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BOOTSTRAPPING THE PORTMANTEAU TESTS IN WEAK
AUTO-REGRESSIVE MOVING AVERAGE MODELS

By KE ZHU

Chinese Academy of Sciences

This paper uses a random weighting (RW) method to bootstrap
the critical values for the Ljung-Box/Monti portmanteau tests and
weighted Ljung-Box/Monti portmanteau tests in weak ARMA mod-
els. Unlike the existing methods, no user-chosen parameter is needed
to implement the RW method. As an application, these four tests
are used to check the model adequacy in power GARCH models.
Simulation evidence indicates that the weighted portmanteau tests
have the power advantage over other existing tests. A real example
on S&P 500 index illustrates the merits of our testing procedure. As

one extension work, the block-wise RW method is also studied.

1. Introduction. After the seminal work of Box and Pierce (1970) and Ljung
and Box (1978), the portmanteau test has been popular for diagnostic checking in the
following ARMA((p, ¢) model:

P q
(1.1) Y=Y bit—i+ Y thice—i + e,
i=1 i=1

where ¢; is the error term with Fe; = 0. Conventionally, we say that model (1.1) is
weak when {g,} is an uncorrelated sequence, and that model (1.1) is strong when {e;}
is an i.i.d. sequence; see, e.g., Francq and Zakoian (1998) and Francq, Roy, and Zakoian
(2005). In the earlier decades, many portmanteau tests are proposed for strong ARMA
models, and among them, the most famous ones are the Box-Pierce statistic @,, and

Ljung-Box statistic @m which are defined respectively by

m m A0

. ~ Py
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where n is the length of the series {y;}, m is a fixed positive integer, and py is the
residuals autocorrelation at lag k. When Ee? < oo, the standard analysis in Box and
Pierce (1970) or McLeod (1978) showed that the limiting distribution of Q,, or Q,,
—(p+q) in strong ARMA models, although Qm usually has

a better finite sample performance for small n. In view of this, people more or less

can be approximated by X?n

regard that the limiting distribution of @),,, or @m is independent to the data structure

(or asymptotically pivotal in other words), and hence both test statistics can be easily
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implemented in practice. Recently, Fisher and Gallagher (2012) proposed a weighted
Ljung-Box statistic Q,,, for strong ARMA models based on the trace of the square of

the m-th order autocorrelation matrix, where

m

— —k+1) p?
(1.3) szn(n+2)k§1(m m )np_kk'

Compared with @m, this new weighted Ljung-Box statistic is numerically more stable
over m, and its limiting distribution can be approximated by a gamma distribution. For
more discussions on portmanteau tests in strong ARMA models, we refer to McLeod
and Li (1983), Pena and Rodriguez (2002, 2006), Li (2004), and many others.

Although the aforementioned portmanteau tests have been well applied in indus-
tries, their asymptotic properties are valid only for strong ARMA models; see, e.g.,
Romano and Thombs (1996). Till now, more and more empirical studies have revealed
that the independence structure of error terms {&;} in model (1.1) may be restrictive
especially for economic and financial series. For instance, Bollerslev (1986) used an
AR(4)-GARCH(1,1) model to study the GNP series in U.S.; Franses and Van Dijk
(1996) studied several stock market indexes by AR(1)-GJR(1, 1) models; Zhu and Ling
(2011) found that a MA(3)-GARCH(1, 1) model is necessary to fit the world oil prices;
see also T'say (2005) for more empirical evidence. Moreover, Francq and Zakoian (1998)
and Francq, Roy, and Zakoian (2005) indicated that many nonlinear models have an
ARMA representation with dependent error terms. Thus, it is meaningful to consider
the diagnostic checking for weak ARMA models.

So far, a huge literature has focused on testing the dependence of time series. Next,
we briefly review some of important results. For the observable series, Deo (2000) con-
structed some spectral tests of the martingale difference hypothesis; Lobato (2001)
proposed an asymptotically pivotal test to detect whether the observable series is un-
correlated; Escanciano and Velasco (2006) extended the method in Durlauf (1991) to
testing the martingale difference hypothesis, taking into account both linear and non-
linear dependence; Escanciano and Lobato (2009) derived a data-driven portmanteau
test which is applicable in the conditionally heteroskedastic series but with no need to
choose m. For the residual series, Hong and Lee (2005) considered a generalized spec-
tral test which is valid for semi-strong ARMA models; Escanciano (2006) tested the
martingale difference hypothesis by introducing a parametric family of functions as in
Stinchcombe and White (1998); moreover, based on some marked residual processes,
the Cramér-von Mises test and Kolmogrove-Smirnov test were studied in Escanciano
(2007) towards the same goal. However, none of aforementioned tests can be applied
to the residuals of weak ARMA models.

To solve this problem, Romano and Thombs (1996) and Horowitz, Lobato, Nankervis,
and Savin (2006) used the block-wise bootstrap to estimate the asymptotic covariance

matrix of autocorrelations for the observable series. Francq, Roy, and Zakoian (2005)
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used the VAR method in Berk (1974) to estimate the asymptotic covariance matrix
of @m in weak ARMA models. However, both estimation procedures have the dis-
advantage of requiring the selection of some user-chosen parameters as indicated by
Kuan and Lee (2006). Moreover, they used the self-normalization method to propose
a robust M test which is asymptotically pivotal and independent to user-chosen pa-
rameters. This robust M test is applicable for testing serial correlations in weak AR
models. Recently, Shao (2011a) proved the validity of the spectral test in Hong (1996)
for detecting serial correlations in weak ARMA models. Although the spectral test is
consistent, it still requires the selection of kernel function and its related bandwidth.

In this paper, we bootstrap the critical values for Q,, and Q,,, in weak ARMA mod-
els by a random weighting (RW) method. Unlike the existing methods, no user-chosen
parameter is needed to implement this new method. Particularly, it is applicable when
et is a martingale difference (i.e., E(e¢|Fi—1) = 0 with F; = o(es; s < t)). Hence, the
RW method is valid when e; has the often observed ARCH-type structure, i.e.,

(1.4) er = v/ I,

where 7; is i.i.d. innovation, and h; € F;_1 is the conditional variance of ;. Meanwhile,
we can show that the bootstrapped critical values for @m and @,,, are valid for Monti’s
(1994) portmanteau test M,, and weighted Monti portmanteau test M,, in Fisher
and Gallagher (2012), respectively, where both M,, and M,, are based on a vector
of residuals partial autocorrelations. As a byproduct, the standard deviation of m-th
residuals (partial) autocorrelation can be calculated from our RW approach. Hence, the
classical plot of residuals (partial) autocorrelations with the corresponding significance
bounds is available for weak ARMA models. As an application, we then use all four
portmanteau tests to check the adequacy of power GARCH models. Simulation studies
are carried out to assess the finite-sample performance of all tests. A real example on
S&P 500 index illustrates the merits of our testing procedure. As one extension work,
a block-wise RW approach is also proposed to bootstrap the critical values for all tests,
and its validity is justified.

This paper is organized as follows. Section 2 proposes the RW approach to bootstrap
the critical values for four portmanteau tests. Section 3 applies these tests to check the
model adequacy in power GARCH models. Simulation results are reported in Section
4. A real example is given in Section 5. An extension work on the block-wise RW
approach is provided in Section 6. Concluding remarks are offered in Section 7. All of
proofs and some additional simulation results are given in the on-line supplementary

document.

2. Random weighting approach. Denote 0 = (¢1,- -+, ¢p, 91, -+ , 1) be the
unknown parameter of model (1.1). Let 6y be the true value of 6 and the parameter
space O be a compact subset of R* , where R = (—o0,00) and s = p + q. We make

the following two assumptions:



ASSUMPTION 2.1. 6 is an interior point in © and for each § € ©, ¢(z) = 1 —
SP izt £ 0 and Y(2) £ 1+ X0 iz # 0 when |z| < 1, and ¢(2) and (2) have
no common root with ¢, # 0 or 1y, # 0.

ASSUMPTION 2.2.  {y;} is strictly stationary with E|y|*T? < oo and
o
> {ay ()} < oo
k=0

for some v > 0, where {ay(k)} is the sequence of strong mizing coefficients of {y.}.

Assumption 2.1 is the condition for the stationarity, invertibility and identifiability of
model (1.1). Assumption 2.2 from Francq, Roy, and ZakoTan (2005) gives the necessary
conditions to prove our asymptotic results, and it is satisfied by many weak ARMA

models, e.g.,

(a) ye = a—1 +&¢ and & = pyp—1;
(b) ye = age—1 + & and e = mymp—1;
(¢) ye = nt + bys—1m1—2, which admits a weak MA(3) representation:

Yyt = €¢ + ce¢—3 as shown in Francq and Zakoian (1998),

where 1, ~ N(0,1) is i.i.d. white noise, |a| < 1, [b] < 1, and oy (k) in each aforemen-
tioned model tends to zero exponentially fast.

Next, given the observations X, = {y1,--- ,%n}, we consider the least squares esti-
mator (LSE) 6,, of 0y, defined by

- ~ ~ 1 & 1 -
0 = argmin Ly, (6), where L,(0) = = Y &/(0) £ =Y " 1,(6),
© "= "=
and £;(0) is defined recursively by
P q
E0) =y — > diyi—i — Y vicr—i(0)
i=1 i=1
with £9(0) =€-1(0) = =€ gp1(0) =wo=y-1="--=y—p41 =0.

tion at lag k is

i1 &
Theorem 2.1 below gives the limiting distributions of Q,, in (1.2) and Q,), in (1.3), and
under the same conditions, its proof (omitted here) follows directly from the one for
Theorem 2 in Francq, Roy, and Zakoian (2005). In addition, the limiting distribution

of @m in Theorem 2.1 is the same as the one in Theorem 2 of Francq, Roy, and Zakoian
(2005), and it reduces to the one in Li (1992, p.436) when model (1.1) is strong.
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To state Theorem 2.1 precisely, some notations are needed. Define £;(#) recursively
by

q
=Y — Z Giyr—i — »_ bier—i(0)
i=1

i.e., e.(0) = ¢ ~Y(B)¢(B)y:, where B is the back shift operator. Then,

=4(0)
a0

where () = —¢p~1(B)e(0) and u(0) = v ~1(B)e(0). Particularly, £,(6p) = &; and

= (1(0), -+ v p(0), i1 (0), -+ u—(6)),

&st N 8€t

90 ZQ PGy
where \; = (=¢j_1, -+, —d;_,, ¥ 1, ¥ ,), and coefficients ¢} and 1} are from
expansions: ¢~ 1(2) = 3270 ¢ 2% and ¥ 1(2) = Y20°, ¥F 2 with ¢F = = 0 for i < 0.

Moreover, let 02 = Fe? and define the following matrixes:

" Oey Oey i
T =4 lim E<225t5t >:4ZZF1
meen \iZie= 90 o6’ i=1j—=1

N 85,5 8€t N ) > /
J = QnIEEOnE (Z a0 89/> =2 ;Mi’
R = (Rij)1<i, j<m Wwith Rij = o~ *T(4, j),
Sm = (317 U 78m) with Sk = ZRU{Z)\Z;

i=1

Ay = (A1, , Am), and

(2.1) Y =R+ AN, T ZTT N — 202N, TS, — 2028, T A,
where
(2.2) F(l, l/) = Z E (5t5t7l5t+h5t+h7l’) .

h=-—00

Here, I'(1,1") is meaningful by Assumptions 2.1-2.2 and Lemma A.1 in Francq, Roy,
and Zakoian (2005), and it satisfies I'(l,1") = I'(—1, =1I") = T'(=1', —1). Note that X is
the same as X, in Theorem 2 of Francq, Roy, and Zakoian (2005).

THEOREM 2.1.  Suppose that Assumptions 2.1-2.2 hold and model (1.1) is weak
and correctly specified. Then, (i)

Vnp —4 N(0,%) and W(ynp) —4 N(O,WEW) asn — oo,
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where —4 denotes the convergence in distribution, p = (p1,- - , pm)’, the matriz ¥ is

defined in (2.1), and

W:diag{l,\/(m—l)/m, \/(m—2)/m,--- ,m}

is a diagonal matriz; (ii) furthermore, it follows that

m m
Qm —a Y _&miZi and Qu —a ) &miZi asn — oo,
i=1 i=1
where Z1,--- , Zy are independent N(0,1) variables, &m = (Em1s -+ »Emm) is the
eigenvalues vector of the matriz 3, and &y = (Em1, -+ Emm)’ is the eigenvalues vector

of the matriz WXW .

REMARK 2.1. By using a consistent estimate ) of X, it may be more natural to
construct the test statistic np”f]_l,ﬁ, which has an asymptotic distribution x?2, from
Theorem 2.1. This test statistic is calculable if X2 is non singular. However, as shown
in Francq, Roy, and Zakoian (2005), ¥ may be (or close to) singular in some cases.
To overcome this difficulty, Francq, Roy, and Zakoian (2005) used the spectral decom-
position to express the limiting distribution of @m, while Duchesne and Francq (2008)
used the generalized inverses and {2}-inverses of ¥ to construct the portmanteau test.
In this paper, both methods are valid, and we follow the method in Francq, Roy, and
Zakoian (2005) for simplicity.

REMARK 2.2. When y; follows a strong ARMA model, McLeod (1978) proved

that the limiting distribution of @m can be approrimated by a an_( distribution,

p+q)
and Fisher and Gallagher (2012) proved that the limiting distribution of Q,, can be

approzimated by a Gamma(a,b) distribution with

m(m + 1)? ib 22m? +3m+1—6m(p+q)
ana b = -
2m2 +3m + 1 —6m(p+q) 3 m(m + 1)

(2.3)  a= Z

However, simulation studies in Section 4 showed that these approximations will lead

to an over-rejection problem in weak ARMA models.

From Theorem 2.1, we know that both statistics @m and Q,, are applicable when 3
can be consistently estimated. This is usually accomplished by either the kernel-based
method in Newey and West (1987) or the VAR method in Francq, Roy, and Zakoian
(2005). However, both methods require picking up some user-chosen parameters, and
hence it turns out that the testing results are sensitive to these user-chosen parameters;
see, e.g., Kuan and Lee (2006). In this section, we now introduce a random weighting
(RW) approach to bootstrap the critical values for @m and @Q,,,. This novel method
gives an estimator of X, but it avoids selecting any user-chosen parameter. Its detailed

procedure is as follows:
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step 1. Generate a sequence of positive i.i.d. random weights {w7, - ,w’}, inde-
pendent of the data, from a common distribution with mean and variance both equal

to 1, and then calculate 6% via
A - - 12 -
0 = arg ngn L} (0), where L} (0) = - ;w;‘ltw);

step 2. Calculate A = W*[\/n(p* — p)] with p* = (%, -+, p,)’, where

n k A% A%
e ikl WIELEL
Pr = Zn ~%2
t=1 €t

with & = &,(6};), and the diagonal matrix

In ot W* for Qp,
(2.4) W { or or

Wor W* for Q,,

where I,,, € R™*™ is the identity matrix,

—~ 2 2 2
W*:dzag i, i,"', n+ ,
n—1 n—2 n—m
—x 2 2m—1 21
W = diag ) "F= Jorem -t jrte2 L
n—1 n—2 m n—mm

step 3. Repeat steps 1-2 J times to get {A(l), e ,A(J)}, and then compute its

and

sample variance-covariance matrix »*; furthermore, simulate N i.i.d. random sam-
ples {zﬁj ), e ,z%)}é\[zl from the multivariate normal distribution N (0, I,,), and then

calculate the sequence { KU )}é\/:l via
. m -
KO =3 €z,
i=1

where (5,1, ,&hm) 1s the eigenvalues vector of the matrix X*;

step 4. Choose a upper percentage of {K(j)}é\le as the critical value of Q,, or Q.
at any given significance level a.

Particularly, when p = ¢ = 0, we set &; = € = y; for all ¢t in step 2. The p-value of
Qm or Q,, can be calculated by #(K@) > Q,,)/N or #(K) > Q,,)/N, respectively.
We now offer some remarks on the RW method. First, the RW method as a variant of
the traditional wild bootstrap in Wu (1986) was initially proposed by Jin, Ying, and
Wei (2001). So far, it has been widely used for statistical inference in regression and
time series models, when the asymptotic covariance matrix of certain estimator can
not be directly estimated; see, e.g., Chen, Ying, Zhang, and Zhao (2008), Chen, Guo,
Lin, and Ying (2010), Li, Leng, and Tsai (2014), Li, Li, and Tsai (2014), and Zhu
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and Ling (2015). Second, the random weight w; can from the standard exponential

distribution as used in Section 4, the Bernoulli distribution such that

L 3=VB) _1+45 L 3+VB) V51
P(wt_ 5 >_ W andP(wt— 5 )— NG

and many others. Although theoretically it is unknown how sensitive is the RW method

to the distribution of wy, simulation studies in the on-line supplementary document
imply that our testing results are robust to the distribution of wy. Third, although
I, and W (or W and W*) are close to each other when n is large, we expect that
the finite sample performance of Q,, (or Q,,) based on W* (or W") may be better for
small n.

To justify the validity of the bootstrapped critical value from the RW method, two

more assumptions are needed:
ASSUMPTION 2.3.  E(w})?Tr0 < oo for some kg > 0.

ASSUMPTION 2.4. Forl,l' > 1,

o

Z E (eiet—i&t4netsn—r) = 0.
h:—OO,h?éO

Assumption 2.3 gives one mild condition for wy. Assumption 2.4 restricts the depen-
dent structure of ¢, and it is equivalent to say that the infinite series I'(1,1’) in (2.2)
collapses to just one summand with the index h = 0 (i.e., E(c?e;_&;_y/)). Particularly,
when ¢, is a martingale difference including the special case as in (1.4), we know that
Assumption 2.4 holds. To capture the dependence structure of ; beyond Assumption
2.4, a block-wise technique is necessary, and we will study it in Section 6.

We now are ready to state our main result:

THEOREM 2.2. Suppose that Assumptions 2.1-2.4 hold and model (1.1) is weak

and correctly specified. Then, conditional on X,
Vn(p* —p) —q N(0,%) in probability
as n — oo, where ¥ is defined in (2.1).
REMARK 2.3. By Theorem 2.2, it follows that conditional on xn,
W*[Vn(p* = p)] —a N(0,%) and W' [V/n(p* — p)] —a N(0, WEW)

in probability as n — oo. In view of this, when J is large, the matriz ¥X* in step 3 of
RW method provides a good estimator of X (or WEW ) for Qm (or Q,,), and hence

our bootstrapped critical values from the RW method are asymptotically valid.
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In the end, we show that our RW method can be also used for the portmanteau test
M, in Monti (1994) and the weighted portmanteau test M,, in Fisher and Gallagher
(2012), where

CREIN . %

with 75, being the residuals partial autocorrelation at lag k. Here, 7, is calculated by

?‘l\)

the Durbin-Levinson algorithm as follows:

i = pe— (1o P ) B (1, -+, 1)
1—(p1, o) R (B, pre1) 7

where Rj, = (Pli—j|)ij=1,2, k is the Toeplitz matrix. As for Theorem 2.1, we can easily
show that /n7, = /npi + 0p(1), and hence the following theorem is straightforward:

THEOREM 2.3.  Suppose that the conditions in Theorem 2.1 hold. Then, (i)
Vnr —q N(0,%) and W(y/n#) —q NO,WISW) asn — oo,

where 7t = (71, ,&m)'; (i) furthermore, it follows that My, and M, have the same

liming distributions as @m and Q,,, respectively.

REMARK 2.4. Besides the portmanteau tests aforementioned, the kernel-based spec-
tral test Hy, in Hong (1996) has also been widely used for testing series correlations
of {et} in model (1.1), where

n—1

Hy = [k(i/pa)]*5;
j=1
with k(-) being the kernel function and p,(> 0) being the bandwidth. When k(-) satisfies
Assumption 2.1 in Shao (2011a) and p, satisfies the condition that logn = o(p,) and
pn = 0o(n'/?), Shao (2011a) proved that if model (1.1) is weak and correctly specified,

nH, — pnC(k)

(25) 2pn D (k)

N(0,1) asn — oo,

where C(k) = [;°[k(z))?dz and D(k) = [5°[k(z)]*dz. From (2.5), we know that the
limiting null distribution of Hy, depends on k(-) and p,. Note that unlike the lag m in
the portmanteau test, it is difficult to interpret p,, in H,. Stmulation studies in Section
4 below imply that the size/power performance of H,, is very sensitive to the choice of
pn. Thus, H,, may be of limited value in applications, without a data-driven/computer
intensive selection of p,. When p = q =0 in model (1.1), Lee and Hong (2001) used
the cross-validation procedure of Beltrao and Bloomfield (1987) to select p,; when
model (1.1) is strong, Hong and Lee (2003) studied the plug-in data-driven method as

in Hong (1999) but still requiring the selection of a preliminary user-chosen bandwidth
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D; when g in model (1.1) is a martingale difference with conditional heteroscedasticity
of unknown form, Hong and Lee (2005) re-studied this plug-in method; however, when
model (1.1) is weak, how to construct and theoretically study a good data-driven method

for H,, is still an open question, and we leave it for future study.

Note that the limiting distribution of \/n7 is the same as the one of \/np. Thus, when
model (1.1) is strong, the limiting distribution of M,, (or M,,) can be approximated
by a X%@—(p+q) (or Gamma(a, b)) distribution as in Remark 2.2, but when mO(EI (1.1)
is weak, the bootstrapped critical values for Q,, and @,, should be used for M,, and
M, respectively. In addition, it is worth noting that the standard deviation of p; (or

7;), denoted by sd;, can be calculated by

sd; = /X% /n,

where X7; is the i-th main diagonal entry of ¥* for ¢+ = 1,2,--- , m. Consequently, the
classical plot of residuals (partial) autocorrelations with the corresponding significance
bounds are available in weak ARMA models, where the significance lower and upper
bounds for p; (or #;) at level o are @~ 1[(1—a)/2]sd; and &~ [(14a)/2]sd;, respectively.
Here, ®~1(.) is the inverse of the cdf of N(0,1) distribution. As shown in Romano
and Thombs (1996), the traditional significance bounds for strong ARMA models are
misleading when {e;} in model (1.1) are dependent. Our significance bounds generated
from the RW method are now valid for weak ARMA models, and hence they are

practically important. We will illustrate this by one real example in Section 5.

3. Model checking in Power GARCH models. Since Engle (1982), ARCH-
type models have become the most important tools to modeling economic and financial
data sets. The power GARCH model as one of ARCH-type models describes that the

power of conditional volatility depends on the past information and changes over time.
Specifically, the power GARCH(r, s) (denoted by PGARCH(r, s)) model is defined as

8 r S )
(3.1) g =mvVhe and B = w0+ ailye—il® + > Bihi
i=1 i=1

where § > 0, w > 0, a; > 0, 6; > 0, and 7 is i.i.d. innovation with mean zero and
variance one. Model (3.1) as a special case of the asymmetric power GARCH models
introduced by Ding, Granger, and Engle (1993) was first proposed by Higgins and
Bera (1992). When § = 2, model (3.1) reduces to the GARCH model in Bollerslev
(1986), and when 6 = 1, it reduces to the absolute value GARCH model in Taylor
(1986) and Schwert (1989). For more discussions on ARCH-type models, we refer to
Bollerslev, Chou, and Kroner (1992) and Francq and Zakoian (2010).

So far, PGARCH models have been widely applied in practice; see, e.g., McKenzie
and Mitchell (2002), Giot and Laurent (2004), and the references therein. However,
except GARCH model (i.e., § = 2), the diagnostic checking tools for model (3.1) are
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rare. In the sequel, we briefly review some related works. Li and Mak (1994) proposed
a portmanteau test to detect the adequacy of GARCH models based on the squared
residuals {#?}; Carbon and Francq (2011) extended their work to detect the adequacy
of asymmetric PGARCH models; Li and Li (2005) considered the model checking in
GARCH models by using the absolute residuals {|7]}; see also Li and Li (2008) and
Chen and Zhu (2015) for other portmanteau tests in GARCH models. In this section,
we apply Qm, Q. My, and M, to check the adequacy of model (3.1).
A

Assume that 7 £ (E|n;|°)"/%(> 0) is well defined. Then, we can re-parameterize
model (3.1) as

(3.2) ytzmvht, (hi)2 = Z i lye— z|6+2@ (hi_;)2,

=1 =1

where w] = wr 0, of = ;7% and n; = m,7 1. Moreover, by (3.2), a direct calculation

gives us that

max(r,s)

S
(3.3) el =wi+ > (of + By’ + v =D Bive—i,
i=1

i=1
where we set af = 0ifi > rand 3; =0if¢ > s, and v, = (h;‘)%(|17;*|5—1) is a martingale
difference From (3.3), we know that if model (3.1) is well specified, the mean-adjusted
’6

series J; 2 |y|® — Ely¢|° admits a weak ARMA (max(r, s),s) representation:

max T‘S

s
(34) Z azyt it v — Z ﬁivtfia
i=1

where &; = o + ;. Thus, we can check the adequacy of model (3.1) by Qm, Qm, ms
and M,,, which are calculated from model (3.4). Denote G(z) = 1— Zmax "% 6,21 and
B(z) £ 1 -5, Biz'. We have the following corollary:

COROLLARY 3.1.  Suppose that (i) Assumption 2.1 holds with ¢(z) and (z) being
replaced by &(z) and B(z), respectively; (ii) Assumption 2.2 holds with y; being replaced
by §i. Then, if model (3. 1) is correctly specified, the conclusions in Theorems 2.1 and
2.3 hold, where Qum, Q. My, and M, are calculated from model (3.4).

We now offer some remarks of Corollary 3.1. First, it is worth noting that a sufficient
condition for condition (ii) in Corollary 3.1 can be found in Carrasco and Chen (2002).
Second, since model (3.4) is not a strong ARMA model but a weak ARMA model with
a martingale difference error term, the critical values of these four tests should be
obtained by the RW method. Third, it is necessary to point out that our portmanteau
tests are infeasible to check the adequacy of some asymmetric ARCH-type models,
which do not have a weak ARMA representation like (3.4).
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4. Simulation study. In this section, we examine the finite-sample performance
of @m, Qo Mm and M,,. For @m, we denote it by @%), when we choose its critical

value to be the upper percentage of an_ ( in strong ARMA models, while we

prq) B
denote it by Qg) (or Qﬁ’;)), when we choose its critical value to be the one from the

RW method with W* = I,,, (or W* as in (2.4)). For Q,,, we denote it by @,(:b), when
we choose its critical value to be the upper percentage of Gamma(a,b) as in (2.3),
while we denote it by @53) (or Qﬁi)), when we choose its critical value to be the one
from the RW method with W* = W (or W as in (2.4)). Likewise, we can define M)
and Hgb) for i = 1,2,3. In all calculations, we set the significance level a = 5% and
the bootstrap sample size J = 500, and generate random weights from the standard
exponential distribution. In addition, more simulation studies are given in the on-line

supplementary document.

4.1. Study on fitted weak ARMA models. In this subsection, we assess the finite-
sample performance of @m, Qo) Mm and M, on testing the model adequacy in weak
ARMA models. As a comparison, we also consider the spectral test in Hong (1996)
and the robust M test (denoted by K L,,) in Kuan and Lee (2006). For Hong’s kernel-
based spectral test H,,, we denote it by H g), H ](32), and H ](33), when we use the Bartlett
kernel with the bandwidth p, = [3n%3], |9n%3], and [12n°3], respectively (see, e.g.,
Kuan and Lee (2006)). Likewise, we can define Hg), Hl(gi), and HS) for i = 1,2,3,
when we use the Daniell, Parzen, and Quadratic kernels, respectively.

In size simulations, we generate 1000 replications of sample size n = 100 and 500

from the following model:
(4.1) ye = 0.9y 1 + &4, & = nt\/hT and h; =1+ 0.45?_1,

where {n;} is a sequence of i.i.d. N(0, 1) random variables. Table 1 reports the empir-
ical sizes for all tests. From this table, our findings are as follows:

(ai) @%), @7(711), ]T/Eszl ) or M,(Tll) has a severe over-rejection problem for each m, and
hence the critical values taken for strong ARMA models are not valid for weak ARMA
models.

(aii) When n is small, the sizes of K L,, become more conservative as m becomes
larger, while the sizes of @7(73), Qg), ]\7753) or Mss) tend to be larger than their nominal

ones in general. In this case, the sizes of @Sf{), @S), Mﬁ) or M

. are close to their

nominal ones, although they tend to be conservative for large m.
(aiil) When n is large, the sizes of K Ly, still have a severe conservative problem for
large m. In this case, the sizes of @&%), ij), ]\77(,12 ) or Mfs) are close to their nominal

ones for each m, while the sizes of @,(3), @S), MS? ) or M(g)

m are slightly conservative

for large m.
(aiv) For Hong’s spectral test, its size performance is quite sensitive to the choice

of the kernel function and related bandwidth p,,. To look for further evidence, Figure
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TABLE 1

Empirical sizes (x100) of all tests based on model (4.1).

Tests
—————————————
m_n QW QW QW @, @ Qn My ap My M, M,

MY KL

2 100 19.7 5.4 5.1 20.6 6.1 54 19.1 6.0 5.8 21.2 6.0 5.8 4.0
500 23.4 5.5 54 249 5.8 5.8 23.8 5.3 5.2 253 5.9 5.9 5.4
6 100 11.9 6.0 4.8 13.0 6.3 5.0 11.6 5.7 4.3 135 6.3 5.4 1.7
500 14.7 5.6 5.5 17.3 5.0 5.0 15.0 5.5 5.3 16.9 4.9 4.7 5.3
18 100 8.5 7.5 3.1 8.7 6.3 3.4 6.4 6.4 1.7 8.0 4.7 2.8 1.4
500 10.6 5.9 5.0 12.0 5.0 5.0 9.9 5.2 4.4 107 4.7 4.3 1.8
20 100 8.4 7.4 3.5 8.6 6.6 3.4 6.2 5.9 2.4 7.2 5.0 2.9 1.1
500 11.0 6.0 5.3 11.1 5.2 4.8 9.2 4.8 4.1 10.1 4.8 4.0 1.5

Tests
(T) (2) (3) (T) (2) (3) (T (2) (3) (T) (2) (3)
Hy’ Hp’ Hg Hy” H5 Hj Hy Hy Hy HQ HQ HQ

100 5.7 4.2 3.3 6.6 4.1 3.4 6.3 4.7 4.4 5.3 3.5 2.5
500 11.2 9.1 79 137 11.2 102 124 10.3 9.1 120 8.0 6.7

1 plots the sizes of Hg, Hp, Hp, and Hg in the cases that p, =2,3,---,[n/2]. As a
comparison, the sizes of the portmanteau tests @7(%), Qsl), Mr(,f), and Mﬁ,? (for i =2,3)
are also plotted in the cases that m = 2,3,---,20 when n = 100 or m = 2,3,---,50
when n = 500. From Figure 1, we find that for every choice of the kernel function, the
sizes of the spectral test can suffer a severe over-rejection problem under a very wide
range of p,, especially when n is large, while the sizes of all portmanteau tests have
a robust size performance over m. This indicates that a good data-driven method for
selecting p,, is very important for the application of Hong’s spectral tests.

Therefore, all of these imply that the portmanteau tests along with the bootstrapped
critical values from the RW method have a good size performance, while the size
performance of the kernel-based spectral test in Hong (1996) heavily depends on the
choice of the kernel function and related bandwidth. Particularly, we recommend @%),
Qfﬁ), Mr(nz ) or Hg) for large n, and @ﬁi), fo;’, Nr(r::’ ) or ij) for small n in applications.

Next, in power simulations, we generate 1000 replications of sample size n = 100

and 500 from the following model:
(4.2) v = 0.9y,_1 + 02641 + &4, er = mv/he and hy =1+ 0.45?_1,

where {n:} is a sequence of i.i.d. N(0,1) random variables. For each replication, we
fit it by an AR(1) model, and then use all tests to check the adequacy of this fitted
model. Table 2 reports the empirical power for all tests. Since the sizes of @ﬁ,ﬁ), QS),
My(nl), M&), H](Bi), Hg), Hl(gi), and Hg) (for i = 1,2, 3) are severely distorted in Table
1, the power of these tests in Table 2 has been adjusted by the size-correction method
in Francq, Roy, and Zakoian (2005, p.541) (that is, for each test T,, with a severe size
distortion, its critical value used for model (4.2) is chosen as the o upper percentage
of {T,,;}129° where T,,; is the value of T, for the i-th replication from model (4.1)).

From Table 2, our findings are as follows:
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(a) Empirical sizes (x 100) of all spectral tests based on model (4.1) (h) Empirical sizes (x 100) of all portmanteau tests based on model (4.1)
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F1G 1. The empirical sizes (x100) of all spectral tests (part (a)) and all portmanteau tests (part (b)) based on model (4.1) for the cases that n =100 (upper panel)
and n = 500 (lower panel). Here, the solid line stands for the significance level o = 5%.
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TABLE 2
Empirical power (x100) of all tests based on model (4.2).
Tests
SO A O B T T

2 100 235 254 233 282 286 27.8 266 30.1 285 291 31.8 30.7 14.7
500 85.0 80.0 79.8 87.8 834 832 868 822 821 89.2 847 844 56.2
6 100 17.0 171 143 243 240 226 212 209 175 276 28.0 255 4.5
500 747 712 70.2 833 798 794 780 73.7 730 856 819 818 36.6
18 100 149 17.2 104 181 175 141 16.0 14.0 8.0 23.7 189 14.1 1.7
500 61.7 58.0 55.1 732 717 70.7 66.1 59.2 56.5 771 73.7 725 14.9
20 100 14.8 17.3 10.1 18.0 181 13.6 158 13.6 6.0 23.1 184 13.0 0.9
500 59.4 56.4 543 725 712 69.5 61.8 575 542 765 725 710 123

Tests
(T) (2) (3) (T) (2) (3) (T (2) (3) (T) (2) (3)
Hy’ Hp’ Hg Hy” H5 Hj Hy Hy Hy HQ HQ HQ

100 25.1 20.1 177 234 178 163 26.8 198 192 234 164 16.3
500 72.6 59.5 572 688 539 520 746 60.9 557 679 529 49.2

(bi) As we expected, the power of all tests becomes large as n increases, and the
power of all portmanteau tests becomes small as m increases. Moreover, the power
performance of Ljung-Box-type portmanteau tests and Monti-type portmanteau tests
is generally comparable, while the weighted portmanteau test is more powerful than
the corresponding un-weighted one, and this power advantage grows as m increases.

(bii) When n is small, @SE), @7(5), ]T/I/éf) or M,(fb) is more powerful than @5,‘0{), @S),
My(r? ) or Hif;), respectively, while this power advantage disappears as n becomes large.
This is probably because @7(3) , Qf;), M&g ) or Hﬁi) has a conservative size for small n.
Moreover, the adjusted portmanteau test @%), @SL), My(nl ) or Mﬁi) has a similar power
as @%), 71(7?, M;(nf) or Mﬁ), respectively, for ¢ = 1,2, especially when n is large. This is
reasonable because all of them are based on the same statistic, and the size-correction
method becomes more accurate when n is larger.

(biii) For K L,,, its power is not satisfactory when n is small and m is large. Like
portmanteau tests, its power becomes smaller as m becomes larger.

(biv) For Hong’s spectral test, its power performance varies significantly in terms of
kernel function and related bandwidth. To look for further evidence, Figure 2 plots the
power of Hp, Hp, Hp, and Hg, and as a comparison, the power of the portmanteau
tests @7(72), @5,?, M/Tsﬁf), and ME,? (for i = 2,3) is also plotted in this figure. Here, the
choices of p,, and m are the same as those for Figure 1. From Figure 2, we find that Hp
and Hp have a similar power performance, and they are more powerful than Hp and
Hg, especially when n is large. Moreover, we can see that the power of all spectral
tests generally tends to be smaller as p, becomes larger. Compared with weighted
portmanteau tests, the spectral tests exhibit a dominated power advantage only when
Pr, is close to 2 and m is greater than 30 in the case that n = 500; however, when
pn > 50 in the case that n = 500, Hp and Hg are much less powerful than the weighted
portmanteau tests. On the contrary, since the power of un-weighted portmanteau tests

is not stable over m, the spectral tests with an appropriate p, (e.g., p, < 10 in the
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(a) Empirical power (x100) of all spectral tests based on model (4.2)
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case that n = 100 and p,, < 50 in the case that n = 500) can be much more powerful
than the un-weighted portmanteau tests with a large m.

Overall, based on the bootstrapped critical values, the portmanteau tests, especially
the weighted ones, give us a good indication in diagnostic checking of weak ARMA
models, while the size/power performance of the spectral test is sensitive to the choice
of kernel function and related bandwidth, and hence the spectral test urgently calls

for a good data-driven method for selecting the bandwidth.

4.2. Study on fitted PGARCH models. In this subsection, we examine the finite-
sample performance of @m, Qo Mm and M,, on testing the adequacy of PGARCH
models. As a comparison, we also consider the portmanteau test Q%F in Carbon
and Francq (2011). In size simulations, we generate 1000 replications of sample size

n = 1000 from the following model:

5
(4.3) yr = mvhi, h =0.2+0.2[y,1|°,

where {n;} is a sequence of i.i.d. N(0, 1) random variables. Table 3 reports the results
for the size study. From Table 3, we find that in general, the sizes of all tests are close
to their nominal ones, while the sizes of Qm, Qo) Mm and M, seem to be conservative
when both § and m are large.
TABLE 3
Empirical sizes (x100) of all tests based on model (4.3).

Tests
5 m Q m @m ]\/['m M'm Q gF

25 6 49 55 49 5.7 2.7
12 26 40 28 4.3 3.1
24 1.7 21 2.0 2.3 2.6
32 09 16 1.5 1.9 3.3
20 6 35 48 39 4.6 2.6
12 33 43 33 4.3 2.9
24 21 26 21 2.7 4.0
32 23 23 23 2.4 3.7
1.0 6 7372 71 6.5 6.6
12 65 73 63 6.5 8.3
24 54 6.6 48 6.2 6.7
32 58 59 51 5.5 7.4
05 6 54 56 54 5.6 3.5
1263 50 6.0 5.2 4.1
24 52 6.1 5.4 5.3 4.1
32 50 57 52 5.8 3.4

Next, in power simulations, we generate 1000 replications of sample size n = 1000

from the following model:

3
(4.4) ye = nevhe, b2 =024 020y 1% +0.2]y: /%,

where {n:} is a sequence of i.i.d. N(0,1) random variables. For each replication, we

fit its mean-adjusted series §; by an AR(1) model as in (3.4), and then we use all
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portmanteau tests to check the adequacy of this fitted model. Table 4 reports the
results for the power study, where the critical values for @m, Q. Mm or M,, are
chosen as for @,(721), @ﬁi), Mg ) or Mf?, respectively. From Table 4, we find that when §
is small, the weighted tests Q,,, and M, are more powerful than others. However, when
d is large, QT(éF is the best performing test statistic. Overall, our weighted portmanteau

tests have a good performance especially when § is small.
TABLE 4
Empirical power (x100) of all tests based on model (4.4).

Tests
§ m Qm Q. M, M, Q5

25 6 51.2 559 51.1 549 971
12 454 519 443 508 94.8
24 38.0 46.8 348 452 89.4
32 33.7 438 309 419 86.1
20 6 747 79.2 731 788 947
12 658 752 655 743 89.6
24 56.9 685 54.6 683 82.0
32 50.6 658 48.6 65.0 77.6
1.0 6 954 98.2 957 981 949
12 90.2 96.0 904 965 91.6
24 80.9 92.8 80.5 92.6 81.6
32 740 90.5 724 914 774
05 6 983 99.7 985 99.7 955
12 956 989 956 989 90.6
24 88.0 97.5 882 974 822
32 845 96.7 831 962 779

5. A real example. In this section, we revisit the real example on S&P 500 index
in Francy, Roy, and Zakoian (2005). The data sample taken from January 3, 1979 to
December 31, 2001 has in total 5808 observations, and its log-return is denoted by
{12897, First, we use Qum, Qo) M,, and M,, to check whether {y:} is a sequence
of white noises. The p-value is calculated either as in strong ARMA models (denoted
by p-valuel) or via the RW method with J = 500 (denoted by p-value2). All testing
results are reported in Table 5, from which we know that at the significance level 5%,
the strong white noise hypothesis is rejected, while the weak white noise hypothesis
is not rejected. This is consistent to the findings in Francy, Roy, and Zakoian (2005).

Next, we want to check whether a PGARCH(1,1) model in (3.1) with § = 2.0, 1.0
° -

or 0.5 is adequate to fit {y;}. Denote by 9 = |y E|y|°® the mean-adjusted series.

As in (3.4), we obtain the following three fitted models:
Model A : § = 0.8287§;—1 — 0.7236v;_1 + v; with o, = 5.26 x 107" and § = 2.0;
Model B : gy = 0.97533;—1 — 0.8979v;_1 + v; with o5, = 4.99 x 107° and § = 1.0;
Model C : i = 0.9920§;—1 — 0.9513v;_1 + v; with o2, = 1.30 x 10™% and § = 0.5.

For models A-C, we use Qp,, Q. M,, and M, to check their adequacy. As a compar-
ison, we also use Q5" to check the adequacy of these fitted models. All testing results
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are reported in Table 6. From this table, we find that at the significance level 5%, all
tests suggest that models A and B are adequate, while except Q%F , the other tests
indicate that model C is not adequate. To look for further evidence, Figure 3 plots the
residuals autocorrelations and partial autocorrelations for models A-C. From Figure
3, we know that the 1st, 5th, 22th, 25th and 33th residuals autocorrelations or partial
autocorrelations in model C all exceed the 95% significance bounds. Thus, it suggests
that model C is not adequate. Moreover, since model A has a smaller sum of squared
errors than model B, we prefer to fit {y:} by a PGARCH(1, 1) model with 6 =2 (i.e.,
GARCH(1, 1) model). Finally, it is worth noting that although the conclusions drawn
from Qum, Q,,, My, and M,, are the same, the p-value2s of Q,, or M,, tend to be
more stable over all lags for model C. In view of this, we recommend the weighted

test Q,, or M, to practitioners.

TABLE 5
Testing results for the adequacy of a white noise on SEP 500 index.

m
6 12 18 24 30 36 42

Qm statistic 25.58 36.07 38.49 46.62 64.49 78.77 87.71

p-valuelt 0.0003 0.0003 0.0033 0.0037 0.0003 0.0000 0.0000

p-value2® 0.4758 0.5283 0.6874 0.6990 0.5292 0.4634 0.4518

Qm statistic 20.64 25.17 28.98 32.25 37.65 43.73 49.37
p-valuel ~ 0.0000 0.0000 0.0001 0.0002 0.0002 0.0001  0.0000
p-value2  0.3508  0.4805 0.5494 0.5967 0.5817 0.5719  0.5477

M,,  statistic 25.06 36.39 38.78 46.63 63.75 76.68 86.08
p-valuel ~ 0.0003 0.0003 0.0033 0.0037 0.0003 0.0000 0.0000
p-value2  0.4881 0.5219 0.6833 0.6990 0.5441  0.4977 0.4776

‘M, statistic 20.40 24.87 28.89 32.30 37.72 43.47 48.85
p-valuel ~ 0.0000 0.0000 0.0001 0.0002 0.0002 0.0001 0.0000
p-value2  0.3578  0.4871 0.5507 0.5941 0.5783 0.5754  0.5545

 p-values taken as in strong ARMA models.

§ p-values bootstrapped by the RW method with W* = I,,, (or W) for Qum and My,
(or Q,,, and M,).

6. Block-wise random weighting approach. Although the bootstrapped crit-
ical values based on the RW method are valid for weak ARMA models, the condition
in Assumption 2.4 seems to be slightly restrictive in practice. In this section, we
propose a block-wise RW method to obtain the bootstrapped critical values for all
portmanteau tests. Our bootstrapped critical values from the block-wise RW method
are valid without posing Assumption 2.4, but it requires a selection of block size as
many block-wise bootstrap methods in the literature; see, e.g., Romano and Thombs
(1996), Horowitz, Lobato, Nankervis, and Savin (2006), and Shao (2011b).

The detailed procedure to bootstrap the critical values by the block-wise RW
method is the same as the one in steps 1-4 in Section 2, except replacing step 1
by step 1’ as follows:

step 1'. Set a block size b, such that 1 < b, < n, and denote the blocks by B, =



TABLE 6
Testing results for the adequacy of a PGARCH(1,1) model on SEP 500 index.

m
6 12 18 24 30 36 42

6=2.0 Qm statistic 87.44 96.42 97.39 99.61 105.6 110.3 111.7

p-valuel® 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

p-value2® 0.4063 0.4358 0.4416 0.4483 0.4432 0.4428 0.4246

Q,, statistic 40.60 67.95 77.56 82.86 86.67 90.39 93.35
p-valuel  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p-value2 0.4349 0.4293 0.4319 0.4431 0.4452 0.4475 0.4281

M,,  statistic 86.51 106.20 108.45 110.80 115.93 121.02 123.28
p-valuel  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p-value2 0.4115 0.3841 0.3845 0.3929 0.3911 0.3903 0.3677

My, statistic 40.77 7177 83.64  90.31 94.79  98.91 102.26
p-valuel  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p-value2 0.4325 0.4009 0.3934 0.3995 0.3983 0.3993 0.3811

QST statistic 1.44 7.79 1044  16.53  23.62  29.08  56.45
p-value  0.9635 0.8014 0.9166 0.8680 0.7889 0.7864 0.0673

6=1.0 @m statistic 22.90 39.57  46.11 67.54 76.99 94.13 101.4
p-valuel 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
p-value2 0.4497 0.4093 0.4174 0.2739 0.2839 0.2091 0.2151

Q,, statistic 9.15 20.58 28.30  34.78 4227  50.10  56.98
p-valuel  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p-value2 0.6445 0.5258 0.4703 0.4507 0.4044 0.3553 0.3248

M,  statistic 22.72 38.80 4540  67.75 75.87  88.27  95.44
p-valuel  0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
p-value2 0.4544 0.4244 0.4309 0.2717 0.2966 0.2672 0.2768

M,  statistic 9.09  20.71 28.14 3459 4216  49.26  55.37
p-valuel  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
p-value2 0.6474 0.5219 0.4745 0.4556 0.4069 0.3723 0.3497

QCF  statistic 1.83 1.98  2.02 2.10  2.11 2.13  2.23
p-value  0.9350 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000

6=0.5 Qm statistic 18.64 22.86 25.07 39.42 49.92 59.99 65.88
p-valuel 0.0009 0.0113 0.0687 0.0126 0.0066 0.0039 0.0061
p-value2 0.0204 0.0847 0.2465 0.0962 0.0571 0.0417 0.0515

Q statistic 10.97  15.82 18.62 21.58  26.85 31.92  36.36
p-valuel  0.0000 0.0009 0.0063 0.0149 0.0092 0.0062 0.0054
p-value2 0.0339 0.0405 0.0703 0.1090 0.0784 0.0637 0.0555

M,,  statistic 19.45 23.08 2530 40.35 50.74 61.14  67.90
p-valuel 0.0009 0.0113 0.0687 0.0126 0.0066 0.0039 0.0061
p-value2 0.0172 0.0820 0.2385 0.0837 0.0515 0.0351 0.0389

M,  statistic 11.30 16.23 18.96 22.01 27.45 32.56 37.10
p-valuel 0.0000 0.0009 0.0063 0.0149 0.0092 0.0062 0.0054
p-value2 0.0295 0.0344 0.0634 0.0985 0.0679 0.0566 0.0475

QST statistic  0.0927 0.0930 0.0931 0.0934 0.0935 0.0936 0.0942
p-value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

 p-values taken as in strong ARMA models.
§B—values bootstrapped by the RW method with W* = I, (or W) for Q. and M, (or
Q,, and M ).
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Fic 3. The residuals autocorrelations and partial autocorrelations for models A-C. The solid lines are
95% significance bounds under the strong ARMA model. The dashed lines are 95% significance bounds
under the weak ARMA model.
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{(s=1)bp+1,--- ,sb,} fors=1,---, Ly, where L, = n/by, is assumed to be an integer
for the convenience of presentation; furthermore, generate a sequence of positive i.i.d.
random variables {d1,--- ,0r, }, independent of the data, from a common distribution
with mean and variance both equal to 1, and then define the random weights w} = 4,

ift € B, for t =1---  n; finally, calculate é; via
A - - 12 -
0 = arg mein L (0), where L} (0) = - ;wz‘ltw).

Clearly, the block-wise RW method is a natural extension of the RW method, and
the validity of the bootstrapped critical value from the block-wise RW method is
justified by the following theorem:

THEOREM 6.1.  Suppose that (i) Assumptions 2.1-2.3 hold and model (1.1) is weak
and correctly specified; (ii) E|y|3T* < oo for some v > 0 and limy,_, o k2 [ay(k)]”/(2+”)

1/3

= 0; and (1) lim, o0 by, = 00 and lim,,_,o by, /n' /> = 0. Then, conditional on xp,

Vn(p* —p) —q N(0,X) in probability
as n — oo, where ¥ is defined in (2.1).

The proof of Theorem 6.1 is given in the Appendix. Here, condition (ii) poses some
additional requirements on y;, and condition (iii) gives some restrictions on the block-
size b,. Both of them are necessary for the proof. From Theorem 6.1, we know that
the performance of our tests along with their critical values from the block-wise RW
method depends on the user-chosen parameter b,,. This may be the price we pay for not
assuming Assumption 2.4. Simulation studies in the on-line supplementary document
show that our testing results are not sensitive to the user-chosen parameter b,,, while
the size performance of Hong’s (1996) kernel-based spectral test is not robust to the
choices of the bandwidth p,. Till now, how to select the optimal b,, under certain
“criterion” is unknown. This is a familiar problem with all blocking methods. The
heuristic work in Hall, Horowitz, and Jing (1995), Politis, Romano, and Wolf (1999),

and Sun (2014) may be extended in this case, and we leave it for future study.

7. Concluding remarks. In this paper, by using the RW method, we bootstrap
the critical values for Ljung-Box/Monti portmanteau tests @m /Mm and weighted
Ljung-Box/Monti portmanteau tests Q,,,/ M, in weak ARMA models. Unlike the ex-
isting methods (e.g., kernel-based method, VAR method, or block bootstrap method),
the easy-to-implement RW method requires no user-chosen parameter. Thus, it over-
comes a drawback in the existing methods that the testing results are sensitive to the
choices of user-chosen parameters. As an application, we further use our portmanteau
tests to check the adequacy of PGARCH models. Simulation studies reveal that (i)
the weighted portmanteau tests Q,,,/M,, along with the critical values from the RW
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method have the power advantage over the un-weighted ones in general; (ii) the sizes
of all portmanteau tests are robust to the choices of the lag m, while the sizes of the
kernel-based spectral tests in Hong (1996) are sensitive to the choices of the band-
width p,; and (iii) the weighted portmanteau tests @,, /M, can be significantly more
powerful than the kernel-based spectral tests with an inappropriate choice of p,. As
one extension work, we also propose a block-wise RW method to bootstrap the critical
values for all portmanteau tests, and its validity is justified.

Finally, we suggest three future subjects, which may lead to some better specifi-
cation tests. First, as in Escanciano and Lobato (2009), it is of interest to consider
the case that m is not fixed but optimally chosen by the data set. If it is possible, a
more powerful testing procedure should be expected. Second, till now, less is known
to choose the optimal weight matrix W (in some sense) such that the corresponding
weighted Ljung-Box or Monti portmanteau test has the best performance among all
weighted portmanteau tests in strong ARMA models. We may expect that the merits
of this optimal weighted portmanteau test still hold in weak ARMA models. Third,
since all portmanteau tests still need a selection of m, they can not detect serial corre-
lations beyond lag m. Hence, it is a practical demand to study the Cramér-von Mises

spectral test (e.g., Shao (2011b)) which can detect serial correlations at all lags.
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BOOTSTRAPPING THE PORTMANTEAU TESTS IN WEAK
AUTO-REGRESSIVE MOVING AVERAGE MODELS
(SUPPLEMENTARY DOCUMENT)

By KE ZHU

Chinese Academy of Sciences

In this supplementary material, we give some simulation studies and all of the proofs

for the paper in Appendix.

1. Additional simulation studies. In this section, we give some simulation
studies, which are useful but not reported in the paper. In Subsection 1.1, we check the
sensitivity of the distribution of random weights to our portmanteau tests by simula-
tion. In Subsection 1.2, we examine the finite-sample performance of our portmanteau
tests as in Section 4 of the paper by some additional simulations. In Subsection 1.3,

we assess the finite-sample performance of the block-wise RW method.

1.1. Sensitivity of the distribution of random weights. In simulation studies of the
paper, we generate random weights {wj } from the standard exponential distribution.
In this subsection, we check the sensitivity of the distribution of {w;} to our port-

manteau tests by generating {wj} from the Bernoulli distribution such that

L _3-V5\ _1++5 L _3+VE) _Vh-1
P(wt— 5 )- 25 andP(wt— 5 )- o5

TABLE 1
Empirical sizes (x100) of all tests based on model (4.1) in the paper.

Tests
m n QY QW QW QW MY MY M, My

2 100 58 52 56 5.3 5.3 4.8 5.4 5.1
500 4.3 42 48 43 4.2 4.2 4.7 4.7
6 100 5.0 41 52 4.5 4.1 3.5 4.6 3.7
500 3.9 3.7 43 4.2 3.5 3.3 3.7 3.6
18 100 6.0 34 52 40 4.2 1.7 3.8 2.6
500 39 34 34 32 3.2 3.0 3.4 3.3
20 100 6.5 34 55 3.8 4.4 2.0 3.8 2.5
500 4.0 3.7 34 3.0 3.1 3.0 3.0 2.8

Tables 1-2 are obtained in the same way as Tables 1-2 in the paper. From these four

tables, we can see that our testing results are robust to the distribution of w;.

1.2. Some additional simulations. In this subsection, we examine the finite-sample
performance of our portmanteau tests as in Section 4 of the paper by some additional

simulations. Hereafter, we generate {w;} from the standard exponential distribution.
1



TABLE 2
Empirical power (x100) of all tests based on model (4.2) in the paper.

Tests
m_n QW QW Qw @ MY MY My M,

m m

2 100 25.6 24.3 284 27.2 294 282 30.7 292
500 82.1 81.8 85.0 84.6 840 835 856 856
6 100 17.3 149 234 21.8 21.1 182 253 23.8
500 74.5 742 80.8 80.7 774 76.8 823 822
18 100 17.2 11.1 19.2 13.8 14.7 79 188 144
500 61.7 60.0 73.8 73.2 622 605 759 748
20 100 17.1 9.8 194 13.1 14.6 6.5 185 13.6
500 60.4 584 729 719 614 589 747 T3.7

First, we study it for fitted weak ARMA models. In size simulations, we generate

1000 replications of sample size n = 100 and 500 from the following model:

(1.1) Yr = 0.9er_1 + ¢, €t = mM—1,

where {n:} is a sequence of i.i.d. N(0,1) random variables. Table 3 reports the em-
pirical sizes for all tests except the robust M test, which is not valid for MA models.
From Table 3, our findings are the same as those from Table 1 in the paper. Moreover,
Figure 1 below plots the empirical sizes of all spectral tests and portmanteau tests,

and our findings from this figure are the same as those from Figure 1 in the paper.

TABLE 3
Empirical sizes (x100) of all tests based on model (1.1).
Tests
m n 0D 00 39 o0 @ ¥ m0 m@ m® ml @ w7

2 100 17.7 5.5 4.9 20.2 6.4 59 18.1 6.7 6.1 21.1 6.3 6.2
500 29.6 6.2 6.1 29.6 6.6 6.5 25.7 6.6 6.4 296 7.2 6.9
6 100 8.9 4.6 3.8 10.6 5.9 5.0 10.0 5.2 4.8 11.1 6.4 5.2
500 14.5 5.1 4.9 17.7 6.3 6.3 14.5 5.6 5.5 17.2 6.4 6.3
18 100 7.2 5.3 2.1 6.7 5.2 3.3 6.3 4.8 2.4 7.2 5.1 3.5
500 10.2 3.6 3.3 117 5.2 4.7 9.6 4.3 4.0 117 4.8 4.7
20 100 6.1 5.8 2.1 6.9 5.3 2.7 5.0 4.7 2.2 6.8 5.1 3.0
500 9.6 4.4 3.7 117 5.1 4.8 9.2 4.6 4.2 111 4.9 4.6

Tests
(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)
Hy’ Hpg” Hp' Hp' Hp Hp Hyp Hp Hy HQ HQ HQ

100 5.6 3.8 3.0 6.3 3.8 2.8 6.1 4.6 3.5 5.4 3.2 2.4
500 11.2 7.6 7.1 13.0 9.0 7.9 11.8 8.5 7.8 10.0 6.7 5.4

In power simulations, we generate 1000 replications of sample size n = 100 and 500

from the following model:
(1.2) yr = 0.2y1—1 + 0.9e1—1 + &4, €6 = Me1p—1,

where {n;} is a sequence of i.i.d. N(0,1) random variables. For each replication, we fit
it by a MA(1) model, and then use all tests to check the adequacy of this fitted model.
Table 4 reports the empirical power for all tests after the size-correction method in

Francq, Roy, and Zakoian (2005, p.541). From Table 4, our findings are the same as



(b) Empirical sizes (x 100) of

all portmanteau tests based on model (2.1)
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and n =500 (lower panel). Here, the solid line stands for the significance level a = 5%
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those from Table 2 in the paper. Moreover, Figure 2 below plots the empirical power
of all spectral tests and portmanteau tests. From this figure, our findings are the same
as those from Figure 2 in the paper, except that the spectral tests generally are more

powerful than the portmanteau tests in the case that n = 100.

TABLE 4
Empirical power (x100) of all tests based on model (1.2).
Tests
m_n QW QR QR @) Q. @) MY M@ mP M, M MY

2 100 273 199 189 29.0 20.1 188 247 16.7 152 257 184 17.6
500 74.1 76.1 756 755 76.5 763 727 744 740 757 757 754
6 100 19.7 156 134 244 187 169 182 13.5 121 224 163 14.6
500 68.4 68.8 685 711 746 741 670 673 669 703 723 718
18 100 16.5 14.6 9.9 207 169 131 128 104 7.0 188 132 9.4
500 59.1 570 554 69.8 677 674 56.6 539 523 681 659 653
20 100 16.6 15.1 9.3 206 164 12.7 144 10.5 6.0 186 128 9.0
500 56.2 55.5 539 689 67.1 658 545 523 498 674 653 64.1

Tests
€] 2) 3) €] 2) 3) [ 2) 3) €8] @) 3)
Hy’ Hy’ Hy’ Hpy’ HS HJ Hp Hy Hy, HQ HQ HQ

100 27.2 22.0 204 236 195 186 29.7 24.0 219 235 196 183
500 69.2 63.7 59.0 69.3 576 546 713 650 619 684 56.2 534

Second, we study it for fitted PGARCH models. In size simulations, we generate

1000 replications of sample size n = 1000 from the following model:

[ [
(1.3) ye = nev/he, hZ =0.001 4 0.08]y;1]° + 0.9h2 ,,

where {n:} is a sequence of i.i.d. N(0, 1) random variables. Table 5 reports the results
for the size study. From Table 5, our findings are the same as those from Table 3 in
the paper.
TABLE 5
Empirical sizes (x100) of all tests based on model (1.3).

Tests

25 6 28 26 22 2.6 2.2
12 1.3 26 1.0 1.6 3.5
24 11 15 0.5 0.5 6.0
32 09 09 01 0.4 6.2
20 6 27 23 21 1.8 3.3
12 25 22 09 1.7 3.1
24 21 23 06 0.6 7.6
32 1.3 20 03 0.7 8.0
10 6 33 35 34 3.2 4.8
12 50 3.6 3.7 3.3 6.4
24 41 39 39 3.1 7.0
32 40 38 33 2.8 6.1
05 6 42 40 44 4.1 4.6
12 55 43 44 4.3 4.6
24 49 49 39 4.5 4.6
32 5.7 45 44 4.1 3.9




(a) Empirical power (x 100) of all spectral tests based on model (2.2) (b) Empirical power (x 100) of all portmanteau tests based on model (2.2)
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Fia 2. The empirical power (x100) of all spectral tests (part (a)) and all portmanteau tests (part (b)) based on model (1.2) for the cases that n = 100 (upper panel)
and n = 500 (lower panel).



In power simulations, we generate 1000 replications of sample size n = 1000 from

the following model:
5 5

(1.4) yr = nev/he, h2 = 0.001 + 0.08]y;—1]° + 0.2]y;_2|° + 0.6h2 ,,
where {n:} is a sequence of i.i.d. N(0,1) random variables. For each replication, we
fit its mean-adjusted series §; = |y¢|° — F|y¢|° by an ARMA(1,1) model, and then use
all portmanteau tests to check the adequacy of this fitted model. Table 6 reports the
results for the power study. From Table 6, our findings are the same as those from

Table 4 in the paper.

TABLE 6
Empirical power (x100) of all tests based on model (1.4).

Tests

6 m Qm Q m ]\/1777, M7n Q gF

25 6 9.5 143 83 11.9 69.0
12 78 102 6.2 8.3 33.1
24 7.2 8.8 4.8 6.2 26.8
32 6.6 8.2 3.8 5.8 24.3
20 6 235 31.2 201 289 75.0
12 183 259 155 215 359
24 169 206 122 17.6 28.3
32 155 193 109 159 247
1.0 6 656 781 648 778 736
12 53.6 70.0 539 69.5 584
24 444 60.6 426 59.0 438
32 399 564 366 553 387
05 6 846 91.7 843 917 759
12 723 872 71.8 86.8 61.0
24 586 T74 576 779 448
32 51.7 725 499 722 36.0

1.3. Simulations on the block-wise RW method. In this subsection, we assess the
finite-sample performance of our portmanteau tests with critical values bootstrapped
from the block-wise RW method. In size simulations, we generate 1000 replications of

sample size n = 100 and 500 from the following model:
(1.5) ye =091 + &1, & = Mimi-1,

where {7} is a sequence of i.i.d. N(0,1) random variables. For the block-wise RW
method, we choose b,, = n'/5 or 2n1/>. This leads b,, = 2 or 5 for n = 100, and b, = 3
or 7 for n = 500. Table 7 reports the empirical sizes for all tests. From Table 7, our
findings are the same as those from Table 1 in the paper, except that (i) the size
performance of four portmanteau tests is robust the choice of block size by,; and (ii)
the sizes of all portmanteau tests tend to be conservative when m is large.

In power simulations, we generate 1000 replications of sample size n = 100 and 500

from the following model:

(1.6) Y =0.2y1 + 0.9e,1 + &, &1 = nNe—1,
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where {n;} is a sequence of i.i.d. N(0,1) random variables. For each replication, we fit
it by a MA(1) model, and then use all tests to check the adequacy of this fitted model.
Table 8 reports the empirical power for all tests after the size-correction method in
Francq, Roy, and Zakoian (2005, p.541). From Table 8, our findings are the same
as those from Table 2 in the paper, except that (i) the power performance of four
portmanteau tests is robust to the choices of block size b,; (ii) the power of four
portmanteau tests is relatively low when m is large and n is small; and (iii) the spectral
tests generally are more powerful than the portmanteau tests, especially when n is
small.

Overall, our portmanteau tests with critical values boostrapped from the block-wise
RW method give us a good indication in diagnostic checking of weak ARMA models,

especially for small m.

TABLE 7
Empirical sizes (x100) of all tests based on model (1.5).

Tests
m o n b, QY QP Q¥ @V Q¥ Q¥ MY mMP mP MY MY wmY

2 100 2 20.3 5.0 4.0 25.8 6.4 5.9 20.5 6.1 54  25.7 7.2 6.8
5 21.2 5.7 5.4 25.8 6.0 5.8 23.0 6.2 59 259 6.7 6.1
500 3 31.9 5.9 5.7 36.3 6.6 6.4 324 6.0 5.8 36.2 6.8 6.8
7 30.6 5.6 5.5 344 6.1 6.0 30.7 5.6 5.6 349 6.4 6.3
6 100 2 9.6 5.2 4.0 13.2 5.3 4.5 9.9 5.7 3.9 134 5.3 4.7
5 10.8 4.9 4.4 13.3 5.4 4.8 11.3 5.7 4.8 14.1 6.1 5.5
500 3 18.5 4.6 4.5 235 5.1 4.9 18.3 4.1 4.1 234 5.2 5.0
7 183 2.8 2.7 21.1 4.0 3.8 17.9 2.8 2.7 222 4.4 4.4
18 100 2 5.3 4.1 2.0 6.3 4.4 2.8 5.2 3.6 2.3 7.0 3.8 2.2
5 5.9 4.8 3.0 8.5 4.6 3.1 6.2 4.8 3.3 8.5 4.2 3.1
500 3 11.6 2.4 2.0 14.4 3.2 3.0 12.1 2.3 2.0 14.7 3.6 3.3
7 13.1 1.6 1.3 15.6 2.1 2.0 125 1.7 1.3 15.9 2.1 2.0
20 100 2 4.7 4.1 2.0 6.0 4.3 2.8 5.2 4.3 2.3 6.5 3.7 2.1
5 6.1 4.9 3.4 8.2 4.9 2.9 6.0 5.4 3.5 7.9 4.2 3.3
500 3 11.4 2.3 2.0 14.1 3.0 2.7 113 2.2 2.0 14.2 3.2 2.8
7 124 1.7 1.4 14.7 1.9 1.9 12.2 1.7 1.2 15.5 2.3 2.2
Tests

€8] @) 3) €8] 2) 3) €8] 2) 3) €] 2) 3)

Hy’ Hg’ Hp’ Hp’ HS HJS Hp Hy Hy HQ HQ HQ
100 8.3 5.2 3.5 8.9 4.9 3.4 10.2 6.8 5.5 8.1 3.8 3.3
500 15.5 9.9 9.2 173 11.8 10.0 17.2 11.6 10.1 14.5 9.5 7.5

APPENDIX: PROOFS

In this appendix, we give the proof of Theorems 2.2 and 6.1 in the paper. Denote by
E* the expectation conditional on x,; by 0;(1)(0,(1)) a sequence of random variables
converging to zero (bounded) in probability conditional on x;. Then, we are ready to
give three lammas. The first one from Lemma A.4 of Ling (2007) makes the initial
values {ys;s < 0} ignorable. The second one is directly taken from Francq, Roy, and
Zakoian (2005). The third one is crucial to prove Theorems 2.2 and 6.1.



TABLE 8
Empirical power (x100) of all tests based on model (1.6).

Tests
mon by QW QW QW @ QY Qw My MY MY I, M, My

m m m

2 100 2 242 13.8 129 26.5 144 139 19.2 114 104 239 135 125
5 25.1 139 134 271 15.0 13.7 204 11.7 11.0 243 142 13.1
500 3 61.5 581 57.8 614 59.3 59.2 589 553 550 60.3 56.8 56.6
7 59.7 524 522 59.0 551 548 57.1 49.2 487 578 53.1 52.8
6 100 2 17.0 8.5 6.9 23.6 10.7 9.8 15.7 8.1 6.3 19.1 9.5 8.5
5 185 8.7 8.0 240 11.6 10.7 16.8 8.3 6.7 20.2 10.1 9.2
500 3 59.2 495 484 61.1 56.6 564 56.8 46.7 46.2 58.9 54.4 53.9
7 572 43.8 434 60.0 49.7 496 54.2 40.7 40.2 574 46.5 45.8
18 100 2 124 5.6 3.2 17.7 7.5 49 129 4.5 2.7 173 5.2 3.8
5 11.6 6.4 4.5 19.7 7.4 6.2 11.7 5.3 3.8 17.3 5.3 3.8
500 3 499 314 30.1 54.8 457 446 484 279 26.7 53.6 42.5 41.8
7 48.1 270 246 54.0 39.0 383 456 23.6 21.4 53.0 36.8 358
20 100 2 12.8 5.9 3.0 17.2 7.2 4.7 13.1 4.6 2.2 16.7 5.1 3.3
5 11.9 6.1 4.7 19.3 7.2 5.8 12.0 5.3 4.0 16.9 6.2 4.9
500 3 48.7 30.3 27.8 54.5 437 428 46.5 254 239 53.0 40.1 39.3
7 46.9 239 221 529 369 36.0 446 20.6 19.2 51.7 352 34.0
Tests

() (2) (3) (T) (2) (3) (T) (2) 3) (T) (2) (3)

Hy’' Hy’ Hp’ Hpy’ HS HJS Hp Hy Hy HQ HQ HQ
100 23.1 188 179 224 169 174 234 19.7 180 21.8 16.7 16.5
500 67.5 59.0 56.3 65.8 55.0 51.6 69.7 59.6 5H7.6 652 54.7 49.3

LEMMA A.1.  Suppose that Assumption 2.1 holds. Then,

() sup le(0) — £(0)] = O(p")&po;
|55 - %] =0

(44) sup

é.pO )

d=7(0) Gét(G)
(7it) P 000" ~ o000

= 0(p")&,0,
for some p € (0,1), where £, = 1+ 352 p|ys—il-
LEMMA A.2.  Suppose that the conditions in Theorem 2.1 hold. Then,
Viip = 072 (Vi) + Ay (VT ¥5) + 0y(1),
where Y, = —=2/n Y"1 €1(024/00) and Ty = (Y1, -+, ym) withye =n~' S0 111 ek
LEMMA A.3.  Suppose that the conditions in Theorem 2.2 or 6.1 hold. Then,
Vgt = 072 (Valh) + A (Vag ~'Y;) + o3 (1),

where Y7 = —2/n S0 wie(921/00) and T, = (35, - ,45) with 7 = n™! Ti gy wf

EtEt—k-
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PrROOF. We only give the proof under the conditions in Theorem 6.1, because the

proof under the conditions in Theorem 2.2 is similar. By the definition of Hn, it is

straightforward to see that

L 1 )] T L, L al(0)
Gn—%——[nz w] 8989,] an(wt—l) o+

t=1 t=1 t=1

(A.1) 2 — [s1a] " [520 + S3n)

where &, lies between 6y and 6%. Let ;(8) = £2(). First, by Lemma A.4 in Ling
(2007), the ergodic theorem and Lemma A.1, it follows that

021,(0
b | +(0)

n

E*||s1a] = Z

=1

6 lt ‘fn
0000’

<1y

+ Op(l) = Op(]')7
ni= o

0000’

| n

which entails s1, = O;(1). Next, by a direct calculation and Lemma A.1, we have

0ly(60) Oly (6o)
B [sansin] = 22 2 “on om
t,t/EBS

] Lo Ol (0) 1y (0)
a2 o g | T2W

=1 |tVeBs

(A.2) £ s4n + 0p(1).

Moreover, since E[l;(0y)/06] = 0, by the stationarity of I;(f), we can show that

B 8lt (6p) 1
(San) = Zvar[ Z ]_nvar [\/Etﬁ 20

tEB

duo to the fact that b,' = o(1) and Lemma 3 in Francq and Zakoian (1998). Thus, by
(A.2), we have \/ns2, = Oy(1). Moreover, since s3, = 0p(1) by the ergodic theorem,
it follows that 6% — 6y = 05(1), and consequently, by using Theorem 3.1 in Ling and
McAleer (2003), it is not hard to show that

. * a2it(§n) _ * a2lt gn _ *
;(wt_l) aoag — orll) and *Z oo~ 7 +onlL):

Therefore, we have s1, = J + 0j(1). Note that \/nss, = O,(1) by Lemma 3 in Francq
and Zakoian (1998) and Lemma A.1. Thus, by (A.1), it follows that

(A.3) Vil — 00) = g~V + (1),

Now, the conclusion follows directly from (A.3), Lemma A.1 and Taylor’s expansion.
O
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PROOF OF THEOREM 2.2. By Lemmas A.1-A.3, it is not hard to show that

(A.4) V(p* = p) <Z Zm)

where V = [0721,,, —2A/,J '] and Z};, = (w} — 1)z,/+/n with
~ ~ ~ 86,5
= <€t€t—1,"' €t mﬁtae ) .

Let ¢ € R™*TP+4 bhe a constant vector. We now consider the conditional distribution

of >, ¢z}, . First, since wf is independent to y; with Fw; = 1, we know that
(A.5) E*[dzf)] = 0.

Second, since var(w;) = 1, by Assumption 2.4, Lemma A.1 and the same lines as

done in Francq, Roy, and Zakoian (2005, p.543), we can show that
n
S B [e5 e = ( mg) c
t=1
/ /
= — 1
c <n Zztzt> c+op(1)

t=1
Ry o*S!,
(A.6) —d ( oS, T/ ) c20c

in probability as n — oo, where z; is defined in the same way as Z; with ¢; replacing
&;. Third, we check the Lindeberg condition. Let Cy be a positive generic constant.
Since E(w;)?Tr0 < oo from Assumption 2.3, by Holder and Markov inequalities, for

allt=1,--- ,n and any given n > 0, we have
E*[(w; = 1*1(|¢Z,] > )]

< [ (= 1P)] 7 (2 (12 > )7

|z, ||
<Co|——
n
(A7) <y [1 % K ]2-&%0 ,
where 1= (1,1,---,1) € R™P+4¢ and
R = (= max E8l - —= max [l — -2)
n= 77 s el T max [l oo max S gg) )




Then, by (A.7), it follows that

n
> E ¢z el (155, > )]

{iﬁ;az; [(wp = 1?1 25, > )] } c

1 n

PO
< CO {1/ X Kn] 2tro C/ { thé} C

n

t=1

(A.8) = Cp [1" x Ky, + 0p(1)] 2+*io c { Zztzt + 0p(1 }

where the last equality follows directly from Lemma A.1, and K, is defined in the same

way as K, with ; replacing &. Note that K, = op(1) and n=t Y0 | 22 =

Assumption 2.2. Thus, by (A.8), it follows that

n
(A9) Z E* {c zzn el (|d 2| > 77)} — 0 in probability as n — oo.
t=1

Finally, by (A.5), (A.6) and (A.9), the Cramér-Wold device and central limit theo-

rem in Pollard (1984, Theorem VIIIL.1) yield that conditional on xy,

n
(A.10) Z Z;, —a N(0,0) in probability as n — oo.

t=1

Since VOV’ = 3, the conclusion follows from (A.4) and (A.10).

PROOF OF THEOREM 6.1. The proof is directly from the one for Theorem 2.2,

except re-proving (A.6) under the conditions of Theorem 6.1.

By Lemma A.1, it is straightforward to see that

é [c ztnét,; } = c'{

1 L

~ o
tht/
|t t’GBS

| t,t'€Bs

£ Zne+ op(1).

~_}C

} c+op(1)

Clearly, EZ,, — O as n — oo. Thus, (A.6) holds if we can show that

(A.11) var(Z,) — 0 as

Note that Z, € R™*", where 7 = m + p + ¢. For simplicity, we only prove (A.11) for

Z7(LT’T), the last entry of Z,,, where

n — 0.
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By a direct calculation, we have

iy Oet, Ozy, Oy, Oeyy
BT S YD YD S| PR 5%, 0%, T, T,

s,8'=1 t1,t2€Bst t EB/

L1 & ,
= 5 Z 5(5, $ )
n s,8'=1
Rewrite
(7,7) 1 & / 1 & /
(A.12) var|[Z" ]:ﬁz Z 5(5,8)4-?2 Z £(s,8).
s=1 |5/75|§1 s=1 ‘S/*S‘>l

Fort the first summand in (A.12), since b, = o(n'/3), it is straightforward to see that

(A.13) 3 Z > s, 8 <L23i> =0 (f) =o(1).

s=11s"'—s|<1

For the second summand in (A.12), since

czyzand Aryi—r
D MURERYC R S

by Lemma 1 in Francq and Zakoian (1998), we have

q

Oet, Oey, Oy, Oeyy
200 Ohg Otpg Othg

‘E [Etlgtzgt =

. . ./ .
= Z CildklCiQdeCi/ldk’lci'Qdk’QM(’Lhkla12)k2a7’17 1?227k2)

i1,k1,02 ke, k] i,k

[2+Z+Z+Z+Z+Z+Z+z

11>bn /4 k1>bn/4  i2>bp /4 ka>bn/4 i’1>bn/4 k’1>bn/4 i’2>bn/4 k’2>bn/4

IN

. . -/ VA /
Z ‘CildklCiQdeCi&dkici’QdkéM(zhk17227k27217 17Z27k2)
i1,k1,92,k2,17 k] ,i5, kG, <bn /4

9
= Zgly
=1

where M (i, k1, iz, ko, i1, Ky, i, k) = E ’?Jtl—ilytl—k1ytz—z‘zytz—kgytg—igytg—k;ytg—i;ytg—kg :
By Cauchy-Schwarz inequality, we can show that

. . -/ . /
M(’Ll,kl,ZQ,k‘Q,Zl, 1,22,]€ )

2
2
= \/E (Ytr—is Y1 —ka Yta—ioYto—k2)” B (yt’lfi/lyt’lfk’lytéfiéytéfk/2> < By} < oc.
Since ¢; = O(p?) and d; = O(p?) for some p € (0,1), it is straightforward to see that

gi < Cop/4, for 1 <i <8.
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Furthermore, the Davydov inequality in Davydov (1968) implies that

g9 < Co > 1Yt —in Ytr — s Yo —io Yta—ko | 2400 1Y, iy Yo, kg Yty —it, Yy, — 20
i1,k ,02,k2,17 K b,k <bn /4

Jw (2]
< Co (Elul**") [O‘y (VZLD

X Z ‘Cildk’l Cizdkzci/ldk’l Cigdké
i1,k1,02,k2 0 kil kb <bn /4
v/(24v)

afa ()

Therefore, since limy, o k2[ay, (k)]*/ ) = 0, it follows that

w15 E qon=o(58) [ (]

s=1]s'—s|>1

Ciq dk1 Ciy dkz ci’1 dk’1 Ci’z dké

v/(24+v)

v/(24v)
= o(1).

By (A.12)-(A.14), we know that (A.11) holds. This completes the proof of (A.6). O
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