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ABSTRACT 

Time Series Analysis of Macroeconomic Conditions 

in Open Economies 

by 

Gover Barja, Doctor of Philosophy 

Utah State University, 1995 

Major Professor: Dr. Terrence Glover 

Department: Economics 

Ill 

Three macroeconomic issues are examined in separate self-contained studies. The 

first study tests the business cycle theory with application of an enhanced Augmented 

Dickey-Fuller test on the U.S. time series of real gross national product. Unlike previous 

studies, the null hypothesis of a unit root is rejected. The second study tests for IS-LM 

conditions in the U.S. during the post-Bretton Woods era by combining the Johansen 's 

approach to cointegration with bootstrap algorithms. The estimated model produces a 

dynamic version of the IS-LM that permits short-term evaluations of fiscal and monetary 

policies. The third study seeks to explain the observed persistence in the Bolivan 

dollarization process. It is found that dollarization is now an irreversible process, with 

the Bolivian economy in transition toward equalization with U.S. prices and interest rates. 

( 125 pages) 
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CHAPTER I 

INTRODUCTION 

The novelty of the present dissertation research is in the combination of time domain 

time series methods with bootstrap techniques. The former is widely used in the 

econometrics literature for estimation of dynamic models. The latter is used here fo r 

hypothesis testing purposes. The combined technique is here used to analyze three 

macroeconomic issues of current interest where accuracy in inference, rather than the lack 

of macroeconomic theory, has increasingly become the central concern. Each of the three 

issues is examined and discussed in a separate self-contained study. 

The objective of the first study is to test the business cycle theory, which is a basic 

building block of current macroeconomic theory . The test is performed using the univariate 

time series of real gross national product (GNP) from the United States. Questioning the 

cycle is, in practice, an issue of whether the time series of real GNP should be made 

stationary by detrending or differencing. The question is empirically answered using an 

enhanced unit root testing procedure that combines the classical test with robust regression 

and bootstrapping techniques. These techniques improve the accuracy of the classical test. 

This study is also used to develop the basic structure of the bootstrap algorithm needed for 

hypothesis testing in a single equation of the autoregressive kind, and to set the ground work 

for its application in a multivariate multiple equation framework. 

The objective of the second study is to test for IS-LM conditions in the United States 

for the post-Bretton Woods era. The most general IS-LM framework is used to identify the 
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relevant macroeconomic variables allowing the time series of these variables to reveal their 

own story. This is achieved by treating each variable as equally endogenous in the 

estimation of a multivariate dynamic system. This is strictly a statistical-based test, and the 

statistical methods that accomplish this are of the autoregression kind. These methods are 

by their own nature data based and atheoretical. However, they can fit short-term dynamic 

interactions with the use of vector autoregression models that are long-term equilibrium 

relationships. Testing for cointegration, and short-term/long-term interactions with error 

correction models are likewise carried out. Given the sample size and problems of 

nonstandard distributions associated with these methods, the cointegration test and 

multivariate parameter evaluation are performed by implementing the bootstrap at a 

multivariate level. 

The objective of the third study is to explain the observed irreversibility in the 

Bolivian dollarization process. Although current theory implicitly contains an explanation 

for the possibility of irreversibility, traditional empirical models fail to capture the complex 

dynamics that have given rise to it. Irreversibility is first verified with use the of a test for 

structural change applied to the monthly univariate time series of dollarization for the period 

from 1987 to 1994. Then, a multivariate dynamic system is estimated using identified 

relevant variables from a general model of currency substitution. Estimation is done in a 

co integration-error correction framework as well in order to capture the relevant short-term, 

long-term, and short-term/long-term interactions among variables. Given the peculiarities 

of the model, foreign variables are treated as exogenous while domestic variables are treated 

as equally endogenous during estimation. The latter has the purpose of producing a data-
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driven structure of the empirical model. Multivariate parameter evaluation and the 

cointegration test are also performed by implementing the bootstrap at a multivariate level. 



CHAPTER2 

BOOTSTRAPPING FOR UNIT ROOTS 

4 

Abstract. The Augmented Dickey-Fuller (ADF) test is used to determine if the time series 

of U.S. GNP should be detrended or differenced for stationarity. The statistics of interest 

and power of the test are evaluated using a nonparametric bootstrap procedure. Estimation 

of the ADF equation is done by ordinary least squares and robust regression. The robust 

method downweights observations at the begining and ending of the natural cycles in the 

data according to their strength, and thus has the effect of decreasing the degree of bias. 

Unlike the findings in the previous literature, in both cases the null of a difference stationary 

process is rejected at a 5% alpha level for a one-sided test. This result is also supported by 

a test power of above 80% when considering a plausible trend stationary alternative. 

Introduction 

One of the most interesting debates for over a decade now has been about the 

existence and behavior of the business cycle, which is a basic building block of current 

macroeconomic theory. It is generally assumed that real GNP tends to grow in cycles around 

a positive trend representing a long-term growth path. Growth is believed to be determined 

by real variables, like capital accumulation, population growth, and technological change, 

and therefore changes in these variables are a source of permanent change in the growth path. 

It is also believed that cycles are transitory deviations from the long-term growth path caused 

by monetary variables and, to a lesser extent, by real variables. The empirical consequence 

of this theory is that a macroeconomic time series could be regressed against a time variable 
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in order to eliminate the long-term component and generate a stationary series useful for 

business cycle short-term analysis. In statistical terms this is equivalent to detrending in 

order to generate a trend stationary (TS) representation of the time series of real GNP. 

However, in a paper by Nelson and Plosser ( 1982), the unit root testing procedure developed 

by Dickey and Fuller (1979; 1981) showed that almost all U.S. macroeconomic variables 

are random walks, and in particular that real GNP is a random walk with drift. A random 

walk simply meanders without exhibiting a tendency to return to a trend line, and therefore, 

real GNP is more correctly transformed into a stationary series by taking a first difference. 

In statistical terms this transformation generates a difference stationary (DS) representation 

of the time series of real GNP. The theoretical implication of this finding is that permanent 

sources of business cycles dominate transitory sources. Therefore, real GNP in the short run 

is always moving away from a previous position and never coming back to a within-cycle 

long-term growth path. That is, there is no within-cycle long-term growth path to come back 

to because the long-term is always changing through short-term adjustments. 

Questioning the existence of the cycle involves in practice an assessment of whether 

the time series of real GNP should be made stationary by detrending or differencing. 

However, the Dickey-Fuller (DF) procedure, which tests the null of aDS representation, is 

sensitive to how it is performed. Dickey and Fuller ( 1979) find that it is sensitive to whether 

a nonzero mean or a time trend is assumed. Schwer! (1987) finds it is sensitive to whether 

a moving average or autoregressive data-generating process is assumed. Sims (1988) finds 

it is sensitive to whether the test is performed using classical or Bayesian statistical 

inference. Simkins (1994) finds it is sensitive to the number of breaks in the trend when 
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considering a more flexible trend specification. These sensitivities are partly due to the lack 

of power this test has against an alternative hypothesis of a stationary but large root. 

Evidence of this sort has been provided by Phillips and Perron (1988) , and by DeJong, 

Nankervi s, Savin, and Whiteman ( 1989). 

These studies of power analyze the performance of the OF test in general 

circumstances. However, given the macroeconomic implications of a unit root in real GNP, 

it is of importance to evaluate the power of the OF test in this particular case. The work of 

Rudebush (1993) goes in this direction. He evaluates the ability of the OF test to distinguish 

between two data-based plausible TS and OS alternative representations of real GNP. More 

specifically, within a Monte Carlo approach, Rudebush draws random values from a normal 

distribution and, together with the estimated coefficients of the TS and OS representations, 

generates an empirical distribution of the stati stic of interest for each case. Then, by 

computing the p-value of the sample statistic for the two alternative distributions, he 

concludes that the existence of a unit root in real GNP is uncertain due to low test power. 

The procedure used by Rudebusch is called parametric bootstrap by Efron and 

Tibshirani ( 1986), and its main advantage is that it takes into account the sample size and the 

nonstandard distribution problem associated with the OF test. However, instead of 

suhstituting the actual residuals with random draws from a normal di stribution , another 

method would be to draw random values from the residuals themselves to obtain an 

approximation to the true distribution of the statistics of interest. This approach is called the 

nonparametric bootstrap by the same authors. The bootstrap was introduced by Efron (1979) 

and applications to stationary autoregressive processes were implicitly introduced by 
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Freedman ( 1981) and Freedman and Peters ( 1984). One aspect of bootstrap applications to 

regression equations. emphasized by Freedman and Peters (1984), is that the fined regression 

equation and its estimated parameters are the true model of the phenomena of interest. In 

the context of unit root testing, however, neither the Dickey-Fuller (DF) equation nor 

Rudebush ' s TS and DS representations constitute models of real GNP. The TS and DS 

representations are simply two alternative transformations of real GNP, and the DF equation 

is a way to decide which transformation is correct. A model of real GNP could contain many 

other macroeconomic variables, probably within a dynamic system of equations. However, 

it is these characteristics of the TS, DS, and DF equations that justify the use of the 

nonparametric bootstrap based on observed residuals since these residuals retain hi storic 

distributional information from the other variables not included in these equations. This is 

a further advantage of the nonparametric bootstrap, in addition to taking into account the 

sample size and nonstandard distribution problems. 

The purpose of this study is to use the nonparametric bootstrap to eva! uate the 

performance of the Dickey-Fuller (DF) test in a near unit root case. The data used are the 

quarterly time series of real GNP for the period 1948.3-1989.4. The DF equation is 

estimated by ordinary least squares and robust regression. This latter procedure is used to 

improve accuracy in estimation. The evaluation itself is done in three ways; first, by 

building critical values from the estimated empirical distributions of the statistics of interest 

and comparing them with the usual DF critical values; second, by determining the 

contribution of squared bias and variance to total mean square error in the estimated 

parameters resulting from ordinary least squares and robust regression estimation; third, by 



assessing the power of the DF test against a plausible TS alternative. 

C lassical Procedures, the Bootstrap, and 

Robust Regression 

To fix the idea of a unit root, consider the following model for a time seri es y,: 

8 

(1) 

(2) 

where e, is a zero mean white noise process. The reduced form of model (l )-(2) yields the 

fo llowing equation: 

y,; y + 6t + py,_, + e,, (3) 

where y ; [a0(1-p) + a1p] and o ; a1(1-p). Equation (3) andy, are said to have a "unit root" 

when p ; l (which in tum implies o ; 0). In this case, y, is nonstationary, but the process is 

said to be difference stationary (OS) because stationarity is induced by first differencing: <ly, 

; y, - y,_,; y + e,. Alternatively, when p < I and a 1•0, y, is stationary about the linear trend 

a0+a1t, and hence is said to be trend stationary (TS) . The case when p < I and e< 1;0 implies 

y, is stationary itself. 

Unit root tests based on equation (3) were pioneered by Dickey and Fuller (1979), 

and the most common procedure is to test the null hypothesis H,:p ; I based on the statistics 

t; (p -1)/se(p), and F(O,l). Here, pis the ordinary least squares (OLS) estimator of p, se( p) 

is the standard error of p, and F(O, l) is the usual F-statistic for tesing H0 : o;O, p; l . Dickey 

and Fuller have shown that these statistics do not have the traditional t and F distributions 

but, rather, some nonstandard distributions. However, they tabulated critical values for the 

asymptotic case based on Monte Carlo simulation. 
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The above Dickey-Fuller (OF) test requires the error term E1 to be white noise. Said 

and Dickey (1984) further developed the test to accommodate AR serial correlation in the 

error term and introduced the "augmented" Dickey-Fuller (ADF) test , which involves 

estimating t(tau) and F using 

Y,= y+ ot + PYH + t ei.6.Y,_i+ e, • 
i~ l 

(4) 

where tJ. is the first difference operator and with the number of lags, g, taking into account 

the presence of AR serial correlation. Said and Dickey also showed that the "augmentation" 

of the ADF test leaves the statistics asymptotically distributed according to the Dickey-Fuller 

tables even when the errors are ARMA processes of unknown order. 

Subtracting y,_, from both sides produces the following equation: 

• 
lly, = y + lit + PY,_, + L fl,llY,_: E, 

i• l 

(5) 

where p=p-1. The null hypothesis for the OF test now changes to the more convenient form 

ofH0 :P= 0 for the 't-test, and H0 : 6=0, P=O for the F-test. When the null hypothesis is true, 

equation (5) becomes a random walk with drift plus g short-term dynamic components. The 

present study uses this last equation. 

The bootstrap is a computer-intensive method used to establish the accuracy of a 

parameter estimate. To illustrate the bootstrap in autoregressive time series models, assume 

the following second order autoregressive model: 

(6) 
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where the sample size for y, is n, the"' are unknown parameters and the errors are identified 

with an unknown distribution having a zero mean. Assume it is of interest to test H0 :tt, = 0 

and let t(tt;) be any measure of statistical accuracy, say the !-statistic. Following the work of 

Freedman and Peters (1984), and Hall and Wilson (1991), the bootstrap algorithm for 

hypothesis testing in a time series context would be the following: 

Algorithm I: 

I . Begin by obtaining an estimate &, of the parameters, say by least squares, and 

compute the original t( tt;)=( ci, - 0)/se( ci). 

2. Compute the observed residuals € = Y, - &
0

- ci,yt-t- ci,y,_
2

• 

3. Take a random sample of size n drawn with replacement from E
1 

to generate new 

residuals E1*. 

4. Construct new values y,• using the residuals E,*, and the estimated dependence 

mechanism from step I, y," = &
0 

+ ci,y,:, + ci
2
y,:, + E,' , with y,• = y, and y2 *= y2 • 

5. Use the new values y,• to estimate equation (6) and generate bootstrap estimates"'* 

6. Compute bootstrapped t(tt,*) = (tt,•- a,)/se(tt,*) to approximate the null distribution 

oft(tt;) = (&,- 0)/se(ci). Go back to step 3 and repeat the process enough times (say 

1,000) to obtain the empirical distribution function (df) for the statistic t(tt,). 

7. Finally, based on this df evaluate the significance of the original t(cx ,) estimated in 

step I by computing its (bootstrapped) p-value. 

An alternative to the OLS estimates found in Steps I to 5 are these found using robust 

regression. Robust regression is a method useful in the presence of contamination in the 

data. To explain how robust regression operates, we begin with the classical regress ion 
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problem: Y = Xp + E, where Y(n x I) is a vector of observations, X (n x p) is a design matrix 

of full rank p, P(p x I) is a vector of unknown parameters, and E is a vector of errors which 

satisfy E[ E ]=0 and Cov[ E ]=a2!. The method of least squares obtains an estimate of p that 

minimizes LE;2
• The possibility of outliers in the observations or the design are handled by 

estimating weights for those outliers, then using the weights to obtain an estimate of p that 

minimizes LfJ(E; Is). This is the classical M-estimation approach, where '10 is a symmetric 

loss function and s is a scale parameter. The derivative respect to p produces the following 

system of nonlinear equations: 

' y -xrp 
E we-·-'-) , o 
j w] S 

' y -xrp 
Exw(-'-'-), o 
i • l lj s 

where wO is the derivative of '1(·). The computational procedure is the following: 

1. Obtain an initial estimate p0 of p. 

2. Find residuals E( = Y; - X;Tpi associated with the jth estimate and compute 

an estimate of scale si. 

3. Compute weights to be used in the next weighted least squares estimate 

\jl(.,i/s ;) 

.,i;s ; 

4. Use the weights obtained in 3 to solve the following weighted least squares equations 

for l}i+' 
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L (Y;_X;TIJi ·')w; = 0 
i • l 

L (Y; - x; rp; ·')w;x;; = 0 ,., 

5. Return to 2, unless the estimates differ from pi by less than a desired accuracy. 

Bootstrapping the ADF Test 

Figure 2-1 presents plots describing some statistical properties of the first difference 

of the log of real GNP (!gnp). Plot (a) is !gnp before differencing. Plot (b) is the first 

difference of !gnp, called dgnp. Taking logs has a double objective. First, it decreases the 

magnitude of observed values of GNP. Second, its first difference expresses GNP in its 

growth rate form . Plots (c) and (d) show that the growth rate of GNP has a distribution close 

to normal and there are no obvious outliers. Plots (e) and (f) are the autocorrelation and 

partial autocorrelation functions (ACF and PACF) of the growth rate of GNP. These show 

first order autocorrelation, which suggests the following ADF equation': 

algnp, = y + ot + plgnp,_, + ealgnp,_, + e, (7) 

Equation (7) is the same as equation (5) but with g = I . If 6 = 0 and ll = 0 then (7) 

reduces to the null representation of !gnp suggested by the data, that is, a random walk with 

drift and first order autocorrelation. Following algorithm I, the bootstrap procedure starts 

by estimating (7) (instead of (6)) using OLS and robust regression (RREG). The numbers 

in parentheses are the estimated coefficients which are subsequently divided by their 

' Notice that the first difference of I gnp = algnp (used in equations) = growth rate of 

GNP= dgnp (used in plots). 



O • 

(a) 

(c) 

/ 
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/ 
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{e) 
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(b) 

(d) 

{f) 

Fig. 2-1.-Some statistical properties of differenced log GNP. 
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standard errors: 

OLS: 6lgnp, = 0.384 + 0.0004 t- 0.0535 lgnp,. 1 + 0.389 6lgnp,. 1 + e, 

(2.810) (2.664) (-2.766) (5.334) 

F-test = 4.08; Q= 9.75 (0.46); Q'= 7.40 (0.68); VN= 0.759 (0.77) 

RREG: Mgnp, = 0.387 + 0.0004 t- 0.0538 !gnp,_, + 0.406 6lgnp,_ 1 + e, 

(3.364) (3.219) (-3 .312) (6.676) 

F-test = 5.67; Q= 10.86 (0.36) ; Q'= 9.97 (0.44); VN= 1.00 (0.84) 

14 

(8) 

(9) 

Although plots (c) and (d) show no obvious outliers, it is worth noting that robust 

regression improves the accuracy of the estimated parameters. The best way to see this is 

by comparing the computed weights with the differenced and detrended series of !gnp. Plot 

(a) in Figure 2-2 is the detrended series, (b) is a plot of the weights, and (c) is the differenced 

series that produces the weights. The weights are values between zero and one, and they 

indicate the proportion by which the original values are downwighted in order to achieve the 

most robust fit. What is interesting to note is that the downweighted values correspond to 

the beginning or ending of the natural cycles in the data. That is, what robust regression 

achieved is similar to a regression with dummy variables at the beginning or ending of cycles 

with the difference that each dummy is not weighted equally, but rather according to the 

initial or ending strength of each cycle. 

The estimated coefficients in both regressions do not show much difference, but in 

all cases the RREG statistics are greater in magnitude. The •-statistics are taUoLs = -2.766 and 

tauRREG= -3.312, which are generally evaluated using the DF critical values. The F-statistics 

are F0 L5=4.08 and FRREG=5.67, which are also evaluated using their DF critical values. The 
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Fig. 2-2.-Comparing weights with detrended and differenced !gnp. 
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stati stics Q. Q', and VN where computed with the objective of verifying if the residuals 

from both equations are in fact independent before continuing with the bootstrap algorithm. 

The first is the Box-Ljung Q-statistic designed to test the null of zero autocorrelation at all 

lags in the residuals. The second, Q', is also the Box-Ljung Q-statistic but this time it is used 

to test the null of zero autocorrelation at all lags in the squared residuals. This last test is 

used to identify possible heteroskedasticity. The Q-statistic is given by 

t r' 
Q = n(n+2) _ _ ;. 

;., (n -J) 

where r; is the jth autocorrelation and n is the number of observations. Under the null, Q has 

a x' -distribution with degrees of freedom equal to the number of autocorrelations, p. For 

p= l 0, the 5% critical value for the x2-distribution is 18.3, which is above the computed 

values for Q and Q2 in both regressions. Values ofp > 10 were not considered given that 

they reduce the power of the Q-test. The numbers in parentheses beside the computed values 

for this statistics are p-values. In all cases we fail to reject the null of independence. The 

third statistic, VN, is the Rank von Neumann Ratio designed to test the null of independence 

of the residuals with a nonpararnetric approach. The VN statistic is given below, where v 

is the Neumann ration and r; is the rank associated with the ith residual. For large nand 

under the null , vis approximately distributed N(2 , 20/(5n+7)), and therefore VN - N(O, I). 

The numbers in parentheses beside the computed values for VN are p-values. In both 
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f:cr,-r,_y 
v : .::••:.:_2 __ _ 

n(n 2 - 1)/12 

VN 
v-2 

/(20/(5n + 7)) 

regressions we fail to reject the null of independence of the residuals. 

Having parameter estimates and independent residuals, a new bootstrap algorithm 

was developed to account for the requirements of the unit root testing procedure, but 

fo llowing the main structure of algorithm I. It is of interest to test two hypotheses. First, 

H0:p=O. for which the statistic tau is computed. Second, H0:o=O and j3=0, for which the F-test 

is computed. The original values of tau are shown in the above estimated ADF equations (8) 

and (9). The following algorithm describes the steps followed in bootstrapping residuals 

from the OLS regression:' 

Algorithm 2: 

I. Take a random sample of size n drawn with replacement from the standardized 

residuals e, , of the original regression, to generate new residuals e*,. 

2. Construct new values !gnp*, using the residuals e*,, together with the estimated 

ADF structure and dependence mechanism from the OLS regression (8), 

Mgnp,* = y+ &t + ~ !gnp*,_, + lit.Ignp*,_, +e*,, 

with !gnp• , = lgnp1 and I gnp• 2 = lgnp2• 

2 All computations for estimation and bootstrap hypothesis testing were programmed in 

Splus, version 3.2 release I for Sun SPARC, SunOS 5.x: 1993. Computer programs are 

presented in appendix A. 
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3. Use !gnp*, to estimate equation (7) and generate bootstrapped parameter estimates. 

4. Also compute bootstrapped tau* = (p*- p )/se(p*) and F*(O,O) to approximate 

the distribution of tau = (P- 0)/se(p) and F(O,O) . 

5. Go to step I and replicate 1000 times. 

6. Finally, use the 1000 values of tau* and F* to build their empirical distribution 

functions (dfs) to evaluate the significance of the original tau and F. 

The algorithm used for bootstrapping residuals from the RREG regression follows 

the same steps as algorithm 2 (see Shorack, 1982) except that at step I it samples from the 

standardized weighed residuals, and at step 3 it estimates a robust regression to produce 

bootstrapped parameter estimates. 

Plots (a) and (c) in Figure 2-3 present the estimated empirical dfs for the tau-test 

under OLS and RREG, respectively. In both cases the distribution of tau appears not much 

different from a normal distribution. However, the range of values tau can take does suggest 

important differences compared to the Dickey-Fuller (DF) critical values, as can be seen in 

Table 2-1. The DF critical values are shifted to the left compared to the bootstrap RREG and 

bootstrap OLS critical values. By using the estimated tau statistics from equations (8) and 

(9), a one-sided test of the null hypothesis of p=O can be rejected at a 5% alpha level for 

taUoLs = -2.766, but cannot be rejected at a 2.5% level. In the RREG case, the conclusion is 

exactly the same for tauRREG=-3.312. However, the DF test fails to reject the null at even a 

I 0% alpha level when considering the value of taUoLs• and it rejects the null at a I 0% alpha 

level for tauRREG· 
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Fig. 2-3.-Empirical distributions of tau and F under OLS and RREG. 
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TABLE 2-1 

CRJTICAL VALUES FOR TAU-TEST 

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

Bootstrapped -3.15 -2.78 -2.41 -2.06 0.32 0.69 0.96 1.22 

Tauots 

Bootstrapped -3.88 -3 .36 -2.96 -2.47 0.48 0.94 1.35 I. 74 

TauRREG 

Dickey-Fuller -3.99 -3 .69 -3.43 -3. 13 -1.23 -0.92 -0.64 -0.31 

TABLE 2-2 

CRJTICAL VALUES FORF-TEST 

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

Bootstrapped 0.01 0.03 0.07 0.15 3.00 3.89 4.90 5.92 

FoLs 

Bootstrapped 0.01 0.03 0.10 0.21 4.29 5.43 6.65 8.63 

FRREG 

Dickey-Fuller 0.76 0.94 1.13 1.39 5.39 6.34 7.25 8.43 

Plots (b) and (d) in Figures 2-3 present the estimated empirical dfs for the F-test 

under OLS and RREG. Once again the range of values of these distributions suggest 

important differences compared to the OF critical values, as can be seen in Table 2-2. 

By using the computed F-statistics from equations (8) and (9), the null hypothesis of 

o=O and p=O can be rejected at a 5% alpha level for bootstrapped F 0 ,_5=4.08 and bootstrapped 

FRREG=5.67, but it cannot be rejected for a 2.5% alpha level. This result is consistent with 

the findings above. When using the OF critical values, the value ofF0 ,_5 cannot be rejected 

while F RREG can be rejected at a I 0% alpha level. This result is also consistent with the 

findings above. 
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Failure to reject the null is the stylized fact that has emerged from applications of the 

OF test, but as found here, the small sample results in a nonparametric bootstrap context are 

somewhat different. These results suggest that US real GNP is a trend stationary series (at 

a 5% alpha level and if we are willing to accept a one sided test) which grows in cycles 

around a positive time trend. By using the estimated equations (8) and (9), and the 

definitions given in (l)-(5), the estimated time trends are 7.045 + 0.00747t for the OLS case, 

and 7.062 + 0.00743t for the RREG case. 

Figure 2-4 shows the distribution of the bootstrapped parameters of interest. Plots 

(a) and (b) correspond to the distributions of p* and se(p*), respectively, and under OLS. 

Plots (c) and (d) are their RREG counterparts. In all of the plots there is some degree of 

skewness either toward the right or left tail. This degree of skewness is more accentuated 

in the distribution of the parameters rather than on their standard errors. It is interesting to 

note, however, that dividing parameters by standard errors produces symmetric distributions 

as in the distribution for tau. One useful aspect of these distributions is that they can help 

establish the contributions of squared bias and variance to total mean squared error (MSE). 

Table 2-3 shows the proportions of squared bias and variance to MSE, plus a measure of 

relative bias for all OLS parameter estimates. Table 2-4 presents the same for all RREG 

parameter estimates. The definitions used were variance =var(b*), bias = E(b*)-li, and 

relative bias = bias/se(b*) for b=(y ,o,p,8). 

In comparing the tables, OLS produces smaller MSE for y and o, but RREG produces 

smaller MSE for p and especially for e. If an estimator is unbiased, then its variance should 

equal its MSE. This does not happen with the OLS estimates where squared 
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Fig. 2-4.-Empirical distributions of the parameters beta under OLS and RREG. 
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TABLE 2-3 

OLS MEAN SQUARE ERROR ASSESSMENT 

parameter var(b*) bias2 MSE bias2/MSE bias/se(b* ) 

y 0.0317 0.0510 0.0827 0.6166 1.2683 

6 3.88e-08 5.2 le-08 9.09e-08 0.5733 1.1 592 

p 6.33e-04 9.65e-04 1.59e-03 0.6038 1.2347 

e 5.32e-03 0.1518 0.1571 0.9661 5.3389 

TABLE 2-4 

RREG MEAN SQUARE ERROR ASSESSMENT 

parameter var(b*) bias2 MSE bias2/MSE bias/se(b*) 

y 0.0899 0.0417 0.1316 0.3168 0.6810 

6 5.40e-06 9.46e-09 5.4le-06 1.74e-03 0.0418 

p 7.48e-04 5.3le-04 1.27e-03 0.4149 0.8421 

e 4.70e-03 5.96e-06 4.70e-03 1.26e-03 0.0356 

bias accounts on average for about 60% ofMSE (and 96% for 6). However, the estimates 

for 6 and 8 under RREG are almost unbiased, and the proportion of squared bias on MSE 

for y and p decreases to 31% and 41%, respectively. That is, MSE under OLS is mainly 

determined by bias, while under RREG it is determined by variance. This result can also be 

verified by our measure of relative bias = bias/se(b*), which consistently presents numbers 

greater than one under OLS, and below one under RREG. 

These results may be pointing to the main problem of why the unit root uncertainty 

in real GNP could not be solved. It is not necessarily a problem of bad inference methods, 

but rather a problem of estimation methods. In our case OLS produces biased parameter 
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estimates at a given level of variance. RREG reduces bias but at a higher variance leve l 

compared toOLS. Neither of them produces unbiased estimates for p, the key parameter. 

Assessing the Power of the AOF Test 

The nonparametric bootstrap is again used here to assess the power of the AOF test 

in the particular case of I gnp,. The analysis starts with an estimate of a plausible trend 

stationary (TS) representation of real GNP as the alternative hypothesis. There could be 

several al ternative hypotheses but, here, it is of interest to consider one that shows opposite 

persistence behavior compared to the null of a OS representation. 

Figure 2-5 presents various plots that describe some statistical properties of the 

detrended version of the log of real GNP (!gnp). Plot (a) is !gnp before detrending. Plot (b) 

is detrended !gnp, called tgnp. Plots (c) and (d) show that tgnp departs somewhat from 

normali ty, suggesting a possible mixture distribution, but there are no obvious outliers. Plots 

(e) and (f) are the ACF and PACF of tgnp, and these show up to third order autocorrelation, 

which sets to three the number of lags for a plausible TS model. Following the ACF and 

PACF plots of the differenced !gnp presented in Figure 2-1 , the OS model will continue with 

one lag only. The following are the TS and OS equations estimated by OLS: 

TS0 L 5: !gnp,= 0.384 + 0.0004 t + 1.336 lgnp,.1 - 0.389 lgnp,.2 + e, 

(2 .81 0) (2.664) (18.155) ( -5.334) 

R2 = 0.999; Q = 9.75 (0.462): Q' = 7.407 (0.686); VN = 0.75 (0.776) 

OS0 L5: .1.lgnp, = 0.005 + 0.372 .1.lgnp,.1 + w, 

(4.992) (5.049) 

(1 0) 

(11 ) 
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R' = 0.138 ; Q = 10.18 (0.424); Q' = 4.91 (0.897); YN = 0.11 (0.544) 

The estimated TS model contains two lags rather than three because the third lag was 

not significant. The numbers in parentheses under the estimated coefficients are !-stati stics 

and they all are significant. The p-values for the Q-statistics and the von Neumann ratio all 

suggest the residuals are independent. Although both equations appear to do well, the 

difference in R2 is dramatic. The OS equation suggest there must be other variables that 

account for most of the variability of the GNP growth rate, which was expected. The TS 

equation, however, suggests that no other macroeconomic variables are needed to explain 

the behavior of GNP, which is unrealistic. The histogram and normal probability plots of 

the detrended series showed some signs of a possible mixture distribution. This observation 

could provide a basis for questioning the estimated !-statistics, which are based on 

assumptions of normality. 

A second important difference between the two equations, and relevant to the purpose 

of this section, is the opposite persistence behavior of the dynamic response of !gnp to a 

random disturbance. After Rudebush (1993), both models can be written in the following 

moving averages representation: 

t.lgnp, = k + e, + a1e,. 1 + a2e,.2 + 

where k is a constant and e, is the innovation. For the TS equation e, = e,, and for the OS 

equation e, = w,. Now, a unit shock in period t affects t.lgnp,.h by ah and affects lgnp .. h by ch 

= I +a1 +a2 + .... + ah. This last measures the cumulative effect of a unit shock on I gnp at a 

horizon h. Figure 2-6 shows the plots of these cumulative shocks at different horizons for 

both equations. The OS equation suggests increasing persistence up to a certain horizon and 
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then it stabili zes at a positive number. This implies shocks persist forever and cause I gnp to 

continuously move away from its previous position. The TS equation, on the contrary, 

suggests increasing persistence up to a certain horizon and then decreasing to zero 

persistence. This implies shocks are eventually absorbed and !gnp moves back to its initial 

position after a certain period of time. This second behavior corresponds to the behavio r 

described in the business cycle and macroeconomic theory. A series of random events in the 

economy will have the effect of many unit shocks, which will push the economy to a period 

of fast growth. After some time this initial push will lose steam and a period of decline will 

begin until the economy comes back to its initial long-term growth rate. Similarly, and in 

the context of GNP alone, a random event will cause GNP to go out of equilibrium in the 

short run, but after all markets clear again, GNP comes back to its long-term equilibrium. 

The difference in persistence properties of the equations demonstrates the importance 

of having a procedure capable of distinguishing between them. The classical procedure for 

making this distinction has been the ADF test. To assess the power of the ADF test in 

making this distinction, the proposed procedure starts from the estimated TS representation 

and continues according to the following algorithm: 

Algorithm 3: 

l. Take a random sample of size n drawn with replacement from the standardized 

residuals e,, of the original TS equation to generate new residuals e* ,. 

2. Construct new values !gnp*, using the residuals e*,, together with the estimated 

TS structure and dependence mechanism from the OLS regression (I 0), 

!gnp,* = &,+ &,t + &
2
lgnp*,.1 + &, lgnp*,.2 +e*,, 
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with !gnp* ,= I gnp, and I gnp* 2 = lgnp2 

3. Use the new values !gnp*, to estimate the ADF equation (7) and compute tau* = 

p* /se(p*). 

4. Go to step I and replicate I 000 times. 

5. Finally, use the 1000 values of tau* to build its empirical probability di stribution. 

This algorithm is used to obtain the empirical probability distribution of tauTs under 

OLS or TSoLs· The same steps are followed to obtain the empirical probability distribution 

of tauRREG• with the difference that in step 3 the ADF equation is estimated by robust 

regression. Table 2-5 presents the type II error rates and power of the tau-test under OLS at 

different significance levels given that only one alternative hypothesis is being considered. 

The first column of Table 2-5 displays the taUoLs critical values obtained from the first row 

of Table 2-1 . The second column shows the probabilities of obtaining values more extreme 

or equal to the critical values when the null is true. These probabilities correspond to the 

alpha levels in Table 2-l. The third column shows probabilities of obtaining values of tau 

greater than the critical values when the alternative is true, that is, the probability of a type 

II error. The last column is 1- P(type II error), and represents the power of the tau test for 

the specific TS alternative considered. In the previous section it was found that, with the 

computed value of taUoLs = -2.766, it was possible to reject the null at a 5% alpha level. 

According to Table 2-5 (last column), the probability of rejecting the null given that the 

alternative is true is 86.5%, which is very good power. Similarly, in the previous section we 

could not reject the null at a 2.5% alpha level, but according to the type II error, the 

probability of accepting the null given that it is fal se is 28.9%, which seems high. In this 
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TABLE 2-5 

POWER ASSESSMENT OF THE TAU-TEST UNDER OLS 

<o Pr( « t 0 I OS) Pr(t > t 0 ITS) Pr( « t 0 I TS) 

-3. 15 0.01 0.515 0.485 

-2.78 0.025 0.289 0.711 

-2.41 0.05 0.135 0.865 

-2.06 0.10 0.049 0.95 1 

TABLE 2-6 

POWER ASSESSMENT OF THE TAU-TEST UNDER RREG 

to Pr( « t 0 I OS) Pr(t > t 0 ITS) Pr( « t 0 I TS) 

-3.88 0.01 0.608 0.392 

-3.36 0.025 0.360 0.640 

-2.96 0.05 0.177 0.823 

-2.47 0.10 0.051 0.949 

case, rejection of the null is a better choice. 

Table 2-6 presents the type II errors and power of the tau-test under RREG. The first 

column of Table 2-6 displays the tauRREG critical values obtained from the second row of 

Table 2-1. The second column shows the probabilities of obtaining values more extreme or 

equal to the critical values when the null is true. Again, the third column shows the 

probability of a type II error and the last column is the power of the tau-test for the specific 

TS alternative considered. In the previous section it was found that, with the computed value 

oftauRREG = -3.312, it was possible to reject the null at a 5% alpha level. According to Table 

2-6 (last column), the probability of rejecting the null given that the alternative is true is 

82.3%, which is good power. Similarly, in the previous section there was failure to reject 
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the null at a 2.5% alpha level , but according to the type II error, the probability of accepting 

the null given that it is false is 36%, which also seems to suggest rejection of the null as a 

better choice. 

Concluding Remarks 

Applications of the Dickey-Fuller (OF) testing procedure to macroeconomic time 

series abound in the literature. The stylized fact that has emerged from these applications 

is that it is difficult to reject the null of the existence of a unit root, and therefore this has 

justified the use of differencing rather then detrending for achieving stationarity. This was 

our experience as well when using the OF critical values to determine if the time series of 

real GNP contains a unit root. However, the small sample results in a nonparametric 

bootstrap context are quite different. The bootstrapped critical values suggest rejection of 

the null at a 5% alpha level for a one-sided test. 

The OF procedure has also been critized for its lack of power against an alternative 

hypothesis of a trend stationary process, especially in a near unit root case. However, when 

considering the most interesting trend stationary alternative to evaluate the type II error and 

power of the test in a nonparametric bootstrap context, the finding suggests that rejection of 

the null at a 5% alpha level is accompanied by a power of above 80%. 

Problems in the Dickey-Fuller testing procedure where found when using the 

bootstrapped empirical distributions in computing the contributions of squared bias and 

variance to total mean square error. While OLS produces biased parameter estimates at a 

given variance level , the use of robust regression does reduce bias (bias is zero for some 

parameters) although at the cost of slightly higher variance compared to OLS. However, 
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neither of the two estimation methods produces unbiased estimates for the key parameter in 

the testing procedure. This result illustrates the main problem of the Dickey-Fuller test in 

that it is not necessarily a problem of bad inference methods, but rather a problem of 

estimation methods. 

The dramatic difference in residual sums of squares when comparing two plausible 

trend stationary and difference stationary models also suggests that the Dickey-Fuller test 

may not be the most appropriate method for testing the business cycle. An alternative 

approach is to perform the test in a multivariate level. It is known from economic theory that 

income, or real GNP, is endogenous in a macroeconomic system, and therefore, the business 

cycle is determined by the simultaneous action of several macroeconomic variables. The test 

should be performed in an error correction framework, which would be a multivariate 

version of the Augmented Dickey-Fuller equation. 
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CHAPTER 3 

A BOOTSTRAP EVALUATION OF COINTEGRATION: 

TESTING THE IS-LM 

Abstract. A simple open economy IS-LM model is used to identify relevant macroeconomic 

variables and their theoretical interrelationships. The Johansen's maximum likelihood 

approach to co integration is then used to estimate an error correction model by treating all 

variables as equally endogenous. Estimation is done with US post-Bretton Woods data. 

Only one co integrating vector is found when using Johansen' s asymptotic critical values and 

also when using critical values derived from a nonparametric asymptotic bootstrap. A 

second nonparametric bootstrap is implemented to study the distribution and evaluate the 

significance of estimated short-term and long-term parameters. The bootstrap is found to be 

a powerful method for hypothesis testing in a multivariate time series framework, small 

samples, and in the presence of multiple nonstandard distributions. 

INTRODUCTION 

Of the many theoretical macroeconomic models used in the design and assessment 

of macroeconomic policy, the IS-LM and the Mundeli-Fieming models continue to be the 

workhorses of applied macroeconomics. The IS-LM model was introduced by Hicks in the 

late 1930s to summarize the work of Keynes. The open economy version of the IS-LM is 

the Mundeli-Fieming model introduced in the early 1960s. The model identifies the most 

important variables that explain the dynamics of aggregate demand. It describes how these 
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variables interact within identified aggregate markets and how these markets interact to 

achieve macroeconomic equilibrium. Furthermore, based on some assumptions about the 

direction of causality between variables, it predicts the short run effects of shocks to the 

economy as all markets adjust to their long-term equilibrium. Despite criticisms, the lS-LM 

model survives in use past its fiftieth year probably because, as Blanchard and Fischer ( 1994) 

conclude, it is appropriate for the study of short run adjustments. 

Recent time series methodologies introduced in the econometrics literature permit 

estimation of the lS-LM model and the study of short-run dynamics . Engle and Granger 

( 1987) introduced the concept of co integration to represent long-term relationships among 

variables, and the estimation of short-run adjustment of those variables toward their long­

term equilibrium is studied through estimation of error correction models. Johansen and 

Juselius ( 1990) developed a maximum likelihood approach to test for co integration and for 

estimation of error correction models. More specifically, they developed likelihood ratio 

statistics to test for the number of cointegrating relationships. One problem with these tests, 

however, is that they do not have standard distributions. Nevertheless, Johansen and Juselius 

did compute critical values for the asymptotic case based on Monte Carlo experiments. 

Unfortunately, most of the available macroeconomic time series tend to be of short length, 

and studies of specific periods of time tend to have series of even shorter length. A 

complementary approach for treating the small sample problem and nonstandard 

distributions problem simultaneously is to derive critical values from a nonparametric 

bootstrap. 
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The bootstrap was introduced by Efron ( 1979) and applications to stationary 

autoregressive processes was implicitly introduced by Freedman (1981) and Freedman and 

Peters (1984). A useful reference for applications of the bootstrap is Efron and Tibshirani 

(1993). A good discussion of bootstrap applications to hypothesis testing is Hall and Wilson 

( 199 1), and Tibshirani (1992). One aspect of bootstrap applications to regression-type 

equations, emphasized by Freedman and Peters (1984), is that the equation and its estimated 

parameters represent the true model of the phenomena of interest. This condition is not easy 

to achieve, but selecting the variables !Tom a sound theoretical model should approximate 

the true model. In any case, the estimated model residuals retain information on other events 

outside the scope of the theoretical model, which makes bootstrapping residuals even more 

attractive. 

The purpose of this study is to show the usefulness of the bootstrap in hypothesis 

testing in a multivariate time series !Tamework, and under conditions of nonstandard 

distributions and small samples. Specifically, the objectives are first, use the lS-LM 

framework to select the most relevant macroeconomic variables and establish their 

theoretical interrelationships; second, under the ffamework of Johansen' s approach to 

cointegration, use a nonparametric bootstrap to test for the number of cointegrating vectors 

and then estimalt: an error correction model in which all variables are treated as equally 

endogenous; third, evaluate the significance of the estimated parameters by bootstrapping 

from the residuals of the estimated error correction model ; and finally , derive some 

implications of the estimated model. 
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A SIMPLE OPEN ECONOMY IS-LM MODEL 

In the open economy IS-LM, the basic macroeconomic relationships are explained 

in terms of the simultaneous equilibrium in three markets: the goods market, the money 

market, and the foreign exchange market. In the goods market, equilibrium is referred to the 

equality of aggregate supply and aggregate demand for goods. Aggregate demand (AD) is 

determined by the sum of a consumption function, C, an investment function , I, fiscal policy, 

F, and a current account function , CA: 

or 

AD = CC'-Y, r') + I(r') + F + CA('-Y, EP*/P, r' ) 

AD = AD(Y, r', F, EP*/P), 

O<MD/oY < I ; MD/o(r') <0; 

MD/oF >0; MD/o(EP*/P) >0, 

( I) 

(2) 

(3) 

(4) 

where Y is total real income or the value of total output, '- = 1- the current income tax rate, 

for 0<'-< l. Disposable income is '-Y, E is the nominal exchange rate, Pis the price level in 

the domestic economy, P* is the price level in the foreign economy, r' = r- n' is the expected 

real interest rate with r the nominal interest rate and n' expected inflation. The government' s 

budget deficit is F = G- (1-A)Y, with G being government spending and (1-'-)Y representing 

government tax revenues. Given that aggregate supply equals the value of total output of the 

economy, then in equilibrium we have: 

or simply 

Y = AD(Y, EP*/P, r', F) 

Y = f( EP*/P, r', F). 

(5) 

(6) 
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Money demand, L, is assumed to have a positive relationship with income Yanda 

negative relationship with the nominal interest rater. In equilibrium, money supply (M/P) 

equals money demand, and interest rate can be derived as: 

r = r(M/P, Y). (7) 

In the foreign exchange market, equilibrium is achieved with the exchange rate that 

allows for the equality between the nominal interest rate of the domestic and foreign capital 

markets. This is the nominal interest parity condition: 

r = r* + log(E'/E). (8) 

Equations (6), (7), and (8) above describe the macro economy with the traditional 

view of IS-LM principles applied to an open economy. Additional assumptions imposed 

suggest that the variables P, P*, r• and E' are known, and that under a flexible exchange rate 

system F and M are exogenous, while r, Y and E are the endogenous variables. 

The system can be reduced to two equations and two endogenous variables by 

solving (8) forE= E'/exp(r-r*), and substituting into (6) for the real exchange rate given by 

EP*/P = E'P*/exp(r-r*)P = g(r) given E', P, P*, r* Then (I) becomes Y = f(g(r) , r', F) or 

simply Y = h(r, r', F). In this last equation, r is representing the behavior of the real 

exchange rate, while r' is related to investment decisions. 

The price level is assumed to be fixed in the short -run ("sticky prices"), while in the 

long-run it can vary. A convenient way to close the model is to assume an expected inflation 

rate that depends positively on the divergence between real aggregate demand and full 

employment output n' =a( h(r, r', F)- Y). The JS-LM can now be represented in the 

following equations: 



&h!&(r) >0 &h!&(r' ) <0 Y = h(r, r'. F) 

r = r(M/P, Y) or/&(M/P) <0 or!& Y >0 

rc' = a( h(r, r' , F)- Y) a>O 

&h!&F >O 
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(9) 

(10) 

( II ) 

From these equations it is now easy to see that Y, r, rc', F, and M/P are the most 

relevant variables for understanding the macro economy (notice that r' = r- rc' ). In the short­

run it is expected that any variable could change due to temporary shocks to the economy, 

including fiscal and monetary policies, but then the variable would always adjust toward its 

long-run equilibrium with the other variables of the system. This long-run equilibrium with 

the other variables is represented by the solution of the above system as the overall 

macroeconomic equilibrium, i.e., the simultaneous equilibrium in the goods and money 

markets considering inflation expectations. The adjustment process itself, however, would 

involve movement in the other variables as well, following the connections and structure of 

the same goods market and money market equations. This is why the JS-LM model is useful 

for understanding short-run adjustment. Estimation of the model requires the simultaneous 

consideration of long-term equilibrium relationships and short-term dynamics. 

COINTEGRATION AND MODEL ESTIMATION 

In the econometrics literature, the requirement of long-term equilibrium among 

variables is referred to as variables being cointegrated. The idea of cointegration can most 

easily be explained by considering the case of two nonstationary time series x, and y,. 

Assume the two series can be made stationary after first differencing, in which case they are 

said to be integrated of order I, or I( I). If this is the case, then it is generally true that a 
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linear combination, y, - ax,, wi ll also be nonstationary. However. if there ex ists a value of 

a such that y,- ax, is stationary, then the series x, and y, are said to be co integrated. In other 

words, although individually each series tends to wander aimlessly, there is some kind of 

steady-state relationship when considered together. ln the case of a = I, the steady-state 

relationship is such that x, and y, cannot drift too far apart. Similarly, in a multivariate 

setting, if y, is a Kx I vector with all its components I( I) and there exists some linearly 

independent vectors a, ... a,, O<k<K, such that z, =a ;'y , (i= l...k) are stationary, then the 

components of the vector are said to be co integrated and the a, are called the cointegrating 

vectors. Based on these definitions, Granger ( 1986) and Engle and Granger ( 1987) proved 

the Granger representation theorem, which states that if a Kx I vector y, is cointegrated, with 

co integration rank k (number of possible co integrating relationships), then there exists a 

vector autoregressive representation 

y, = A, y,_, + ... + AP Yt-p + u,, 

and an error correction representation 

~y, = B , ~y,_, + .. . + B .. , ~Yt- p+l - IIy,_, + u,, 

(12) 

(13) 

where pis the number oflags, B, =- AP- A .. , - ... -A,., -A,. ,, and II=HC= IK- A, - ... -AP with 

rank(II) = rank(H) = rank( C) = k. C (k x K) is the matrix of co integrating vectors and H (K 

x k) is the matrix of adjustment or error correction coefficients. The errors u, are assumed 

Gaussian white noise. Short-run movements from one period to the next are represented in 

the left-hand side of(13). These short-run dynamics are explained in part by the short-rim 

dynamics occurring in previous periods, s .. ,~Yt-p-l (p=l,2 ... ), and in part by adjustments, H, 

toward the long-term equilibrium relationships, Cy,=O. When the long-term equilibrium 
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relationships are expressed as Cy,_ 1 •0, then they are measuring the degree of out-of­

equilibrium experienced in the previous period. Then the expression -HCy,_, measures the 

amount of correction that should take place in the present period. 

Equation ( 13) is a reparameterized version of equation (12). Alternatively equation 

(12) can be reparameterized into the following error correction form: 

!!.y, = D, !!.y,_, + ... + Dp- 1 !!.y,_p+, - IIy,_, + u,, (14) 

where D; = -IK + A1 + ... +A;. Equation (13) is used here for interpretation purposes while 

(14) is the form used by Johansen and Juselius for estimation purposes. In either equation 

the rank of II, i.e., k, is the number of linearly independent cointegrating relations among the 

variables in y,. If II is full rank, then any linear combination ofy, will be stationary, while 

if it is a matrix of zeros, then any linear combination of y, will be a nonstationary unit root 

process. The most interesting case is when II is less than full rank, O<k<K. In this situation, 

k is the number of co integrating vectors and K- k is the number of unit roots or number of 

nonstationary linear combinations. 

Let y, = (g, , m., tt'., r,, ~) contain our macroeconomic variables of interest, where g 

= log(Y) , m =log(MIP), and f= log(F). Estimation of model (14) is done using the time 

series of those variables from the post-Bretton Woods period of 1974.2 to 1993.3. The data 

definitions are 

g, = quarterly log(GDP), where GDP is in billions of 1987 dollars. 

m, = quarterly log( money supply Ml), where Ml is in billions of 1987 dollars. 

r, = quarterly nominal annual interest rate. 

f, = quarterly log(budget deficit), with budget deficit in billions of 1987 dollars. 
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n', = quarterly expected inflation (n', ). Annualized two period ahead first difference 

of the price deflator. 1 

Figure 3-1 presents plots of these variables. The first column of plots corresponds 

to the variables in their levels, and the second column of plots presents them after taking a 

first difference. Plots (a) and (b) belong to g., (c) and (d) tom., (e) and (t) ton',, (g) and (h) 

to r',, and, (i) and U) to f.. It is important to notice that all variables in their levels present a 

changing mean over time, and are therefore nonstationary. However, in all cases they 

become stationary after taking a first difference. This satisfies the requirement of working 

with variables integrated of order one, or I( I) . When observing normal probability plots of 

the variables in their first difference form, in most cases they tend to depart somewhat from 

normality due to contamination. The presence of outliers and/or structural change explains 

such contamination. The following dummy variables were included in order to diminish 

their influence: 

d I = I in 1984.2 and 0 elsewhere; extreme observation in first difference of m,. 

d2 = I in 1979.1 and 0 elsewhere; extreme observation in first difference off,. 

d3 = I in 1980.2, I in 1981.4, I in 1982.3 , and 0 elsewhere; extreme observations in first 

difference of r,. 

1 This lead was selected based on observed correlations with the nominal interest rate. 

Also the inflation rate was multiplied by four for annualization. 
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(a) (b) 

().j~.l97'51 - t9933 

(c) (d) 

OJ~.197'51 - 19933 

1•1 (Q 

"' 70 

Fig. 3-1 .-Time Series of Macroeconomic Variables 
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(g) (h) 

0..~.19751 - 1993 3 

(Q 

0..~.197'5_1· 1993] 

Fig. 3-1 .- Continuation 
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The Johansen and Juselius ( 1990) maximum likelihood (ML) approach is followed 

for es timation of the error correction model (14) 2 Computation of the ML estimators 

requires previous knowledge of the lag order, p, and the cointegration rank, k. The methods 

followed for determining the lag order were Akaike's Information Criterion, the Hannan-

Quinn Criterion, and the Schwarz Criterion. Each of these procedures uses the above 

variables in computing vector autoregressive systems {VARs) at alternative lag orders. The 

optimum lag is then selected as the one that minimizes the criterion expressed in the 

following formulas: 

AIC{m) = In IU(m) l + 2mK2/T 

HQ(m) = In IU(m) l + (2 In In T)/T 

SC(m) = In IU(m) l +(In T mK2)/T 

where m = 0, I , ... ,M is the number of alternative lags considered, Tis the length of the series, 

K is the number of variables, and U(m) are the residuals from the estimated VARs at 

different lags, m. Table 3-1 shows the computed values. 

Table 3-1. Lag Order Selection Criteria 

Lag 2 3 4 5 6 7 8 9 10 

AIC -34.5 -34.1 -33.2 -32.3 -31.4 -30.5 -30.4 -29.2 -27.8 -26.3 

HQ -34.2 -33.5 -32.3 -31.1 -29.8 -28.6 -28.1 -26.6 -24.8 -23.0 

sc -33.8 -32.5 -30.8 -29.1 -27.4 -25.7 -24.7 -22.6 -20.3 -17.9 

' Parameter estimation and computation of their standard errors were programmed 

following LUtkepohl's (1993) propositions 11.1-2, pp. 356-358. All computations for 

estimation and bootstrap hypothesis testing were programmed in Splus, version 3.2 

release I for Sun SPARC, SunOS 5.x: 1993. The computer code is in Appendix B. 
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In all three cases the criterion suggested one lag for the opt imum lag order. In 

equation ( 14), a lag order of one in the VAR portion of the error correction model (EC M) 

implies p=2 in its cointegration portion. Given that (14) is the equation used for ML 

estimation, then p is set to two. 

With knowledge of p we can now test for the co integration rank, k. The idea is to test 

the null hypotheses H
0

: k = f<v against the alternative H,: k
0 
<k<K, or alternatively to test H

0
: 

k = k0 against H 1: k = ko + I. Johansen showed that ML estimation of ( 14) produces the 

following likelihood ratio (LR) stati stic for such type of test, respectively: 

,, 
LR(k.,,k,) 2[ln /(k,) - In /(Is,)] -TI; ln(l -J.) 

i · ~·l 

LR(k, k+l) : 2[ln /(k,) - In /(k
0
)] - T ln(J -J.) n 

where /(k;) denotes the maximum of the Gaussian likelihood function for cointegration rank 

k,, the J., are computed eigenvalues, and T the sample size. The distribution of these LR 

statistics, however, is not the traditional x'-distribution, but rather some unknown non-

standard distribution. Nevertheless, noticing that it depends on the difference K-k, Johansen 

and Juselius tabulated critical values for the asymptotic case. They show that the first LR 

statistic converges weakly to the trace of the following matrix: 

f. \ dU)F 'Cf.'FF 'dtr '[,'F(dU) 
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here U(t) is a (K-k) dimensional Brownian motion and F(t) is a (K-k) dimensional stochastic 

process defined by U-0. For this reason, the first test is referred to as the trace test. 

Similarly, they show that the second LR test converges weakly to the maximum eigenvalue 

of the same matrix above. Thus, the second test is referred to as the maximum eigenvalue 

test. Johansen and Juselius computed critical values for T=400 and 6000 simulations. 

However, use of those critical values might be questioned for our small sample case because 

of (i) the nonstandard distribution of the LR statistic and (ii) the use of critical values valid 

only for the asymptotic case. These concerns justify use of bootstrapping techniques to 

assess the significance of the trace test and maximum eigenvalue test, especially for finite 

samples. Implementation of the bootstrap in testing for co integration rank is achieved with 

the following algorithm: 

Algorithm I: 

I. Estimate model (14) assuming full rank and obtain its residuals e,, , (t= l ,2, .,T, 

i= I , .. K). 

2. Take a random sample of the stacked standardized residuals e,, and generate e,,* , 

(t=I,2, .. ,T, i= I , . .K-k). 

3. Compute X, from X,,= [ e,;*, (t= I,2, .. ,T, i=l , .. K-k), with X01 =0. 

4. Approximate the matrix J(dU)F ' (JFF'dtY 1JFdU' by 

V = [e,*(X,_1-X.1)' [L(X,.1-X. 1)(X,_,-X_1) ' ]"
1 L(X,_,-X_ 1)e,* ' . 

5. Compute the trace and maximum eigenvalue ofV. 

6. Go back to step 2 for next simulation. 
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Given that Algorithm I follows the same procedure developed by Johansen and 

Juse lius for the asymptotic case,3 then critical values generated this way can be referred to 

as '·bootstrap asymptotic critical values." The advantage of this algorithm is that it is based 

on a small sample and takes into account the possibility that the errors are not i.i.d. normally 

di stributed. 

Algorithm I was implemented for K=5, T=75, and 2500 simulations. Tables 3-2 and 

3-3 use the critical values obtained from the asymptotic bootstrap distributions to evaluate 

the computed values for the trace test and maximum eigenvalue test. In both cases the null 

of rank zero is rejected leading to the conclusion that there is only one cointegrating vector. 

Acceptance of rank one is based on a p-value between I% and 2.5% for the trace test, and 

a p-value between 2.5% and 5% for the maximum eigenvalue test. When using Johansen 's 

critical values the conclusion is the same; however, in this second case, rank one is accepted 

based on p-values of less then I% for both tests. Application of the bootstrap shows 

evidence of longer right tails for the distributions of both tests when compared to Johansen 's 

critical values. This is a result of greater variability contained in the residuals when 

performing the simulations, and also from use of dummy variables in estimation. 

Equation ( 14) was estimated to obtain its reparameterized version using the lag order 

and cointegration rank, 

t.y, = 8 0 + B, t:.y,.1 - lly,., + u,, (15) 

3See Johansen and Juselius (1990), page 207. 
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Table 3-2. Bootstrap Trace Test 

Hypothesis Test Critical Values 

Ho H, value 90% 95% 97.5% 99% mean var 

k = 4 k = 5 0.353 6.795 9.237 12.421 15.465 2.86 10.82 

k =3 k > 4 2.039 17.608 21.646 25 .570 33.629 9.72 40.27 

k = 2 k , 3 16.399 32.349 36.732 41.785 48.695 19.51 82.59 

k = l k , 2 39.078 49.865 56.385 63.046 72.049 33 .22 151.27 

k =O k > I 87.219* 71.779 79.191 86.773 95.164 49.98 259.67 

Table 3-3. Bootstrap Maximum Eigenvalue Test 

Hypothesis Test Critical Values 

Ho H, value 90% 95% 97.5% 99% mean var 

k = 4 k = 5 0.353 6.794 9.237 12.421 15.465 2.86 10.82 

k = 3 k=4 1.686 15.062 18 .943 22.705 29.745 8.21 31.84 

k =2 k=3 14.360 22.156 26.189 30.865 36.706 13.27 50.25 

k = l k = 2 22.678 30.265 34.487 39.862 48.815 18.98 72.65 

k = O k = l 48.141* 36.879 42.545 49.041 55.802 24.51 96.2 1 

where 8 0 is a vector of constants, and the other parameters are as defined in ( 13 ). The 

following are the estimated parameters:' 

0.1157 

(3. 708) 

8 0 ' = (0.003) 

-0.0460 

(-0.833) 

(0.329) 

-0.1952 

(-3.397) 

(0.0 10) 

-0.1098 

(-3.485) 

(0.002) 

-3.7685 

(-3 .882) 

(0.562) 

'Estimated parameters for dummy variables are not reported. However, evaluation of 

their !-statistics indicated that dummies operated as intended. 



0.2029 

(I. 968) 

(0 .064) 

02500 

(1371) 

(0 .192) 

8= 0.0726 
' (0.382) 

(0.730) 

0.1411 

(1.357) 

(0.186) 

-3.3559 

(-1.047) 

(0.374) 

c = 1-5.8704 

-0.00305 

0.00138 

H: = 0.00542 

0.00306 

0.10609 

-0.0810 

(-1.329) 

(0.209) 

0.0112 

(0. 104) 

(0.926) 

0.1134 

(1.010) 

(0.338) 

0.0116 

(0.189) 

(0.859) 

0.7286 

(0.384) 

(0. 756) 

5.9267 
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-0.1061 0.2547 -1.1e-04 

( -1.968) (2.538) (-0.037) 

(0.056) (0.022) (0.975) 

0.0257 -0.0775 0.0099 

(0.269) (-0.437) (1.786) 

(0.798) (0.676) (0.094) 

-0.4945 0.0833 0.0135 

(-4.983) (0.451) (2.322) 

(0.000) (0.643) (0.034) 

0.0576 0.0420 0.0109 

(1.060) (0.415) (3.434) 

(0.311) (0.691) (0.00 1) 

3.51 18 -5.9650 0.0377 

(2.099) (-1.912) (0.384) 

(0.114) (0.092) (0.748) 

26.4075 -14.5297 1.6004 
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0.0179 -0.0 180 -0.0805 0.0443 -0.0048 

(3.533) (-3.533) (-3.533) (3.533) ( -3.533) 

(0.002) (0.002) (0.002) (0.002) (0.001) 

-0.0081 0.0082 0.0366 -0.0201 0.0022 

(-0.908) (0.908) (0.908) (-0.908) (0.908) 

(0.411) (0.414) (0.41 0) (0.41 0) (0.409) 

Ac = -0.0318 0.0321 0.1433 -0.0788 0.0086 

(-3.414) (3.414) (3.414) (-3.414) (3.414) 

(0005) (0.004) (0.002) (0.002) (0.002) 

-0.0179 0.0181 0.0809 -0.0445 0.0049 

(-3.516) (3.516) (3.516) (-3.516) (3.5 16) 

(0.002) (0.003) (0.001) (0.002) (0.002) 

-0.6228 0.6287 2.8016 -1.5415 0.1697 

(-3.952) (3.952) (3.952) (-3.952) (3.952) 

(0.487) (0.475) (0.096) (0.084) (0.179) 

All numbers without associated parentheses are estimated parameters. Numbers in 

parentheses immediately below parameter estimates are !-statistics, and the second number 

in parentheses is the estimated p-value. It is not possible to obtain standard errors for H and 

C separately but only jointly as HC. P-values were obtained via a second nonparametric 

bootstrap designed to evaluate the significance of computed !-statistics. The bootstrap takes 

random samples from the residuals of the estimated equations in order to consider the effects 

of the small sample size and departures from normality. Then it generates new sets of data 

based on the estimated parameters that define the structure of model (12). Given the 

dynamic connections among equations, the bootstrap is designed to simulate these 

connections. The new sets of data are then used to reestimate the model and by doing so 

generate empirical distributions that approximate the true distributions of the parameters' t-

stati stics. These distributions are useful for two reasons. First, they show the distributional 
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properties of parameters and their stati stics, and second, they can be used to evaluate 

significance of parameters by evaluating the significance of their computed !-statistics. The 

following is the algorithm used for these purposes: 5 

Algorithm 2: 

I. Take a random sample from each of the standardized residual vectors contained in 

U, = y, - A0 - A, y,. 1 - A2 y,_2, and generate new residuals u,'. 

2. Use the residuals u,' to build new values y,· based on the structure of the estimated 

model and using the first two observed values of y, as starting points . That is, 

y,· = Ao +A, y,_,· +A, y,_; + u,'. 

3. Use the generated values y,· to compute model (14) with k=l , 

t>.y,' = D,t>.y,_,·- IIy,_,· + u,, 

and obtain new matrices D', H'C' and their matrix of standard errors se(D ')and 

se(H'C'). Based on these also compute 8 1' and its standard error, se{B 1'). 

4. Then compute the following matrices: 

(8 1"- 8 ,)/se(B,') to approximate the distribution of(B,- 0)/se(B,), 

(H'C' - fi C)/se(HC') to approximate the distribution of (H C - 0)/se(H C) 

5. Go to step I and repeat for next bootstrap sample. 

6. Finally, use the absolute values of the vectors generated for each element of the above 

matrices to build their empirical probability distributions for a two-sided evaluation 

of the significance of the originally estimated parameters. 

5 The general principles used for the development of this algorithm follow the work of 

Freedman and Peters (1984) and Hall and Wilson (1991). 



53 

The experiment was performed with 2500 simulations. Figure 3-2 presents the 

empirical distributions of (H*C* - HC)/se(H*C*), where the first row of plots corresponds 

to the distribution oft-statistics of the first row of the matrix H C, and the remaining rows 

follow the same order. In general these distributions are symmetric around zero, however, 

they are nonstandard distributions when compared to the traditional !-distribution. This was 

verified from the computation of critical values at several alpha levels and comparing them 

to traditional !-tables (see Appendix C). The bootstrapped distributions consistently show 

longer tails, furthermore, they also tend to vary from equation to equation revealing the 

presence of multiple nonstandard distributions. This result implies that use of standard !­

tables would overestimate the significance of the parameters, and in some cases by a large 

degree, for example, the fifth row of matrix AC. The absolute value of (H*C*- flc)/se(H*C*) 

was then computed to perform a two-sided test of the null hypothesis that each parameter is 

equal to zero , and the resulting p-values are presented in the matrix fl c above. 

Figure 3-3 shows the empirical distributions of (B,·- 8 ,)/se(B,"). The first row of 

plots corresponds to the distribution of !-statistics of the first row of the matrix B,, and 

theremaining rows follow the same order. These plots are also symmetric around zero and 

close to a !-distribution. However, comparison of their critical values to traditional !-tables 

also shows evidence of multiple nonstandard distributions (see Appendix D). The absolute 

value of (B,· - B,)/se(B,·) was also computed to perform a two-sided test of the null 

hypothesis that each parameter is equal to zero, and their p-values are presented in B, above. 
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Given the significance of the parameters in the HC, B, and B, matrices as evaluated 

by their p-values, the resulting estimated model has the following structure: 

ll.g, = 0. 11 + 0.251\.r,_, - 0.003(-g, + m,- 4.5r\ + 2.02r, + 0.27f,),_1 + u1, ( 16) 

( 17) 

ll. ll\ = -0.19- 0.51l.1t\_ 1 + 0.0131\.~_ 1 - 0.005(0.22g,- 0.22m,- 1t', +0.55r,- 0.06[.),_1 +u3, ( 18) 

M, = -0. 11 + 0.0111\.f._, - 0.003(0.5g,- 0.5m, + 2.22r, - r,- 0.13[.),_, + u41 ( 19) 

(20) 

The cointegrating vector contained in C affects three of the fi ve equations according 

to p-values of the licmatrix. The vector c, however, has been divided by the coefficient of 

the variable whose equation is being affected. 

CONCLUSIONS AND FINAL COMMENTS 

One overall long-term macroeconomic equilibrium relationship among all variables 

was found in the following linear combination: 

-5 .87g, + 5.92m, + 26.40"', - 14.53r, + 1.60~ = 0 

or -5.87g, + 5.92m,- 26.40r, + ll.87r, + l.60f, = 0 

(2 1) 

(22) 

where g, is log(real GOP), m, is log(real money supply, Ml), "'• is expected inflation, r, is 

nominal interest rate, f. is government budget deficit, and r, = r, - "'• is expected real interest 

rate . This linear combination represents the solution of the IS-LM system, that is, it is the 

locus of points in time where the IS crosses the LM, and therefore it contains the goods and 

money markets equilibrium conditions. For example, solving for g, produces: 

g, = m, - 4.5r, + 2.02r, + 0.27f,, (23) 
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which describes a negative relationship between GDP and expected real interest rate. a 

positive relationship between GDP and an active fiscal policy, f" and a positive relationship 

with the nominal interest rate, which is representing some function of the real exchange rate. 

All of these relationships are predicted by the IS-LM through the goods market equation. 

Solving for r, produces: 

r, = 0.5g,- 0.5m, - 2.22r'',- 0.13f,, (24) 

which describes a positive relationship of the nominal interest rate with income, and a 

negative relationship with money. Both of these relationships are also predicted by the IS­

LM model through its money market equation. 

Computing the short-run expected real interest rate as t.r', = t.r, - t.n ',, that is 

substracting equation (18) from equation ( 19) in the estimated model, produces: 

t.r', = 0.08 +0.5t.n',.1 - 0.003(0.06g,- 0.06m, +r',- 0.86(r,- 0.87n',) - 0 . 01~), . 1 +u6" (25) 

where u6, = u" - u3,. Now, solving its long-term component for r', produces: 

r', = -0.06g, + 0.06m, + 0.86(r, - 0.87n', ) + 0.01~. (26) 

This equation shows a positive relationship between long-term real interest rate and 

a fraction of r, - 0.87n',, which approximates the long-term Fisher condition, i.e. , the 

relationship of short-term interest rates to expected inflation. However, given that increases 

in inflation are not fully reflected in nominal interest rates, then the long-term real interest 

rate is not fully free of monetary disturbances. 

The estimated framework of this chapter is different than the models of the Fisher 

effect found in the recent literature [ cf. Charmichael and Stebling ( 1983), and Mishkin 

(1992)]. Here all the variables are considered together in a multivariate and error correction 
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specification following Johansen, and unlike the two-step two-stage estimation procedures 

used to estimate short-run dynamics once long-run relationships are known as found in 

Cumby, Huizinga, and Obstfeld (1983), Ogaki and Park (1991), and Vahid and Engle (1992). 

Each of these latter studies views the short-run conditional on the long-run relationships. 

However, Mishkin's direct model of the relationship of the change in inflation and short-term 

interest rates is incorrect given that he found cointegration of inflation and short-term interest 

rates. Given co integration then a pure regression in differences is misspecified without the 

inclusion of an error correction term resulting in inconsistent and biased coefficients. 

Furthermore, the power of the tests used in these studies is weak as pointed out by Kremers, 

Ericsson and Dolado (1992), and which has prompted the estimation of the nonstandard 

distributions in this paper. 

The estimation results here suggest a form of the lS-LM framework is observed in 

the aggregate U.S. economy for the post-Bretton Woods era. Correlation between expected 

inflation and short-term nominal interest rates appears to be the result of an imperfect long­

run Fisher effect in which inflation and interest trend together in the long run, but there are 

co-movements among variables of the IS-LM framework as welL This finding has 

interesting implications in the light of the dominance of policy targeting the federal funds 

rate for the period of the sample. Looking solely at the level of short-term interest rates is 

in part misleading. A high interest rate that has persisted for some time is an indication that 

expected inflation is high and may not be an indication that monetary policy is tight. Short­

run changes in the short-term interest rate can reflect the stance of monetary policy as 

implied by the estimation results. 
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Three of the variables considered adjust their short-term dynamics toward the overall 

long-term equilibrium relationship. Those variables are GOP, expected inflation, and the 

nominal interest rate, which are predicted as the endogenous variables in an open economy 

IS-LM system. This result has important implications for the specific case of GOP. The 

history of its short-term dynamic adjustments resulting from its out-of-equilibrium position 

with respect to the overall long-term equilibrium relationship is what generates the business 

cycle. Unlike the general literature in which the business cycle is viewed as the out-of­

equilibrium position of GOP with respect to a positive linear trend, here the business cycle 

results as adjustments to the co-movement of the macroeconomic fundamentals. 

The variables money supply and budget deficit are found to follow random walk 

processes, which drive the system. These are identified as monetary and fiscal policy 

instruments by the IS-LM, and are in fact predicted to drive the system. Both variables are 

identified as long-term policy instruments given that they are contained in the equilibrium 

relationship. However, fiscal policy also appears as a short-term instrument affecting the 

short-term dynamics of the nominal interest rate and expected inflation variables. This last 

result has important implications when considering the promotion of long term growth. An 

active fiscal policy, which would continue increasing the budget deficit, has a direct positive 

impact on GOP. Over time it can lead to an inflationary period given its effect in increasing 

the speed of inflationary expectations. On the other hand, growth based on monetary policy 

aimed at real interest rate targets cannot be effective under volatile inflationary expectations. 

Under these conditions, a less active fiscal policy directed at containing inflationary 

expectations plus a monetary policy directed at real interest rate targets can be an appropriate 
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policy mi x. 

The bootstrap is proven a powerful method for improving the accuracy of hypothesis 

testing in a multivariate time series framework, in small samples, and in the presence of 

multiple nonstandard distributions. First, acceptance of the alternative hypothesis of rank 

one was verified by use of a nonparametric asymptotic bootstrap. Acceptance resulted from 

a p-value between 2.5% and I% for the trace test, and a p-value between 2.5% and 5% for 

the maximum eigenvalue test. These results contrast with the p-value of less than I% for 

both tests when using Johansen's asymptotic critical values. From this result we can say that 

the Johansen' s asymptotic critical values can be considered a good guideline for small 

sample testing, at least as a first approximation. Second, by empirical approximations to the 

true distributions of computed !-type statistics, the bootstrap was able to distinguish with 

accuracy the significant from the nonsignificant parameters. Moreover, given the 

interrelationships characteristic of a multivariate time series system, the bootstrap was able 

to evaluate all parameters simultaneously not only by taking into account the small sample, 

or the information remaining in the residuals not captured by the model, but also by the fact 

that each parameter' s !-statistic follows a unique nonstandard distribution. An important 

aspect, however, is that critical values either from bootstrapped distributions or !­

distributions can be misleading in the presence of extreme observations. Once contamination 

is considered (with the inclusion of dummy variables in this chapter), then the superiority of 

bootstrapped critical values over those presented in !-tables becomes evident. 
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CHAPTER4 

SOME DYNAMIC ASPECTS OF THE BOLIVIAN 

DOLLARIZA TION PROCESS 

63 

Summary. Perron 's test for structural change is used to show that the Bolivian time series 

of dollarization is a trend stationary process around a positive trend. Rejection of a random 

walk with drift hypothesis leads to the conclusion that dollarization in Bolivia is an 

irreversible process. The Johansen's maximum likelihood approach to co integration is then 

used to estimate a partial model of the dynamics of dollarization. Parameter evaluation is 

performed via a nonparametric bootstrap. The empirical model reveals a dollarization 

process driven by foreign inflation and the return on dollar deposits, and an economy in 

transition toward equalization with US prices and interest rates. 

INTRODUCTION 

One of the most interesting economic phenomena currently taking place throughout the 

world is that of "dollarization" of entire economies. According to Calvo and V egh (I 992), 

dollarization refers to the replacement of the domestic currency by US dollars in the unit of 

account and store of value roles of money. Currency substitution is another term used in the 

literature, and it refers to the situation when, in addition, the domestic currency is also 

replaced as a medium of exchange. Either dollarization or currency substitution has been 

observed and documented in Latin America, Eastern Europe, Russia, and the Middle East. 

As El-Erian (1988, p. 88) has put it, "The essence of this phenomena [sic] reflects 
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individuals' attempts to protect the value of their wealth and income, and has usually taken 

place in the context of deteriorating economic and financial conditions .... " However, the 

perception from a policy point of view was best described by Guidotti and Rodriguez (1992: 

p. 527), "What is being discussed under the heading of dollarization is the survival of 

national monies in the face of the competitive challenge posed by other 'superior' currencies 

such as the dollar." ' 

The dollarization process experienced in Bolivia has been particularly dramatic. In a 

period of almost ten years, from 1986 to 1994, the degree of dollarization has gone above 

90%, with most of it occurring in a period of five years. As in all cases, the Bolivian 

dollarization experience has its own peculiarities in terms of the process itself. The 

perception of deteriorating economic conditions during the late 1970's and early 1980's lead 

to substitution of the domestic currency by the US dollar as a store of value. Economic 

deterioration became a full economic crisis when international interest rates increased in the 

early 1980's together with a cut off in international lending. The result was a fiscal 

imbalance which led to the 1983-85 hyperinflation period. The bulk of dollarization, 

however, occurred after 1985 when the economy was stabilized. During this period Bolivia 

was experiencing low inflation, stable foreign exchange market and disciplined fiscal policy. 

This contradiction in the Bolivian case is frequently mentioned in the literature. One 

important reason why it occurred is that all dollar operations where forbidden by decree in 

November 1982. As a consequence, deposits were shifted abroad, and domestically it 

'For a good discussion and literature review see Giovannini and Turtelboom (1992). For 

an overview of the Latin American experience see Savastano ( 1992). 
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generated an underground economy in which the US dollar became the most precious 

commodity. It is believed that if dollar operations had not been forbidden during the crisis, 

then an important degree of dollarization would have occurred at that time. Once dollar 

operations were reinstated as part of a stabilization program in August of I 985 , the degree 

of dollarization rose to 50% after the first two years of 1986-87. This time, however, while 

the US treasury bill rate was around 6%, the domestic saving rate for dollar deposits was at 

the 15%-16% level. This differential indeed attracted domestic and foreign dollar deposits 

into the Bolivian banking system from those who were willing to accept the risks. This 

argwnentation is important for understanding at least the first two years of dollarization after 

stabilization. Although high returns on dollar deposits persisted in later years, it was not 

enough to explain the rise to 90% dollarization reached by I 994. 

Clements and Schwartz (I 992) tried to explain the Bolivian dollarization based on a 

model that uses variables that reflect deteriorating economic conditions.' The following was 

their estimated model (but with different notation) for the period 1986-91: 

m, = -0.204 + 0.002 t + 0.372 d' , + 0.365 rdif. + 0.821m,_ , + liE> +e,, (I) 

(4.77) (3.10) (3.08) (2.03) (2 1.76) 

where m, is log of the share of foreign currency deposits in total broad money. The variable 

d' , is expected depreciation, and is proxied by the difference between the Bolivian and U.S. 

monthly inflation rates. The variable rdif. measures the differential in returns between 

domestic and foreign currency deposits in the Bolivian banking system. A stock adjustment 

2 This model and its structure was originally introduced by El-Erian (1988). 
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mechanism is captured by a lag of the dependent variable, m,. 1, and, together with a trend 

variable t, they are both said to capture " inertia" factors in the dollarization process. The 

vector, e, was used as monthly dummies. Two basic conclusions were derived from the 

estimated modeL First, there is a positive relationship between the dollarization rate and 

both expected depreciation and the return differential as suggested by the literature. 

However, given the size of the estimated parameters, these relationships are found to be 

weak and hardly the driving factors of the dollarization process. Second, " inertia" factors 

appeared as the most significant variables in the dollarization process. 

[tis not clear what the "inertia" factors mean, but they may be related to a self-feeding 

process. Clements and Schwarz mention the asymmetry it suggests, where dollarization 

increases rapidly with macroeconomic instability, but is difficult to reverse even after years 

of macroeconomic stability. A similar idea was advanced by Guidotti and Rodriguez ( 1992), 

who observed persistence of the phenomenon in Uruguay, Mexico, Peru, and Bolivia, despite 

wide fluctuations in inflation differentials and interest rates differentials. Furthermore, they 

developed a theoretical model which shows that dollarization irreversibility is possible when 

considering the costs involved in switching the currency denomination of transactions. In 

their model, transaction costs of dollarization define a band for the inflation differential, and 

dollarization irreversibility occurs above the upper value of the band. 

The concepts of irreversibility, "inertia" factors , persistence, or hysteresis all imply 

either that the Bolivian dollarization process might be following a long-term natural trend 

to full currency substitution, or that it is a random walk with drift, or maybe even both 

considering the theoretical possibility of a band for the inflation differentiaL On the other 
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hand, Guidotti and Rodriguez have suggested that traditional models like (I) cannot full y 

capture the dynamic relationships between dollarization and the interest rate or inflation 

differential , which may be a more complex one. 

The purpose of the present chapters to perform a data driven study of the dynamics of 

the Bolivian dollarization process. First, a sketch of a currency substitution model is 

developed to reconcile current theory with the possibility of dollarization irreversibility. The 

hypothesis of irreversibility is then tested with use of unit root testing procedures. Later, the 

structure of equation (I) is used only to identity the fundamental variables theoretically 

related to the dollarization process, and then the Johansen's maximum likelihood approach 

to co integration is used to estimate a system of dynamic equations in an error correction 

framework. Finally, conclusions and policy options are derived from the theoretical and the 

estimated models. 

A CURRENCY SUBSTITUTION MODEL 

Currency substitution in developing nations is usually represented by a framework 

which simultaneously explains the transactions demand for domestic and foreign currency 

and their role as stores of value among alternative portfolio assets. The basic idea is that risk 

components that determine the return on money holdings in addition to interest rates on 

bonds and devaluation expectations (the portfolio variables) influence the holding of 

domestic currency relative to foreign currency. The model follows from the theory 

developed by Thomas (1985), and more recently by work at the International Monetary Fund 

[El-Erian (1988), and Giovannini and Turtelboom (1992)] , and the work of Clements and 
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Schwartz ( 1992) more specifically for the Bolivian case. 

The issue in characterizing currency substitution is to explain the shift in the currency 

composition of money demand derived from individual behavior in money demand. This 

is essentially a microeconomic framework embedded in a macroeconomic model but 

acco unting for stylized facts of developing countries. The use of foreign currency for 

transactions purposes follows by including money in the utility function of a representative 

individual , or by including money in the production function of a representative firm as a 

factor of production. Both financial restrictions of households and liquidity constraints of 

firms due to inefficient capital markets are of equal importance as issues of growth and the 

effects of monetary policy on that growth in the developing nation context. Viewed in this 

way, currency substitution is the outcome of rational decisions of both households and firms 

using money for the transactions services it provides. 

Real financial wealth denominated in domestic currency can be written as 

w/p = Mlp + e M*/p + B/p + e B*/p, (2) 

for w =wealth, M =domestic money balances, M* = foreign money balances, and Band B* 

are , respectively, domestic and foreign bond holdings. The deflators, p and p* , are 

respectively the domestic and foreign price level. The exchange rate e is p/p* , and for 

simplicity here purchasing power parity is assumed. Wealth is allocated between domestic 

and foreign balances as well as domestic and foreign bonds. 

Shares of the two currency holdings that contribute to the total stock of domestic 

currency comprise (a) liquid forms of money (cash and demand deposits) and (b) longer-term 

commitments such as savings and time deposits. There are three forms of foreign money: 
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liquid foreign currency balances, foreign currency deposits in the domestic banking system. 

and foreign currency in institutions abroad. Foreign currency bonds, 8*, can be held both 

domestically and abroad. 

Real demand for each of the four components of the portfolio of financial assets (M/p, 

M • /p, 8 /p, 8 • /p) becomes a function of total real wealth, w/p, the real interest rate on each 

respective asset (rM, rM' , r8 , r8 .), and the real interest rates on the alternative portfolio assets, 

as expressed in 

M/p = fM (w/p, rM, rM', r8 , r8 . , (M/p),.1) 

M*/p* = fM• (w/p, rM, rM', r8 , r8.) 

8 /p = fB(w/p, rM , rM', r8 , r8 .) 

8*/p* = f"•(w/p, rM, rM•• rs, rs•), 

where f is a functional notation. 

(3) 

Total real wealth of the economy reflects the scale of the economy, which is expected 

to have a positive influence on asset demand. The transactions theory of money demand 

would suggest a relatively high wealth elasticity of the demand for particularly liquid 

domestic money balances. The wealth effect also reflects the positive influence that the level 

of trade has on foreign exchange balances. Generally, one can expect a positive impact of 

real wealth on the demand for both currt:ncit:s. To the extent that economic growth raises 

confidence in the stability of the domestic currency, the ratio of domestic to foreign money 

demand might rise with an increase in real income. However, it is likely that the relative 

demand for foreign exchange rises parallel to the share of foreign trade transactions in total 

transactions, a direction from the transactions cost approach to foreign money demand. The 
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resulting empirical scale effect on the currency composition of money demand depends on 

which of the above mentioned effects dominates in a particular developing nation setting. 

An additional , and perhaps more important, scale effect is the capture of the hysteresis, 

or the Clements-Schwartz " inertia factor," which follows from the above theory as well as 

being observed particularly in the work of Guidotti and Rodriguez as discussed above . There 

is an increasing returns to scale property of money holdings. 

lfthere is a potential for efficiency gains through such scale effects, then the present 

stock of liquid domestic or foreign currency can be expected to be a positive function of the 

respective currency stock accumulated in previous periods, (M/p),_" allowing the possibility 

of a downward trend if there has been an increase of the absolute level of foreign liquid 

money balances in the particular economy of interest. That is, a hypothesis of irreversible 

dollarization derives from the theory. 

The demand for each asset is expected to be positively related to the real rate of interest 

of this asset and negatively related to the interest rate on the alternative assets in the 

portfolio. The real rate of interest is the nominal rate minus the expected inflation rate . The 

nominal rates provided by liquid domestic and foreign money balances are actually liquidiry 

premiums which indicate the efficiency with which domestic and foreign balances contribute 

to reduced transaction costs in production and consumption. They are a negative function 

of the degree of financial development in any particular country and positive functions of the 

accumulated stocks of liquid money balances that are held in the respective currencies. The 

degree of financial development determines the efficiency with which individuals can sell 

and purchase financial assets or invest in the banking system. The wider the availability of 
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assets that reduce transaction costs and serve as store of value, the lower the efficiency of 

cash balances in providing these same reductions and services. For an already dollarized 

economy, the liquidity premium for foreign money balances is likely to fall as the 

government permits the banking system to introduce longer-term foreign currency deposits 

or to develop foreign currency denominated financial instruments. 

The expected inflation rate in the country of interest depreciates the real return on 

domestic currency-denominated assets. Foreign currency-denominated financial assets then 

yield additional returns if the domestic currency can be expected to depreciate and vice versa. 

Therefore, the real interest rates are positively related to the own-asset liquidity 

premiums and the nominal yields on bank deposits. However, they are negatively related to 

expected inflation and other risk factors such as the risk of inflation variability or political 

risk. 

The El-Erian and Clements-Schwartz characterizations of the currency substitution 

model incorporate this theory as generally expressed in the relationships (3) and the logic of 

the theory discussed above in differential and summary form as the logarithmic share of 

foreign currency deposits in total broad money, 

(4) 

for inflation being denoted as 1t (domestic country) and n• (foreign country). Vector dummy 

variables are used by El-Erian and Clements-Schwartz to capture changes in institutional and 

country environment. A time trend is also used in the model to capture the hysteresis in 

addition to the stock adjustment mechanism reflected in m,_,_ Bonds assets are not included 
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in these studies because of the low degree of financial development assumption. 

TESTING FOR IRREVERSIBILITY 

The previous section provided a sketch of the theory explaining currency substitution 

and provided a basis for the possible observance of irreversibility in the dollarization process. 

Irreversibility has important implications for policy and policy options in Bolivia. 

If dollarization is in fact an irreversible process, then the time series of the dollarization 

should be stationary with respect to a positive trend. The alternative is a random walk, or 

difference stationary process, by which the tendency of future dollarization cannot be known. 

A random walk process simply meanders without exhibiting any tendency to increase or 

decrease, and the perception of a positive trend in dollarization might simply describe a 

random walk with drift process. The question of irreversibility of the dollarization process 

is in practice a question of whether the time series of dollarization is trend stationary or 

difference stationary. The Dickey-Fuller unit root test is an appropriate procedure for testing 

this hypothesis. The time series of dollarization is proxied by the share of foreign currency 

deposits in total broad money during the period of 1987.08 to 1994.09. 

To fix the idea of a unit root, consider the following model for a time series y,: 

y, = a 0 +a 1t+ u, 

U, = pu,., + E,, 

(5) 

(6) 

where e, is a zero mean white noise process. The reduced form of model (5)-(6) yields the 

following equation: 
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y, = y + Ot + py,_, + E,, (7) 

where y = (a0(1-p) + a 1p] and o = a 1(1-p). Equation (7) and y, are said to have a "unit root" 

when p= l (which in tum implies o = 0). In this casey, is nonstationary, and the process is 

said to be "difference stationary" (DS) because stationarity is induced by first differencing: 

tly, = y, - y,_1 = y + E,. Alternatively, when p < I and a 1 ' 0, y, is stationary about a linear 

trend a
0 
+ a 1t, and hence is said to be "trend stationary" (TS). The case when p < I and a 1 

= 0 implies y, is stationary itself. 

Unit root tests based on equation (7) were pioneered by Dickey and Fuller ( 1979), and 

the most common procedure is to estimate (7) by ordinary least squares, and test the null 

hypothesis H0:p = I based on the statistic t(p) = (p-1)/se(p). Dickey and Fuller have shown 

that this statistic does not have the traditional !-distribution but, rather, follows some 

nonstandard distribution. They tabulated critical values for the asymptotic case based on 

Monte Carlo simulation. 

The above Dickey-Fuller (DF) test requires the error term e, to be white noise. Said 

and Dickey (1984) further developed the test to accommodate autoregressive (AR) serial 

correlation in the error term and introduced the Augmented Dickey-Fuller (ADF) test, which 

involves estimating the test statistic t(Pl using 

tly, y + lit + PY,. , + t a,Ayt-i + e, (8) 
i• l 

where A is the first difference operator, g is the number of lags required to account for serial 
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correlation, and p = p-1. Said and Dickey showed that the "augmentation" leaves the 

statistic t(P) distributed according to the Dickey-Fuller tables. However, the null hypothesis 

changes to H0 : P = 0. 

Notice the similarity between equations (7) and (I). The estimated coefficient for the 

lag dependent variable in(!) is 0.821 with standard error of0.0377, then t(p) = -4.748, which 

suggests rejection of the null of a unit root at less then a I% alpha level according to DF 

critical values. Use of the DF critical values in this case, however, can be questioned by the 

presence of other regressors in the estimation of Clements-Schwartz model (I) as compared 

to (7), namely d'., rdif., and E>. A formal ADF test would be more appropriate. 

Figure 4-1 presents some statistical properties of the time series of dollarization. Plot 

(a) is the logarithm of the time series of dollarization, m,. One important feature of this 

series is the sudden jump that occurred in August of 1989, when a political regime change 

was taking place. This jump appears to have dramatically increased the mean of the 

dollarization process. Plot (b) is the first difference of the dollarization rate. Plots (c) and 

(d) are, respectively, the autocorrelation function and partial autocorrelation function of the 

first difference of dollarization. The first difference of the dollarization rate will be used as 

the dependent variable in (8), and given the autocorrelation of order 12 detected by plot (d), 

then g in (8) is set to 12. Table 4-1 presents estimation of (8) performed for different periods 

to consider the possible effects of the political regime change. 

The first row of Table 4-1 shows the estimated parameters and their statistics when 

considering the entire length of the data set. The coefficient for the estimate P=-0.09 is very 
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Figure 4-1. Some statistical properties of the time series of dollarization. 
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Table 4-1. Application of the ADF Test to the Dollarization Series 

Period g y t( y) 6 t(o) p t(p) DF-2 .5% 

1987.08- 1994.09 12 -0.04 -1.08 0.0002 0.61 -0.09 -1.60 ~3.73 

1989.09- 1994.09 12 -0.17 -5.90 0.0005 3.64 -0.41 -6.58 -3.80 

1987.08- 1989.08 -0.36 -2.56 0.003 1.94 -0.49 -2.65 -3.95 

close to zero, and in comparing the statistic, t(p), with the DF critical value at 2.5%, the 

conclusion is that a unit root process exists. When the sample is split in two periods (pre-

1989.08 and post-1989.08), the estimated value of p has an important change: -0.41 for the 

post-1989.08 sample and -0.49 for the pre-1989.08 sample. Moreover, by the magnitude of 

t(P) for the post-1989.08 sample, the null of a unit root can be rejected at even less then the 

1% alpha level. That is, dollarization is trend stationary after 1989.08. Given the size of the 

pre-1989.08 sample, a unit root cannot be rejected. It appears that the political regime 

change is responsible for the near unit root value of p when considering the entire sample. 

Perron (1989) developed a procedure which improves the performance of the ADF test 

in the presence of shocks which are not a realization of the underlying data-generating 

mechanism (shocks are exogenous). Perron's "Test for Structural Change," as it is referred 

to in the literature, has the following structure: 

Ay, = y + I!,D, + I',OL + lit + Py,_, + t O,Ay,_, 
i• l 

+ E, (9) 

where Op= I in 1989.09 and zero otherwise, and DL =I for all t beginning in 1989.09 and zero 

otherwise. Op and DL are referred to as the pulse dummy and the level dummy. Under the 



Table 4-2. Tesl of SlruCiural Change on /he Dollarizalion Series 

y 

Coefficients -0.423 

!-stati stics -6.587 

J.!! 

-0.059 

-1.908 

0.13 1 

6.796 

0.001 

3.836 

p ).=0.3; 1% 

-0.67 

-6.840 -4.39 
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null hypothesis we have a unit root with a one-time change in its mean, so the null becomes 

H0 : P=O, o=O, and J.! 2=0. Under the alternative we have a trend stationary series wi th a 

permanent one-time break in the trend, i.e., H,: P<O and !1 1=0. Figure 4-2 shows the plot of 

the dollarization series against the fitted regression under the alternative, that is, y, = y + 

112DL + ot. Perron also showed that given the extra regressors and the split sample nature of 

these regressors, the distribution of the statistic of interest, t(ll), changes depending on the 

proportion of observations before the break, .l.. Application of Perron 's procedure to the 

dollarization series produced the result given in Table 4-2. 

Comparing t(Pl to Perron' s critical value suggests rejection of the unit root hypothesis 

at less then the l% alpha level. Also 112 and o appear to be significant at usual !-table values. 

There is, however, an important loss of degrees of freedom given the number of lags used 

in estimation. This produces parameter estimates strongly influenced by the post-1989.08 

dollarization process. These results suggest that the Bolivian dollarization, and specifically 

the post-1 989.08 period, is an irreversible process. By using the estimated coefficients of 

equation (9) presented in Table 4-2, and the definitions given in (5) to (9), the estimated time 

trend is -0 .632 + 0.0015 t. The coefficient for trend is positive but small, which suggests that 
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Figure 4-2. Dollarization series versus fitted regression under the alternative. 
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dollarization will continue to full currency substitution at a slow but steady pace. In 

connection to the theory presented above, the degree of dollarization caused by the political 

regime change may have introduced a scale effect, after which there were more efficiency 

gains to be realized by operating in foreign currency in the form of reduced transaction costs 

in consumption and production. 

CO INTEGRATION AND DOLLARIZA TION 

With knowledge of the variables and effects that determine dollarization, as presented 

in the comparative static model above, the objective now is to improve over model (I) by 

estimating a dynamic model of Bolivian dollarization process. For this purpose, a new time 

series of dollarization, called dol" is produced by taking out of the original dollarization 

series the effect of the political regime change, that is, dol, = y, - il, DL = y + 8 t + €,. In 

Figure 4-3, plot (a) presents the dollarization series after making this correction. The other 

variables of interest are domestic inflation, return on dollar deposits, return on deposits in 

Bolivians, depreciation rate, and the foreign inflation rate. The time series of these variables 

are presented in plots (b)-(f) of Figure 4-3 , respectively. More specifically, it is of interest 

to estimate a model exhibiting the short-term dynamic connections among these variables, 

and how these dynamics could be, in part, adjustments to long-term equilibrium relationships 

among them. 

In the econometrics literature, the requirement of equilibrium relationships among 

variables is referred to as variables being cointegrated. Let y, be a Kx I vector of 

nonstationary variables that can be made stationary after first differencing. If there exists 
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some linearly independent vectors a , ... a" O<k<K, such that a;'y, (i= l .. k) are stationary, then 

the components of the vector y, are said to be co integrated with co integration rank k (number 

of possible stationary linear combinations). Based on these definitions, Granger ( 1986) and 

Engle and Granger ( 1987) proved the Granger Representation Theorem, which states that 

if a Kx l vector y, is cointegrated, with cointegration rank k, then there exists a vector 

autoregressive representation, 

y, = A,y,_, + ... + ApYt-p + ~ 

and an error correction representation 

t.y, = B,t.y,. 1 + ... + B,. ,t.y,.p+ , - IIy,.1 + ~ 

(10) 

(11) 

where p is the number oflags, B, = -AP- A,., - ... - A1+2 -A;+ I• and II=HC= IK- A, -... - AP 

with rank(II) = rank(H) = rank(C) = k. C is a kxK matrix containing the cointegrating 

vectors, and H is a Kxk matrix of adjustment or error correction coefficients. The errors ~ 

are assumed to be gaussian white noise . Equation ( 11) is a reparameterized version of 

equation (10) . Alternatively, equation (11) can be reparameterized into the following error 

correction form: 

(12) 

where D, = -IK + A1 + ... +A,. Equation (12) is the form used by Johansen and Juselius. In 

either equation the rank k of the matrix II is the empirical number of linearly independent 

cointegrating relations among the variables in y,. If II is of full rank, then any linear 

combination of y, will be stationary, while if it is a matrix of zeros, then any linear 

combination of y, will be a nonstationary unit root process. The most interesting case is 
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when a is less than full rank, O<k<K. In this situation, k is the number of cointegrating 

vectors and K-k is the number of nonstationary linear combinations. 

Let y, = (do l,, n,, r* ,, r,, dep,, n* ,) contain our variables of interest, where dol, is the 

time series of dollarization, n, is domestic inflation, r* 1 is the return on foreign currency 

deposits (Dollar deposits), r, is the return on domestic currency deposits (Boliviano deposits), 

dep, is short for the time series of depreciation, and n* , is foreign inflation. Estimation is 

done by treating all variables as equally endogenous (except for foreign inflation, which is 

treated as exogenous because it cannot be determined within the Bolivian economy, but it 

is expected to influence it) with the objective of letting the data determine the structure of 

the empirical model. The data used correspond to the time series of these variables for the 

period 1987.08 to 1994.09 collected from the Bolivian Central Bank statistical bulletins. In 

addition to these variables, two dummy variables are included representing the 1989 political 

event and the December bonus. The latter is an important institutional component of the 

Bolivian economy. 

Computation of the ML estimators requires previous knowledge of the lag order, p, and 

the cointegration rank, k. Three methods were used to establish an optimum lag order: the 

Akaike's Information Criterion (AI C), the Hannan-Quinn Criterion (HQ), and the Schwarz 

Criterion (SC). Each of these procedures uses the above variables in computing V AR 

systems at alternative lags. Then the optimum lag is selected as the one that minimizes the 

criterion represented by the following formulas: 

AIC(m) = In IU(m)l + 2mK'rr 



HQ(m) = In IU(m)l + (2 In In T)fT 

SC(m) = In IU(m)l + (In T mK2)/T, 
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where m=O, I, ... ,M is the number of alternative lags considered, T is the length of the series, 

K is the number of variables, and U(m) are the residuals from the estimated V ARs at 

different lags, m. Table 4-3 shows the computed values. 

Table 4-3. Order Selection Criteria 

Lag 2 4 9 10 

A IC -44 . 1 -43 .6 -42.9 -42.3 -41.4 -40.6 -39.7 -39.0 -38.0 -36.9 

HQ -43.8 -43 .0 -42.0 -41.1 -39.9 -38.8 -37.6 -36.6 -35.2 -33.8 

sc -43.4 -42.2 -40.7 -39.3 -37.7 -36.1 -34.4 -32.9 -31.1 -29.1 

In all three cases the suggested optimum lag order is one. In equation (6), a lag order 

of one in the V AR portion of the ECM implies p=2 in the cointegrating portion of the ECM. 

Given that (6) is the equation used for ML estimation, then pis set to two, which gives the 

following equation for estimation purposes: 

(13) 

To establish cointegration rank, the trace statistic and maximum eigenvalue statistic 

were computed and then evaluated using critical values obtained from a nonparametric 

bootstrap according to Algorithm l (see below). This procedure was necessary given the 

specific treatment of endogenous and exogenous variables in the ECM. Algorithm I was 

developed following the same procedure used by Johansen and Juselius (1990) in producing 

their tables of critical values. 
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Algorithm I: 

I. Estimate the ECM model ( 12) assuming full rank and obtain its residuals e,
1
, 

(t= I...T; i= I. . .K-k). 

2. Take a random sample of the stacked residuals e,, and generate e,1* 

3. Compute X,1 =L e,1*, (t=I , ... ,T; i= I, ... ,K-k), with )(,1= 0. 

4. Compute the matrix V=Le,*(X,_ 1-X_, )'(L(X,_, -X_, )(X,_1-X_,)l 1L(X,_ 1-X_1)e,*'. 

5. Compute the trace and maximum eigenvalue ofV, and go back to step 2. 

6. Obtain critical values for the trace and maximum eigenvalue test. 

Table 4-4 presents the computed statistic and critical values for the trace test . Table 

4-5 presents the computed statistic and critical values for the maximum eigenvalue test. In 

both cases cointegration of rank three is accepted at an alpha level of less then I%. Three 

cointegrating vectors imply that there are three long-term equilibrium relationships among 

the variables, and therefore their relationship is stable in three directions. 

With knowledge ofp and k, then equation (13) can be estimated to obtain the following 

Table 4-4. Trace Test for Co integration Rank 

Ho H, Value 0.90 0.95 0.975 0.99 mean variance 

k=4 k=5 5.97 6.777 8.221 10.027 12.521 3.00 8.11 

k=3 b4 17.45 15.686 17.802 21.140 25.985 9.48 21.94 

k=2 b3 43.22* 28.481 31.436 34.224 37.287 19.90 40.46 

k= l b2 74.85 44.508 48.847 52.664 57.611 33.48 72.07 

k=O b l 117.10 64.756 69.089 72.851 77.975 50.61 II 0.57 
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Table 4-5. Maximum Eigenvalue Test for Cointegration 

Ho H, Value 0.90 0.95 0.975 0.99 mean vanance 

k=4 k=5 5.97 6.777 8.221 10.027 12.521 3.00 8.11 

k=3 b4 11.48 12.869 14.886 16.935 21.674 7.74 15 .57 

k=2 b3 25.76* 19.294 21.303 23.671 25.470 12.82 22 .55 

k=l b2 31.63 24.971 27.5 16 30.387 32.368 17.82 28.40 

k=O b l 42 . .24 10.992 34.018 35.916 3_2_7.54 2220 3..&.62 

reparameterized version: 

Ay, = B0 + B,t:J.y,., - IIy,_, + u, (14) 

where B, = -A2, II = HC = 15 - A 1 - A2, A 1 = !5 + 0" and A2 = -HC- D, . The matrix B, 

reports the short-term coefficients, and the matrix 8 0 reports the coefficients of the constant 

term, the dummy variables', and the exogenous variable, n*,. The cointegrating vectors are 

contained in the matrix C, and the error correction coefficients are in the matrix H. The 

matrix II simply multiplies H and C and therefore it contains both coefficients, that of the 

co integrating vectors and that of the error correction. The following were the estimated 

parameters: 

0.428 

(0.005) 

-9.8e-03 

(0.986) 

-0.275 

(0.271) 

0.479 

(0.002) 

0.561 

(0.01 1) 

-0.242 

(0.025) 

0.220 

(0.044) 

0.129 

(0.0 16) 

-0.058 

(0.910) 

0.471 

(0.090) 

'Estimated parameters for the dummy variables are not reported. However, evaluation of 

their !-statistics indicated that dummies operated as intended. 
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Ac = 5.6e-02 -0.024 0.019 -0.005 -1.6e-03 

(0.660) (0.358) (0.360) (0.642) (0.997) 

-0.091 0.814 -0.682 0.421 -1.339 

(0.460) (0.0 11) (0.0 10) (0.002) (0.058) 

0.020 0.080 0.012 -0.011 0.466 

(0.158) (0.039) (0.651) (0.470) (0.000) 

6.20 -51.64 17.33 11.53 -217.85 

c= 27.95 -66.75 71.38 -13.52 65.07 

27.26 58.99 -6.71 40.54 26.35 

3.41e-03 7.69e-02 7.03e-03 

-2.53e-03 -2.49e-02 3.09e-03 

A= 6.83e-05 2.55e-03 -7.18e-05 

3.90e-03 -9.94e-02 5.95e-03 

-1.88e-03 6.70e-03 4.79e-04 

-0.217 -0.003 -1.439 0.022 -1.432 

(0.075) (0.988) (0.201) (0.800) (0.030) 

-0.024 -0.274 1.461 0.053 0.635 

(0.643) (0.015) (0.013) (0.242) (0.042) 

B,= -0.002 0.001 0.345 0.001 2.7e-03 

(0.847) (0.981) (0.008) (0.922) (0.995) 

-0.061 0.853 0.515 -0.326 -0.906 

(0.667) (0.003) (0.701) (0.006) (0.261) 

0.002 0.049 0.227 -0.014 -0.050 

(0.884) (0.118) (0.156) (0.298) (0.621) 
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0.670 -0.990 

(0.00 l) (0.535) 

-0.100 -0.746 

(0.232) (0.350) 

Bo; 0.011 0.113 

(0464) (0.528) 

-0.198 -2.151 

(0.322) (0.284) 

-0.008 0450 

(0.682) (0.042) 

The numbers in parenthesis are bootstrapped p-values that were obtained with use of 

the following algorithm A 

Algorithm 2: 

l. Take a random sample from each of the residual vectors contained in 

il, ; y,- A0 - A,y,_, - A2y1_2 and generate new residuals u. *. 

2. Use the residuals u. *to build new values y,* based on the structure of the estimated 

model and using the first two observed values of y, as starting points. That is, 

3. Use the generated values y,* to compute model (12) with p;2 and k; 3, and generate 

new D* , H*C* , and their matrix of standard errors se(D*) and se(H*C*). Based on 

these also compute new 8 1* and se(B 1*). 

' The general principles used for the development of this algorithm follow the work of 

Freedman and Peters (1984) and Hall and Wilson (1991). 
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4. Then compute the following matrices: 

(B,*- B, )/se(B, *) to approximate the di stribution of (B,-0)/se(B,), 

(HC*-AC)/se(HC*) to approximate the distribution of(AC:-0)/se(Ac). 

5. Go to step l and repeat the simulation l 000 times. 

6. Finally, use the absolute values of the vectors generated for each element of the 

above matrices to build their empirical probability distributions for a two-sided 

evaluation of the significance of the originally estimated parameters. 

Use of the nonparametric bootstrap (bootstrapping from residuals) described in 

algorithm 2, has a multiple purpose in the context of error correction models. First, it 

considers the small sample problem and possible departures from normality in the residuals. 

Second, bootstrapping from residuals takes into account the information contained in them 

relative to other variables not considered in estimation. Third, the bootstrap produces p-

values for each individual parameter based on their individual empirical distribution 

function. Each distribution is obtained simultaneously for all parameters by using the 

estimated model as the data generating mechanism and by drawing random samples from the 

residuals. The result is superior inference in hypothesis testing compared to use of 

traditional !-table values. Appendix E presents critical values derived from these 

di stributions for a two-sided evaluation of the significance of each parameter contained in 

the matrix HC. Appendix F does the same for each parameter contained in the matrix B1• 

The final model can be summarized in the following equations: 

~dol ,= 0.67- l.43D.dep,_ 1 - 0.0034(-dol,- 2.79r*, - l.86r,),_ 1 

- 0.0076(-dol,- 2.55r*, + 0.48r,),_, 

- 0.0070(-dol, + 0.24r*,- l.48r,),_ 1 +e11 

(14) 
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L'l. n, = - 0.27L'l.Jt,_ 1 + 1.46L'l.r*,_ 1 + 0.63L'l.dep,_1 - 0.00253(-Jt, + 0.33r*, + 0.22r,),_
1 

(15) 

- 0.00249(-Jt, + 1.06r*,- 0.20r,),_
1 

- 0.0031 ( -Jt, + 0.11 r*, - 0.68r,),_ 1 +e12 

L'l.r* , = 0.34L'l.r*,_1 + eiJ 

L'l.r, = 0.85L'l.Jt,_ 1 - 0.32L'l.r,_ 1 - 0.0039(4.47Jt1 - 1.50r*, - r, + 18.89dep,),_ 1 

- 0.0099(-4.93Jt, + 5.28r*,- r, + 4.8ldep,),_ 1 

- 0.0059(-1.45Jt1 + 0.16r* , - r,- 0.65dep,),_1 +e 14 

L'l.dep, = - 0.00 18(-0.23Jt, - dep,- 239.0Jt*,),_ 1 

- 6.7e-04(1.02Jt, - dep, - 670.8Jt*,),_1 

- 4.7e-04(-2.23Jt,- dep, - 938.04Jt*,),_, +e 15 

(16) 

(17) 

(18) 

The co integrating vectors contained in C: affect four of the five equations according to 

p-values of the f!C:matrix. Each vector, however, has been divided by the coefficient of the 

variab le whose equation is being affected. 

Equations ( 14)-( 18) describe a partial structure of the Bolivian economy directly related 

to the dollarization process. Before analyzing equation (14), which describes the dynamics 

of dollarization, it is convenient to understand first the dynamics of the other variables. This 

makes sense because the variable for dollarization, dol., does not appear either in the short-

term or long-term components of any of the other equations. That is, there is no feedback 

effects from dollarization on the behavior of the other variables, but all of these other 

variables do enter directly or indirectly into equation (14 ). 

The dynamics of depreciation is explained in equation ( 18). Depreciation results 

strictly as an adjustment of its out-of-equilibrium position with respect to its long-term 

relationship with the domestic and foreign inflation rates. This long-term relationship, 
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howeve r, is of a multiple and contradictory nature. One cointegrating vector describes a 

positive relationship between depreciation and domestic inflation, and a negative relationship 

between depreciation and foreign inflation. This is the relationship suggested by theory, but. 

by the size of its error correction coefficient (6.7e-04), this is not the dominating vector. The 

other two cointegrating vectors (one of them being the dominant) describe a negative 

relationship between depreciation and domestic inflation, and between depreciation and 

foreign inflation, implying that decreases in both inflation rates promote further depreciation. 

However, in both vectors the coefficient for foreign inflation is several times greater than the 

coefficient for domestic inflation, implying that depreciation is basically determined by 

foreign inflation. Even though monthly domestic inflation has been low by Bolivian 

standards, with an average of I% (although volatile), the US monthly inflation has averaged 

0.3%-0.4% and is less volatile. That is, the "low" Bolivian inflation could have become an 

illusion being more and more evident as dollarization proceeded. Inflation tax from using 

Boliviano currency is still high compared to the inflation tax that Bolivians would pay to the 

US government from dollar currency use. Theoretically, as dollarization proceeds, the last 

two cointegrating vectors will dominate until full equalization with US prices occurs. 

Domestic inflation is an important variable in equations (14) and (18). Equation (15) 

shows that the dynamics of domestic inflation is a result of two components. First, in the 

short run it has a negative relationship with the speed of inflation experienced in the previous 

period, a positive relationship with the rate of change in the return on dollar deposits, r* ,, and 

a positive relationship with the speed of depreciation (which is determined by foreign 

inflation). Then, inflation in the short run is determined by the return on dollar deposits and 
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foreign inflation . Second, it results from an adjustment to its out-of-equilibrium position 

with respect to three equilibrium relationships with the return on dollar and Boli viano 

deposits. Two of the vectors, which together dominate the long-run behavior of inflation, 

present a positive relationship of inflation with the return on Dollar deposits and a negative 

relationship with the return on Boliviano deposits. In one case, the coefficient for return on 

dollar deposits is several times larger then the coefficient on Boliviano returns, and in the 

other case the opposite occurs. 

The return on Boliviano deposits is also an important variable in explaining 

dollarization. Equation (17) shows three equilibrium relationships among the return on 

Boliviano deposits, r, , the return on Dollar deposits, r•" the domestic inflation rate, rr., and 

depreciation. These relationships simply show that r, follows closely r•, adjusted by inflation 

and depreciation. The short-term dynamics of r, has a positive relationship with the speed 

of inflation experienced in the previous period, a negative relationship with changes in r, 

itself in the previous period, and of course it includes the adjustment with respect to the 

equilibrium relationships. 

The time series of return on Dollar deposits, r•" appears to have a life of its own. In 

equation (16), the short-term dynamics of r•, does not include adjustments to any 

equilibrium relationships or to the short-term movements of the other variables in the 

previous period. It only has a positive relationship with its own changes occurring in the 

previous period. However, this variable has an important impact on the inflation rate, first 

by affecting directly the short-term dynamics of inflation, second, by being part of the 

co integrating vectors to which inflation adjusts, and third, indirectly through its effects on 
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r,. Although r*, does not appear to be affecting depreciation directly, it does influence it 

indirectly through domestic inflation. However, r* , does affect the dollarization process 

directly by being part of the cointegrating vectors to which dollarization adjusts, and also 

indirectly through r,, given that this variable is determined by r*,. From these results it can 

be concluded that r* , drives the system from inside the economy. The other variable that 

drives the system, although from outside the system, is foreign inflation, which determines 

directly the rate of depreciation, and indirectly inflation and dollarization through 

depreciation. 

As the literature suggests, there is in fact a relationship between the dollarization rate 

and the return on dollar and Boliviano deposits as shown by the long-term components of 

(14). However, this relationship is also found to be of a multiple and contradictory nature. 

One of the cointegrating vectors describes a positive relationship between dollarization and 

the return on dollar deposits, and a negative relationship between dollarization and the return 

on Boliviano deposits. This is the relationship suggested by theory, but, given the size of its 

error correction coefficient (0.0070), this is not the dominant vector, which coincides with 

the findings of Clements and Schwartz. Notice that the coefficient on Boliviano deposits is 

about six times greater then the coefficient on dollar deposits, suggesting that Bolivian savers 

do shift strongly in favor of Boliviano deposits when the opportunity comes. A second 

cointegrating vector describes a negative relationship between dollarization and the return 

on Dollar deposits, and a positive relationship between dollarization and the return on 

Boliviano deposits. This relationship is exactly the opposite to what theory suggests; 

furthermore , the coefficient for the return on dollar deposits is about 5.5 times greater than 
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the coefficient for the return on Boliviano deposits, and by the size of its error correction 

coefficient (0.0076), this is the cointegrating vector that dominates the other two. That is. 

decreases in the return on dollar deposits actually promote further dollarization. The third 

cointegrating vector is really a mixture of the other two. It describes a negative relationship 

between dollarization and the return on dollar deposits, and a negative relationship between 

dollarization and the return on Boliviano deposits. In this case, decreases in both returns 

promote further dollarization; however, by the size of its error correction coefficient this 

vector is the weakest of the three. Besides adjusting to its out-of-equilibrium position with 

respect to the three cointegrating vectors, the short-term dynamics of dollarization also 

responds negatively to changes in the speed of depreciation. But, given that thi s variable is 

determined by the domestic and foreign inflations, then this is the way these variables enter 

the dollarization equation. 

The question now is, why would people prefer more dollar deposits over Boliviano 

deposits when both rates are decreasing over time? In Figure 4-1 , (c) and (d) show 

continuously decreasing returns, while (a) shows continuously increasing dollarization. The 

answer to this question could be intimately linked to a third alternative of dollar deposits 

abroad. The return on dollar deposits in Bolivia is still high compared to the international 

rate, and given its past behavior it is probably expected to continue decreasing toward full 

equalization with the international rate. Therefore, there is still a period in which one can 

realize high returns before full equalization occurs. This argument could justify the 

preference of more deposits in Bolivia rather than abroad despite decreasing interest rates. 

The preference of dollar deposits over Boliviano simply results from a decreasing return on 
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Boliviano deposits as theory suggests. Moreover, it turns out that, by equation ( 17). the 

return on Boliviano deposits is simply equal to the return on dollar deposits adjusted for 

inflation and depreciation. That is, the return on dollar deposits drives the return on 

Boliviano deposits. 

In addition, the speed of dollarization rate was found to decrease with the speed of 

change in the inflation differential. Domestic inflation and the return on Boliviano deposits 

were fo und directly and indirectly affected by the domestic variable that drives the system. 

the return on dollar deposits. Domestic inflation together with foreign inflation affects 

indirectly the short-term dynamics of dollarization, and the return on dollar and Boliviano 

deposits determines a long-term equilibrium with dollarization. Then, it turns out that it is 

the return on dollar deposits and the speed of foreign inflation that greatly contributed to the 

dollarization process. 

CONCLUDING REMARKS 

As the literature suggests, there is in fact an equilibrium relationship between the 

dollarization rate and the return on dollar and Boliviano deposits. There is also an 

equilibrium relationship between depreciation and domestic and foreign inflations. It was 

also found that in the long run the return on Boliviano deposits simply follows the return on 

Dollar deposits adjusted tor inflation and depreciation, and therefore does not play any 

important role in the dollarization process. Further, there is an equilibrium relationship 

between domestic inflation and the returns on dollar and Boliviano deposits. However, these 

relationships appear to be of a multiple and perhaps contradictory nature. The existence of 
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multiple equilibria among these variables indicates that, as the dollarization process has 

proceeded, the Bolivian economy has apparently been in a transition period toward fu ll 

equali zation of prices and interest rates with the US. This conclusion derives from the fac t 

that the return on dollar deposits and foreign inflation are the variables that in practice drive 

the do llarization process. 

Even though the return on dollar deposits has consistently been decreasing, it has 

remained high compared to the US treasury bill rate. Similarly, even though domestic 

inflation has been low by Bolivian standards, it has remained high compared to the US 

inflation rate. These differentials have become more and more evident as dollarization 

proceeded, making in fact the differentials in interest rates and inflation rates the driving 

forces for further dollarization. It is now expected that this process wi ll end somewhere in 

the neighborhood of full price and interest rate equalization. 

This line of argument introduces some new elements to the discussion of why 

dollarization has persisted in Bolivia regardless of recent stable macroeconomic conditions. 

The basic theoretical model of dollarization permits the possibility of reversing the process 

as the fundamental macroeconomic problems are solved. However, there must be a level of 

dollarization beyond which the domestic variables stop having an important role and foreign 

variables become increasingly the dominating driving forces. This is an expression of 

dollarization irreversibility in a multivariate time series framework. That level of 

dollari zation was apparently reached in Bolivia right after the 1989 political regime change. 

According to our theory, the degree of dollarization caused by the political regime change 

may have introduced a scale effect, after which there were more efficiency gains to be 
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realized in the form of reduced transaction costs in consumption and production when 

operating in foreign currency. It is important, however, to realize that dollarization could not 

have proceeded so strongly in such a short period if international interest rates had not been 

as low as they have been during 1989. 

In terms of policy options, if in fact dollarization is irreversible, then the Bolivian 

goverrunent not only lost the battle for its currency, but also lost the monetary policy 

instnunent and the inflation tax revenue. Alternative policy actions must now be based on 

this framework. In this sense, probably the greatest problem a fully dollarized economy has 

in this case is the protection of Bolivian savers and the domestic banking system, for 

example, from sudden changes in international financial markets. As a dollarized economy, 

the Bolivian Central Bank cannot come to the rescue of a collapsing banking system, but it 

could ask for higher reserve requirements or expect domestic banks be protected by larger 

foreign banks. In a situation of increasing international interest rates, the domestic banking 

system could face an outflow of capital. However, this could be avoided in a climate of 

political stability and fiscal management free of domestic debt. In this sense, privatization 

of state-run firms and goverrunent decentralization may no longer be a policy option, but 

rather a requirement to guarantee the goverrunent's full commitment to preserve a stable 

dollarized system. 

Even under well designed economic policy, a dollarized economy is more vulnerable 

to external shocks relative to an economy with less dominant currency substitution 

conditions. If money supply in terms of the domestic currency includes a large portion of 

foreign currency balances, changes in exchange rate will affect the composition of the money 



97 

stock, thereby rendering weak control over money supply. Currency subst itution makes the 

demand for money unstable. There is some evidence that this has been the case in Bolivia 

as well as in Mexico and Peru (Savastano, 1992). 

The effectiveness of fiscal policy is reduced by currency substitution through the 

reduced ability of the government to raise revenues via taxation. If dollarization is 

accompanied by an increase in the informal sector, the base for international trade income 

and profit taxes is eroded. If transactions and deposits in foreign exchange are authorized 

by the government, then government revenue from taxation is, ceteris paribus, reduced. 

Seigniorage resulting from the inflation tax is reduced as well. 

The welfare effects caused by dollarization can only be characterized in a general way. 

This characterization of effects can only be made by comparing alternative imperfect 

conditions rather than comparing the conditions of perfect macroeconomic processes with 

imperfect conditions. In Bolivia, the switch to dollar currency has enabled economic agents 

to avoid the inflation tax, reduce transaction costs in the consumption process, and reduce 

political and exchange risks associated with holding domestic currency-denominated 

financial assets. The process of substitution in this sense has allowed agents to avoid a 

reduction in welfare. Holding foreign exchange allows the agents to economize in foreign 

trade in addition to redu~ed costs in consumption. In a macroeconomic sense, this suggests 

that the savings in transaction costs increase with the proportion of goods that are purchased 

in the domestic economy with foreign currency and with the degree of openness of the 

economy. We can expect the welfare gains from currency substitution to be higher the more 

advanced the economy is in the process of dollarization and the more open the economy is 
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to foreign trade. Bolivia appears to fall in this category. but must watch what happens to 

price leve ls of trading partners. Certainly more information is needed on the extent of 

impacts from the outside in order to formulate policy such as exchange rate policy. 

Currency substitution appears to be a more efficient means of financial adaptation to 

inflation relative to financial indexation. Several arguments support this view as summarized 

by Rostowski (1992) and as evidence of irreversibility of substitution indicates in the case 

of Bolivia. The adaptation of indexation to unforseen price changes can only take place 

discretely, whereas continual adaptation can take place with use of the dollar in the Bolivian 

case. Indexation also promotes price rigidity whereby relative prices react sluggishly to 

market forces. That is, prices lose some of their signaling role in the economy. A dollarized 

economy is less susceptible to an acceleration of inflation through supply shocks. Probably 

the only advantage indexation has relative to dollarization is that it does not induce 

seigniorage losses to governments, but even this advantage has to be weighted against losses 

of resources that have to be devoted to the expansion of the financial services sector. 

Dollarization that is agent driven rather than government authorized would appear to 

be correlated with the expansion of the informal sector. A greater part of financial 

intermediation can be expected to take place outside the formal banking sector. Recourse 

to the informal sector is a means of reducing risks created by the effects of government 

policy. However, we would have to have information on the extent of informal activities and 

how they are related to efficiency gains to make a more detailed statement about thi s aspect 

of welfare analysis for the Bolivian case. 

In the long run, nonauthorized dollarization in Bolivia is likely to induce monetary 
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discipline in the dollarized Bolivia as mentioned previously. In the short run, governments 

have the tendency to increase inflation to maintain a level of seigniorage receipts. In the long 

run, the cycle of increasing inflation and dollarization can only be broken by a sharp shift to 

monetary and fiscal discipline, or ever increasing dollarization to allow financial 

intermediation in the dollar. 
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Some final comments are needed with respect to the development and use of the 

combined methods of time domain time series analysis with bootstrap hypothesis testing. 

In the first essay, use of the bootstrap in evaluating the Augmented Dickey-Fuller test 

questioned the stylized facts of difficulty to reject the null of the existence of a unit root and 

low power associated with this type of tests. Moreover, computation of the contribution of 

squared bias and variance to total mean square error, which were based on the bootstrapped 

empirical distributions, may be pointing to the main problem of the Dickey-Fuller test in that 

it is not necessarily a problem of bad inference methods, but rather a problem of estimation 

methods. 

Use of the bootstrap in the second essay revealed that Johansen's asymptotic critical 

values can be an acceptable first approximation in testing for cointegration in small samples. 

This result was also verified in the third essay, which produced a higher number of 

cointegrating relationships among variables. Similarly, once contamination is considered 

(which is essential), use oft-table values can be an acceptable first approximation in testing 

for the significance of parameters in a multivariate time series system. Except for one case 

(in second essay), in general a high !-statistic is associated with a low bootstrapped p-value. 

The practice of bootstrapping proved also quite useful in a hidden way. Model 

estimation is not a one-time exercise, but rather a process in which problems are found and 

solved before the final model is produced. In this sense, a model in which many parameters 
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appear significant (or nonsignificant) by their t-statistic but not significant (or significant) 

by their bootstrapped p-values can be an indication of multicollinearity problems, non-white 

noise residuals, heteroskedasticity in the residuals, biased estimates due to contamination, 

the need to transform variables to avoid scale effects, or wrong number of leads and lags in 

the variables. These were some of the problems experienced during its application. 

An essential feature of the bootstrap emphasized by Freedman and Peters is that the 

estimated model and its estimated parameters are the true model of the phenomenon of 

interest. This condition is difficult to achieve a priori, but this is the place where economic 

theory plays an important role. Economic theory will help not only in identifying the 

relevant variables, but also in their treatment as exogenous or endogenous, in explaining the 

possible sources of observed shocks, in model interpretation, and even in theory criticism. 

One more benefit of the bootstrap is that it permits a better understanding of 

estimation methods, not only relative to their performance in terms of contribution of squared 

bias and variance to total mean square error, but also with respect to specific features in the 

estimation procedures. Johansen' s maximum likelihood approach to cointegration is in 

essence an application of canonical correlation. The objective of this method is to find linear 

combinations within two sets of variab les such that correlation of linear combinations 

between sets is the largest possible. Estimation of canonical correlation is performed by 

maximizing this correlation subject to fixing the variance of each linear combination to one. 

The feature of fixing variances to one translates to standardizing residuals in the bootstrap 

algorithms. This correction is essential in the context of error correction models, where the 

two sets of variables are just the levels and differences of one set of time series variables, one 
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representing the long-term and the other representing the short-term. This is why the 

estimated error correction model already contains the short-term, long-term, and short-term­

long-term interactions. Random samples from residuals without thi s correction generate 

exploding simulated series in the bootstrap replications. That is, the bootstrap would 

produce biased parameter estimates at each replication. Understanding of this feature gives 

a hint of why there could be a tendency to biased parameter estimates when testing for unit 

roots with the Augmented Dickey-Fuller test. This test is a single equation version of 

Johansen 's maximum likelihood approach, but where estimation is performed without fixing 

the variance of its short-term and long-term components. 



104 

APPENDICES 



105 

APPENDIX A 

UN IT ROOT TESTING BY BOOTSTRAPPING 

RESIDUALS FROM OLS ESTIMATION OF 

THE ADF EQUATION. 

ols.strap<-function(x, p, s){ 

n _ length(x) 

dx_diff(x) 

a_p+ l 

b_n-1 

x l_x[a:b] 

nn_n-(p+ l) 

y_urootols(x,p) 

time_c{l :nn) 

res_y$res 

res.standard ized _ (res-mean( res) )/sqrt( var( res)) 

betas_matrix(O, ncoi ~ p + 3 , nrow ~s) 

std.dev _ matrix(O, n col ~ p + 3, nr ow ~ s) 

tau _rep(O, s) 

zeta _rep(O, s) 

lx_rep(O, nn+2) 

ndx _rep(O, nn+ I) 

lx[l]_x[l] 

ndx[ l]_dx[l] 

lx[2]_1x[ l]+ndx[ I] 

forU in I :s){ 

nres_sample(res.standardized, nn, 

replace ~ TRU E) 

q_nn+l 

for(i in 2:q){ 

ndx[ i]_y$table[ I ,]%• %t(c(l ,i-1 ,lx[i],ndx[i- 1 ]))+ 

nres[i-1] 

lx[ i+ I ]_lx[i]+ndx[i] 

) 

beta.hat_y$table[ I,] 

z_ols. beta(lx, p, beta.hat) 

betas[j,]_ z$betas 

std.dev[j,]_z$std.dev 

tau[j]_z$tvalue 

zeta[j]_ z$fstat 

) 

table_y$table 

r2_y$r2 

Qstat_y$Qstat 

fstat_y$fstat 

von.neumann_y$von.neumann 

return(betas, std.dev,tau, zeta, table, r2, Qstat, 

fstat, von.neumann, res) 

OLS ESTIMATION OF ADF EQUAT ION 

uroot.o ls<-function(x, p){ 

n _length(x) 

a_p+ l 

b_n- 1 

x l_x[a:b] 

nn_n-(p+ l ) 

time_c(l: nn) 

xx_cbind(time, xI) 

dx_diff(x) 

m_ length(dx) 

dxO_dx[a:m] 

for(i in I :p){ 

a_p-i+ l 

b_m-i 

xx_cbind(xx, dx[a:b]) 

) 

y _lstit(xx, dxO) 

dy _ ls.diag(y) 

res_y$residuals 

tss_sum((dx0-mean(dx0))"2) 

rss. u_sum(res"2) 

r2 _(tss-rss. u)/tss 

tva( ues _y$coefldy$std. err 

table_rbind(y$coef, t(tvalues)) 

xx_cbind(rep(l ,nn), xx) 

w _solve(t(xx)%•%xx) 

A_matrix(O, nr ow ~2 , ncol ~ p + 3) 

A[l,2]_1 

A[2,3]_1 

bhat_y$coef 

f_t(A%*%bhat)%*%solve(A%*%w%*%t(A))% 

•%(A%•%bhat) 

fs tat_(nn-p-3 )• f/(2 •rss.u) 

Qstat_ Q.stat(res) 

von.neumann_neumann(res) 

return(table, fstat , r2 , Qstat, von. neumann, res)) 

UN IT ROOT TESTING BY BOOTSTRAPPING 

RES IDUALS FROM RREG ESTIMATION OF 

THE ADF EQUATION 

rreg.strap<-function{x, p, s){ 

n_length(x) 

dx_diff(x) 



a_p+ l 

b_n-1 

xl _x[a:b] 

nn_ n-(p+ l ) 

y _uroot.rreg(x,p) 

time_c(l :nn) 

rres _y$rres 

res_y$res 

res.standardized _(res-mean( res) )/sqrt( var( res)) 

rbetas _ matrix(O, ncol=p+ 3, nrow=s) 

rstd.dev _ matrix(O, ncol=p+ 3, nrow=s) 

rtau_rep(O, s) 

rzeta_rep(O, s) 

lx_rep(O, nn+2) 

ndx_ rep(O, nn+l) 

lx[l]_x(l] 

ndx[l]_dx[l] 

lx[2]_1x[ I ]+ndx[ I] 

forU in I :s){ 

nres _sample(res.standardized, nn, 

replace= TRUE) 

q_nn+ I 

for(i in 2:q){ 

ndx[i]_y$rtable[ I ,]o/o'o/ot(c(l , i-1 ,lx[i] ,ndx[i-1])) 

+nres[i-1] 

lx[i+ I ]_lx[i]+ndx[i] 

} 

beta.hat_y$rtab le[ I,] 

rz_rreg.beta(lx, p, beta.hat) 

rbetas[j,]_rz$betas 

rstd.dev[j,]_rz$std.dev 

rtau[j]_rz$tvalue 

rzeta[j]_rz$fstat 

} 

weights _y$weights 

rtable _y$rtable 

rr2_y$rr2 

Qrstat_y$Qrstat 

rfstat_y$rfstat 

rvon.neumann _y$rvon.neumann 

retum(rbetas, rstd.dev, rtau, rzeta, rtable , rr2, 

Qrstat, 

rfstat, weights, rvon.neumann, rres , res) 

} 

RREG ESTIMATION OF ADF EQUATION 

uroot.rreg<-function(x, p){ 

n_ length(x) 

a_p+ l 

b_n-1 

xl _x [a:b] 

nn_n-(p+ l) 

time_c(l :nn) 

xx_cbind(ti me, xI) 

dx_diff(x) 

m_ length(dx) 

dxO_dx[a:m] 

for(i in I :p){ 

a_p-i+ l 

b_m-i 

xx_cbind(xx, dx[a:b]) 

} 

ry_rreg(xx, dxO) 

weights_sqrt(ry$w) 

res_ ry$residuals 

rres_ weights*res 
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rtss _sum( ( dxO' weights-mean( dxO' weights) )A2) 

rrss.u_sum(rresA2) 

rr2 _(rtss-rrss.u)/rtss 

rs2 _ sum(rresA2)/(nn-p-3) 

v _ diag(weights) 

xx_cbind(rep( I ,nn), xx) 

w _solve(t(xx)%*%v%*%xx) 

rcovar_rs2*w 

rvar _ diag(rcovar) 

rtvalues _ ry$coef/sqrt(rvar) 

rtable_ rbind(ry$coef, rtvalues) 

Qrstat_ Q.stat(rres) 

rvon .neumann_ neumann( rres) 

A_matrix(O, nrow=2, ncol=p+3) 

A(1,2]_1 

A[2,3]_1 

bhat_ ry$coef 

rf_t(A%*%bhat)%*%solve{A%*%w%*%t(A)) 

%*%(A %*%bhat) 

rfstat_(nn-p-3)'rf/(2*rrss.u) 

retum(rtable, rfstat, rr2 , Qrstat, rvon.neumann, 

weights, rres, res) 

} 

DISTRJBUTION OF TAU BY 

BOOTSTRAPPING RESIDUALS FROM A TS 

PROCESS 

ts.boot<-function( x,p,s) { 

n_ length(x) 

a_p+ l 

xO_x[a:n] 

nn_n-p 

xx_c(l :on) 

for(i in I :p){ 



a _p-i + ! 

b_n-i 

xx_cbind(xx, x[a:b]) 

} 

y_lsfit(xx, xO) 

dy _ ls.diag(y) 

res_y$residuals 

tss _ sum((xO-mean(xO)Y2) 

rss_sum(res"2) 

r2 _ ( tss-rss )/tss 

tvalues _y$coef/dy$std.err 

table _rbind(y$coef, t(tvalues)) 

Qstat_ Q.stat(res) 

von.neumann _neumann( res) 

res.standardized _(res-mean( res) )/sqrt( var( res)) 

tau_rep(O, s) 

zeta_rep(O, s) 

nx_rep(O, nn+2) 

nx[ l ]_x[l] 

nx[2]_x[2] 

forU in I :s){ 

nres_sample(res.standardized, nn, 

replace ~ TRUE) 

q_nn+2 

for(i in 3:q){ 

nx[i]_table[ I ,]%*%c( I ,i-2,nx[i- l ],nx[i-2])+nres[ 

i-2] 

} 

z_ uroot.ols .aux(nx, I) 

tauU]_ z$tvalue 

zetaU]_ z$fstat 

} 

return( tau,zeta, table,r2 , Qstat, von.neumann ,res) 

} 
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APPENDIX B 

ML ESTIMATION OF A GAUSSIAN 

COINTEGRATED VAR(p) PROCESS 

koint<-function(x, p, r){ 

dx_diff(x) 

n_nrow(dx) 

m_ncol(x) 

a_p 

b_n 

yt_dx[a:b,] 

a_ l 

b_nrow(x)-p 

ypt_ x[ a: b,] 

nr_n-p+ I 

nc_m*(p-1) 

zl_matrix(O, nrow=nr, ncol=nc) 

for(i in I: p-I){ 

forU in I :m){ 

a _p-i 

b_n-i 

k_i*m-(m-j) 

z l[ ,k]_dx[j][a:b] 

J 
J 
zt_cbind( I ,z l) 

z_t(zt) # RHS variables 

y _t(yt) # LHS variables 

yp_t(ypt) 

w _solve(z%*%t(z)) 

hat_diag(ncol(z))-t(z)%*%w%*%z 

ro_y%*%hat 

rl _yp%*%hat 

n_nrow(x)-p 

soo_(ro%*%t(ro))/n 

s ll _(rl%*%t(rl))/n 

s lo_(rl%*%t(ro))/n 

sol _(ro%*%t(rl))/n 

chol.s t I_ chol(s II) 

g_t(solve(chol.sll)) 

gsg_g%*%s I o%*%solve(soo )%*%so I %*%t(g) 

eigen.gsg_ eigen(gsg) 

coint.vec_matrix(O, ncol=r, nrow=m) 

for(i in I :r){ 

coint. vec[,i]_ eigen.gsg$vectors[,i] 

J 
eigen_l-eigen.gsg$values 

log.eigen _t( log( eigen)) 

max.eigen. test_matrix(O, nrow= I, ncol=m) 

trace.test_ matrix(O, nrow= I, ncol=m) 

for(i in l:m){ 

max.eigen.test[i]_ -n 'log.eigen(i] 

le_O 

forU in i:m){ 

le _ le+log.eigenUJ 

J 
trace.test[i]_-n *le 

J 
Chat_t(coint.vec)%*%g 

Hhat_-so I %*%t(Chat)%*%solve(Chat%*%s II 

%*%t(Chat)) 

Dhat_(y+Hhat%*%Chat%*%yp)%*%t(z)%*%w 

U _y-Dhat%*%z+Hhat%*%Chat%*%yp 
Uhat_(U%*%t(U))/n 

AO_Dhat[,l] 

mm_m+l 

A l_diag(m)+Dhat[,2:mm] 

A2_-Hhat%*%Chat-Dhat[,2:mm] 

d l_(z%*%t(z))/n 

d2_(z%*%t(yp)%*%t(Chat))/n 

d3 _(Chat%*%yp%*%t(z))/n 

d4_(Chat%*%yp%*%t(yp)%*%t(Chat))/n 

Mhat2_rbind(cbind(dl , d2), cbind(d3, d4)) 

nn_m•p-m+ l 

h l_diag(nn) 

h4_ t(Chat) 

h2 _ matrix(O, nrow=nrow(h I), ncol=ncol(h4)) 

h3 _matrix(O, nrow=nrow(h4), ncol=ncol(h I)) 

left_ rbind(cbind(h I, h2), cbind(h3, h4)) 

ql _hl 

q4_Chat 

q2_matrix(O, nrow=nrow(q I), ncol=ncol(q4)) 

q3 _ matrix(O, nrow=nrow(q4 ), ncol=ncol( q I)) 

right_rbind(cbind(ql , q2) , cbind(q3, q4)) 

lio_ left''lo*%solve(Mhat2)%*%right 

Co l_kronecker(l io,Uhat) 

std.err 1_ sqrt( diag(Co I ))/sqrt(n) 

std .errl _matrix(std.errl , nrow=m, ncol=m*p+ l) 

l_diag(m) 

W _ rb ind( cbind(I,-I),cb ind (matrix(O,nrow~m,nco 

l=m),I)) 

a_m+ l 

b_m*(m*p+ l) 

Coi_Col[a:b,a:b] 



Co2 _(kronecker(t( W), I))%*%Co I %*%(kroneck 

er( W,I)) 

std.err2 _sqrt( diag(Co2))/sqrt(n) 

std.err2 _ matrix(std .err2, nrow=m, ncol=m*p) 

retum(y, yp, coint. vee, g, s I I, Chat, Hhat. Dhat, 

Uhat, U, max.eigen .test, trace. test, 

Col , z, ro, rl , std.err l , std.err2, AO, AI , A2) 

} 

CRITICAL VALUES FOR THE TRACE TEST 

AND MAXIMUM EIGENVALUE TEST BY 

BOOTSTRAPPING RESIDUALS FROM AN 

ESTIMATED ECM AND FOLLOWING 

JOHANSEN'S ASYMPTOTIC PROCEDURE. 

johansen. bootstrap<-function(b) { 

s_73 

ss_s+ l 

trace_matrix(O, nrow ~ b , ncol ~5 ) 

max_ matrix(O, nrow ~ b , nc o l~ 5) 

y_dkoint(mus,2,5) 

res__y$U 

x _ matrix(re s,nrow ~ 365, nco!~ I) 

x_(x[, 1]-mean(x[, I ]))/sqrt(var(x[, I])) 

# DIMENSION I 

zl _rep(O,ss) 

forO in I :b){ 

a I _sample(x, s, replace ~ T) 

saz_O 

szz_O 

dyn.Ioad("boot I .o") 

storage.mode(saz)_"single" 

storage.mode(szz)_"single" 

tr _. F ortran("boot I", 

as.single(a I ),as.integer(s),as.single(z I), 

as. integer( ss ),saz~saz,sZFszz) 

saz_tr$saz 

szz_tr$szz 

A_(saz)%*%solve(szz)%*%t(saz) 

trace[j , I ]_sum(diag(A)) 

B_eigen(A) 

max[j , I L max(B$values) 

} 

# DIMENSION 2 

z I _rep(O,ss) 

z2_rep(O,ss) 

forO in l :b){ 

al _sample(x, s, replace ~ T) 

a2_sample(x, s, replace ~ T) 

saz _ matrix(O, nr ow~2, ncol ~2) 

szz_matrix(O, nrow ~ 2 , ncol ~ 2) 

dyn. load( "boot2.o") 

storage.mode(saz)_"si ngle" 

storage.mode(szz)_"single" 

tr_. Fortran("boot2 ", 

as.single(a I ),as.single(a2),as. integer(s ), 

as.single(z I ),as.s ingle(z2),as. integer(ss ), 

saz=saz,szz=szz) 

saz_tr$saz 
szz_tr$szz 

A_(saz)%*%solve(szz)%*%t(saz) 

trace[j,2]_sum(diag(A)) 

B_eigen(A) 

max[j,2]_ max(B$values) 

} 

# DIMENSION 3 

z I _rep(O,ss) 

z2_rep(O,ss) 

z3 _rep(O,ss) 

forO in I :b){ 

al _sample(x, s, replace ~ T) 

a2_sample(x, s, replace ~ T) 

a3_sample(x, s, replace ~ T) 

saz_matrix(O, nrow ~ 3, ncol ~ 3) 

szz_matrix(O, nrow ~ 3 , nco1 ~3 ) 

dyn.Ioad("boot3 .o") 

storage.mode(saz)_"single" 

storage.mode(szz)_"single" 

tr _. Fortran("boot3 ", 

as.single(a I ),as.single(a2),as.s ingle(a3 ), 
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as. integer( s ),as.single( z I ),as. single( z2 ), 

as.single(z3),as.integer(ss) ,s a z=s az,szz ~szz ) 

saz_tr$saz 
szz_tr$szz 

A_(saz)%*%solve(szz)%*%t(saz) 

trace[j ,3]_sum(diag(A)) 

B_eigen(A) 

max[j,3]_max(B$values) 

} 
# DIMENSION 4 

z l_rep(O,ss) 
z2_rep(O,ss) 

z3 _rep(O,ss) 

z4_rep(O,ss) 

forO in I :b){ 

al _sample(x, s, replace ~ T) 

a2_sarnple(x, s, replace ~ T) 

a3 _sample(x, s, replace ~ T) 

a4_sample(x, s, replace ~ T) 

saz_matrix(O, nrow ~ 4 , ncol ~ 4) 

szz_matrix(O, nrow ~4, ncol ~ 4) 



dyn.load("boot4.o") 

storage.mode(saz)_"single" 

storage.mode(szz)_"single" 

tr ~ · F ortran("boot4 ", 

as.s ingle(a I ),as.s ingle(a2),as.single(a3 ), 

as.single(a4 ),as.integer(s),as.single(z I), 

as.single( z2 ),as. single( z3 ),as.s i ngle( z4 ), 

as. integer( ss ),saz=saz,szz=szz) 

saz_trSsaz 
szz_tr$szz 

A ~ <saz)%* %s olve(szz)%*%t(saz) 

trace[j ,4 ]_sum( diag(A)) 

B ~ eigen(A) 

max[j ,4]_ max(B$values) 

} 

# DIMENSION 5 

z l ~ rep(O,ss) 

z2 ~ rep(O ,ss) 

z3 ~ rep(O , ss) 

z4 ~ rep(O , ss) 

z5 ~ rep(O ,ss) 

for(j in I :b){ 

a l ~ samp le( x, s, replace=T) 

a2~samp le (x, s, replace=T) 

a3 ~ samp l e(x , s, replace=T) 

a4 ~ sample(x , s, replace=T) 

a5 ~ sample(x , s, replace=T) 

saz ~ matrix(O , nrow=5, ncol=5) 

szz~ matrix(O , nrow=5, ncol=5) 

dyn.load("boot5.o") 

storage.mode(saz) ~ "single" 

sto rage .mode(szz) ~ "single" 

tr ~. Fortran("boot5" , 

as.s ingle(a l ),as.single(a2),as.single(a3), 

as.single( a4 ),as.single( a5),as. integer( s ), 

as.single(z I ),as.single(z2),as.single(z3 ), 

as. single( z4 ),as.single( z5),as. integer( ss ), 

saz=saz,szz=szz) 
saz_tr$saz 
szz_tr$szz 

A ~ (saz)%*%solve(szz)%*%t(saz) 

trace[j,5]_ sum( diag(A)) 

B ~ eige n (A) 

max[j,5]_ max(B$values) 

} 

return( trace, max) 

} 
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FORTRAN SUBROUTINES BOOT2 TO 

BOOTS FOLLOW THE SAME STRUCTURE 

OF SUBROUTINE BOOT!. 

subroutine boot I (a I .s,z l ,ss,saz,szz) 

integer s,ss,i,j ,k,n 

rea l al(s),zl (ss),sa I zl ,saz,szz,w I 

do i = l ,s 

z l(i+ l) = zl(i)+al(i) 

end do 

wl = zl(l) 

do k = 2,s 

w l = wl + zl(k) 

end do 

don = l,s 

zl(n) = zl(n)- wl /s 

end do 

salz l = al(l)*zl(l) 

szll = zl(l)*zl(l) 

do j = 2,s 

sa lzl = salzl + al(j)*z l(j) 

szll = sz ll + zl(j)*zl(j) 

end do 

saz=sa lzl 

szz=szll 

end 

BOOTSTRAPING A COINTEGRATED 

VAR(p) PROCESS 

koint.strap<-function(x, p, r, s){ 

islm ~ koint(x, p, r) 

AO_is lm$AO[, I] 

Al _islm$Al 

A2_islm$A2 

U_islm$U 

Chatl_matrix(O, nrow=s, ncol=5) 

Hhatl _matrix(O, nrow=s, ncol=5) 

Dhatl _matrix(O, nrow=s, ncol=6) 

Dhat2_matrix(O, nrow=s, ncol=6) 

Dhat3_matrix(O, nrow=s, ncol=6) 

Dhat4_matrix(O, nrow=s, ncol=6) 

Dhat5 _ matrix(O, nrow=s, ncol=6) 

sel_matrix(O, nrow=s, ncol= IO) 

se2_matrix(O, nrow=s, ncol= IO) 

se3 _ matrix(O, nrow=s, nco!= I 0) 

se4 _ matrix(O, nrow=s, nco!= I 0) 

se5_matrix(O, nrow=s, nco l= IO) 

sep I_ matrix(O, nrow=s, nco!= I I) 

sep2_matrix(O, nrow=s, nco!= II) 

sep3 _ matrix(O, nrow=s, nco!= I I) 



sep4_matrix(O, nrow=s, ncol= l l) 

sep5 _ matrix(O, nrow=s, nco != I I) 

x l_ rep(O, nrow(x)) 

x2 _ rep(O, nrow(x)) 

x3 _rep(O, nrow(x)) 

x4_rep(O, nrow(x)) 

xS _rep(O, nrow(x)) 

x i [l]_x[l,l] 

x I [2]_ x I [ 1]+0 .0 I 

x2[1 ]_x[ 1,2] 

x2[2]_ x2 [ 1]+0.0 I 

x3 [1]_x[ 1,3] 

x3 [2]_ x3[ 1]+0 .0 I 

x4 [1]_x[1 ,4] 

x4 [2]_ x4[ 1]+0.0 I 

x5 [ I]_ x[ I ,5] 

x5 [2]_x5 [ 1]+0 .0 I 

for(i in I :s){ 

res l_sample(U[ I ,], length(U [ I,]), replace=T) 

res2_sample(U[2,], length(U[2,]), replace=T) 

res3_sample(U[3 ,], length(U[3 ,]), replace=T) 

res4_sample(U[4,], length(U[4,]), replace=T) 

res5 _sam ple(U[5,], length(U[5,]), replace=T) 

nres l_(res 1-mean(res I ))/sqrt(var(res I)) 

n res2 _ ( res2 -mean( res2) )/sqrt( var( res2)) 

nres3 _(res3-mean(res3 ))/sqrt(var(res3)) 

nres4 _ ( res4-mean(res4) )isqrt( var( res4)) 

nres5 _(res5-mean(res5))/sqrt(var(res5)) 

dyn. load("loop.o") 

nrowx_nrow(x) 

nrowa _ length(AO) 

ncolal_ncoi(A I) 

ncola2 _ncoi(A2) 

lresl _ length(res I) 

lres2 _ length(res2) 

lres3 _ length(res3) 

lres4 _length(res4) 

lres5 _length(res5) 

storage.mode(x I )_"single" 

storage.mode(x2)_"single" 

storage.mode(x3 )_"single" 

storage.mode(x4)_"single" 

storage.mode(x5)_"single" 

zfort_ .Fortran("loop", 

x I =x I ,x2=x2,x3 =x3,x4=x4,x5=x5, 

as. integer( n rowx ),as.s ingle( A 0), 

as.s ing le(A I ),as.s ing le(A2), 

as. integer(nrowa),as. integer(ncola I), 

as. integer(ncola2),as.s ingle(nres I), 

as.sing le( nres2),as.s ingle( nres3 ), 

as . s ingle( nres4 ).as.s i ngl e( nres5 ), 

as . integer( ires I ),as. integer( lres2), 

as . i nteger(lres3 ),as. in Ieger( lres4 ), 

as. integer(lres5)) 

x l_zfort$x I 

x2_zfort$x2 

x3_zfort$x3 

x4_zfort$x4 

x5_zfort$x5 

x_cbind(x I ,x2 ,x3,x4,x5) 

dx_diff(x) 

n_nrow(dx) 

m_ncol(x) 

a_p 

b_n 

yt_dx[a:b,] 

a_ l 

b_nrow(x)-p 

ypt_x[a:b,] 

nr_n-p+ l 

nc_m* (p-1 ) 

z l_matrix(O, nrow=nr, nco l=nc) 

for(i in I :p-I){ 

forU in I :m){ 

a _p-i 

b_n-i 

k_ i*m-(m-j) 

z l [,k]_dx[j][a:b] 

} 

} 

zt _ cbind(l ,z I) 

z_t(zt) 

y_t(yt) 

yp_t(ypt) 

w _solve(z%*%t(z)) 

hat_diag(ncol(z))-t(z)%*%w%*%z 

ro_y%*%hat 

rl_yp%*%hat 

n_nrow(x)-p 

soo_(ro%*%t(ro))/n 

s ll _(rl%*%t(rl))/n 

s lo_(rl%*%t(ro))/n 

so l_(ro%*%t(rl))/n 

cho l.s ll _chol(sll) 

g_t(so lve(chol.sll)) 

Ill 

gsg_g%*%s I o%*%solve(soo )%*%so 1 %*%t(g) 

eigen.gsg_ eigen(gsg) 

coint.vec_matrix(O, ncol=r, nrow=m) 

for(i in l :r){ 

co int. vec[,i]_ eigen.gsg$vectors[,i] 



Chat_t(coint.vec)%*%g 

Hhat_·so I %*%t(Chat)%*%solve(Chat%*%s II 

%*%t(Chat)) 

Dhat_(y+Hhat%*%Chat%*%yp)%*%t(z)%*%w 

U _y-Dhat%*%z+Hhat%*%Chat%*%yp 

Uhat_(U%*%t(U))/n 

dl _(z%*%t(z))/n 

d2_(z%*%t(yp)%*%t(Chat))/n 

d3 _(Chat%*%yp%*%t(z))/n 

d4_(Chat%*%yp%*%t(yp)%*%t(Chat))/n 

Mhat2 _rbind( cbind( d I ,d2), cbind( d3 ,d4)) 

nn_m*p-m+ l 

hl _diag(nn) 

h4_t(Chat) 

h2_matrix(O, nrow=nrow(hl), ncol=ncol(h4)) 

h3 _matrix(O, nrow=nrow(h4) , ncol=ncol(h I)) 

left _rbind(cbind(h l ,h2), cbind(h3 ,h4)) 

ql _hl 

q4_Chat 

q2 _ matrix(O, nrow=nrow( q I), ncol=ncol( q4)) 

q3_matrix(O, nrow=nrow(q4), ncol=ncol(q I)) 

right_rbind(cbind(q I ,q2), cbind(q3 ,q4)) 

lio_left%* %solve(Mhat2)%*%right 

Co I_ kronecker(lio,Uhat) 

std .errl _sqrt(d iag(Co I ))/sqrt(n) 

std.errl _matrix(std.errl , nrow=m, ncol=m*p+ l) 

l_diag(m) 

W _rbind(cbind(l ,-l) ,cbind(matrix(O,nrow=m,nco 

l=m),l)) 

a_m+ l 

b_m*(m*p+ l) 

Col _Col[a:b,a:b] 

Co2 _(kronecker(t(W),I))%*%Co I %*%(kroneck 

er(W,I)) 

std. err2 _ sqrt( diag( Co2) )/sqrt( n) 

std.err2_matrix(std.err2, nrow=m, ncol=m*p) 

Chat I [i ,]_ Chat[ I,] 

Hhat l [i ,]_Hhat[, I] 

Dhat I [i ,]_ Dhat[ I,] 

Dhat2[i,]_Dhat[2,] 

Dhat3 [i ,]_ Dhat[3 ,] 

Dhat4[i,]_ Dhat[4,] 

Dhat5[i,]_Dhat[5,] 

sep I [i ,]_std.errl [I ,] 

sep2[i,]_std .errl [2,] 

sep3[i ,]_std.errl [3 ,] 

sep4[i ,]_std.errl [4,] 

sep5 [i ,]_std.errl [5,] 

se I [i ,]_std .err2[ I,] 

se2 [i ,]_ std .err2[2,] 

se3 [i ,]_std err2 [3,] 

se4[ i,]_std.err2[ 4,] 

se5 [ i,]_ std.err2[5,] 

} 

return( Chat I, Hhat I, 

Dhat I. Dhat2, Dhat3, Dhat4 , Dhat5 , 

se I, se2, se3, se4, se5, 

sepl , sep2, sep3. sep4, sep5) 

SUBROUTINE LOOP 

11 2 

subroutine loop(x I ,x2,x3 ,x4,x5 ,nrowx , 

+ AO,A I ,A2,nrowa,nco la I ,ncola2,nres I, 

+ nres I ,nres2 ,nres3 ,nres4,nres5,lres I , 

+ lres2,1res3,1res4,1res5) 

integer nrowx,nrowa,ncola I ,ncola2, 

+ Ires I ,lres2,1res3 ,1res4,1res5 j ,k 

real AO(nrowa),A I (nrowa,ncola I), 

+ A2(nrowa,ncola2),nres I (Ires I) , 

+ nres2(1res2) ,nres3(1res3 ),nres4(1res4 ), 

+ nres5(1res5),x I (nrowx),x2(nrowx), 

+ x3(nrowx),x4(nrowx),x5(nrowx), 

+ tempi(IO),temp2(10) 

do j = 3,nrowx 

tempi(!) = x lU-1) 

templ(2) = x2U-1) 

temp I (3) = x3U-1) 

templ(4) =x4U-1 ) 

temp I (5) = x5U- 1) 

temp2(1) = xlU-2) 

temp2(2) = x2U-2) 

temp2(3) = x3U-2) 

temp2( 4) = x4U-2) 

temp2(5) = x5U-2) 

x lU) = AO(I) + nres lU-2) 

x2U) = A0(2) + nres2U-2) 

x3UJ = A0(3) + nres3U-2) 

x4U) = A0(4) + nres4U-2) 

xSU) = A0(5) + nres5U-2) 

do k = 1,5 

x IU) = x IU) + A 1(1 ,k)*templ(k) + 

A2(1 ,k)*temp2(k) 

x2U) = x2U) + A I (2,k)* temp I (k) + 

A2(2,k)*temp2(k) 

x3UJ = x3U) + A I (3 ,k)*temp I (k) + 

A2(3 ,k)*temp2(k) 

x4U) = x4U) + A 1(4,k)*templ(k) + 

A2(4,k)*temp2(k) 

x5U) = x5U) + A I (5,k)*temp I (k) + 



A2(5 ,k)*temp2(k) 

end do 

end do 

end 
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APPENDIX C 

Table C1 . Significance of HC u on the GOP Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

HC II= O 3.533 1.798 2.137 2.476 2.911 0.880 0.457 

HC 12 = 0 3.533 1.799 2.106 2.459 2.945 0.873 0.440 

HC 13 = 0 3.533 1.781 2.100 2.473 2.872 0.861 0.429 

HC,,= O 3.533 1.757 2.086 2.453 2.885 0.861 0.429 

HC 15 = 0 3.533 1.770 2.060 2.474 2.877 0.862 0.427 

Table C2. Significance ofHC21 on the Money Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

HC 21 = 0 0.908 1.816 2. 152 2.482 2.905 0.891 0.444 

HC22 = 0 0.908 1.818 2.163 2.486 2.853 0.895 0.444 

HC23 = 0 0.908 1.820 2.134 2.450 2.869 0.888 0.442 

HC2, = 0 0.908 1.809 2.143 2.459 2.877 0.888 0.443 

HC25 = 0 0.908 1.808 2. 149 2.492 2.862 0.889 0.441 
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Table C3. Significance of HC 31 on the Inflation Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

HC31 = 0 3.414 1.916 2.326 2.651 3.049 0.925 0.523 

HC32 = 0 3.414 1.888 2.245 2.644 2.960 0.913 0.499 

HCJJ = 0 3.414 1.855 2.222 2.520 2.829 0.890 0.474 

HC34 = 0 3.414 1.854 2.197 2.509 2.876 0.885 0.469 

HC35 = 0 3.414 1.834 2.180 2.498 2.781 0.876 0.458 

Table C4. Significance ofHC41 on the Interest Rate Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

HC41 = 0 3.516 1.870 2.249 2.542 2.956 0.912 0.474 

HC,2 = 0 3.516 1.853 2.223 2.518 2.995 0.911 0.468 

HC43 = 0 3.516 1.806 2.195 2.528 2.853 0.893 0.449 

He .. = o 3.516 1.802 2.203 2.490 2.861 0.891 0.446 

HC45 = 0 3.516 1.815 2.213 2.491 2.887 0.896 0.449 

Table C5 . Significance ofHC51 on the Budget Deficit Equation 

Critical values 

Ho !-value 90% 95% 97.5% 99% mean var 

HC 51 = 0 3.952 10.968 14.252 18.944 26.792 5.314 33.569 

HC52 = 0 3.952 10.696 13.670 17.537 25.432 5.116 29.530 

HC53 = 0 3.952 3.908 4.744 5.534 6.835 1.871 2.308 

HC54 = 0 3.952 3.775 4.697 5.418 6.770 1.747 2.210 

HC55 = 0 3.952 4.918 6.168 7.591 8.934 2.375 4.600 
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APPENDIX D 

Table Dl. Significance of8u on the GOP Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

8 11= 0 !.968 1.788 2.103 2.427 2.647 0.857 0.418 

8 12 = 0 1.329 1.727 2.042 2.375 2.784 0.838 0.408 

8 13 = 0 !.968 !.698 2.016 2.293 2.712 0.835 0.394 

814=0 2.538 !.789 2.113 2.469 2.823 0.863 0.434 

8 15 = 0 0.037 1.711 2.083 2.358 2.825 0.842 0.411 

Table 02. Significance of821 on the Money Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

8 21 =0 1.371 1.774 2.078 2.412 2.932 0.848 0.469 

B, = 0 0.104 !.777 2.081 2.365 2.722 0.847 0.415 

B23 = 0 0.269 1.719 2.097 2.386 2.775 0.840 0.406 

8 24 = 0 0.437 !.757 2.093 2.451 2.858 0.853 0.428 

8 25 = 0 1.786 !.745 2.166 2.506 2.775 0.859 0.419 
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Table D3. Significance of B31 on the Inflation Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

B31 = 0 0.382 1.724 2.107 2.378 2.726 0.849 0.401 

B32 = 0 1.010 1.796 2.162 2.436 2.779 0.861 0.436 

B33 = 0 4.983 1.696 2.072 2.407 2.731 0.823 0.397 

B3, = 0 0.451 1.741 2.084 2.434 2.79 1 0.826 0.422 

B35 = 0 2.322 1.762 2.095 2.453 2.751 0.848 0.4 19 

Table D4. Significance of B41 on the Interest Rate Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

B41 = 0 1.357 1.695 2.102 2.422 2.725 0.832 0.4 14 

B42 = 0 0.189 1.752 2.079 2.360 2.772 0.860 0.415 

B43 = 0 1.060 1.717 2.051 2.323 2.624 0.832 0.401 

B44 = 0 0.415 1.689 2.011 2.366 2.748 0.839 0.398 

B45 = 0 3.434 1.723 2.063 2.368 2.792 0.845 0.4 14 

Table D5. Significance of B51 on the Budget Deficit Equation 

Critical values 

Ho !-value 90% 95% 97.5% 99% mean var 

B51 = 0 1.047 2.092 2.489 2.906 3.289 0.978 0.594 

B52 = 0 0.384 2.019 2.397 2.787 3.193 0.972 0.552 

B53 = 0 2.099 2. 196 2.695 2.005 3.612 1.059 0.688 

B54 = 0 1.912 1.870 2.259 2.736 3.1 25 0.912 0.5 10 

B55 = 0 0.384 1.955 2.352 2.764 3.200 0.946 0.537 
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APPENDIX E 

Table El. Significance of HCu on the Dollarization Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

HC II= 0 5.646 2.559 3.098 3.492 4.123 1.264 1.041 

HC 12 = 0 1.356 2.103 2.543 2.991 3.512 1.028 0.641 

HC 13 = 0 3.845 2.504 2.927 3.290 3.857 1.2 11 0.842 

HC 14 = 0 2.652 2.248 2.617 2.985 3.548 1.078 0.708 

HC,= O 0.121 2.121 2.589 2.945 3.184 1.001 0.60 1 

Table E2. Signi ficance ofHC, on the Inflation Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

HC 21 = 0 0.025 2.305 2.997 3.462 4.259 1.1 74 0.9 18 

HC22 = 0 4.556 2.215 2.642 2.99 1 3.616 1.062 0.685 

HC23 = 0 3. 198 2.3 15 2.732 3. 154 3.686 1. 162 0.789 

HC,., = O 3.005 2.022 2.375 2.840 3. 145 0.976 0.565 

HC, = 0 1.893 1.846 2. 186 2.456 2.830 0.873 0.447 
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Table E3. Significance ofHC3, on the Dollar Deposits Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

HC3,= 0 0.617 2.128 2.539 2.911 3.419 1.044 0.605 

HC32 = 0 1.023 2.003 2.368 2.789 3.118 0.911 0.520 

HC33 = 0 1.139 1.953 2.326 2.879 3.352 0.989 0.559 

HC34 = 0 0.560 2.133 2.486 2.830 3.323 1.012 0.605 

HC35 =0 0.002 1.964 2.337 2.609 2.909 0.939 0.499 

Table E4. Significance ofHC,, on the Boliviano Deposits Equation 

Critical values 

Ho !-value 90% 95% 97.5% 99% mean var 

HC41 =0 0.939 2.088 2.461 2.298 3.452 1.019 0.671 

HC,2 = 0 3. 128 1.948 2.362 2.810 3.201 0.963 0.562 

HC43 = 0 3.641 2.223 2.735 2.183 3.581 1.080 0.733 

HC44 = 0 3.942 2.054 2.472 2.735 3.017 0.970 0.559 

HC45 = 0 2.177 1.894 2.248 2.580 3.079 0.920 0.513 

Table E5. Significance ofHC51 on the Depreciation Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

HC51 =0 1.754 2.018 2.404 2.754 3.383 0.979 0.582 

HC52 =0 2.628 1.942 2.443 2.784 3.245 0.950 0.561 

HC53 = 0 0.543 2.063 2.498 2.824 3.312 0.992 0.586 

HC54 = 0 0.899 2.077 2.460 2.803 3.430 1.015 0.600 

HC55 = 0 6.419 2.122 2.480 2.881 3.2 13 1.020 0.611 
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APPENDIX F 

Table Fl. Significance of 8 11 on the Dollarization Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

8 11= 0 2.384 2.214 2.564 2.862 3. 158 1.008 0.612 

8 12 = 0 0.019 1.881 2.353 2.643 3.023 0.949 0.509 

8 13= 0 1.608 2.065 2.497 2.755 3.058 1.014 0.572 

814 = 0 0.293 1.866 2.242 2.621 3.016 0.919 0.497 

8 15 = 0 2.526 1.929 2.297 2.591 3.051 0.940 0.509 

Table F2. Significance of 8 21 on the Inflation Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

8 21= 0 0.516 1.843 2.297 2.523 2.770 0.900 0.478 

8 22 = 0 2.710 1.776 2.136 2.428 2.873 0.833 0.445 

8 23 = 0 3.145 1.990 2.387 2.868 2.4 13 0.971 0.596 

8 24 = 0 1.325 1.886 2.187 2.5 14 2.836 0.905 0.461 

8 25 = 0 2.157 1.761 2.088 2.381 2.710 0.862 0.414 
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Table F3 . Significance of B31 on the Dollar Deposits Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

8 31 = 0 0.212 1.785 2. 138 2.503 2.932 0.882 0.448 

8 32 = 0 0.046 1.734 2.180 2.444 2.628 0.875 0.410 

B33 = 0 3.225 1.888 2.286 2.622 2.971 0.942 0.487 

B1, = 0 0.115 1.923 2.3 14 2.722 3.056 0.939 0.511 

8 35 = 0 0.004 1.901 2.230 2.517 3.033 0.897 0.492 

Table F4. Significance ofB41 on the Boliviano deposits Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

B41 = 0 0.520 1.844 2.173 2.551 3.047 0.922 0.494 

B42 = 0 3.411 1.739 2.094 2.366 2.8 13 0.858 0.418 

B43 = 0 0.448 2.005 2.380 2.745 3.137 0.954 0.526 

B44 = 0 3.260 1.914 2.293 2.614 2.798 0.922 0.491 

8 45 = 0 1.245 1.747 2.085 2.461 2.882 0.880 0.427 

Table F5. Significance of B51 on the Depreciation Equation 

Critical values 

Ho t-value 90% 95% 97.5% 99% mean var 

8 51 = 0 0.159 1.948 2.374 2.688 3.137 0.952 0.537 

B52 = 0 1.676 1.780 2.107 2.475 2.938 0.875 0.431 

8 53 = 0 1.677 1.909 2.296 2.708 3.132 0.946 0.503 

B,. = 0 1.220 1.899 2.154 2.500 2.875 0.915 0.470 

B, = 0 0.590 1.883 2.259 2.660 2.949 0.917 0.488 
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