

the bootstrap sample size J = 500, and generate random weights from the standard

exponential distribution. In addition, more simulation studies are given in the on-line

supplementary document.

4.1. Study on fitted weak ARMA models. In this subsection, we assess the finite-

sample performance of Q̃m, Qm, M̃m and Mm on testing the model adequacy in weak

ARMA models. As a comparison, we also consider the spectral test in Hong (1996)

and the robust M test (denoted by KLm) in Kuan and Lee (2006). For Hong’s kernel-

based spectral test Hn, we denote it by H
(1)
B , H

(2)
B , and H

(3)
B , when we use the Bartlett

kernel with the bandwidth pn = ⌊3n0.3⌋, ⌊9n0.3⌋, and ⌊12n0.3⌋, respectively (see, e.g.,

Kuan and Lee (2006)). Likewise, we can define H
(i)
D , H

(i)
P , and H

(i)
Q for i = 1, 2, 3,

when we use the Daniell, Parzen, and Quadratic kernels, respectively.

In size simulations, we generate 1000 replications of sample size n = 100 and 500

from the following model:

yt = 0.9yt−1 + εt, εt = ηt

√
ht and ht = 1 + 0.4ε2

t−1,(4.1)

where {ηt} is a sequence of i.i.d. N(0, 1) random variables. Table 1 reports the empir-

ical sizes for all tests. From this table, our findings are as follows:

(ai) Q̃
(1)
m , Q

(1)
m , M̃

(1)
m or M

(1)
m has a severe over-rejection problem for each m, and

hence the critical values taken for strong ARMA models are not valid for weak ARMA

models.

(aii) When n is small, the sizes of KLm become more conservative as m becomes

larger, while the sizes of Q̃
(2)
m , Q

(2)
m , M̃

(2)
m or M

(2)
m tend to be larger than their nominal

ones in general. In this case, the sizes of Q̃
(3)
m , Q

(3)
m , M̃

(3)
m or M

(3)
m are close to their

nominal ones, although they tend to be conservative for large m.

(aiii) When n is large, the sizes of KLm still have a severe conservative problem for

large m. In this case, the sizes of Q̃
(2)
m , Q

(2)
m , M̃

(2)
m or M

(2)
m are close to their nominal

ones for each m, while the sizes of Q̃
(3)
m , Q

(3)
m , M̃

(3)
m or M

(3)
m are slightly conservative

for large m.

(aiv) For Hong’s spectral test, its size performance is quite sensitive to the choice

of the kernel function and related bandwidth pn. To look for further evidence, Figure
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Table 1

Empirical sizes (×100) of all tests based on model (4.1).

Tests

m n Q̃
(1)
m Q̃

(2)
m Q̃

(3)
m Q

(1)
m Q

(2)
m Q

(3)
m M̃

(1)
m M̃

(2)
m M̃

(3)
m M

(1)
m M

(2)
m M

(3)
m KLm

2 100 19.7 5.4 5.1 20.6 6.1 5.4 19.1 6.0 5.8 21.2 6.0 5.8 4.0
500 23.4 5.5 5.4 24.9 5.8 5.8 23.8 5.3 5.2 25.3 5.9 5.9 5.4

6 100 11.9 6.0 4.8 13.0 6.3 5.0 11.6 5.7 4.3 13.5 6.3 5.4 1.7
500 14.7 5.6 5.5 17.3 5.0 5.0 15.0 5.5 5.3 16.9 4.9 4.7 5.3

18 100 8.5 7.5 3.1 8.7 6.3 3.4 6.4 6.4 1.7 8.0 4.7 2.8 1.4
500 10.6 5.9 5.0 12.0 5.0 5.0 9.9 5.2 4.4 10.7 4.7 4.3 1.8

20 100 8.4 7.4 3.5 8.6 6.6 3.4 6.2 5.9 2.4 7.2 5.0 2.9 1.1
500 11.0 6.0 5.3 11.1 5.2 4.8 9.2 4.8 4.1 10.1 4.8 4.0 1.5

Tests

H
(1)
B

H
(2)
B

H
(3)
B

H
(1)
D

H
(2)
D

H
(3)
D

H
(1)
P

H
(2)
P

H
(3)
P

H
(1)
Q

H
(2)
Q

H
(3)
Q

100 5.7 4.2 3.3 6.6 4.1 3.4 6.3 4.7 4.4 5.3 3.5 2.5
500 11.2 9.1 7.9 13.7 11.2 10.2 12.4 10.3 9.1 12.0 8.0 6.7

1 plots the sizes of HB, HD, HP , and HQ in the cases that pn = 2, 3, · · · , ⌊n/2⌋. As a

comparison, the sizes of the portmanteau tests Q̃
(i)
m , Q

(i)
m , M̃

(i)
m , and M

(i)
m (for i = 2, 3)

are also plotted in the cases that m = 2, 3, · · · , 20 when n = 100 or m = 2, 3, · · · , 50

when n = 500. From Figure 1, we find that for every choice of the kernel function, the

sizes of the spectral test can suffer a severe over-rejection problem under a very wide

range of pn, especially when n is large, while the sizes of all portmanteau tests have

a robust size performance over m. This indicates that a good data-driven method for

selecting pn is very important for the application of Hong’s spectral tests.

Therefore, all of these imply that the portmanteau tests along with the bootstrapped

critical values from the RW method have a good size performance, while the size

performance of the kernel-based spectral test in Hong (1996) heavily depends on the

choice of the kernel function and related bandwidth. Particularly, we recommend Q̃
(2)
m ,

Q
(2)
m , M̃

(2)
m or M

(2)
m for large n, and Q̃

(3)
m , Q

(3)
m , M̃

(3)
m or M

(3)
m for small n in applications.

Next, in power simulations, we generate 1000 replications of sample size n = 100

and 500 from the following model:

yt = 0.9yt−1 + 0.2εt−1 + εt, εt = ηt

√
ht and ht = 1 + 0.4ε2

t−1,(4.2)

where {ηt} is a sequence of i.i.d. N(0, 1) random variables. For each replication, we

fit it by an AR(1) model, and then use all tests to check the adequacy of this fitted

model. Table 2 reports the empirical power for all tests. Since the sizes of Q̃
(1)
m , Q

(1)
m ,

M̃
(1)
m , M

(1)
m , H

(i)
B , H

(i)
D , H

(i)
P , and H

(i)
Q (for i = 1, 2, 3) are severely distorted in Table

1, the power of these tests in Table 2 has been adjusted by the size-correction method

in Francq, Roy, and Zaköıan (2005, p.541) (that is, for each test Tn with a severe size

distortion, its critical value used for model (4.2) is chosen as the α upper percentage

of {Tni}1000
i=1 , where Tni is the value of Tn for the i-th replication from model (4.1)).

From Table 2, our findings are as follows:
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(b) Empirical sizes (× 100) of all portmanteau tests based on model (4.1)
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Fig 1. The empirical sizes (×100) of all spectral tests (part (a)) and all portmanteau tests (part (b)) based on model (4.1) for the cases that n = 100 (upper panel)
and n = 500 (lower panel). Here, the solid line stands for the significance level α = 5%.
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Table 2

Empirical power (×100) of all tests based on model (4.2).

Tests

m n Q̃
(1)
m Q̃

(2)
m Q̃

(3)
m Q

(1)
m Q

(2)
m Q

(3)
m M̃

(1)
m M̃

(2)
m M̃

(3)
m M

(1)
m M

(2)
m M

(3)
m KLm

2 100 23.5 25.4 23.3 28.2 28.6 27.8 26.6 30.1 28.5 29.1 31.8 30.7 14.7
500 85.0 80.0 79.8 87.8 83.4 83.2 86.8 82.2 82.1 89.2 84.7 84.4 56.2

6 100 17.0 17.1 14.3 24.3 24.0 22.6 21.2 20.9 17.5 27.6 28.0 25.5 4.5
500 74.7 71.2 70.2 83.3 79.8 79.4 78.0 73.7 73.0 85.6 81.9 81.8 36.6

18 100 14.9 17.2 10.4 18.1 17.5 14.1 16.0 14.0 8.0 23.7 18.9 14.1 1.7
500 61.7 58.0 55.1 73.2 71.7 70.7 66.1 59.2 56.5 77.1 73.7 72.5 14.9

20 100 14.8 17.3 10.1 18.0 18.1 13.6 15.8 13.6 6.0 23.1 18.4 13.0 0.9
500 59.4 56.4 54.3 72.5 71.2 69.5 61.8 57.5 54.2 76.5 72.5 71.0 12.3

Tests

H
(1)
B

H
(2)
B

H
(3)
B

H
(1)
D

H
(2)
D

H
(3)
D

H
(1)
P

H
(2)
P

H
(3)
P

H
(1)
Q

H
(2)
Q

H
(3)
Q

100 25.1 20.1 17.7 23.4 17.8 16.3 26.8 19.8 19.2 23.4 16.4 16.3
500 72.6 59.5 57.2 68.8 53.9 52.0 74.6 60.9 55.7 67.9 52.9 49.2

(bi) As we expected, the power of all tests becomes large as n increases, and the

power of all portmanteau tests becomes small as m increases. Moreover, the power

performance of Ljung-Box-type portmanteau tests and Monti-type portmanteau tests

is generally comparable, while the weighted portmanteau test is more powerful than

the corresponding un-weighted one, and this power advantage grows as m increases.

(bii) When n is small, Q̃
(2)
m , Q

(2)
m , M̃

(2)
m or M

(2)
m is more powerful than Q̃

(3)
m , Q

(3)
m ,

M̃
(3)
m or M

(3)
m , respectively, while this power advantage disappears as n becomes large.

This is probably because Q̃
(3)
m , Q

(3)
m , M̃

(3)
m or M

(3)
m has a conservative size for small n.

Moreover, the adjusted portmanteau test Q̃
(1)
m , Q

(1)
m , M̃

(1)
m or M

(1)
m has a similar power

as Q̃
(i)
m , Q

(i)
m , M̃

(i)
m or M

(i)
m , respectively, for i = 1, 2, especially when n is large. This is

reasonable because all of them are based on the same statistic, and the size-correction

method becomes more accurate when n is larger.

(biii) For KLm, its power is not satisfactory when n is small and m is large. Like

portmanteau tests, its power becomes smaller as m becomes larger.

(biv) For Hong’s spectral test, its power performance varies significantly in terms of

kernel function and related bandwidth. To look for further evidence, Figure 2 plots the

power of HB, HD, HP , and HQ, and as a comparison, the power of the portmanteau

tests Q̃
(i)
m , Q

(i)
m , M̃

(i)
m , and M

(i)
m (for i = 2, 3) is also plotted in this figure. Here, the

choices of pn and m are the same as those for Figure 1. From Figure 2, we find that HB

and HP have a similar power performance, and they are more powerful than HD and

HQ, especially when n is large. Moreover, we can see that the power of all spectral

tests generally tends to be smaller as pn becomes larger. Compared with weighted

portmanteau tests, the spectral tests exhibit a dominated power advantage only when

pn is close to 2 and m is greater than 30 in the case that n = 500; however, when

pn > 50 in the case that n = 500, HD and HQ are much less powerful than the weighted

portmanteau tests. On the contrary, since the power of un-weighted portmanteau tests

is not stable over m, the spectral tests with an appropriate pn (e.g., pn < 10 in the
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(b) Empirical power (×100) of all portmanteau tests based on model (4.2)
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Fig 2. The empirical power (×100) of all spectral tests (part (a)) and all portmanteau tests (part (b)) based on model (4.2) for the cases that n = 100 (upper panel)
and n = 500 (lower panel).
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case that n = 100 and pn < 50 in the case that n = 500) can be much more powerful

than the un-weighted portmanteau tests with a large m.

Overall, based on the bootstrapped critical values, the portmanteau tests, especially

the weighted ones, give us a good indication in diagnostic checking of weak ARMA

models, while the size/power performance of the spectral test is sensitive to the choice

of kernel function and related bandwidth, and hence the spectral test urgently calls

for a good data-driven method for selecting the bandwidth.

4.2. Study on fitted PGARCH models. In this subsection, we examine the finite-

sample performance of Q̃m, Qm, M̃m and Mm on testing the adequacy of PGARCH

models. As a comparison, we also consider the portmanteau test QCF
m in Carbon

and Francq (2011). In size simulations, we generate 1000 replications of sample size

n = 1000 from the following model:

yt = ηt

√
ht, h

δ
2
t = 0.2 + 0.2|yt−1|δ,(4.3)

where {ηt} is a sequence of i.i.d. N(0, 1) random variables. Table 3 reports the results

for the size study. From Table 3, we find that in general, the sizes of all tests are close

to their nominal ones, while the sizes of Q̃m, Qm, M̃m and Mm seem to be conservative

when both δ and m are large.

Table 3

Empirical sizes (×100) of all tests based on model (4.3).

Tests

δ m Q̃m Qm M̃m Mm QCF
m

2.5 6 4.9 5.5 4.9 5.7 2.7
12 2.6 4.0 2.8 4.3 3.1
24 1.7 2.1 2.0 2.3 2.6
32 0.9 1.6 1.5 1.9 3.3

2.0 6 3.5 4.8 3.9 4.6 2.6
12 3.3 4.3 3.3 4.3 2.9
24 2.1 2.6 2.1 2.7 4.0
32 2.3 2.3 2.3 2.4 3.7

1.0 6 7.3 7.2 7.1 6.5 6.6
12 6.5 7.3 6.3 6.5 8.3
24 5.4 6.6 4.8 6.2 6.7
32 5.8 5.9 5.1 5.5 7.4

0.5 6 5.4 5.6 5.4 5.6 3.5
12 6.3 5.0 6.0 5.2 4.1
24 5.2 6.1 5.4 5.3 4.1
32 5.0 5.7 5.2 5.8 3.4

Next, in power simulations, we generate 1000 replications of sample size n = 1000

from the following model:

yt = ηt

√
ht, h

δ
2
t = 0.2 + 0.2|yt−1|δ + 0.2|yt−2|δ,(4.4)

where {ηt} is a sequence of i.i.d. N(0, 1) random variables. For each replication, we

fit its mean-adjusted series ỹt by an AR(1) model as in (3.4), and then we use all
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portmanteau tests to check the adequacy of this fitted model. Table 4 reports the

results for the power study, where the critical values for Q̃m, Qm, M̃m or Mm are

chosen as for Q̃
(2)
m , Q

(2)
m , M̃

(2)
m or M

(2)
m , respectively. From Table 4, we find that when δ

is small, the weighted tests Qm and Mm are more powerful than others. However, when

δ is large, QCF
m is the best performing test statistic. Overall, our weighted portmanteau

tests have a good performance especially when δ is small.

Table 4

Empirical power (×100) of all tests based on model (4.4).

Tests

δ m Q̃m Qm M̃m Mm QCF
m

2.5 6 51.2 55.9 51.1 54.9 97.1
12 45.4 51.9 44.3 50.8 94.8
24 38.0 46.8 34.8 45.2 89.4
32 33.7 43.8 30.9 41.9 86.1

2.0 6 74.7 79.2 73.1 78.8 94.7
12 65.8 75.2 65.5 74.3 89.6
24 56.9 68.5 54.6 68.3 82.0
32 50.6 65.8 48.6 65.0 77.6

1.0 6 95.4 98.2 95.7 98.1 94.9
12 90.2 96.0 90.4 96.5 91.6
24 80.9 92.8 80.5 92.6 81.6
32 74.0 90.5 72.4 91.4 77.4

0.5 6 98.3 99.7 98.5 99.7 95.5
12 95.6 98.9 95.6 98.9 90.6
24 88.0 97.5 88.2 97.4 82.2
32 84.5 96.7 83.1 96.2 77.9

5. A real example. In this section, we revisit the real example on S&P 500 index

in Francy, Roy, and Zaköıan (2005). The data sample taken from January 3, 1979 to

December 31, 2001 has in total 5808 observations, and its log-return is denoted by

{yt}5807
t=1 . First, we use Q̃m, Qm, M̃m and Mm to check whether {yt} is a sequence

of white noises. The p-value is calculated either as in strong ARMA models (denoted

by p-value1) or via the RW method with J = 500 (denoted by p-value2). All testing

results are reported in Table 5, from which we know that at the significance level 5%,

the strong white noise hypothesis is rejected, while the weak white noise hypothesis

is not rejected. This is consistent to the findings in Francy, Roy, and Zaköıan (2005).

Next, we want to check whether a PGARCH(1, 1) model in (3.1) with δ = 2.0, 1.0

or 0.5 is adequate to fit {yt}. Denote by ỹt = |yt|δ − E|yt|δ the mean-adjusted series.

As in (3.4), we obtain the following three fitted models:

Model A : ỹt = 0.8287ỹt−1 − 0.7236vt−1 + vt with σ2
vt

= 5.26 × 10−7 and δ = 2.0;

Model B : ỹt = 0.9753ỹt−1 − 0.8979vt−1 + vt with σ2
vt

= 4.99 × 10−5 and δ = 1.0;

Model C : ỹt = 0.9920ỹt−1 − 0.9513vt−1 + vt with σ2
vt

= 1.30 × 10−3 and δ = 0.5.

For models A-C, we use Q̃m, Qm, M̃m and Mm to check their adequacy. As a compar-

ison, we also use QCF
m to check the adequacy of these fitted models. All testing results
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are reported in Table 6. From this table, we find that at the significance level 5%, all

tests suggest that models A and B are adequate, while except QCF
m , the other tests

indicate that model C is not adequate. To look for further evidence, Figure 3 plots the

residuals autocorrelations and partial autocorrelations for models A-C. From Figure

3, we know that the 1st, 5th, 22th, 25th and 33th residuals autocorrelations or partial

autocorrelations in model C all exceed the 95% significance bounds. Thus, it suggests

that model C is not adequate. Moreover, since model A has a smaller sum of squared

errors than model B, we prefer to fit {yt} by a PGARCH(1, 1) model with δ = 2 (i.e.,

GARCH(1, 1) model). Finally, it is worth noting that although the conclusions drawn

from Q̃m, Qm, M̃m and Mm are the same, the p-value2s of Qm or Mm tend to be

more stable over all lags for model C. In view of this, we recommend the weighted

test Qm or Mm to practitioners.

Table 5

Testing results for the adequacy of a white noise on S&P 500 index.

m
6 12 18 24 30 36 42

Q̃m statistic 25.58 36.07 38.49 46.62 64.49 78.77 87.71
p-value1† 0.0003 0.0003 0.0033 0.0037 0.0003 0.0000 0.0000
p-value2§ 0.4758 0.5283 0.6874 0.6990 0.5292 0.4634 0.4518

Qm statistic 20.64 25.17 28.98 32.25 37.65 43.73 49.37
p-value1 0.0000 0.0000 0.0001 0.0002 0.0002 0.0001 0.0000
p-value2 0.3508 0.4805 0.5494 0.5967 0.5817 0.5719 0.5477

M̃m statistic 25.06 36.39 38.78 46.63 63.75 76.68 86.08
p-value1 0.0003 0.0003 0.0033 0.0037 0.0003 0.0000 0.0000
p-value2 0.4881 0.5219 0.6833 0.6990 0.5441 0.4977 0.4776

Mm statistic 20.40 24.87 28.89 32.30 37.72 43.47 48.85
p-value1 0.0000 0.0000 0.0001 0.0002 0.0002 0.0001 0.0000
p-value2 0.3578 0.4871 0.5507 0.5941 0.5783 0.5754 0.5545

† p-values taken as in strong ARMA models.
§ p-values bootstrapped by the RW method with W ∗ = Im (or W ) for Q̃m and M̃m

(or Qm and Mm).

6. Block-wise random weighting approach. Although the bootstrapped crit-

ical values based on the RW method are valid for weak ARMA models, the condition

in Assumption 2.4 seems to be slightly restrictive in practice. In this section, we

propose a block-wise RW method to obtain the bootstrapped critical values for all

portmanteau tests. Our bootstrapped critical values from the block-wise RW method

are valid without posing Assumption 2.4, but it requires a selection of block size as

many block-wise bootstrap methods in the literature; see, e.g., Romano and Thombs

(1996), Horowitz, Lobato, Nankervis, and Savin (2006), and Shao (2011b).

The detailed procedure to bootstrap the critical values by the block-wise RW

method is the same as the one in steps 1-4 in Section 2, except replacing step 1

by step 1′ as follows:

step 1′. Set a block size bn such that 1 ≤ bn < n, and denote the blocks by Bs =
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Table 6

Testing results for the adequacy of a PGARCH(1, 1) model on S&P 500 index.

m
6 12 18 24 30 36 42

δ = 2.0 Q̃m statistic 87.44 96.42 97.39 99.61 105.6 110.3 111.7
p-value1† 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p-value2§ 0.4063 0.4358 0.4416 0.4483 0.4432 0.4428 0.4246

Qm statistic 40.60 67.95 77.56 82.86 86.67 90.39 93.35
p-value1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p-value2 0.4349 0.4293 0.4319 0.4431 0.4452 0.4475 0.4281

M̃m statistic 86.51 106.20 108.45 110.80 115.93 121.02 123.28
p-value1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p-value2 0.4115 0.3841 0.3845 0.3929 0.3911 0.3903 0.3677

Mm statistic 40.77 71.77 83.64 90.31 94.79 98.91 102.26
p-value1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p-value2 0.4325 0.4009 0.3934 0.3995 0.3983 0.3993 0.3811

QCF
m statistic 1.44 7.79 10.44 16.53 23.62 29.08 56.45

p-value 0.9635 0.8014 0.9166 0.8680 0.7889 0.7864 0.0673

δ = 1.0 Q̃m statistic 22.90 39.57 46.11 67.54 76.99 94.13 101.4
p-value1 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
p-value2 0.4497 0.4093 0.4174 0.2739 0.2839 0.2091 0.2151

Qm statistic 9.15 20.58 28.30 34.78 42.27 50.10 56.98
p-value1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p-value2 0.6445 0.5258 0.4703 0.4507 0.4044 0.3553 0.3248

M̃m statistic 22.72 38.80 45.40 67.75 75.87 88.27 95.44
p-value1 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
p-value2 0.4544 0.4244 0.4309 0.2717 0.2966 0.2672 0.2768

Mm statistic 9.09 20.71 28.14 34.59 42.16 49.26 55.37
p-value1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p-value2 0.6474 0.5219 0.4745 0.4556 0.4069 0.3723 0.3497

QCF
m statistic 1.83 1.98 2.02 2.10 2.11 2.13 2.23

p-value 0.9350 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000

δ = 0.5 Q̃m statistic 18.64 22.86 25.07 39.42 49.92 59.99 65.88
p-value1 0.0009 0.0113 0.0687 0.0126 0.0066 0.0039 0.0061
p-value2 0.0204 0.0847 0.2465 0.0962 0.0571 0.0417 0.0515

Qm statistic 10.97 15.82 18.62 21.58 26.85 31.92 36.36
p-value1 0.0000 0.0009 0.0063 0.0149 0.0092 0.0062 0.0054
p-value2 0.0339 0.0405 0.0703 0.1090 0.0784 0.0637 0.0555

M̃m statistic 19.45 23.08 25.30 40.35 50.74 61.14 67.90
p-value1 0.0009 0.0113 0.0687 0.0126 0.0066 0.0039 0.0061
p-value2 0.0172 0.0820 0.2385 0.0837 0.0515 0.0351 0.0389

Mm statistic 11.30 16.23 18.96 22.01 27.45 32.56 37.10
p-value1 0.0000 0.0009 0.0063 0.0149 0.0092 0.0062 0.0054
p-value2 0.0295 0.0344 0.0634 0.0985 0.0679 0.0566 0.0475

QCF
m statistic 0.0927 0.0930 0.0931 0.0934 0.0935 0.0936 0.0942

p-value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

† p-values taken as in strong ARMA models.
§ p-values bootstrapped by the RW method with W ∗ = Im (or W ) for Q̃m and M̃m (or

Qm and Mm).
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(f) δ=0.5

Fig 3. The residuals autocorrelations and partial autocorrelations for models A-C. The solid lines are
95% significance bounds under the strong ARMA model. The dashed lines are 95% significance bounds
under the weak ARMA model.



22

{(s−1)bn+1, · · · , sbn} for s = 1, · · · , Ln, where Ln = n/bn is assumed to be an integer

for the convenience of presentation; furthermore, generate a sequence of positive i.i.d.

random variables {δ1, · · · , δLn}, independent of the data, from a common distribution

with mean and variance both equal to 1, and then define the random weights w∗
t = δs,

if t ∈ Bs, for t = 1 · · · , n; finally, calculate θ̂∗n via

θ̂∗n = arg min
Θ

L̃∗
n(θ), where L̃∗

n(θ) =
1

n

n∑

t=1

w∗
t l̃t(θ).

Clearly, the block-wise RW method is a natural extension of the RW method, and

the validity of the bootstrapped critical value from the block-wise RW method is

justified by the following theorem:

Theorem 6.1. Suppose that (i) Assumptions 2.1-2.3 hold and model (1.1) is weak

and correctly specified; (ii) E|yt|8+4ν < ∞ for some ν > 0 and limk→∞ k2[αy(k)]ν/(2+ν)

= 0; and (iii) limn→∞ bn = ∞ and limn→∞ bn/n1/3 = 0. Then, conditional on χn,

√
n(ρ̂∗ − ρ̂) →d N(0, Σ) in probability

as n → ∞, where Σ is defined in (2.1).

The proof of Theorem 6.1 is given in the Appendix. Here, condition (ii) poses some

additional requirements on yt, and condition (iii) gives some restrictions on the block-

size bn. Both of them are necessary for the proof. From Theorem 6.1, we know that

the performance of our tests along with their critical values from the block-wise RW

method depends on the user-chosen parameter bn. This may be the price we pay for not

assuming Assumption 2.4. Simulation studies in the on-line supplementary document

show that our testing results are not sensitive to the user-chosen parameter bn, while

the size performance of Hong’s (1996) kernel-based spectral test is not robust to the

choices of the bandwidth pn. Till now, how to select the optimal bn under certain

“criterion” is unknown. This is a familiar problem with all blocking methods. The

heuristic work in Hall, Horowitz, and Jing (1995), Politis, Romano, and Wolf (1999),

and Sun (2014) may be extended in this case, and we leave it for future study.

7. Concluding remarks. In this paper, by using the RW method, we bootstrap

the critical values for Ljung-Box/Monti portmanteau tests Q̃m/M̃m and weighted

Ljung-Box/Monti portmanteau tests Qm/Mm in weak ARMA models. Unlike the ex-

isting methods (e.g., kernel-based method, VAR method, or block bootstrap method),

the easy-to-implement RW method requires no user-chosen parameter. Thus, it over-

comes a drawback in the existing methods that the testing results are sensitive to the

choices of user-chosen parameters. As an application, we further use our portmanteau

tests to check the adequacy of PGARCH models. Simulation studies reveal that (i)

the weighted portmanteau tests Qm/Mm along with the critical values from the RW
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method have the power advantage over the un-weighted ones in general; (ii) the sizes

of all portmanteau tests are robust to the choices of the lag m, while the sizes of the

kernel-based spectral tests in Hong (1996) are sensitive to the choices of the band-

width pn; and (iii) the weighted portmanteau tests Qm/Mm can be significantly more

powerful than the kernel-based spectral tests with an inappropriate choice of pn. As

one extension work, we also propose a block-wise RW method to bootstrap the critical

values for all portmanteau tests, and its validity is justified.

Finally, we suggest three future subjects, which may lead to some better specifi-

cation tests. First, as in Escanciano and Lobato (2009), it is of interest to consider

the case that m is not fixed but optimally chosen by the data set. If it is possible, a

more powerful testing procedure should be expected. Second, till now, less is known

to choose the optimal weight matrix W (in some sense) such that the corresponding

weighted Ljung-Box or Monti portmanteau test has the best performance among all

weighted portmanteau tests in strong ARMA models. We may expect that the merits

of this optimal weighted portmanteau test still hold in weak ARMA models. Third,

since all portmanteau tests still need a selection of m, they can not detect serial corre-

lations beyond lag m. Hence, it is a practical demand to study the Cramér-von Mises

spectral test (e.g., Shao (2011b)) which can detect serial correlations at all lags.
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[22] Francq, C. and Zaköıan, J.M. (1998) Estimating linear representations of nonlinear processes.

Journal of Statistical Planning and Inference 68, 145-165.
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BOOTSTRAPPING THE PORTMANTEAU TESTS IN WEAK

AUTO-REGRESSIVE MOVING AVERAGE MODELS

(SUPPLEMENTARY DOCUMENT)

By Ke Zhu

Chinese Academy of Sciences

In this supplementary material, we give some simulation studies and all of the proofs

for the paper in Appendix.

1. Additional simulation studies. In this section, we give some simulation

studies, which are useful but not reported in the paper. In Subsection 1.1, we check the

sensitivity of the distribution of random weights to our portmanteau tests by simula-

tion. In Subsection 1.2, we examine the finite-sample performance of our portmanteau

tests as in Section 4 of the paper by some additional simulations. In Subsection 1.3,

we assess the finite-sample performance of the block-wise RW method.

1.1. Sensitivity of the distribution of random weights. In simulation studies of the

paper, we generate random weights {w∗
t } from the standard exponential distribution.

In this subsection, we check the sensitivity of the distribution of {w∗
t } to our port-

manteau tests by generating {w∗
t } from the Bernoulli distribution such that

P

(
w∗

t =
3 −

√
5

2

)
=

1 +
√

5

2
√

5
and P

(
w∗

t =
3 +

√
5

2

)
=

√
5 − 1

2
√

5
.

Table 1

Empirical sizes (×100) of all tests based on model (4.1) in the paper.

Tests

m n Q̃
(2)
m Q̃

(3)
m Q

(2)
m Q

(3)
m M̃

(2)
m M̃

(3)
m M

(2)
m M

(3)
m

2 100 5.8 5.2 5.6 5.3 5.3 4.8 5.4 5.1
500 4.3 4.2 4.8 4.3 4.2 4.2 4.7 4.7

6 100 5.0 4.1 5.2 4.5 4.1 3.5 4.6 3.7
500 3.9 3.7 4.3 4.2 3.5 3.3 3.7 3.6

18 100 6.0 3.4 5.2 4.0 4.2 1.7 3.8 2.6
500 3.9 3.4 3.4 3.2 3.2 3.0 3.4 3.3

20 100 6.5 3.4 5.5 3.8 4.4 2.0 3.8 2.5
500 4.0 3.7 3.4 3.0 3.1 3.0 3.0 2.8

Tables 1-2 are obtained in the same way as Tables 1-2 in the paper. From these four

tables, we can see that our testing results are robust to the distribution of w∗
t .

1.2. Some additional simulations. In this subsection, we examine the finite-sample

performance of our portmanteau tests as in Section 4 of the paper by some additional

simulations. Hereafter, we generate {w∗
t } from the standard exponential distribution.

1



2

Table 2

Empirical power (×100) of all tests based on model (4.2) in the paper.

Tests

m n Q̃
(2)
m Q̃

(3)
m Q

(2)
m Q

(3)
m M̃

(2)
m M̃

(3)
m M

(2)
m M

(3)
m

2 100 25.6 24.3 28.4 27.2 29.4 28.2 30.7 29.2
500 82.1 81.8 85.0 84.6 84.0 83.5 85.6 85.6

6 100 17.3 14.9 23.4 21.8 21.1 18.2 25.3 23.8
500 74.5 74.2 80.8 80.7 77.4 76.8 82.3 82.2

18 100 17.2 11.1 19.2 13.8 14.7 7.9 18.8 14.4
500 61.7 60.0 73.8 73.2 62.2 60.5 75.9 74.8

20 100 17.1 9.8 19.4 13.1 14.6 6.5 18.5 13.6
500 60.4 58.4 72.9 71.9 61.4 58.9 74.7 73.7

First, we study it for fitted weak ARMA models. In size simulations, we generate

1000 replications of sample size n = 100 and 500 from the following model:

yt = 0.9εt−1 + εt, εt = ηtηt−1,(1.1)

where {ηt} is a sequence of i.i.d. N(0, 1) random variables. Table 3 reports the em-

pirical sizes for all tests except the robust M test, which is not valid for MA models.

From Table 3, our findings are the same as those from Table 1 in the paper. Moreover,

Figure 1 below plots the empirical sizes of all spectral tests and portmanteau tests,

and our findings from this figure are the same as those from Figure 1 in the paper.

Table 3

Empirical sizes (×100) of all tests based on model (1.1).

Tests

m n Q̃
(1)
m Q̃

(2)
m Q̃

(3)
m Q

(1)
m Q

(2)
m Q

(3)
m M̃

(1)
m M̃

(2)
m M̃

(3)
m M

(1)
m M

(2)
m M

(3)
m

2 100 17.7 5.5 4.9 20.2 6.4 5.9 18.1 6.7 6.1 21.1 6.3 6.2
500 29.6 6.2 6.1 29.6 6.6 6.5 25.7 6.6 6.4 29.6 7.2 6.9

6 100 8.9 4.6 3.8 10.6 5.9 5.0 10.0 5.2 4.8 11.1 6.4 5.2
500 14.5 5.1 4.9 17.7 6.3 6.3 14.5 5.6 5.5 17.2 6.4 6.3

18 100 7.2 5.3 2.1 6.7 5.2 3.3 6.3 4.8 2.4 7.2 5.1 3.5
500 10.2 3.6 3.3 11.7 5.2 4.7 9.6 4.3 4.0 11.7 4.8 4.7

20 100 6.1 5.8 2.1 6.9 5.3 2.7 5.0 4.7 2.2 6.8 5.1 3.0
500 9.6 4.4 3.7 11.7 5.1 4.8 9.2 4.6 4.2 11.1 4.9 4.6

Tests

H
(1)
B

H
(2)
B

H
(3)
B

H
(1)
D

H
(2)
D

H
(3)
D

H
(1)
P

H
(2)
P

H
(3)
P

H
(1)
Q

H
(2)
Q

H
(3)
Q

100 5.6 3.8 3.0 6.3 3.8 2.8 6.1 4.6 3.5 5.4 3.2 2.4
500 11.2 7.6 7.1 13.0 9.0 7.9 11.8 8.5 7.8 10.0 6.7 5.4

In power simulations, we generate 1000 replications of sample size n = 100 and 500

from the following model:

yt = 0.2yt−1 + 0.9εt−1 + εt, εt = ηtηt−1,(1.2)

where {ηt} is a sequence of i.i.d. N(0, 1) random variables. For each replication, we fit

it by a MA(1) model, and then use all tests to check the adequacy of this fitted model.

Table 4 reports the empirical power for all tests after the size-correction method in

Francq, Roy, and Zaköıan (2005, p.541). From Table 4, our findings are the same as
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(a) Empirical sizes (× 100) of all spectral tests based on model (2.1)
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(b) Empirical sizes (× 100) of all portmanteau tests based on model (2.1)
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Fig 1. The empirical sizes (×100) of all spectral tests (part (a)) and all portmanteau tests (part (b)) based on model (1.1) for the cases that n = 100 (upper panel)
and n = 500 (lower panel). Here, the solid line stands for the significance level α = 5%.
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those from Table 2 in the paper. Moreover, Figure 2 below plots the empirical power

of all spectral tests and portmanteau tests. From this figure, our findings are the same

as those from Figure 2 in the paper, except that the spectral tests generally are more

powerful than the portmanteau tests in the case that n = 100.

Table 4

Empirical power (×100) of all tests based on model (1.2).

Tests

m n Q̃
(1)
m Q̃

(2)
m Q̃

(3)
m Q

(1)
m Q

(2)
m Q

(3)
m M̃

(1)
m M̃

(2)
m M̃

(3)
m M

(1)
m M

(2)
m M

(3)
m

2 100 27.3 19.9 18.9 29.0 20.1 18.8 24.7 16.7 15.2 25.7 18.4 17.6
500 74.1 76.1 75.6 75.5 76.5 76.3 72.7 74.4 74.0 75.7 75.7 75.4

6 100 19.7 15.6 13.4 24.4 18.7 16.9 18.2 13.5 12.1 22.4 16.3 14.6
500 68.4 68.8 68.5 71.1 74.6 74.1 67.0 67.3 66.9 70.3 72.3 71.8

18 100 16.5 14.6 9.9 20.7 16.9 13.1 12.8 10.4 7.0 18.8 13.2 9.4
500 59.1 57.0 55.4 69.8 67.7 67.4 56.6 53.9 52.3 68.1 65.9 65.3

20 100 16.6 15.1 9.3 20.6 16.4 12.7 14.4 10.5 6.0 18.6 12.8 9.0
500 56.2 55.5 53.9 68.9 67.1 65.8 54.5 52.3 49.8 67.4 65.3 64.1

Tests

H
(1)
B

H
(2)
B

H
(3)
B

H
(1)
D

H
(2)
D

H
(3)
D

H
(1)
P

H
(2)
P

H
(3)
P

H
(1)
Q

H
(2)
Q

H
(3)
Q

100 27.2 22.0 20.4 23.6 19.5 18.6 29.7 24.0 21.9 23.5 19.6 18.3
500 69.2 63.7 59.0 69.3 57.6 54.6 71.3 65.0 61.9 68.4 56.2 53.4

Second, we study it for fitted PGARCH models. In size simulations, we generate

1000 replications of sample size n = 1000 from the following model:

yt = ηt

√
ht, h

δ
2
t = 0.001 + 0.08|yt−1|δ + 0.9h

δ
2
t−1,(1.3)

where {ηt} is a sequence of i.i.d. N(0, 1) random variables. Table 5 reports the results

for the size study. From Table 5, our findings are the same as those from Table 3 in

the paper.

Table 5

Empirical sizes (×100) of all tests based on model (1.3).

Tests

δ m Q̃m Qm M̃m Mm QCF
m

2.5 6 2.8 2.6 2.2 2.6 2.2
12 1.3 2.6 1.0 1.6 3.5
24 1.1 1.5 0.5 0.5 6.0
32 0.9 0.9 0.1 0.4 6.2

2.0 6 2.7 2.3 2.1 1.8 3.3
12 2.5 2.2 0.9 1.7 3.1
24 2.1 2.3 0.6 0.6 7.6
32 1.3 2.0 0.3 0.7 8.0

1.0 6 3.3 3.5 3.4 3.2 4.8
12 5.0 3.6 3.7 3.3 6.4
24 4.1 3.9 3.9 3.1 7.0
32 4.0 3.8 3.3 2.8 6.1

0.5 6 4.2 4.0 4.4 4.1 4.6
12 5.5 4.3 4.4 4.3 4.6
24 4.9 4.9 3.9 4.5 4.6
32 5.7 4.5 4.4 4.1 3.9



5

2 5 10 15 20 25 30 35 40 45 50
18

20

22

24

26

28

30

32

pn
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(b) Empirical power (× 100) of all portmanteau tests based on model (2.2)
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Fig 2. The empirical power (×100) of all spectral tests (part (a)) and all portmanteau tests (part (b)) based on model (1.2) for the cases that n = 100 (upper panel)
and n = 500 (lower panel).
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In power simulations, we generate 1000 replications of sample size n = 1000 from

the following model:

yt = ηt

√
ht, h

δ
2
t = 0.001 + 0.08|yt−1|δ + 0.2|yt−2|δ + 0.6h

δ
2
t−1,(1.4)

where {ηt} is a sequence of i.i.d. N(0, 1) random variables. For each replication, we

fit its mean-adjusted series ỹt , |yt|δ −E|yt|δ by an ARMA(1, 1) model, and then use

all portmanteau tests to check the adequacy of this fitted model. Table 6 reports the

results for the power study. From Table 6, our findings are the same as those from

Table 4 in the paper.

Table 6

Empirical power (×100) of all tests based on model (1.4).

Tests

δ m Q̃m Qm M̃m Mm QCF
m

2.5 6 9.5 14.3 8.3 11.9 69.0
12 7.8 10.2 6.2 8.3 33.1
24 7.2 8.8 4.8 6.2 26.8
32 6.6 8.2 3.8 5.8 24.3

2.0 6 23.5 31.2 20.1 28.9 75.0
12 18.3 25.9 15.5 21.5 35.9
24 16.9 20.6 12.2 17.6 28.3
32 15.5 19.3 10.9 15.9 24.7

1.0 6 65.6 78.1 64.8 77.8 73.6
12 53.6 70.0 53.9 69.5 58.4
24 44.4 60.6 42.6 59.0 43.8
32 39.9 56.4 36.6 55.3 38.7

0.5 6 84.6 91.7 84.3 91.7 75.9
12 72.3 87.2 71.8 86.8 61.0
24 58.6 77.4 57.6 77.9 44.8
32 51.7 72.5 49.9 72.2 36.0

1.3. Simulations on the block-wise RW method. In this subsection, we assess the

finite-sample performance of our portmanteau tests with critical values bootstrapped

from the block-wise RW method. In size simulations, we generate 1000 replications of

sample size n = 100 and 500 from the following model:

yt = 0.9εt−1 + εt, εt = η2
t ηt−1,(1.5)

where {ηt} is a sequence of i.i.d. N(0, 1) random variables. For the block-wise RW

method, we choose bn = n1/5 or 2n1/5. This leads bn = 2 or 5 for n = 100, and bn = 3

or 7 for n = 500. Table 7 reports the empirical sizes for all tests. From Table 7, our

findings are the same as those from Table 1 in the paper, except that (i) the size

performance of four portmanteau tests is robust the choice of block size bn; and (ii)

the sizes of all portmanteau tests tend to be conservative when m is large.

In power simulations, we generate 1000 replications of sample size n = 100 and 500

from the following model:

yt = 0.2yt−1 + 0.9εt−1 + εt, εt = η2
t ηt−1,(1.6)
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where {ηt} is a sequence of i.i.d. N(0, 1) random variables. For each replication, we fit

it by a MA(1) model, and then use all tests to check the adequacy of this fitted model.

Table 8 reports the empirical power for all tests after the size-correction method in

Francq, Roy, and Zaköıan (2005, p.541). From Table 8, our findings are the same

as those from Table 2 in the paper, except that (i) the power performance of four

portmanteau tests is robust to the choices of block size bn; (ii) the power of four

portmanteau tests is relatively low when m is large and n is small; and (iii) the spectral

tests generally are more powerful than the portmanteau tests, especially when n is

small.

Overall, our portmanteau tests with critical values boostrapped from the block-wise

RW method give us a good indication in diagnostic checking of weak ARMA models,

especially for small m.

Table 7

Empirical sizes (×100) of all tests based on model (1.5).

Tests

m n bn Q̃
(1)
m Q̃

(2)
m Q̃

(3)
m Q

(1)
m Q

(2)
m Q

(3)
m M̃

(1)
m M̃

(2)
m M̃

(3)
m M

(1)
m M

(2)
m M

(3)
m

2 100 2 20.3 5.0 4.0 25.8 6.4 5.9 20.5 6.1 5.4 25.7 7.2 6.8
5 21.2 5.7 5.4 25.8 6.0 5.8 23.0 6.2 5.9 25.9 6.7 6.1

500 3 31.9 5.9 5.7 36.3 6.6 6.4 32.4 6.0 5.8 36.2 6.8 6.8
7 30.6 5.6 5.5 34.4 6.1 6.0 30.7 5.6 5.6 34.9 6.4 6.3

6 100 2 9.6 5.2 4.0 13.2 5.3 4.5 9.9 5.7 3.9 13.4 5.3 4.7
5 10.8 4.9 4.4 13.3 5.4 4.8 11.3 5.7 4.8 14.1 6.1 5.5

500 3 18.5 4.6 4.5 23.5 5.1 4.9 18.3 4.1 4.1 23.4 5.2 5.0
7 18.3 2.8 2.7 21.1 4.0 3.8 17.9 2.8 2.7 22.2 4.4 4.4

18 100 2 5.3 4.1 2.0 6.3 4.4 2.8 5.2 3.6 2.3 7.0 3.8 2.2
5 5.9 4.8 3.0 8.5 4.6 3.1 6.2 4.8 3.3 8.5 4.2 3.1

500 3 11.6 2.4 2.0 14.4 3.2 3.0 12.1 2.3 2.0 14.7 3.6 3.3
7 13.1 1.6 1.3 15.6 2.1 2.0 12.5 1.7 1.3 15.9 2.1 2.0

20 100 2 4.7 4.1 2.0 6.0 4.3 2.8 5.2 4.3 2.3 6.5 3.7 2.1
5 6.1 4.9 3.4 8.2 4.9 2.9 6.0 5.4 3.5 7.9 4.2 3.3

500 3 11.4 2.3 2.0 14.1 3.0 2.7 11.3 2.2 2.0 14.2 3.2 2.8
7 12.4 1.7 1.4 14.7 1.9 1.9 12.2 1.7 1.2 15.5 2.3 2.2

Tests

H
(1)
B

H
(2)
B

H
(3)
B

H
(1)
D

H
(2)
D

H
(3)
D

H
(1)
P

H
(2)
P

H
(3)
P

H
(1)
Q

H
(2)
Q

H
(3)
Q

100 8.3 5.2 3.5 8.9 4.9 3.4 10.2 6.8 5.5 8.1 3.8 3.3
500 15.5 9.9 9.2 17.3 11.8 10.0 17.2 11.6 10.1 14.5 9.5 7.5

APPENDIX: PROOFS

In this appendix, we give the proof of Theorems 2.2 and 6.1 in the paper. Denote by

E∗ the expectation conditional on χn; by o∗p(1)(O∗
p(1)) a sequence of random variables

converging to zero (bounded) in probability conditional on χn. Then, we are ready to

give three lammas. The first one from Lemma A.4 of Ling (2007) makes the initial

values {ys; s ≤ 0} ignorable. The second one is directly taken from Francq, Roy, and

Zaköıan (2005). The third one is crucial to prove Theorems 2.2 and 6.1.
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Table 8

Empirical power (×100) of all tests based on model (1.6).

Tests

m n bn Q̃
(1)
m Q̃

(2)
m Q̃

(3)
m Q

(1)
m Q

(2)
m Q

(3)
m M̃

(1)
m M̃

(2)
m M̃

(3)
m M

(1)
m M

(2)
m M

(3)
m

2 100 2 24.2 13.8 12.9 26.5 14.4 13.9 19.2 11.4 10.4 23.9 13.5 12.5
5 25.1 13.9 13.4 27.1 15.0 13.7 20.4 11.7 11.0 24.3 14.2 13.1

500 3 61.5 58.1 57.8 61.4 59.3 59.2 58.9 55.3 55.0 60.3 56.8 56.6
7 59.7 52.4 52.2 59.0 55.1 54.8 57.1 49.2 48.7 57.8 53.1 52.8

6 100 2 17.0 8.5 6.9 23.6 10.7 9.8 15.7 8.1 6.3 19.1 9.5 8.5
5 18.5 8.7 8.0 24.0 11.6 10.7 16.8 8.3 6.7 20.2 10.1 9.2

500 3 59.2 49.5 48.4 61.1 56.6 56.4 56.8 46.7 46.2 58.9 54.4 53.9
7 57.2 43.8 43.4 60.0 49.7 49.6 54.2 40.7 40.2 57.4 46.5 45.8

18 100 2 12.4 5.6 3.2 17.7 7.5 4.9 12.9 4.5 2.7 17.3 5.2 3.8
5 11.6 6.4 4.5 19.7 7.4 6.2 11.7 5.3 3.8 17.3 5.3 3.8

500 3 49.9 31.4 30.1 54.8 45.7 44.6 48.4 27.9 26.7 53.6 42.5 41.8
7 48.1 27.0 24.6 54.0 39.0 38.3 45.6 23.6 21.4 53.0 36.8 35.8

20 100 2 12.8 5.9 3.0 17.2 7.2 4.7 13.1 4.6 2.2 16.7 5.1 3.3
5 11.9 6.1 4.7 19.3 7.2 5.8 12.0 5.3 4.0 16.9 6.2 4.9

500 3 48.7 30.3 27.8 54.5 43.7 42.8 46.5 25.4 23.9 53.0 40.1 39.3
7 46.9 23.9 22.1 52.9 36.9 36.0 44.6 20.6 19.2 51.7 35.2 34.0

Tests

H
(1)
B

H
(2)
B

H
(3)
B

H
(1)
D

H
(2)
D

H
(3)
D

H
(1)
P

H
(2)
P

H
(3)
P

H
(1)
Q

H
(2)
Q

H
(3)
Q

100 23.1 18.8 17.9 22.4 16.9 17.4 23.4 19.7 18.0 21.8 16.7 16.5
500 67.5 59.0 56.3 65.8 55.0 51.6 69.7 59.6 57.6 65.2 54.7 49.3

Lemma A.1. Suppose that Assumption 2.1 holds. Then,

(i) sup
Θ

|εt(θ) − ε̃t(θ)| = O(ρt)ξρ0;

(ii) sup
Θ

∥∥∥∥
∂εt(θ)

∂θ
− ∂ε̃t(θ)

∂θ

∥∥∥∥ = O(ρt)ξρ0;

(iii) sup
Θ

∥∥∥∥∥
∂ε2

t (θ)

∂θ∂θ′
− ∂ε̃2

t (θ)

∂θ∂θ′

∥∥∥∥∥ = O(ρt)ξρ0,

for some ρ ∈ (0, 1), where ξρt = 1 +
∑∞

i=0 ρi|yt−i|.

Lemma A.2. Suppose that the conditions in Theorem 2.1 hold. Then,

√
nρ̂ = σ−2 (√

nΓm
)
+ Λ′

m(
√

nJ −1Yn) + op(1),

where Yn = −2/n
∑n

t=1 εt(∂εt/∂θ) and Γm = (γ1, · · · , γm)′ with γk = n−1 ∑n
t=k+1 εtεt−k.

Lemma A.3. Suppose that the conditions in Theorem 2.2 or 6.1 hold. Then,

√
nρ̂∗ = σ−2 (√

nΓ∗
m

)
+ Λ′

m(
√

nJ −1Y ∗
n ) + o∗p(1),

where Y ∗
n = −2/n

∑n
t=1 w∗

t εt(∂εt/∂θ) and Γ∗
m = (γ∗

1 , · · · , γ∗
m)′ with γ∗

k = n−1 ∑n
t=k+1 w∗

t

εtεt−k.
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Proof. We only give the proof under the conditions in Theorem 6.1, because the

proof under the conditions in Theorem 2.2 is similar. By the definition of θ̂∗n, it is

straightforward to see that

θ̂∗n − θ0 = −
[

1

n

n∑

t=1

w∗
t

∂2 l̃t(ξn)

∂θ∂θ′

]−1 [
1

n

n∑

t=1

(w∗
t − 1)

∂l̃t(θ0)

∂θ
+

1

n

n∑

t=1

∂l̃t(θ0)

∂θ

]

, − [s1n]−1 [s2n + s3n] ,(A.1)

where ξn lies between θ0 and θ̂∗n. Let lt(θ) = ε2
t (θ). First, by Lemma A.4 in Ling

(2007), the ergodic theorem and Lemma A.1, it follows that

E∗‖s1n‖ =
1

n

n∑

t=1

∥∥∥∥∥
∂2 l̃t(ξn)

∂θ∂θ′

∥∥∥∥∥ ≤ 1

n

n∑

t=1

sup
θ

∥∥∥∥∥
∂2lt(θ)

∂θ∂θ′

∥∥∥∥∥ + op(1) = Op(1),

which entails s1n = O∗
p(1). Next, by a direct calculation and Lemma A.1, we have

E∗ [
s2ns′2n

]
=

1

n2

Ln∑

s=1




∑

t,t′∈Bs

∂l̃t(θ0)

∂θ

∂l̃t′(θ0)

∂θ′




=
1

n2

Ln∑

s=1




∑

t,t′∈Bs

∂lt(θ0)

∂θ

∂lt′(θ0)

∂θ′


 + op(1)

, s4n + op(1).(A.2)

Moreover, since E[lt(θ0)/∂θ] = 0, by the stationarity of lt(θ), we can show that

E (s4n) =
bn

n2

Ln∑

s=1

var


 1√

bn

∑

t∈Bs

∂lt(θ0)

∂θ


 =

1

n
var


 1√

bn

bn∑

t=1

∂lt(θ0)

∂θ


 = O

(
1

n

)
,

duo to the fact that b−1
n = o(1) and Lemma 3 in Francq and Zaköıan (1998). Thus, by

(A.2), we have
√

ns2n = O∗
p(1). Moreover, since s3n = op(1) by the ergodic theorem,

it follows that θ̃∗n − θ0 = o∗p(1), and consequently, by using Theorem 3.1 in Ling and

McAleer (2003), it is not hard to show that

1

n

n∑

t=1

(w∗
t − 1)

∂2 l̃t(ξn)

∂θ∂θ′
= o∗p(1) and

1

n

n∑

t=1

∂2 l̃t(ξn)

∂θ∂θ′
= J + o∗p(1).

Therefore, we have s1n = J + o∗p(1). Note that
√

ns3n = Op(1) by Lemma 3 in Francq

and Zaköıan (1998) and Lemma A.1. Thus, by (A.1), it follows that

√
n(θ̂∗n − θ0) =

√
nJ −1Y ∗

n + o∗p(1).(A.3)

Now, the conclusion follows directly from (A.3), Lemma A.1 and Taylor’s expansion.
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Proof of Theorem 2.2. By Lemmas A.1-A.3, it is not hard to show that

√
n(ρ̂∗ − ρ̂) = V

(
n∑

t=1

z̃∗tn

)
+ o∗p(1),(A.4)

where V = [σ−2Im,−2Λ′
mJ −1] and z̃∗tn = (w∗

t − 1)z̃t/
√

n with

z̃t =

(
ε̃tε̃t−1, · · · , ε̃tε̃t−m, ε̃t

∂ε̃t

∂θ′

)′

.

Let c ∈ Rm+p+q be a constant vector. We now consider the conditional distribution

of
∑n

t=1 c′z̃∗tn. First, since w∗
t is independent to yt with Ew∗

t = 1, we know that

E∗[c′z̃∗tn] = 0.(A.5)

Second, since var(w∗
t ) = 1, by Assumption 2.4, Lemma A.1 and the same lines as

done in Francq, Roy, and Zaköıan (2005, p.543), we can show that

n∑

t=1

E∗
[
c′z̃∗tnz̃∗

′

tnc
]

= c′
(

1

n

n∑

t=1

z̃tz̃
′
t

)
c

= c′
(

1

n

n∑

t=1

ztz
′
t

)
c + op(1)

→ c′
(

σ4Rm σ4S ′
m

σ4Sm I/4

)
c , c′Oc(A.6)

in probability as n → ∞, where zt is defined in the same way as z̃t with εt replacing

ε̃t. Third, we check the Lindeberg condition. Let C0 be a positive generic constant.

Since E(w∗
t )

2+κ0 < ∞ from Assumption 2.3, by Hölder and Markov inequalities, for

all t = 1, · · · , n and any given η > 0, we have

E∗
[
(w∗

t − 1)2I(|c′z̃∗tn| > η)
]

≤
[
E∗

(
|w∗

t − 1|2+δ0
)] 2

2+κ0
[
E∗ (

I(|c′z̃∗tn| > η)
)] κ0

2+κ0

≤ C0

[
E∗|c′z̃∗tn|

η

] κ0
2+κ0

≤ C0

[
1′ × K̃n

] κ0
2+κ0 ,(A.7)

where 1 = (1, 1, · · · , 1)′ ∈ Rm+p+q and

K̃n =

(
1√
n

max
1≤t≤n

|ε̃tε̃t+1|, · · · ,
1√
n

max
1≤t≤n

|ε̃tε̃t+m|, 1√
n

max
1≤t≤n

∥∥∥∥ε̃t
∂ε̃t

∂θ′

∥∥∥∥
)′

.
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Then, by (A.7), it follows that

n∑

t=1

E∗
[
c′z̃∗tnz̃∗

′

tncI(|c′z̃∗tn| > η)
]

= c′
{

1

n

n∑

t=1

z̃tz̃
′
tE

∗
[
(w∗

t − 1)2I(|c′z̃∗tn| > η)
]}

c

≤ C0

[
1′ × K̃n

] κ0
2+κ0 c′

{
1

n

n∑

t=1

z̃tz̃
′
t

}
c

= C0
[
1′ × Kn + op(1)

] κ0
2+κ0 c′

{
1

n

n∑

t=1

ztz
′
t + op(1)

}
c,(A.8)

where the last equality follows directly from Lemma A.1, and Kn is defined in the same

way as K̃n with εt replacing ε̃t. Note that Kn = op(1) and n−1 ∑n
t=1 ztz

′
t = Op(1) by

Assumption 2.2. Thus, by (A.8), it follows that

n∑

t=1

E∗
[
c′z̃∗tnz̃∗

′

tncI(|c′z̃∗tn| > η)
]
→ 0 in probability as n → ∞.(A.9)

Finally, by (A.5), (A.6) and (A.9), the Cramér-Wold device and central limit theo-

rem in Pollard (1984, Theorem VIII.1) yield that conditional on χn,

n∑

t=1

z̃∗tn →d N(0,O) in probability as n → ∞.(A.10)

Since VOV ′ = Σ, the conclusion follows from (A.4) and (A.10). ¤

Proof of Theorem 6.1. The proof is directly from the one for Theorem 2.2,

except re-proving (A.6) under the conditions of Theorem 6.1.

By Lemma A.1, it is straightforward to see that

n∑

t=1

E∗
[
c′z̃∗tnz̃∗

′

tnc
]

= c′





1

n

Ln∑

s=1




∑

t,t′∈Bs

z̃tz̃
′
t′






 c

= c′





1

n

Ln∑

s=1




∑

t,t′∈Bs

ztz
′
t′






 c + op(1)

, c′Znc + op(1).

Clearly, EZn → O as n → ∞. Thus, (A.6) holds if we can show that

var(Zn) → 0 as n → ∞.(A.11)

Note that Zn ∈ Rτ×τ , where τ = m + p + q. For simplicity, we only prove (A.11) for

Z
(τ,τ)
n , the last entry of Zn, where

Z(τ,τ)
n =

1

n

Ln∑

s=1




∑

t,t′∈Bs

εtεt′
∂εt

∂ψq

∂εt′

∂ψq


 .
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By a direct calculation, we have

var[Z(τ,τ)
n ] =

1

n2

Ln∑

s,s′=1

∑

t1,t2∈Bs

∑

t′1,t′2∈Bs′

E

[
εt1εt2εt′1

εt′2

∂εt1

∂ψq

∂εt2

∂ψq

∂εt′1

∂ψq

∂εt′2

∂ψq

]

,
1

n2

Ln∑

s,s′=1

ξ(s, s′).

Rewrite

var[Z(τ,τ)
n ] =

1

n2

Ln∑

s=1

∑

|s′−s|≤1

ξ(s, s′) +
1

n2

Ln∑

s=1

∑

|s′−s|>1

ξ(s, s′).(A.12)

Fort the first summand in (A.12), since bn = o(n1/3), it is straightforward to see that

1

n2

Ln∑

s=1

∑

|s′−s|≤1

ξ(s, s′) = O

(
Lnb4

n

n2

)
= O

(
b3
n

n

)
= o(1).(A.13)

For the second summand in (A.12), since

εt =
∞∑

i=1

ciyt−i and
∂εt

∂ψq
=

∞∑

k=1

dkyt−k

by Lemma 1 in Francq and Zaköıan (1998), we have
∣∣∣∣∣E

[
εt1εt2εt′1

εt′2

∂εt1

∂ψq

∂εt2

∂ψq

∂εt′1

∂ψq

∂εt′2

∂ψq

]∣∣∣∣∣

=

∣∣∣∣∣∣

∑

i1,k1,i2,k2,i′1,k′

1,i′2,k′

2

ci1dk1ci2dk2ci′1
dk′

1
ci′2

dk′

2
M(i1, k1, i2, k2, i

′
1, k

′
1, i

′
2, k

′
2)

∣∣∣∣∣∣

≤



∑

i1>bn/4

+
∑

k1>bn/4

+
∑

i2>bn/4

+
∑

k2>bn/4

+
∑

i′1>bn/4

+
∑

k′

1>bn/4

+
∑

i′2>bn/4

+
∑

k′

2>bn/4

∑

i1,k1,i2,k2,i′1,k′

1,i′2,k′

2≤bn/4




∣∣∣ci1dk1ci2dk2ci′1
dk′

1
ci′2

dk′

2
M(i1, k1, i2, k2, i

′
1, k

′
1, i

′
2, k

′
2)

∣∣∣

=:
9∑

i=1

gi,

where M(i1, k1, i2, k2, i
′
1, k

′
1, i

′
2, k

′
2) = E

∣∣∣yt1−i1yt1−k1yt2−i2yt2−k2yt′1−i′1
yt′1−k′

1
yt′2−i′2

yt′2−k′

2

∣∣∣.
By Cauchy-Schwarz inequality, we can show that

M(i1, k1, i2, k2, i
′
1, k

′
1, i

′
2, k

′
2)

≤
√

E (yt1−i1yt1−k1yt2−i2yt2−k2)
2 E

(
yt′1−i′1

yt′1−k′

1
yt′2−i′2

yt′2−k′

2

)2
≤ Ey8

t < ∞.

Since ci = O(ρi) and di = O(ρi) for some ρ ∈ (0, 1), it is straightforward to see that

gi ≤ C0ρ
bn/4, for 1 ≤ i ≤ 8.
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Furthermore, the Davydov inequality in Davydov (1968) implies that

g9 ≤ C0

∑

i1,k1,i2,k2,i′1,k′

1,i′2,k′

2≤bn/4

‖yt1−i1yt1−k1yt2−i2yt2−k2‖2+ν‖yt′1−i′1
yt′1−k′

1
yt′2−i′2

yt′2−k′

2
‖2+ν

×
[
αy

(⌊
bn

2

⌋)]ν/(2+ν) ∣∣∣ci1dk1ci2dk2ci′1
dk′

1
ci′2

dk′

2

∣∣∣

≤ C0

(
E|yt|8+4ν

) [
αy

(⌊
bn

2

⌋)]ν/(2+ν)

×
∑

i1,k1,i2,k2,i′1,k′

1,i′2,k′

2≤bn/4

∣∣∣ci1dk1ci2dk2ci′1
dk′

1
ci′2

dk′

2

∣∣∣

≤ C0

[
αy

(⌊
bn

2

⌋)]ν/(2+ν)

.

Therefore, since limk→∞ k2[αy(k)]ν/(2+ν) = 0, it follows that

1

n2

Ln∑

s=1

∑

|s′−s|>1

ξ(s, s′) ≤ O

(
L2

nb4
n

n2

) [
ρbn/4 +

[
αy

(⌊
bn

2

⌋)]ν/(2+ν)
]

= o(1).(A.14)

By (A.12)-(A.14), we know that (A.11) holds. This completes the proof of (A.6). ¤
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