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Abstract

We characterize a rule for aggregating binary evaluations – equiv-
alently, dichotomous weak orders – similar in spirit to the Borda rule
from the preference aggregation literature. The binary evaluation
framework was introduced as a general approach to aggregation by
Wilson (J. Econ. Theory 10 (1975) 63-77). In this setting we char-
acterize the “mean rule,” which we derive from properties similar to
those Young (J. Econ. Theory 9 (1974) 43-52) used in his characteri-
zation of the Borda rule. Complementing our axiomatic approach is a
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derivation of the mean rule using vector decomposition methods that
have their origins in Zwicker (Math. Soc. Sci. 22 (1991) 187-227).
Finally, we derive the mean rule from an approach to judgment aggre-
gation recently proposed by Dietrich (Soc. Choice. Welf. 42 (2014)
873-911).

JEL classification: D71.
Keywords: Binary evaluations, judgment aggregation, mean rule,

tension, Borda.

1 Introduction

The Borda rule is a way to resolve the problem of “cyclic” profiles in pref-
erence aggregation. This problem is best illustrated by the majority voting
paradox. However, other aggregation problems have their own versions of
this paradox. One that has been discussed recently is the “doctrinal para-
dox” from the judgment aggregation literature.1 As with preference aggrega-
tion, when one aggregates individual judgments on related issues by applying
majority rule separately to each, the result may be an incoherent collective
judgment. It is natural to ask, then, if the Borda rule from the preference ag-
gregation literature has a counterpart in other aggregation problems.2 This
question is important because some advocate the Borda rule as the “best”
solution to the paradoxes that arise from preference aggregation.3 Perhaps
there are other aggregation problems that a suitable “Borda” rule can solve
too? In any case, developing alternatives to majoritarian aggregation in these
contexts should be of considerable interest.

How can we construct a Borda-like rule in other social choice settings?
One possible strategy is to consider Young’s (1974) original characterization
of the Borda rule via four axioms. By translating these axioms into another
setting we might identify a plausible analogue of the Borda rule for a different
aggregation problem. We show that binary evaluations represents at least
one aggregation context wherein Young’s axioms translate into versions that

1List and Pettit (2002) started the modern literature on this topic. List and Polak
(2010) is a recent survey. The doctrinal paradox appears in Kornhauser and Sager (1993).

2This question has been addressed recently by Dietrich (2014). We consider Dietrich’s
approach in Section 7 of this paper.

3Donald Saari is the most prominent holder of this view. His arguments appear in
Saari (1995, 2001a, 2001b, 2008) and in many articles.
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characterize a particular aggregation rule. It seems reasonable to claim,
therefore, that the resulting “mean rule” is the counterpart to the Borda rule
for this problem.

Before we come to this aggregation problem, let us first consider the
following problem of classification. This helps to motivate the aggregation
rule that we ultimately characterize in this paper. Suppose that we have a
group of students, S, of mixed academic ability. The faculty have decided to
partition this set of students into two subsets: a higher-ability group, denoted
by SH , and a lower-ability group, SL. A natural objective of the faculty is
to make the students in each group as similar as possible, and so minimize
the total amount of tension within each of the two subsets. We take the
pairwise tension between two students to be the absolute difference between
their levels of ability, according to some (as yet, unspecified) ability measure;
total tension is then the sum of pairwise tension over all pairs chosen from the
same group. We will become more precise shortly, using “tension” informally
for the moment.

Suppose further that the ability of each student is not directly observable,
and so the faculty decide to use a method of aggregation from social choice
theory. Each member of faculty submits his or her preferred partitioning of
the group of students (the one that he or she thinks minimizes tension) and
the social choice problem is to determine from these individual partitions a
collective partition. It is not a necessary feature of this problem that SH and
SL contain the same number of students. A faculty member who considers
a small number of students to be significantly more able than the rest may
believe that tension is minimized by placing only those few into SH . Indeed,
if there is one particularly gifted student it may even be optimal to have
only that single student in SH . However, there is one thing of which we can
be certain. Unless all of the students have exactly the same level of ability,
placing all of them into one group could never be tension-minimizing. Given
that this is so unlikely, it is reasonable to assume that the faculty agree that
the collective partition should not have this property; for the same reason,
no individual faculty member places all of the students into one group.

Each faculty member might indicate a preferred partition in the form
of a binary evaluation, by assigning a +1 or −1 to each student according
to whether they belong in SH or in SL, respectively. Such an evaluation is
equivalent to an ordered partition in the form of an ordered pair (SH , SL).4 In

4That is, the unordered pair {SH , SL} partitions the set S of students, while the or-
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practice, we will use “partition” to refer to such a pair. A binary evaluation
can also be identified with a dichotomous weak order relation, and we take
this approach in Section 6.5

Once each member of faculty has submitted his or her partition we face
the problem of aggregating them into a collective partition. One natural ap-
proach to this problem is to use the majority method, under which the faculty
collectively assigns a student to SH (or SL) if a majority of its members do.

s1 s2 s3

Four teachers H H L

Three teachers L H H

Three teachers H L H

Majority H H H

Table 1: Majority method can lead to all of the students being assigned to
SH .

In Table 1, there are three students, s1, s2 and s3, and ten members of
faculty. The first four believe that s1 and s2 should be in SH (which, for
simplicity, we denote by H), and that s3 should be in SL (which we denote
by L). As we can see, applying the majority method to this example leads
to all of the students being put into SH which violates what we require of
the collective partition.6

dering of the pair (SH , SL) identifies which piece of the partition is the “Higher” piece.
The same information, of course, would be conveyed by providing SH alone (with the
understanding that SL = S \ SH). A binary evaluation is thus formally equivalent to an
approval voting ballot.

5While there is no technical reason to distinguish among these various equivalent for-
malisms, they do suggest different perspectives on the aggregation problem. Approval
voting, for example, differs fundamentally from the mean rule discussed here, while the
dichotomous weak order formalism invites comparison with other methods of aggregating
orders. The different formalisms also suggest different ways of thinking about ties, as we
will see later.

6We can write this majority evaluation as (+1, +1, +1) to denote that students 1, 2
and 3 respectively are all in SH . In this way, evaluations can be regarded as vectors.
Note that the majority method satisfies an “independence” property in that the collective
decision on a student is independent of the teachers’ evaluations of the other students.
Significantly, the mean rule that we present in this paper does not satisfy this property.
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We propose an alternative approach. Suppose we take the number of
faculty members who assign a given student to SH to be a measure of that
student’s level of ability. Then, as noted above, for any two students the
absolute difference between these numbers serves as a measure of the tension
between them, and the sum of these differences – taken over every pair of
students that belong to the same member of the pair (SH , SL) – represents
the total tension of the partition (SH , SL).

To give an example, the ability-levels of the three students in Table 1 are
given in Table 2.

s1 s2 s3

Ability-levels 7 7 6

Tension-minimization H H L

Table 2: The ability-levels of the three students.

Based on these ability-levels, the total tension in the partition ({s1, s3}, {s2})
is simply the tension in {s1, s3} plus the tension in {s2}. The total tension
in ({s1, s3}, {s2}) is, therefore, 1 + 0 = 1. It is easy to determine that the
partition that minimizes total tension is ({s1, s2}, {s3}) which leads to a
total tension of 0 + 0 = 0. This example demonstrates that this “tension-
minimizing” approach can overcome the problem that arises when we apply
the majority method.

However, we need to add an important constraint when we apply this
approach to the partitioning problem. To illustrate, consider the example of
five students and five faculty members described in Table 3. The zero below
s1 indicates that none of the teachers assigned that student to SH while two
teachers assigned s2 to SH , and so on.

s1 s2 s3 s4 s5

0 2 2 2 5

Table 3: The ability-levels of five students.

If we assign students s1 and s5 to SH , and the other three students to
SL then total tension is 5 (= 5 + 0). It is easy to verify that this is the
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tension-minimizing partition. However, this tension-minimizing partition is
problematic from an intuitive point of view. It places the most able and
the least able students together into SH which we take to be undesirable for
ability grouping.7

This example motivates the imposition of a natural monotonicity con-
straint to our partitioning problem. We will require that the lowest level of
ability among the students in SH be at least as great as the greatest level
of ability in SL. Under this constraint, it is easy to verify that the unique
tension-minimizing partition places student s5 alone into SH (for a total ten-
sion of 6). Therefore, we have SH = {s5} and SL = {s1, s2, s3, s4} under the
tension-minimizing approach.8

As we prove in Section 2, it is very easy to determine the tension-minimizing
monotone partition. Fortunately, we do not need to calculate the total ten-
sion in every possible monotone partition. Instead, we simply calculate the
mean of the ability-levels and use this mean as a threshold, placing students
who are below the mean into SL and those who are above the mean into SH .9

If there is a student whose ability-level is equal to the mean then there are
multiple solutions (all of which achieve a common lowest tension).

The “mean rule” accrues some normative appeal because it determines the
tension-minimizing monotone partition. However, there are two additional,
somewhat surprising, reasons to be interested in this rule. First, the mean
rule is the unique rule that emerges when we translate Young’s Borda axioms
into a particular, abstract social choice setting (this setting concerns aggre-
gating binary evaluations). Further normative appeal is provided, therefore,
by the fact that these axioms are, arguably, attractive in their own right.
Second, the mean rule emerges when we apply Zwicker’s (1991) vector de-
composition technique to the same social choice problem. Zwicker’s tech-
nique allows us to decompose a standard preference profile into a portion
that tends towards a majority cycle, and a portion that tends towards no
cycle in majority preference.10 He then shows that the Borda ranking at

7We are grateful to Nicholas Houy for proposing the first example of this kind.
8In a planned sequel to this paper (Social Dichotomy Functions) we show that a measure

of external displacement, related to total tension, is also optimized by “cutting” at the
mean in this way, with no need to impose a monotonicity condition.

9Applying the mean rule to the example in Table 2 results in a mean of 20/3 and,
therefore, a collective partition of ({s1, s2}, {s3}) which is precisely the one that minimizes
total tension. We prove in Section 3 that this is always the case.

10These ideas are developed in Saari (1994).
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the original profile is identical to the (transitive) majority preference at this
second, acyclic portion of the original profile. We show in this paper that
the mean rule emerges when we apply this decomposition technique to our
social choice problem (in its dichotomous weak order representation). It is
noteworthy that these two very different approaches to social choice theory
(one axiomatic, the other based on linear algebra) both lead to the mean
rule.

Before we outline the structure of the paper, we should explain how our
aggregation problem differs from the classic voting problem. In that problem,
the objective is to devise voting rules that will help us identify the “best”
candidate(s). The goal here, however, is not to identify the best student. If
we wanted to do that, then, given our formal set-up (described in footnote
4) we would use Approval Voting. Instead, we want to identify the best
partitioning of the students. This, we have argued, is the one that minimizes
total tension. The social outcome that concerns us, therefore, is different to
the classic problem of voting.11

This, then, describes our social choice model and the aggregation rule
that we ultimately characterize. Note that the model can also be applied to
the rich literature on judgment aggregation by interpreting the set that we
intend to partition, X say, as a set containing propositions, each expressed
in a formal language like standard propositional logic. In this setting, XH

represents the “true” propositions and XL represents the “false” ones. The
problem here is to aggregate individual judgments (represented by partitions)
on the propositions in X into a collective judgment. We explore further the
connections with the judgment aggregation literature in Section 7 of this
paper.

The paper is organised as follows. We describe our basic model in Sec-
tion 2. We prove in Section 3 that the mean rule determines the tension-
minimizing, monotone partition. In Section 4 we present an axiomatic ap-
proach to this social choice problem. Section 5 contains our characterisation
theorem. In Section 6 we derive the mean rule using the vector decomposition
approach. In that section we also introduce the “Borda” mean rule, which is
a generalization of the mean rule. Loosely speaking, under the Borda mean
rule, the inputs are rankings and the output is a partition. As we have seen,
under the ordinary mean rule, the inputs are partitions as well.

11Approval Voting implicitly produces a partition into “winners” and “losers”, but this
will not be tension-minimizing in general.
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Finally, in Section 7, we consider applying the mean rule to the problem
of judgment aggregation. We show that there are agendas to which the mean
rule can be applied. In Section 7.1 we show that at the so-called “preference
agenda” with three alternatives the mean rule will always produce the same
collective judgment as the Borda rule.

In Section 7.2 we consider an approach to judgment aggregation due to
Dietrich (2014). Dietrich develops the idea of “scoring rules” for judgment
aggregation. Adopting Dietrich’s framework, we give an example of a scoring
function that will always choose the same collective outcome as the mean rule
when applied to the domain of this rule. Interestingly, over the domain of
the Borda rule, this scoring function will also choose the same collective
outcome as the Borda rule (for any number of alternatives). For this reason,
this scoring function is particularly interesting and suggests that a unified
statement of the two rules is possible. Section 8 concludes the paper and
suggests directions for future research.

2 Binary evaluations model

To make our social choice problem clear, we consider first the domain of the
aggregation problem and then the co-domain.12 First, the domain. Each
individual submits a feasible evaluation. For all natural numbers k greater
than one, the set of feasible individual evaluations, V , is the set obtained by
removing {−1}k and {+1}k from {−1, +1}k. Here k denotes the number of
elements in a set X. Each individual’s evaluation describes a partitioning
of X into two non-empty subsets (these are the parts (or “blocks”) of the
partition). Assigning +1 to an element of X means that the individual
judges that this element should be in the “Higher” part of the partition,
a −1 means that it should be in the “Lower” part.13 In our first example

12The binary evaluations model was first presented in Wilson (1975) and then developed
by Rubinstein and Fishburn (1986), Dokow and Holzman (2010a) and Nehring and Puppe
(2010). See also Bogomolnaia, Moulin and Strong (2005) on aggregating dichotomous pref-
erences. Brams, Kilgour and Zwicker (1998) consider the “paradox of multiple elections”
where voters vote yes/no on a sequence of propositions on a referendum. Generalizations
of the binary evaluations model can be found in Dokow and Holzman (2010b) and in the
literature on combinatorial domains (chapter 8 of Xia 2011 is an introduction).

13Other aggregation problems with this domain characteristic include List’s (2008)
model of judgment aggregation on a single proposition, where this proposition is expressed
as a set of possible worlds. Another example is Kasher and Rubinstein’s (1997) “group

8



(Table 1), k = 3 (the number of students) and the +1 and −1 referred to
how a teacher evaluated each student (in the higher-ability group or in the
lower-ability group). As noted earlier, a feasible evaluation is equivalent to
an ordered partition in the form of an ordered pair (XH , XL).

From these individual partitions of X a social partition must be deter-
mined. The social choice problem is to determine a collective partition from
these individual partitions.

We now consider the co-domain. We noted earlier when describing the
tension-minimizing approach that we might have a student whose ability level
is equal to the mean. In our framework of aggregating binary evaluations,
we will treat mean scores differently than the way we suggested earlier for
partitions (see Section 1 where we refer to their being multiple solutions in
this case). We will say more about the “multiple solution” formulation in
Section 3. However, in the formal model presented here, we accommodate
this possibility by assigning a social evaluation of zero to those elements of
X with this property. In other words, the outcome of the mean rule can be
described as follows. Given the k elements of X, first count the number of
+1 evaluations received by each of these k elements, and then calculate the
mean m of these k numbers. Society assigns +1 to each element that has
received more than m of these +1 evaluations, assigns −1 to each element
with fewer than m of these +1 evaluations, and assigns zero if an element
has received a number of +1 evaluations equal to m.

Next, we present our formal definitions that feature in Section 4. Let N
be a countably infinite set of individuals and let S be the set of all finite
subsets of N (including the empty set).

A profile is a function P from V to S such that P (v) and P (v′) are disjoint
for all distinct evaluations v and v′. Given an evaluation v we interpret P (v)
as the set of individuals with evaluation v at profile P . The requirement that
P (v) and P (v′) are disjoint means that at profile P each individual submits
no more than one evaluation. The set of participating individuals at P is the
union of P (v) over all evaluations v in V .

The set of feasible outcomes is the set {−1, 0, +1}k less both {−1}k and
{+1}k. A binary aggregation rule is a function F from the set of all profiles
to the set of feasible outcomes. We denote by F (P )i the ith component of
outcome F (P ).

Given an element i and profile P , let y(P )i be the number of individuals

identification problem”.
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who give element i a +1 evaluation, and n(P )i be the number of individuals
who give element i a −1 evaluation, at profile P . Let y(P ) be the k-tuple
(y(P )1, . . . , y(P )k), and let n(P ) be (n(P )1, . . . , n(P )k).

We now give a formal definition of the mean rule. For all profiles P , let
ȳ(P ) denote the sum of the components of y(P ) divided by k. In other words,
ȳ(P ) is the mean number of +1 evaluations received by the elements of X.
Define a particular binary aggregation rule FM as follows. For all profiles P
and all elements i,

FM(P )i =















+1 if y(P )i > ȳ(P )

−1 if y(P )i < ȳ(P )

0 if y(P )i = ȳ(P ).

3 Tension-minimizing partitioning

The “tension” between any two students is simply the absolute value of the
difference between their ability levels. In a classroom of students, the total
amount of tension is the sum of tension over every pair of students in the
classroom. More generally, let S be a finite set and let s be a function
that assigns a “score” (any real number) to each element of S. Then the
total amount of tension within S, denoted T (S), is defined by the following
equation.

T (S) =
∑

i,j∈S

|s(i)− s(j)| .

If we split the students into two groups, the total amount of tension is
the sum of the tension within each of the two groups. More generally, the
total amount of tension for a pair of sets (SH , SL) is defined as follows.

T (SH , SL) = T (SH) + T (SL).

We seek to partition a set S into a pair of non-empty sets SH and SL

in a way that minimizes T (SH , SL) under the requirement of monotonicity.
Monotonicity requires that for all i in SH and all j in SL we have s(i) ≥ s(j).

When we restrict our attention to monotone solutions, we can represent
this partitioning problem in following, intuitive way. First, we mark the
scores of the elements of S along a number line. We then need to identify a
point at which to “cut” the line into two parts; separating those scores that
lie above the cut point and those that lie below. In other words, by cutting,
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µx

s(i)

Figure 1: Cutting tension.

we create a partition of the original set S into two subsets. Note that cutting
at any point that is strictly between the lowest score and the highest score
must lower total tension. The reason is that for every pair of elements that
straddle the cut point, the tension between them becomes zero once the cut
has occurred. The only tension that remains is the tension between those
elements below the cut point, and the tension between those above the cut
point.

If some elements have a score equal to the number where the cut is made
then (as mentioned earlier) we treat this as implying that there are multiple
solutions. More precisely, this means that there is a tie among all partitions
into two pieces that can be obtained by assigning these elements randomly
and independently to either part of the partition. All of these partitions will
achieve the same lowest tension (which is why we say that they are “tied”).
We claim that cutting at the mean of the scores is tension-minimizing when
monotonicity is required.

Theorem 1. Let µ be the mean of s(i) over all i ∈ S. If (SH , SL) is a
partition of S such that s(i) > µ implies i ∈ SH and s(i) < µ implies i ∈ SL

then, for any other monotone partition (S ′
H , S ′

L) of S, we have T (SH , SL) ≤
T (S ′

H , S ′
L).

Proof. Suppose that we make the cut initially at µ to generate the partition
(SH , SL). Then we “move” the cut point to a number less than the mean so
that one or more elements are transferred from the lower part to the upper
part, generating a new partition (S ′

H , S ′
L). Figure 1 gives an example of this;

when the cut is moved from µ to x, element i is thereby transferred from the
lower part to the upper part. By doing this we reduce the amount of tension
in the lower part and increase the amount of tension in the upper part. That
is, we have T (S ′

L) < T (SL) and T (S ′
H) > T (SH).

Let M be the set of elements in S ′
H that have a score less than µ. The

tension within that set M , that is, T (M), is transferred from the original
lower part, SL, to the new upper part S ′

H . The transferral of this tension
from the lower to the upper part has no impact on the total amount of tension.
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But, of course, this is not the only effect of transferring those elements. The
tension in the lower part is further reduced by the elimination of the tension
that existed between M and SL \M . And we have now introduced tension
between the members of M and the members of SH . So what, then, is the
net impact?

The tension between each element m of M and the set SL \M is the sum
of s(m)− s(i) over every i in SL \M . Similarly, the tension between m and
SH is the sum of s(i)− s(m) over every i in SH . We claim that for every m
in M the first of these two sums is less than the second. This implies that
the total amount of tension increases as a result of transferring the members
of M from the lower part to the upper part.

To see that this claim is true let us note the following well-known property
of the mean. The sum of µ − s(i) over every i is zero. In other words, the
sum of µ− s(i) over every i in SL is equal to the sum of s(i)− µ over every
i in SH .

It follows that for any number α that is less than the mean, the sum of
α− s(i) over every i in SL must be less than the sum of s(i)− α over every
i in SH . If the former sum is taken over a subset of SL, instead of all of SL,
then the difference just becomes even larger. Hence, the sum of s(m)− s(i)
over every i in SL \M is less than the sum of s(i)− s(m) over every i in SH ,
which is what we claimed.

So moving the cut-point away from µ to a lower number so that one or
more elements m with s(m) < µ are transferred from the lower part to the
upper part results in an increase in total tension. A symmetric argument
shows that moving the cut to a number greater than the mean so that one
or more elements with scores greater than the mean are transferred from the
upper part to the lower part also results in an increase in total tension.

When an alternative has a score equal to the mean, we can see that it
does not matter which part of the partition it is assigned to. If an issue j
with s(j) = µ is assigned, say, to SL then the amount of tension generated
is the sum of s(j)− s(i) (or, equivalently, µ− s(i)) over every score s(i) that
is less than µ. If, on the other hand, j is assigned to SH then the amount of
tension generated is the sum of s(i) − s(j) (or, equivalently, s(i) − µ) over
every score s(i) that is greater than µ. As we have noted, a well-known
property of the mean is that these two sums are equal.
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4 Axiomatic approach

Given a permutation σ on {1, . . . , k} and a profile P , let P σ denote the
profile such that P and P σ have the same set of participating individuals
and where an individual evaluates +1 on element i at profile P if and only
if that individual evaluates +1 on element σ(i) at profile P σ. We write 0 to
denote {0}k.

The following are properties that a binary aggregation rule F may satisfy.
As mentioned in Section 1, they are essentially the axioms Young (1974) used
in his characterization of the Borda rule, but translated into the context of
aggregating binary evaluations.14

Cancellative. For all profiles P such that y(P ) = n(P ), F (P ) = 0.

Cancellation says that at profiles in which every element is assigned +1 by
half of the individuals and −1 by the other half, the social evaluation is 0
over all of the elements. Cancellation is a natural requirement when a profile
is “balanced”.

Profiles P and P ′ are said to be disjoint if the electorates are distinct, i.e.
P (v) ∩ P ′(v) = ∅ for all v ∈ V. The sum of two disjoint profiles, defined by
(P + P ′)(v) = P (v) ∪ P ′(v), corresponds to pooling the two electorates.

Consistent. For all disjoint profiles P and P ′, and all issues i, (1) if F (P )i =
+1 and F (P ′)i ≥ 0 then F (P + P ′)i = +1, and (2) if F (P )i = −1 and
F (P ′)i ≤ 0 then F (P + P ′)i = −1.

Consistency says the following. Imagine that two disjoint groups are merged
together. If an element is assigned +1 by one subgroup (using binary aggre-
gation rule F ), and the other subgroup assigns either +1 or 0 to this element
(using the same binary aggregation rule F ), then F must assign +1 to this
element when we apply it to the union of these two subgroups. Conversely,
if an element is assigned −1 by one subgroup (using binary aggregation rule
F ), and the other subgroup assigns either −1 or 0 to this element (using
the same aggregation rule F ), then F must assign −1 to this element when

14Note that Young’s paper characterized the Borda rule as a social choice function. A
characterization of the Borda rule as a social welfare function can be found in Nitzan and
Rubinstein (1981). An alternative characterization of the mean rule based on principles
from approval voting can be found in Duddy and Piggins (2013).
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we apply it to the union of these two subgroups. Consistency has a flavor
of the traditional “Pareto principle” from welfare economics, and is norma-
tively attractive for that reason. In terms of our original student partitioning
problem, if the arts teachers assign a student to the higher-ability group, and
the science teachers either agree or are indifferent, then consistency requires
that the student be assigned to the higher-ability group when the teachers
are combined.

Neutral. For all permutations σ on {1, . . . , k} and all profiles P , F (P )i =
F (P σ)σ(i) for all elements i.

Neutrality says that the criterion for determining whether an element is as-
signed +1,−1 or 0 by F is the same for all of the elements. Different crite-
ria/thresholds do not apply to different elements, in other words. Neutrality
is a standard social choice requirement. In terms of the student partitioning
problem, neutrality ensures that all of the students are treated fairly.

Faithful. For all profiles P such that the range of P contains only the empty
set and one singleton, P (v) 6= ∅ implies F (P ) = v.

Faithful says that when society consists of one individual, the social evalua-
tion of the elements is identical to this individual’s evaluation of the elements.
This is a reasonable requirement of a one person society.

5 Characterization theorem

In this section we present five lemmas before proving our characterization
theorem. We then show that the axioms used in the characterization are
logically independent. First, we note the following property.

Strong Anonymity. For all profiles P and P ′ such that y(P ) = y(P ′) and
n(P ) = n(P ′), F (P ) = F (P ′).

Lemma 2. A binary aggregation rule that is cancellative and consistent is
strongly anonymous.

Proof. Let F be a binary aggregation rule that is cancellative and consistent.
Take two profiles P and P ′ such that y(P ) = y(P ′) and n(P ) = n(P ′).
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By way of contradiction, assume that F (P ) 6= F (P ′). Given that F (P )
and F (P ′) differ over at least one element, we can assume without loss of
generality that F (P )i = +1 and F (P ′)i ≤ 0 for some element i.

Construct a third profile P∗, disjoint from both P and P ′, such that
y(P∗) = n(P ) and n(P∗) = y(P ). It follows that y(P∗) = n(P ′) and n(P∗) =
y(P ′). Cancellation implies both that F (P +P∗) = 0 and that F (P ′+P∗) = 0.
If F (P∗)i ≥ 0 then consistency would imply that F (P +P∗)i = +1. However,
we know that F (P + P∗) = 0 and so it must be the case that F (P∗)i = −1.
Given our original assumption that F (P ′)i ≤ 0 consistency implies that
F (P ′+P∗)i = −1. However, this contradicts the fact that F (P ′+P∗) = 0.

Lemma 3. If a binary aggregation rule F is cancellative and consistent then
the following is true. For all disjoint profiles P and P ′ such that y(P ) =
n(P ′) and n(P ) = y(P ′), F (P ) + F (P ′) = 0.

Proof. Let F be a binary aggregation rule that is cancellative and consistent.
Take any profile P and let P ′ be a profile that is disjoint from P and such
that y(P ) = n(P ′) and n(P ) = y(P ′). By way of contradiction, assume there
is an element i such that F (P )i + F (P ′)i 6= 0. Without loss of generality,
assume F (P )i = +1 and F (P ′)i ≥ 0. Consistency implies F (P + P ′)i = +1.
However, since y(P + P ′) = n(P + P ′), cancellation implies F (P + P ′) = 0.
This is a contradiction.

Lemma 4. If a binary aggregation rule F is cancellative and consistent then
the following is true. For all disjoint profiles P and P ′, and all elements i,
F (P )i = F (P ′)i = 0 implies F (P + P ′)i = 0.

Proof. Let F be a binary aggregation rule that is cancellative and consistent.
Take an element i and disjoint profiles P and P ′ such that F (P )i = F (P ′)i =
0. Let P∗ be a profile disjoint from P and P ′ such that y(P∗) = n(P ) and
n(P∗) = y(P ). And let us write P ′

∗ to denote a profile disjoint from P ,
P ′ and P∗ such that y(P ′

∗) = n(P ′) and n(P ′
∗) = y(P ′). Lemma 3 implies

F (P ) + F (P∗) = 0 and F (P ′) + F (P ′
∗) = 0. Therefore, since F (P )i =

F (P ′)i = 0, we have F (P∗)i = F (P ′
∗)i = 0.

If it were the case that F (P + P ′)i = +1, then, by consistency, we would
have F (P + P ′ + P∗)i = +1 and F (P + P ′ + P∗ + P ′

∗)i = +1. Similarly, if
F (P + P ′)i = −1 then F (P + P ′ + P∗ + P ′

∗)i = −1. However, cancellation
implies that F (P +P ′ +P∗ +P ′

∗) = 0. So it must be that F (P +P ′)i = 0.
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Lemma 5. If a binary aggregation rule F is neutral, consistent and cancella-
tive then the following is true. For all profiles P such that the components
of y(P ) are all equal, F (P ) = 0.

Proof. Let F be a binary aggregation rule that is neutral, consistent and
cancellative. Take any profile P such that the components of y(P ) are all
equal. By way of contradiction, assume that F (P ) 6= 0. Without loss of
generality, assume that F (P )i = +1 for some element i. By the definition of
a binary aggregation rule we know that F (P ) 6= {+1}k. So F (P )j ≤ 0 for
some element j. Let P∗ be a profile disjoint from P such that y(P∗) = n(P )
and n(P∗) = y(P ). Let σ be a permutation on {1, . . . , k} that transposes i
and j. Since all the components of y(P ) are equal, we have y(P σ) = y(P ). So
y(P σ) = n(P∗) and n(P σ) = y(P∗). Since y(P σ) = n(P∗) and n(P σ) = y(P∗)
this implies that y(P σ + P∗) = n(P σ + P∗). Cancellation implies, therefore,
that F (P σ + P∗) = 0.

However, since F (P )i = +1, neutrality implies that F (P σ)j = +1.
Lemma 3 implies that F (P )j + F (P∗)j = 0 and we know that F (P )j ≤ 0.
Therefore, we can deduce that F (P∗)j ≥ 0. So, by consistency, F (P σ+P∗)j =
+1. This is a contradiction.

Lemma 6. If a binary aggregation rule F is faithful, neutral, consistent and
cancellative then the following is true. For all profiles P and all elements i, if
the ith component of y(P ) is strictly greater than all of the other components
of y(P ) then F (P )i = +1, and if the ith component of y(P ) is strictly less
than all of the other components of y(P ) then F (P )i = −1.

Proof. Let F be a binary aggregation rule that is faithful, neutral, consistent
and cancellative. Take any profile P and element i such that the ith compo-
nent of y(P ) is either strictly greater than or strictly less than all of the other
components of y(P ). Without loss of generality, assume that the former is
true. Construct a profile P ′, disjoint from P , such that the total number
of participating individuals is y(P )i, and, for all elements j, the number of
individuals who say +1 to j is equal to y(P )i − y(P )j. Note that at profile
P ′ every individual says −1 to element i. So if we decompose profile P ′ into
a series of singe-individual profiles then faithfulness requires that the social
evaluation for element i must be −1 at every one of those profile. If we then
recompose P ′, joining these single-individual profiles together one-by-one,
we find that consistency requires F (P ′)i = −1. Note also that at profile
P + P ′ every element receives the same number of +1 evaluations, y(P )i. So
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Lemma 5 implies that F (P + P ′) = 0. Since we have F (P + P ′) = 0 and
F (P ′)i = −1, consistency implies that F (P )i = +1.

Theorem 7. The binary aggregation rule FM is the only one that is faithful,
consistent, cancellative and neutral.

Proof. Let F be a binary aggregation rule that is faithful, consistent, can-
cellative and neutral. Take any profile P and element i. Let σ be a permuta-
tion of {1, . . . , k} with two orbits {1, . . . , k} \ {i} and {i}. We write P (σ) to
denote a profile such that P and P (σ) have the same number of participating
individuals and, for all elements i, the number of individuals who say +1 to i
at profile P is equal to the number of individuals who say +1 to σ(i) at profile
P (σ). Importantly, P and P (σ) may be disjoint (unlike P and P σ). However,
if the binary aggregation rule F is both neutral and strongly anonymous then
F (P σ) = F (P (σ)) since y(P σ) = y(P (σ)) and n(P σ) = n(P (σ)). We know, by
Lemma 2, that F is strongly anonymous.

We write P (σ)2 for (P (σ))(σ), P (σ)3 for (P (σ)2)(σ) and so on. Let us con-
struct these profiles such that they are all disjoint from one another and from
P . Let P ′ be the profile P + P (σ) + P (σ)2 + . . . + P (σ)(k−2). If k is 2 then P ′

is P .
Since σ(i) = i, neutrality and anonymity together imply that F (�)i is

identical over all of the profiles P , P (σ), P (σ)2, . . . , P (σ)(k−2). If F (�)i is +1
over all of these profiles then consistency implies that F (P ′)i = +1. So,
if F (P )i = +1 then F (P ′)i = +1. Similarly, consistency implies that if
F (P )i = −1 then F (P ′)i = −1. Lemma 4 implies that if F (P )i = 0 then
F (P ′)i = 0. So F (P )i = F (P ′)i.

Let Y (P ) denote the sum of the components of y(P ). At profile P ′

element i receives a number of +1 evaluations equal to (k−1)×y(P )i. Every
other element receives a number of +1 evaluations equal to Y (P )− y(P )i.

Case 1. Assume y(P )i > ȳ(P ). Multiplying both sides by k yields k ×
y(P )i > Y (P ). Subtracting y(P )i from both sides yields (k−1)×
y(P )i > Y (P ) − y(P )i. By construction the LHS equals y(P ′)i

and the RHS equals y(P ′)j for all elements j in {1, . . . , k} \ {i}.
Therefore, y(P ′)i > y(P ′)j for all j ∈ {1, . . . , k} \ {i}. Lemma 6
implies that F (P ′)i = +1. Hence F (P )i = +1.

Case 2. Assume y(P )i < ȳ(P ). Simply replace everywhere the relation >
with < in the argument for Case 1 to see that F (P )i = −1.
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Case 3. Assume y(P )i = ȳ(P ). Simply replace everywhere the relation >
with = in the argument for Case 1 to see that y(P ′)i = y(P ′)j for
all j ∈ {1, . . . , k} \ {i}. Lemma 5 implies then that F (P ′) = 0.
Hence F (P )i = 0.

This completes the proof.

5.1 Independence of the axioms

If there are just two elements in X then any binary aggregation rule that is
faithful, cancellative and consistent must also be neutral. The four properties
are logically independent if X contains more than two elements, and so we
assume that this is the case for the fourth binary aggregation rule listed
below.

1. Consider the rule that is the inverse of the mean rule. That is, we
collectively assign +1 to an element if the number of individuals who
assign +1 to it is less than the mean and if that number is greater than
the mean then we assign −1. We continue to assign a value of zero to
an element if it receives a number of +1 evaluations equal to the mean.
This rule is neutral, consistent and cancellative but not faithful.

2. Next, let us consider a consensus-based rule. We assign +1 to an
element only if every individual does so and we assign −1 only if every
individual does so. If there is any disagreement among the individuals
then we collectively assign a value of zero. This rule is neutral, faithful
and cancellative but not consistent.

3. Suppose that we order the individuals in N by seniority. At each profile,
the collective evaluation is identical to the evaluation of the most senior
individual who is present. Note that in our variable-population model
the most senior individual will not be the same individual at every
profile. This rule is neutral, consistent and faithful but not cancellative.

4. Let us arbitrarily single out one element of X and label it i. This
element will be treated differently from the others, so that neutrality is
violated. The collective evaluation for i is determined in just the same
way as it is under the mean rule. That is, at every profile, the value
assigned to i by this rule and the value assigned to i by FM are the
same. Each of the other elements is compared to i. We assign +1 to
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an element if it has received more +1’s from the individuals than i has
and we assign −1 to it if it has received fewer +1’s than i has. If it
has received the same number of +1’s as i has then we assign to it the
same value that we assigned to i (be that +1, −1 or zero). This binary
aggregation rule is faithful, consistent and cancellative but not neutral.

To illustrate the violation of neutrality under rule 4, consider the following
example. There are 3 alternatives in X (i, j and k respectively) and 5 indi-
viduals. The first 4 people hold the evaluation (+1, +1,−1) while the fifth
holds (+1,−1, +1). The outcome is (+1,−1,−1) under rule 4. If we now
transpose i and j in each person’s evaluation then the social outcome is now
(+1, +1,−1) under rule 4.

This is a violation of neutrality since i is +1 at the new profile, but j was
−1 at the original profile.

6 Vector decomposition approach

Axioms are not the only way to characterize aggregation rules. There is a
compelling analysis of the Borda rule that uses an orthogonal decomposition
to separate the part of the profile information that is actually used, from
the part discarded, in determining the Borda outcome. Our purpose here is
to explain the similar role played by the same decomposition in the mean
rule, and also in the Borda mean rule, which we introduce here – it is a
generalization of the mean rule wherein Borda scores appear explicitly. The
parallels provide independent support for our claim that the mean rule is the
analogue of the Borda rule for the context of aggregating binary evaluations.

In this section, we either provide brief proof sketches or omit proofs en-
tirely, relying instead on examples and intuitions.15 We begin by describing
the role played by the flow of pairwise net preferences and its decomposition,
focusing first on social welfare functions – aka SWFs – such as Borda or
Copeland, which yield a social ranking of alternatives as their outcome, and
then shifting back to the mean and Borda mean rules.

15Most of the lengthy and somewhat tedious proofs do not rely on our application to
preference profiles, and can be found in standard sources such as Croom (1978) and Harary
(1958).
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6.1 The flow of net preference

Imagine a network (directed graph), such as that in Figure 2, consisting of
labeled nodes (vertices), each pair of which are connected by a channel (edge),
with each channel having both a pre-assigned direction and a real number
label indicating the amount of flow (of electricity, or water, or – as will be
the case for us – of net preference by the electorate) in that direction.16 The
negative label of −10 on the d→ a edge of this figure indicates a flow of +10
in the opposite direction, from a to d; as we see shortly, one cannot arrange
for uniformly non-negative labels by re-orienting edges. We’ll refer to such a
labeled diagram as a flow.

b

d

ca

-2

-30

30

10

30-10

Figure 2: A flow, later identified as the net preference flow vP1
induced by

profile P1.

We explain, below, how to decompose such a flow into mutually orthog-
onal components – a cyclic part representing a purely circulatory flow, and
a cocyclic part representing sinks and sources. The idea originated in the
study of the boundary map of algebraic topology in the one-dimensional
case. When applied to electric circuit theory this decomposition serves as a
mathematical basis for Kirchoff’s laws; edges represent wires, nodes stand for
connections, and the numerical labels indicate the amount of electric current.
Applications of the same decomposition to preference aggregation go back to
Zwicker (1991) and the idea was subsequently exploited in Saari (1994), and
in his later articles.

16A weighted tournament, in the language of social choice.
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For the preference aggregation case, the network’s nodes are the alterna-
tives in some finite set X, and the stuff flowing along edges is net pairwise
preference of the voters, extracted (as given below in equation 1) from some
profile P of weak orders. Throughout this section we identify a binary eval-
uation with the corresponding dichotomous weak order XH > XL,17 and
use P = {≥i}i∈N to denote a profile of unspecified weak orders. Thus, P
may equally well represent a profile of linear orders, or a vector of binary
evaluations.

To extract the net pairwise preference flow from the profile, we set the
numerical label on the edge x→ y equal to:

NetP (x > y) = [the number of voters i with x ≥i y] (1)

−[the number of voters i with y ≥i x].

Figure 2 is extracted in this way from P1 (below), a profile of linear orders.

No. of individuals Preferences

14 a > b > c > d
10 b > c > d > a
6 b > a > c > d

Table 4: The Profile P1.

For example, P1 tells us that while 10 voters prefer d to a, 20 prefer a to
d. This why the d → a edge of Figure 2 is labeled with NetP (d > a) =
10 − 20 = −10. When the edge labels arise in this way from a profile, we’ll

17 Consider the set X of alternatives to be evaluated (identified, in section 2, with the
index set {1, 2, . . . , k}). Recall that a linear order on X is a binary relation ≥ that is
reflexive, transitive, complete (or total), and is also anti-symmetric – satisfying for all
x, y ∈ X that whenever x ≥ y and y ≥ x both hold, x = y. Weak order relations relax this
last requirement, allowing both x ≥ y and y ≥ x to hold with x 6= y, and writing x ∼ y
in this situation; ∼ is thus an equivalence relation, with the equivalence classes known as
I-classes (I for “indifference,” arising from the interpretation of ≥ as “weakly preferred
to”). A weak order can be thought of as a linear order of I-classes, and a dichotomous

weak order XH > XL is one containing exactly two distinct I-classes, which we call XH

and XL, with x ≥ y holding if and only if x ∈ XH , or y ∈ XL (or both). The weak order
corresponding to a binary evaluation places each alternative evaluated as +1 into XH and
each evaluated −1 into XL.
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use the term net preference flow to refer to the entire diagram (of nodes and
labeled, directed edges).

It’s worth pointing out that a significant amount of information is al-
ready discarded in passing from a profile such as P1 to the corresponding
net preference flow. Aggregation rules that require only the pairwise infor-
mation retained in the flow include several Condorcet extensions (such as
Copeland, Simpson – aka maximin – and Kemeny), one positional scoring
rule (Borda), and both of the mean rules considered here; these are “C2”
rules, in Fishburn’s (1977) classification. Rules in “C3” require some of the
lost (non-pairwise) information, and cannot be calculated from the flow; ex-
amples include every positional scoring rule other than Borda, as well as all
scoring run-offs (such as Hare – aka STV, Coombs, Baldwin, and Nanson).

For example, by referring to Figure 2 one can quickly identify the out-
come for our profile P1, under any Condorcet consistent SWF, as follows:
we observe only positive labels on edges directed out of b and only negative
labels on edges directed in to b. All edges incident to b thus indicate pairwise
majorities in b’s favor, so b is a Condorcet alternative for P1. Extending this
reasoning, we see that pairwise majority rule yields the transitive ranking
b > a > c > d.

The standard vector of Borda scoring weights for 4 alternatives is (3, 2, 1, 0),
and for m alternatives is (m− 1, m− 2, . . . , 1, 0).18 The symmetric vector of
Borda scoring weights for 4 alternatives is (3, 1,−1,−3); and for m alterna-
tives is (m− 1, m− 3, . . . ,−(m− 1)).19

Definition 8. Given a profile P and an alternative x the symmetric Borda
score xβ

P is the sum of individual point awards to x (as determined by the
above symmetric scoring weights), made by the voters of P .

In practice we often drop the P subscript, writing xβ. A side benefit of the
symmetric version is that the total point award is 0, so that the average
Borda score is 0, independent of the profile. The principal benefit, however,
is that xβ may be directly calculated from the net preference flow, as net flow
out of x:

18Each linear order ballot awards m − 1 points to its top-ranked alternative, m − 2 to
its second-ranked, etc. One separately sums the points awarded to each alternative x by
all ballots, and the resulting Borda scores determine the outcome ranking of alternatives.
We discuss how to score indifferences (arising in weak order ballots) after Lemma 9.

19Any vector of evenly spaced weights (w, w−d, w− 2d, w− 3d, . . . ) for d > 0 yields the
same Borda SWF as the standard vector.
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Lemma 9. For any profile P of weak orders and alternative x,

xβ =
∑

z∈X

NetP (x > z).

For example, we can calculate bβ
P1

from Figure 2 by summing the labels on
the three b-incident edges, after reversing the sign for the two edges directed
in to b: bβ

P1
= 2+30+30 = 62. The remaining scores are aβ = 18, cβ = −10,

and dβ = −70. Thus for profile P1 the Borda outcome ranking happens to
agree with the Condorcet outcome: b > a > c > d.

Although our example P1 consists of linear order ballots, it’s worth em-
phasizing that Lemma 9 applies more broadly to weak order ballots, provid-
ing one defines xβ appropriately:

Averaging method To assign (symmetric)20 Borda scoring weights based on
a weak order ballot:

• Choose an arbitrary linear extension of the ballot.

• Award, to each alternative in an I-class of the weak order ballot (see
fn.17), the average (symmetric) scoring weight that would be awarded
to the members of that class by the extension.

Within the class C2, the Borda rule is distinguished from Condorcet ex-
tensions in that it discards additional information retained by the flow of
net preference – the information contained in the cyclic component. In fact,
we will see that this feature essentially characterizes the Borda rule among
SWFs, and characterizes the mean rule and Borda mean rule among aggre-
gators of their respective types. Justifying these claims requires a more exact
understanding of the decomposition.

6.2 The decomposition into cycles and cocycles

A basic cycle is a directed unit flow around a simple closed loop. Figure 3
shows two basic cycles. Our convention is that when the flow along an edge
is zero (as it is for each edge off the cycle), the edge is dotted and we omit
the numerical label. Note also that the edge label is −1 when the direction

20There are arguments for using this averaging method with any vector of Borda weights
(see fn. 19) but for Lemma 9 we require the symmetric version.
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of an edge on the loop is opposed to the direction in which the loop is taken.
A cycle is any linear combination of basic cycles.21 Thus a flow v is a cycle if
and only if we can decompose v as a sum of scalar multiples of basic cycles.22

To an electrical engineer, a cycle is a “superposition of loop currents” – see
Figure 6 for an example.
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d
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(a)

b
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1

1

1

1

(b)

Figure 3: Two basic cycles.

For any alternative x the basic cocycle for x is a flow that labels each
x → y edge with +1, each x ← y edge with −1, and each edge not incident
to x with 0. Figure 4 shows the basic cocycle for alternative b. A cocycle is
any linear combination of basic cocycles.23 Thus a flow v is a cocycle if and
only if we can decompose v as a sum of scalar multiples of basic cocycles.24

To an electrical engineer, a cocycle is a “superposition of sinks and sources.”

21 Suppose we fix the m nodes, the j = (m)(m−1)
2 edges, and the edge directions of a

network. Then any single labeling of edges (with real numbers) corresponds to a vector
of length j, and the space of all such labeling is thus identified with the Euclidean vector
space ℜj . The sum v + w (of two edge labelings) assigns to each edge the sum of the
labels separately assigned to that edge by v and w, while scalar multiplication of v by s
simply multiplies each of v’s edge labels by s. The set of cycles, then, is the linear span
of the basic cycles, and forms the cycle subspace Vcycle – a linear subspace of ℜj .

The inner product v · w of two edge labelings is found by multiplying all pairs of
corresponding edge labels, and then adding these products, and provides a notion of
orthogonality.

22This decomposition is not unique; the basic cycles are not linearly independent.
23The cocycle subspace Vcocycle is the linear span of the basic cocycles in ℜj ; see fn. 21.
24Once again the decomposition is not unique.
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Figure 4: A cocycle.

Theorem 10. Let v be any flow. Then v has a unique decomposition

v = vcycle + vcocycle

as the sum of a cycle and a cocycle. Moreover, vcycle ⊥ vcocycle.
25

We’ll wave our hands at the proof shortly. First, let’s look at the decompo-
sition for our running example, vP1

.
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vP1
vcycle vcocycle

Figure 5: The decomposition vP1
= vcycle + vcocycle.

25 Thus subspaces Vcycle and Vcocycle are orthogonal complements in ℜj and for each
v ∈ ℜj , the components vcycle, vcoycle may be obtained via orthogonal projection of v

onto the corresponding subspaces.
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Figure 6: Expressing vcycle as a linear combination of basic cycles.

Proof sketch for Theorem 10: It is easy to see why the inner product of a
basic cycle with a basic cocycle must be zero. (Try the examples from Figs
3 and 4, and consider as well what happens for a basic cycle that does not
pass through node b.) As inner product is a bilinear operator (it distributes
over addition and respects scalar multiplication), it follows that every cycle is
orthogonal to every cocycle. Theorem 10 then follows immediately from basic
linear algebra, after showing that the dimensions of the cycle and cocycle
subspaces (see fn. 21, 23) add to at least the dimension j = (m)(m−1)

2
of the

entire space.26

6.3 Borda scores and the cocyclic component

Observation 11. Borda scores have the following relationship to the decom-
position of the net preference flow:

1. Borda scores depend only on the vcocycle information. Thus the Borda
SWF uses only the profile information in the cocyclic component of the
net preference flow.

26The last point can be established by induction on m: one assumes existence, for

m alternatives, of a set Scycle of (m−1)(m−2)
2 linearly independent length-3 cycles and a

set Scocycle of m − 1 linearly independent cocycles. Note that these cardinalities add

to (m)(m−1)
2 . One then shows that with the addition of one new alternative one can

construct at least one more cocycle, which maintains linear independence of Scocycle when
added in, expanding |Scocycle| to m, and can construct at least m − 1 more length-3
cycles, which maintain linear independence of Scycle when added in, expanding |Scycle| to
(m−1)(m−2)

2 + (m− 1) = (m)(m−1)
2 , as desired.
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2. In fact, the vector of Borda scores and vcocycle are essentially the same
thing. Note in Fig. 5 that the edge label on the b→ c edge of vcocycle is

a scaled version bβ−cβ

4
of the difference in their symmetric Borda scores.

More generally, xβ−zβ

m
yields the edge labels for the cocyclic component

for m alternatives. Conversely, from these edge labels, we can recover
the symmetric Borda scores of the alternatives.27

3. Suppose we treat the cocyclic component vcocycle as if it were actually
the entire flow of pairwise net preference (ignoring that vcycle has been
discarded), and use it to extract a version of the pairwise majority
relation R (by setting xRz ⇔ the x → z edge has a nonnegative label
in vcocycle, or the z → x edge has a nonpositive label). Then the result
is always a transitive relation, and is identical to the order induced by
Borda scores. Thus, using the Borda rule is tantamount to applying
pairwise majority rule after suppressing vcycle.

4. The components vcycle and vcocycle have opposing implications for tran-
sitivity of the majority preference relation. If vcocycle is large enough
(relative to vcycle) then vcocycle dominates, so that the Borda and Con-
dorcet outcomes are identical (as was the case for our sample profile
P1).

28 If vcocycle is too small, so that vcycle dominates, then the ma-
jority preference relation is intransitive – a Condorcet cycle exists. In
an intermediate situation, the majority preference relation that would
result from vcocycle alone changes when one adds vcycle back in, but
without being thrown into a cycle.

Note that a basic cycle contributes zero to the symmetric Borda score of
each alternative, whence observation 11.1 follows immediately. Before turn-
ing to the implications of the decomposition for the mean rule, we illustrate
observation 11.4 with an example, by adding multiples of a 4-voter Condorcet
cycle to our initial profile P1.

27With non-symmetric vectors of scoring weights, one cannot fully recover the scores
from their scaled differences (corresponding to vcocycle edge labels), as the vector of scores
also encodes the number n of voters, while from vcocycle it is not possible to recover n.

28We are using “large enough” as a loose metaphor here – the precise version (Zwicker
1991) does not use a single numerical measure of size.
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No. of individuals Preferences

1 a > b > c > d
1 b > c > d > a
1 c > d > a > b
1 d > a > b > c

Table 5: The Profile Q.

It is easy to see that vQ = 2v3b; that is, to get vQ, just double all the edge
labels in the basic cycle of Figure 3b. Now consider the profile P + rQ,
obtained by adding r disjoint groups of voters (each with 4 voters, and each
having Q as its profile) to the 30-voter electorate for P .

What is the effect of gradually increasing r on the Borda outcome . . . or
on the pairwise-majority relation? As the cocyclic component of Q is 0, Q
contributes 0 to the symmetric Borda score of each alternative, and the effect
on the Borda outcome is nil; regardless of the r value, the Borda outcome
is b > a > c > d. The situation for the pairwise majority outcome is quite
different, however (see Figure 7).

b

d

ca

-2+2r

-30

30+2r

10

30+2r-10+2r

Figure 7: The net preference flow for vP1+rQ.

With r = 0, the two outcomes are the same. With r = 2 the sign of the
edge label on a→ b switches from − to +, and the pairwise majority relation
(Condorcet outcome) changes from b > a > c > d to a > b > c > d, reflect-
ing the intermediate situation described in Observation 11.4; any Condorcet
extension (Black’s rule, for example) now declares a to be the winner. If we
let r grow to the point where r ≥ 6 then the sign of the edge label on d→ a
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also becomes +, and the pairwise majority relation becomes intransitive; at
this point Black’s rule switches back to declaring b as the winner – a failure
of reinforcement (aka “consistency”).

6.4 The Borda mean rule, the mean rule, and the de-

composition

We now show that the mean rule is like the Borda count SWF, in that it uses
only the profile information in the cocyclic component of the net preference
flow. Our first argument shows that the Borda mean rule – a natural gen-
eralization of the mean rule, introduced below – uses only the information
in the symmetric Borda scores. A second, independent argument notes that
when a profile of preference rankings consists entirely of dichotomous weak
orders, the resulting net preference flow satisfies vcycle = 0.29

Definition 12. The Borda mean rule takes as input a profile P of weak
orders on X. Alternatives x having positive symmetric Borda score xβ

P > 0
are placed in XH , those with negative score xβ

P < 0 are placed in XL, and the
output of the rule is the corresponding dichotomous weak order XH > XL.
Alternatives with xβ

P = 0 are treated as described in section 3 (just before
Theorem 1); they yield a tie among all dichotomous weak orders that can be
obtained by assigning these elements randomly and independently to XH or
to XL.30

Proposition 13. When restricted to profiles of dichotomous weak orders,
the Borda mean rule is identical to the mean rule.

Proof. Recall that

29In a sense, then, it is thus doubly true that the mean rule depends only on vcocycle.
First, the Borda mean rule discards vcycle, using only vcocycle. Second, for the mean rule
vcycle need not even be discarded. We say “in a sense” because the second argument
is subtly incomplete – it fails to rule out the possibility that the mean rule relies on
profile information not present in the net preference flow. In fact, the vector {y(P )x}x∈X

used as input for the mean rule incorporates some information about the total number of
voters wiped out (by taking differences, in equation 3 below) when it is converted to net
preferences.

30To keep things short, we’ve suppressed all mention of ties in the remainder of this
section. The modifications needed to take them into account are straightforward.
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• y(P )x is the number of individuals j who evaluate x as +1
– equivalently, the number who place x in the higher I-class
XH of their dichotomous ranking ≥j

• y(P ) =
∑

z∈X
y(P )z

k
(where k is the number of elements in X)

• The mean rule places x in XH when y(P )x > y(P ).

Thus, it suffices to establish

xβ
P > 0⇔ y(P )x > y(P ). (2)

For a profile P of dichotomous weak orders,

NetP (x > z) = y(P )x − y(P )z. (3)

Hence xβ
P =

∑

z∈X NetP (x > z) =
∑

z∈X

[

y(P )x − y(P )z

]

=
∑

z∈X

[

y(P )x

]

−
∑

z∈X

[

y(P )z

]

= k
[

y(P )x − y(P )
]

,

from which condition (2) follows immediately.

Now that we know that both the mean rule and Borda mean rule are
determined by the symmetric Borda scores, which in turn depend only on
vcocycle (Observation 11), we immediately obtain:

Corollary 14. Both the mean rule and the Borda mean rule use only the
profile information in the cocyclic component of the net preference flow.

Our promised second argument consists of the following:

Proposition 15. Let P be any profile of dichotomous weak orders, and v be
the net preference flow induced by P . Then vcycle = 0.

Proof. First we show that v · c = 0 for every basic cycle c. Let

c = x1 → x2 → x3 → · · · → xt → x1

be a basic cycle, for which we assume, without loss of generality, that edges
on c agree in direction with the cycle’s orientation and we identify xt+1

with x1. Thus c assigns weight 1 to each edge xr → xr+1 on c and assigns
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weight 0 to each edge off c, while equation (3) tells us that v assigns weight
(

y(P )xr
− y(P )xr+1

)

to each xr → xr+1 edge. Thus the value of v · c is

(

y(P )x1
−y(P )x2

)

(1)+
(

y(P )x2
−y(P )x3

)

(1)+· · ·+
(

y(P )xt
−y(P )x1

)

(1) = 0.

It follows that v is orthogonal to the subspace Vcycle spanned by the basic
cycles, whence v belongs to its orthogonal complement Vcocycle (see fn. 25),
with v = vcocycle and vcycle = 0.

The same idea may be expressed via the following quantitative transitivity
condition:

NetP (x > z) + NetP (z > w) = NetP (x > w), (4)

which is strictly stronger than transitivity of P ’s pairwise majority relation,
and equivalent to vP

cycle = 0. It is satisfied by any profile of dichotomous
weak orders, because

(

y(P )x − y(P )z

)

+
(

y(P )z − y(P )w

)

=
(

y(P )x − y(P )w

)

.

At this point, we can summarize our vector theory argument as follows:
because they use the same restricted profile information – vcocycle, or equiv-
alently the symmetric Borda scores – the mean rule is the analogue of the
Borda SWF. The argument would be stronger if we could justify the analogy:

The Borda SWF: SWFs :: The mean rule: s

by showing that the way the Borda rule exploits the common information in
the social welfare function context is analogous to the way that the mean rule
(or Borda mean rule) exploits it in the context.31 That would require
filling the blanks – identifying a larger context exemplified by the mean and
Borda mean rules. This matter is one we will take up in a planned sequel,
“Social Dichotomy Functions.”

6.5 Applying vector methods more broadly to Judg-

ment Aggregation

Observation 11.3 can be restated as follows: By projecting the agents’ prefer-
ences onto the subspace Vcocycle we wipe out all underlying tendency towards

31Perhaps by showing each exploits that information in the only reasonable way for its
context.
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intransitivity, obtaining a modified version of net preference flow that satis-
fies a strong, quantitative form of transitivity. The outcome is then extracted
from this “strongly transitive” version by treating it as if it were the original.

A central problem in the field of judgment aggregation arises when each
of several agents submits a judgment on a sequence of interrelated binary
issues. It can happen that the result of applying majority rule separately on
an issue-by-issue basis gives rise to an infeasible collective judgment on those
issues – one inconsistent with the predetermined interrelationships – even
though the sequence of judgments submitted by any single agent is feasible.

Might it be possible to proceed in parallel with Observation 11.3, after
substituting some other form of feasibility for transitivity? Given a judgment
aggregation context, one would identify some subspace Vfeasible of strongly
feasible judgments, each of which has zero tendency towards infeasibility,
then project individual judgments onto that subspace, to obtain a modified
version of the issue-by-issue net majorities, which would safely lead to a
feasible collective judgment.

Preliminary investigation suggests that the effectiveness of such an ap-
proach varies depending on the particular judgment aggregation context. In
some cases there seem to be no acceptable choices for Vfeasible. Suppressing
all tendency to infeasibility comes at an unacceptably high cost for these
cases, limiting (to an unreasonable degree) the range of possible collective
judgments. It would be quite interesting to characterize those judgment ag-
gregation contexts for which such a vector decomposition method does yield
useful forms of aggregation, but that seems to require a finer understanding
of “useful form of aggregation” than we now possess.

7 Judgment aggregation

There has been a great deal of interest in the topic of judgment aggregation
since List and Pettit’s (2002) discussion of the now-famous doctrinal paradox.
In this section we consider ways in which the mean rule may be relevant to
this topic. We begin by defining some terminology from the literature on
judgment aggregation.

An agenda is a finite set of propositions that is closed under negation.
By this we mean that for every proposition in the agenda, the negation of
that proposition is also contained in the agenda. We denote the negation of
a proposition p by ¬p. An example of an agenda is the set {p,¬p, q,¬q, p ∧
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q,¬(p ∧ q)}. For brevity, we also write this set as {p, q, p ∧ q}±, listing just
one proposition from each proposition/negation pair.

A judgment set is a subset of the agenda. A minimally complete judg-
ment set contains one and only one of every proposition/negation pair in
the agenda. For short, we will simply write complete instead of minimally
complete. A rational judgment set is complete and also respects any intercon-
nections between the propositions in the agenda. An incomplete judgment
set is consistent if and only if it is a subset of a rational judgment set.

We seek to aggregate individual rational judgment sets into one or more
collective judgments sets that are also rational. Can the mean rule be used
for this purpose?

We know that the mean rule is suitable for at least some agendas. This
is because we can describe our original problem of partitioning a group
of students as a problem of judgment aggregation. We have an agenda
{p1, p2, . . . , pk}

±, where pi is the proposition “student i belongs in the higher-
ability class”. Given the requirement that every student is assigned either
to the higher-ability class or the lower-ability class, ¬pi means “student i
belongs in the lower-ability class”. In this example, every complete judgment
set is rational except for {p1, p2, . . . , pk} and its inverse, {¬p1,¬p2, . . . ,¬pk}.

Applying the mean rule here is simple. We take the set {p1, p2, . . . , pk}, let
us call this the reference set, and count the number of individuals who accept
each of the propositions in that set. The omission of ± here is deliberate; this
reference set is just one half of the agenda. Then we calculate the mean of
those k numbers. For each proposition p in the reference set, if p is accepted
by a number greater than the mean then we collectively accept p, and if p
is accepted by a number less than the mean then we accept ¬p. Note that
we arrive at the same outcome if we instead use {¬p1,¬p2, . . . ,¬pk} as the
reference set, but it is important that we do not calculate the mean over all
2k propositions in the agenda, which would always be equal to half of the
number of individuals who have submitted a judgment set.

The mean rule will always generate a rational outcome when (i) there are
just two complete judgment sets that are irrational and (ii) those two judg-
ment sets are disjoint. We simply choose either one of those two irrational,
complete judgment sets as the reference set and apply the mean rule to the
propositions in that reference set to determine the outcome.

In Section 7.1 we show that the problem of partitioning a group of stu-
dents into higher-ability and lower-ability classes is not the only problem
that takes this form. The problem of aggregating linear orders over three

33



alternatives does too. Moreover, we show that applying the mean rule to
that problem reveals yet another connection between the mean rule and the
Borda rule, in keeping with the theme of this paper.

The mean rule is not always suitable for agendas that take a different
form. For instance, suppose that the agenda is {p, q, r}± and that the only
complete judgment set that is irrational is {p, q, r}. In this case if we use
{p, q, r} as the reference set and apply the mean rule then it is impossible for
{¬p,¬q,¬r} to be the best outcome according to the mean rule even though
that judgment set is rational in this case. It seems undesirable that a rational
outcome should be precluded in this way.

Suppose instead that there are two complete judgment sets that are irra-
tional but that they are not disjoint. Let us say that {p, q,¬r} and {p,¬q, r}
are those two irrational judgment sets. If we use {p, q,¬r} as the reference
set then it is possible that the outcome under the mean rule will be the ir-
rational set {p,¬q, r}, and vice versa. This would happen if, for example,
there were just two individuals in the group and one submits the judgment
set {p, q, r} and the other submits {p,¬q,¬r}.

In Section 7.2 we respond to the limited applicability of the mean rule by
proposing a “general purpose” method of judgment aggregation that is an
extension of both the mean rule and the Borda rule. This proposal is based
on an approach to judgment aggregation introduced by Dietrich (2014).

7.1 Preference agenda with three alternatives

In this section we consider the problem of aggregating linear orders over
three alternatives. Let us label the three alternatives a, b and c. Let ab
denote the proposition “a is better than b”. Since we are restricting our
attention to linear orders, the negation ¬ab is equivalent to ba. The agenda
for this problem is {ab, bc, ac}±. This is an example of a “preference agenda”
(Dietrich and List, 2007). Every complete judgment set is rational except
for two: {ab, bc, ca} and {ba, cb, ac}. These two judgment sets are disjoint,
so we can apply the mean rule to this problem.

Consider the following example. There are five individuals in the group.
Three individuals submit the judgment set {ab, bc, ac} and two submit the
set {ba, bc, ca}. To apply the mean rule we must use either {ab, bc, ca} or
{ba, cb, ac} as the reference set. Let us use the set {ab, bc, ca} and, thusly,
count the number of individuals who accept each of the three propositions in
that set. These numbers are three, five and two, respectively. So, according
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to the mean rule, we collectively accept bc and we reject ab and ca. In other
words, the collective judgment set is {ba, bc, ac}. Note that this outcome is
anti-majoritarian; a majority of the individuals believe that a is better than
b, and the majoritarian outcome, {ab, bc, ac}, is perfectly rational.

Significantly, the Borda rule generates exactly the same anti-majoritarian
outcome at this profile as the mean rule. Since b has a Borda score of seven,
a six and c two, the Borda rule generates the ranking b > a > c, which
corresponds to {ba, bc, ac}, the outcome under the mean rule.

However, the relationship between the two rules is deeper than simply
agreeing at this profile. It turns out that when there are three alternatives,
the Borda rule and the mean rule will always agree.

Here is the proof. Let B(a) and B(b) denote the Borda scores of a and b
respectively. Furthermore, let n(ab) be the number of individuals who accept
ab and let µ be the mean of n(ab), n(bc) and n(ca). So, under the Borda rule
we accept ab if and only if B(a) > B(b), while under the mean rule we accept
ab if and only if n(ab) > µ. It is convenient for the following argument to
say that under the mean rule we accept ab if and only if 3n(ab) > 3µ.

If an individual accepts, say, ab and bc then that means that she ranks
a just one place above b. Hence her ranking causes B(a)− B(b) to increase
by one. Her ranking also causes 3n(ab) to increase by three and, since she
accepts a total of two propositions from the reference set, it causes 3µ to
increase by two. So 3n(a, b) − 3µ increases by one. Suppose instead that
she accepts bc and ca. This means that B(a) − B(b) decreases by two. In
this case she rejects ab so 3n(ab) is unchanged, and, since she accepts two
propositions from the reference set, 3µ increases by two. So 3n(ab) − 3µ
decreases by two.

It is easy to check that every ranking that is submitted causes the same
change in B(a)−B(b) as it does in 3n(ab)−3µ. Since, loosely speaking, both
of the numbers B(a)−B(b) and 3n(ab)−3µ start at zero before the rankings
are submitted, we can see that B(a) > B(b) if and only if 3n(ab) > 3µ.
Therefore, we accept ab under the Borda rule if and only if we accept it
under the mean rule.

It is important to note, however, that this equivalence between the Borda
rule and the mean rule does not hold when there are more than three alter-
natives. When there are four alternatives we will find that there are more
than two complete judgment sets that are irrational. The mean rule then
ceases to be applicable. Nevertheless, in this section we have seen that we
can make a direct comparison between the mean rule and the Borda rule,
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albeit one that is limited to the case of three alternatives.

7.2 Other agendas and scoring functions

One weakness of the mean rule is that there are many judgment aggregation
problems to which it is not applicable. Can this deficiency be overcome?
In fact, suppose that we want to go even further than this and achieve the
following in judgment aggregation: (i) be applicable to many agendas of
interest, (ii) produce the same collective judgment as the mean rule when
applied on its domain, and (iii) produce the same collective judgment as
the Borda rule when applied to the preference agenda (with any number of
alternatives). We show in this section that these objectives can be realized
by building on an approach to judgment aggregation introduced by Dietrich
(2014).

Let a scoring function be a function sJ(p) that assigns a number (or score)
to issue p given judgment set J . A scoring function can be used as the basis
for a judgment aggregation rule in the following way. We first determine a
total score for each proposition p by summing the scores for p over every
individual’s judgment set. We can then rank all of the possible outcomes,
that is, all of the rational judgment sets, by the sum-total of scores over the
propositions that they each contain. The one with the greatest sum of scores
is the final outcome.

Dietrich proposes a number of scoring functions. These include “reversal
scoring”, “disjoint-entailment scoring” and “irreducible-entailment scoring”.
A feature of these three scoring functions that makes them particularly inter-
esting is that they coincide with the Borda rule when applied on its domain
(the preference agendas). Unfortunately, they do not also coincide with the
mean rule over its domain (where there are just two complete judgment sets
that are irrational and they are disjoint). Interestingly, however, we can
construct a relatively simple scoring function that does agree with both the
Borda rule and the mean rule over their respective domains.

Let us explain this scoring function. Given any rational judgment set J
and a proposition p, if p is in J then the score for p is equal to the smallest
number of judgment reversals needed to obtain from J a judgment set J∗

such that

1. J∗ is irrational, and

2. J∗ \ {p} is consistent.
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Score of

p1 ¬p1 p2 ¬p2 p3 ¬p3 p4 ¬p4

Indiv. 1 (¬p1p2p3p4) 0 3 1 0 1 0 1 0

Indiv. 2 (¬p1¬p2p3p4) 0 2 0 2 2 0 2 0

Indiv. 3 (¬p1¬p2¬p3p4) 0 1 0 1 0 1 3 0

Group 0 6 1 3 3 1 6 0

Table 6: Infeasibility scoring.

By “judgment reversal” we mean the replacing of a proposition by its nega-
tion. If p is not in J then the score for p is zero. We call this scoring
function infeasibility scoring. To explore the relationship between infeasibil-
ity scoring and the mean rule, consider Table 6. The agenda in this example
is {p1, p2, p3, p4}

± and there are just two complete judgment sets that are
irrational: {p1, p2, p3, p4} and {¬p1,¬p2,¬p3,¬p4}.

To explain this table of scores let us take the example of proposition ¬p1

receiving a score of three for judgment set {¬p1, p2, p3, p4}. Starting from
that judgment set, the only judgment set that we can obtain by making
judgment reversals and that satisfies conditions 1 and 2 in the definition of
infeasibility scoring is the set {¬p1,¬p2,¬p3,¬p4}. This set satisfies condition
1 because it is irrational, and it satisfies condition 2 because removing the
proposition that we are scoring, ¬p1, leaves the set {¬p2,¬p3,¬p4} which
is a subset of a rational judgment set and therefore is consistent. To reach
{¬p1,¬p2,¬p3,¬p4} from {¬p1, p2, p3, p4} requires three judgment reversals.
Hence the score of three for ¬p1.

The rational judgment set with the greatest sum of scores is the set
{¬p1,¬p2, p3, p4}, with a sum-total of eighteen, and so it is the outcome
of the aggregation process. The mean rule generates the same outcome at
this profile. This is a consequence of the following theorem.

Proposition 16. Over the domain of the mean rule, each proposition p is
accepted under the mean rule if and only if p has a greater score than ¬p
under infeasibility scoring.

Proof. Take an agenda in the domain of the mean rule. Let R and R̄ be the
two complete judgment sets that are irrational and are disjoint. Take any
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proposition p in R.
For any rational judgment set J that contains p, the infeasibility score

for p is equal to the number of propositions that are in R but not in J . This
is the number of judgment reversals needed to obtain R, and it is only by
obtaining R that we satisfy conditions 1 and 2 in the definition of infeasibility
scoring. So the score for p, in other words, is the cardinality of R \ J .

Now suppose that we represent judgment set J as a dichotomous weak
order on R. A dichotomous weak order, that is, with upper equivalence class
J ∩R and lower equivalence class R\J . Then the symmetric Borda score for
p is the cardinality of R \ J (the number of elements of R ranked below p).
So we see that the infeasibility score for p is equal to the symmetric Borda
score for p.

For any judgment set J ′ that contains ¬p, the infeasibility score for ¬p
is the cardinality of J ′ ∩ R. This is because we must obtain R̄ to satisfy
conditions 1 and 2 in the definition of infeasibility scoring, so all of the
judgments in J ′ ∩R must be reversed.

When we represent J ′ as a dichotomous weak order on R, with upper
equivalence class J ′ ∩R and lower equivalence class R \ J ′, we find that the
symmetric Borda score for p is zero minus the cardinality of J ′ ∩R (since p
is now in the lower equivalence class).

So if the infeasibility score for ¬p is x then the symmetric Borda score for
p is −x. Note that there is no Borda score for ¬p because we have defined
the relation over R.

We have seen that the total infeasibility score for p will be greater than
the total infeasibility score for ¬p if and only if the symmetric Borda score for
p is positive. We know, from the proof of Proposition 13, that the symmetric
Borda score for p is positive if and only if p is accepted under the mean
rule.

We now consider how infeasibility scoring works over the domain of the
Borda rule. Suppose there are four alternatives a, b, c and d, and so we
have the agenda {ab, ac, ad, bc, bd, cd}±, with ¬ab being equivalent to ba as
discussed in Section 7.1.

The judgment set that corresponds to the ordering a > b > c > d is
{ab, ac, ad, bc, bd, cd}. What does infeasibility scoring assign to, say, ad for
this judgment set? With three judgment reversals we can reach the judgment
set {ba, ca, ad, bc, bd, dc}. This judgment set is irrational (with b > d > c >
a > d), but if we remove ad then we have a consistent subset (consistent with
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the ordering b > d > c > a). So infeasibility scoring yields a score of three
for ad here. Notice that this is just the conventional Borda score of a minus
the Borda score of d (derived from the original ordering).

This is an example of a more general equivalence. Infeasibility scoring
matches Borda scoring in the sense that, under infeasibility scoring, for any
two alternatives a and b the score for proposition ab is equal to the Borda
score of a minus the Borda score of b.

Proposition 17. Infeasibility scoring matches Borda scoring in the case of
the preference agenda.

Proof. Take any two alternatives a and b. Let us first consider the case of an
individual who accepts ab and does not rank any other alternatives between
a and b. Clearly, the Borda score of a minus the Borda score of b in this case
is one.

Suppose that alternative c is ranked just below b so we have ac and bc. If
we reverse the judgment ac then we have ca and bc. These two judgments are
incompatible with ab as they imply ba. Since just one reversal is required to
obtain a binary relation in which the reversal of ab would restore transitivity,
the score assigned by infeasibility scoring to ab is one. We could also have
supposed that c is ranked just above a so that we have ca and cb. In that
case, reversing the judgment cb gives us the same outcome; ca and bc.

So infeasibility scoring and Borda scoring are equivalent when a and b are
adjacent in the ordering, with both giving a score of one to ab. But we must
confirm that they are equivalent when there are some alternatives ranked
between a and b. Suppose that there are t-many alternatives ranked between
a and b. Then the Borda score of a minus the Borda score of b is t + 1. We
need to prove that infeasibility scoring assigns t + 1 to ab.

Let d be one of the alternatives between a and b. That is, ad and db. If
both of these judgments remain unchanged then transitivity requires ab. So
reversing the judgment ab will not result in a transitive relation. Therefore,
we must reverse either ad or db. Let us reverse the proposition ad. And let us
also reverse ae for every other proposition e that is ranked between a and b. In
total this will require t reversals. Once a has been demoted t times in this way
we will have a transitive relation in which a is just above b. We know, by the
argument above, that exactly one more reversal is needed to obtain a relation
such that (i) the relation is intransitive and (ii) reversing the judgment ab
would restore transitivity. So the total number of reversals required to satisfy
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those two conditions in the definition of infeasibility scoring is t + 1. Hence,
infeasibility scoring assigns t + 1 to ab.

We should emphasize that infeasibility scoring is not always possible.
For example, consider an agenda in which each proposition/negation pair
is logically independent of the others. Then we cannot obtain an irrational
judgment set from a rational one by making judgment reversals. However,
infeasibility scoring can be applied to many agendas in which the propositions
are interconnected. For instance, it can be applied to the agenda of the
doctrinal paradox.

8 Conclusion

In this paper, we have introduced the mean rule as an approach to ag-
gregating binary evaluations. We have shown that the rule (i) determines
the tension-minimizing monotone partition, (ii) emerges when we translate
Young’s Borda axioms into the framework of binary evaluations, and (iii)
can be derived using the vector decomposition approach. Points (i) and (ii)
provide the main normative argument in favor of the rule, while points (ii)
and (iii) support our claim that the mean rule is the analogue to the Borda
rule in the framework of binary evaluations. We concluded the paper by
showing how both the mean rule and the Borda rule can be derived from an
approach to judgment aggregation.

We would caution, however, against applying the mean rule to other ag-
gregation settings simply because it can be applied in those settings. Clearly,
the mean rule will not always be an attractive aggregation rule. We give
one example. Imagine that twenty individuals apply for a job (labeled 1
to 20), and that there are four members of the appointment panel (labeled
A, B, C, D). Each member of the appointment panel must look at each appli-
cation and decide whether or not the candidate should be invited to interview.
Suppose that A says “yes” (+1) to applicants 1 to 5 and “no” (−1) to the
others. Similarly B says “yes” to applicants 6 to 10 only, C to applicants 11
to 15 only, and D to applicants 16 to 19 only. In other words, A, B and C
want to invite 5 applicants each, while candidate D wants to invite 4.

The mean in this situation is 19/20 and so, under the mean rule, applicants
1 to 19 are invited to interview. In other words, virtually all of the applicants
are invited to interview despite the fact that the panelists each think that
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only 5 or 4 should be. Moreover, if the fourth panelist says “yes” to two more
candidates (applicants 20 and 1) then (with no change in the evaluations of
the other panelists) the mean rises to 21/20 and so only applicant 1 is invited to
interview under the mean rule. This collapse in the number of interviewees
from 19 to 1 occurs despite the fact that this panelist believes that more
candidates should be invited for interview, not fewer.

The reason that the mean rule is less attractive in this example is that
the panelists care about the sizes of the two parts of the partition.32 How-
ever, the mean rule minimizes tension with size playing a subsidiary role.
As we explained in our original student partitioning example, the tension-
minimizing partition could well place a single student into the higher-ability
group.

Therefore, although this example fits into our framework, it is not an
aggregation problem to which the mean rule naturally applies (and the panel
would not wish to use it). Perhaps a more appropriate method in this case
would be the following. First, determine the mean number of candidates
voted for by the members of the panel and round this number to the nearest
integer t. Then invite for interview the t applicants with the greatest total
number of “yes” evaluations (using some device to break ties if necessary).
Clearly, this is very different to the mean rule.33

Another approach would be to apply a “restricted” form of the mean
rule to this problem. In this restricted version, we constrain the set of fea-
sible outcomes. We could, for instance, require that all feasible outcomes
assign +1 to exactly 5 candidates. We would then choose whichever of these
feasible outcomes minimizes tension (as in our original student partitioning
problem). Here total tension would correspond to the sum of the tension in
the set of interviewed applicants and the tension in the set of non-interviewed
applicants. This paper has, however, dealt with the unrestricted version of
the mean rule, and we leave consideration of this restricted version to future
research.

Finally, in future research, we plan to explore further the properties of
what we call “social dichotomy functions”. The mean rule is the first example
of such a function. More generally, these functions may have dichotomies as

32In this example, the set of applicants is partitioned into a “invited to interview” set
and a “not invited to interview set”.

33Another approach would be to determine t before the votes are cast, and then require
each panelist to vote for exactly t candidates. The t candidates with the greatest total
number of votes are chosen for interview. See Peters, Roy and Storcken (2012).
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inputs (or some other form that provides information about “separation”),
and the output is a social dichotomy (or a set of such dichotomies). Other
social dichotomy functions exist in addition to the mean rule. Our future
paper will explore their properties further.
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