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Abstract

This article presents a general method to solve dynamic models of interactions between multiple
strategic agents that extends the static model studied previously by the authors. It describes a gen-
eral model of several interacting agents, their domination relations as well as a graph encoding their
information pattern. It provides a general resolution algorithm and discusses the dynamics around the
equilibrium.

Our model explains apparent irrational or biased individual behaviors as the result of the actions of
several goal-specific rational agents. Our main example is a three-agent model describing “the conscious”,
“the unconscious”, and “the body”. We show that, when the unconscious strategically dominates, the
equilibrium is unconscious-optimal, but body and conscious-suboptimal. In particular, the unconscious
may drive the conscious towards its goals by blurring physical needs.

Our results allow for a precise account of agents’ time rate preference. Myopic behavior among agents
leads to oscillatory dynamics : each agent, reacting sequentially, adjusts its action to undo other agents’
previous actions. This describes cyclical and apparently inconsistent or irrational behaviors in the dual
agent. This cyclicality is present when agents are forward-looking, but can be dampened depending on
the conscious sensitivity to other agents’ actions.
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Introduction

Irrational actions are usually attributed to an unconscious agent whose actions would, at times, supersede
those of the conscious. Economically, this unconscious activity should be modeled as the action of a single,
permanent and fully rational agent acting alongside the conscious. Yet this obvious path to modeling the
unconscious as an economic agent has systematically been disregarded by the literature, for a single and no
less obvious reason : two rational agents sharing the same information and acting through one individual
should have two perfectly identical actions, boiling down to a single rational action. No irrationality would
emerge from such a setup.

Yet to make sense of the unconscious’ actions, one has to suppose it to be rational. Yet one must also
supposed it to be permanent, in the sense that it should not be possible to “dismiss” it at will. Besides,
unconscious and conscious must have identical information. Consequently, a difference in actions between
these two rational agents can only emerge from different grids of lecture, i.e. from the way they process
information.

The question therefore is not to know whether we should model the unconscious as a permanent and
rational agent, but to infer how its interpretation of the reality can differ from the conscious’ one.

This approach has been developed in [L], who dubbed the combination of these two - conscious and
unconscious - fully economically rational agents, “the dual agent”. In this setup, irrational behaviors do not
arise from the existence of an irrational unconscious, but from the mere fact that two agents, "conscious"
and "unconscious", evaluate events through different grids, though acting through one single body.

True, economic models of inconsistent behaviors have already considered the person as a set of interacting
sub-agents1 . They model dual or multiple selves acting “synchronically” and/or “diachronically” on a similar
set of information to achieve different objectives2 . To Picoeconomics, in particular, this situation is a
bargaining game between several selves3 . In this framework, the role of the unconscious - inasmuch as such
a notion can be attributed to the sub-structures they consider - usually appears as a mere unknown random
modification on the short-term utility. The authors of the present paper believe, on the contrary, that
patterns of behavior display some persistency and must consequently be active at all stages of the decision
and action processes. They see the human psyche as several agents in complex, simultaneous and possibly
strategic interactions.

The notion of dual agent proposed by [L] must specifically be distinguished from the “dual self” considered
by Fudenberg and Levin [FL]. In their setup, long-run and short-run sub-structures model behaviors of self-
control. The long-run self imposes costs on short-run selves and control their behaviors, so that an agent will
successively identify to several selves, each disappearing in turn. Whereas [FL] and Picoeconomics model
unknown mechanisms inducing changes in the agent’s utility, our goal is to describe these very processes,
along with the reason of their incoherence and inconsistency. Only by describing some unconscious rational
behavior can we hope to achieve this.

[GL, GLW], two subsequent papers, formalized and generalized the dual agent approach of [L]. They
model individual behavior as a system of interacting rational structures, or rational agents, embedded in a
network of interactions. External signals activate structures that react by sending signals throughout the
network, in turn activating other structures, and so on4 .
[GL] presented a dynamic model where one agent dominates, and showed that such a model can, depend-

ing on its parameters, present stable or unstable oscillations, as well as periodic cycles. More importantly,
the actions of the dominating agent induce apparent change of objective, or switch in preferences in other
agents. This led us to introduce the notion of effective utility, and propose an alternative interpretation of
the independence of irrelevant alternatives.

However, this model did not take into account more complex situations, such as several competing
dominant agents, or tripartite games, where a structure is used to manipulate another one. In a given
individual, conscious objectives regarding the body may encounter unconscious resistance. In social relations,
one group may manipulate an other group against a third one.

[GLW] designed a general pattern of static and strategic interactions among several agents to model

1See [Ross].
2For example cases of procrastination such as Akerlof ’s [Akerlof].
3 [Ainslie92]. see [Ross] and references therein for an account.
4See [GL] for a precise account.
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such configurations. A graph describing the agents’ strategic relations and their interactions command the
resolution of the model. We used this pattern to solve a three-agents model, respectively a body, a conscious
and an unconscious. These three terms are only generic terms and should be taken as archetype behaviors,
where the unconscious has a strategic advantage over the conscious and the body, and the conscious dominates
the body. We show that, depending on the parameters of the model, the unconscious can twist the conscious’
action via the manipulation of the body’s objectives. It may result in an unstable pattern, such as anorexia
or bulimia, the body’s action being used to deter or reinforce, given the unconscious objective, the task of
the conscious agent.

This static one-period model encompasses, as a particular case, the “long-run self” and “short-run selves”
as well as the “successive-selves” models of Pico-economics [FL]. Successive agents’ actions induce a dynamics
allowing to anticipate long-term patterns such as apparently irrational changes of goals or cyclic behavior.
However no precise study of their dynamic interactions was provided.

The present paper fills this gap by generalizing [GLW] setup in a dynamic framework, replacing static
utilities by intertemporal ones. A one-period delay between one agent’s action and its perception by the
other agents induces the dynamic of the system. As in [GLW], quadratic utilities model agents’ interactions
around an initial perturbed equilibrium. The frame of interactions between agents is described by a graph
whose vertices are the agents and the oriented arrows represent their pairwise relative strategic advantages.

A method of resolution for this general dynamic model with an arbitrary number of agents is presented.
The domination graph gives the order in which each agent’s optimization is performed. The solutions are
power series in the discount rates, and are obtained recursively by means of usual linear algebra techniques.
Contrary to [GLW], since utilities and actions are forward-looking, each agent’s pattern of information is
presented. We assume that each agent knows the domination relations between the structures he strategically
dominates in the graph. It also knows the parameters characterizing the agents’ interactions, but ignores
the influence of the structures he does not dominate.

This pattern of information is both realistic and general enough to describe the dynamic version of [GLW]:
some plans “forecasted” by a first agent, and involving some substructures, may be impaired by the actions
of competing agents, leading to a biased equilibrium from the first agent perspective. If this first agent is
misleadingly identified with the individual as a whole, one can conclude to an irrational behavior, through
a bias, or a change of utility function, as already spotted in [GL] for two agents interacting dynamically.

We then use this resolution method to explicitly solve a dynamic version of our basic archetypal three-
agent model. Despite some differences, the long-run equilibrium is similar to the static solution, and the
interpretations of [GLW] are preserved. The dynamic model allows a full interpretation of the stability and
dynamics of the solution : if the unconscious strategically dominates, the equilibrium will be unconscious-
optimal, but both body- and conscious-suboptimal.

Our result allow for a precise account of agents’ time rate preference. Myopic behaviors among agents
lead to an oscillatory dynamics. Each agent, reacting sequentially, adjusts its present action to other agents’
previous actions to undo their work leading to cyclical and apparently inconsistent or irrational behaviors
in the dual agent.

This cyclicality is present when agents are forward-looking. However, it may be dampened by the
conscious’ sensitivity to other agents’ actions. When it is mild, a stable but conscious-suboptimal equilibrium
may be reached. Otherwise, unstability will appear. A divergent and spiraling behavior reduces the dual
agent’s welfare.

Inconsistent preferences and apparent switches in behaviors can be ascribed to the unknown action of
some strategic structures behind conscious choices. They describe the nature of the structures’ utilities as
well as their interactions, and give a hint about internal sub-structures’ capacity to plan their actions.

The paper is organized in four sections. The first section is a reminder of [GLW] dynamic version of
the three-agent static model. It presents, develops and interprets its results. The second section develops
a general dynamic model of several interacting structures. It provides a resolution method to find the
equilibrium and the fluctuations around it. The third section applies this formalism to section one and gives
a detailed solution of three-agent model. The last section concludes.
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1 A dynamic three-agent model

This section presents a dynamic version of [GLW] the static three agent model. For the sake of clarity, we
will give a detailed reminder of the static model and briefly recall its solutions.

[GLW] described the apparent individual irrational behavior as resulting from the combined actions of
three interacting sub-structures - or agents - within the psyche of that individual.

These three interacting agents typically represent two mental processes - "conscious" and "unconscious",
along with a third - physical - process, the body. This setting may alternately apply to every configuration in
which a global instance may be divided into several goal- and information-specific interacting sub-structures.

Suppose an individual whose conscious wants to perform a specific task. However an other independent
agent, his unconscious, has other goals and hence considers this task as suboptimal. Moreover, a third agent,
the body, has specific needs that have to be satisfied. We assume that the unconscious partly influences
both the body and the conscious by sending signals, such as discomforts or strains.

Consider a student which experiences difficulties in concentrating. Each time he starts studying, he is
suddenly overwhelmed by sleepiness, boredom or compulsions, such as smoking or eating. Being both rested
and fed, these cannot possibly obey objective physical needs.

In our perspective, these bouts of compulsion encapsulate the action of an other, independant agent, the
unconscious, whose priorities and goals differ from those of the conscious, mainly because its interpretation
grid differs from the one of the conscious5 . The conscious actions are read and interpreted by the unconscious
according to a specific and completely different grid. To him, these conscious actions are suboptimal or
potentially dangerous, and he will react accordingly by deterring the conscious actions.

In the case of our student, we can infer that his unconscious perceives learning as being harmful, and
reacts by thwarting the conscious’ action. Ultimately, the individual visible behavior will merely be the
result of the three agents’ interactions, which, in a dynamical perspective, may result in some incoherent
patterns, such as an inconsistency in an agent’s goal.

1.1 Reminder: the static three-agent model

The body, denoted Agent B, or B, is modeled as an automaton whose sole action, n, signals either a physical
need, when n > 0, or a satiety signal, when n < 0.
The conscious, Agent C, or C, can either perform a task w, whose optimum is arbitrarily normalized to

0, or react to Agent B ’s signal by satisfying its need with a second action f (feeding). Both actions being
exclusive and complementary, the agent’s time period will be optimally divided between the two actions,
under the constraint :

w + f = 1

To the unconscious, Agent U, or U, the variable w′s optimum is not zero, but w̃. To reach its goal, the
unconscious will weigh on the conscious’ optimization problem by means of three strains6 . Two of them, sw
and sf , directly affect the conscious’ actions w and f . The third one, sn influences the body by modifying
its need, n. Neither Agent C nor Agent B are aware of Agent U presence, goals, and actions.

The agent utilities The utilities of the body, unconscious and conscious, are denoted UB, UU, UC respec-
tively and set:

UB = −1
2
(n+ f)

2 − αnsn (1)

UU = −1
2

(
ρ
(
f − f̃

)2
+ γ (w − w̃)2 + s2n + s2f + s2w

)

UC = −1
2

(
(w − w0)2 + δn2

)
− νnw − κsf

(
f − f̃

)
− ηsw (w − w̃) .

5See [GL] for more details.
6Actually, this would look like changing the conscious’optimum. See [GL].
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under the constraint: w + f = 1.Utilities are quadratic and normalized so that the terms containing the
square control variables have coefficients of − 1

2 or 0.
7

The utility of the body The body, being an automaton, has no specific goals, and its utility function
UB merely describes its reaction to other agents’ actions

8 . Without any interaction with the unconscious U,
the body would, in first approximation, react linearly to the conscious C action, "feeding" :

−1
2
(n+ f)

2

The unconscious influences the body by perturbating its signal

−αnsn

Whereas in the absence of the unconscious, the body’s optimum would be reached for

n = −f = 0

This result being suboptimal for Agent U, he will tilt the equilibrium toward its own goal f̃ .

Recall that the task performed by the conscious w is not physically demanding, and has no impact on
the body’s response n. Indeed, we do not model physical efforts per se, but rather seek to understand how
the unconscious can manipulate an existing equilibrium between the body and the conscious, i.e. the use of
body signals by the unconscious to reach its own goals. By convention α is positive, so that a positive strain
will respond to a positive feeding.

The utility of the conscious In the absence of both the unconscious and the body, the conscious’
utility would be :

−1
2
(w − w0)2

so that in the absence of any constraint set on w, Agent C would optimally choose w = w0 > 0.

Body needs affect Agent C through

−1
2
δn2 − νnw

so that the higher is the need, the more painful is the task.

In the absence of Agent U, Agent C sets w = 0 by adjusting the feeding to the anticipated need. The
need is in itself painful since:

−1
2
δn2

so we set
δ > 0

The above assumption is a direct consequence of dismissing any cost to the feeding f . Here we depart from
standard models where costs, or constraints, are imposed to an agent’s tasks.Without Agent U, Agent B and

7Note that, in order to use later dynamic models standard notations, we modified some of the notations of [GLW].
8 In this setting, endowing the body with specific goals would have allowed it to manipulate the conscious, which was not

our purpose here.
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f could be discarded from Agent C ’s equilibrium. Once Agent U is included in the system, it indirectly
manipulates Agent C through Agent B by assigning a strategic role to f . However we impose a binding
constraint on the feeding by considering f and w as complementary activities within a given time span, and
set f+w = 1, as previously mentioned. The unconscious imposes its goals f̃ and w̃ on the conscious through
perturbation terms:

−κsf (f − f̃)− ηsw (w − w̃)

driving Agent C ’s actions away from 0 and towards f̃ and w̃.

Some additional technical conditions on UC will prove convenient. We will ensure that UC is negative
definite and has an optimum by setting :

δ − ν2 > 0

Furthermore, excessive working combined with unsatisfied needs should induce a loss in Agent C utility.
This is implemented by imposing:

ν > 0 for n > 0 and w > 0

.

The utility of the unconscious Agents, conscious or unconscious, build their interpretation of a
situation - and thus its utility function - through an own, specific, grid of lecture9 .
Agent U and Agent C will therefore have two completely different interpretations of a single situation. And
while Agent C will consider f and w as optimal, Agent U will consider other levels of the conscious’ activity,
f̃ , w̃ as optimal.
Agent U ’s goals with respect to Agent C ’s activity are:

−1
2
ρ(f − f̃)2 − 1

2
γ(w − w̃)2

To insure that UU can have an optimum, we further impose ρ and γ to be positive.

Since the three agents are sub-structures of one single individual, a strain inflicted by one agent ends up
being painful for all. The costs incurred are :

−1
2

(
s2n + s

2
f + s

2
w

)

Additional constraints To have a realistic model, some additional constraints on the coefficients and
variables are required.

Since Agent U inflicts a pain if his goals are not reached, sf et sw should be assumed positive. How-
ever such a condition does not exist for sn. Agent U has no optimum value for n. For the unconscious, sn
is a mere adjustment variable, and can be alternately a pain or a reward to the body.

To model the pain imposed by the unconscious over the conscious, the terms −κsf (f − f̃) and −ηsw (w − w̃)
should be negative. The equilibrium values of f and w will respectively lie between 0 and f̃ and between 0
and w̃. We therefore impose f̃ and κ (respectively w̃ and η) to have opposite signs.

The hierarchy of strategical advantages. In our setting, some agents are assumed to have a strategical
advantage over others.
Agent U has a strategic advantage over both Agent C and Agent B. It is strategically dominant. Agent C
is strategic only with respect to Agent B, and Agent B has no strategic advantage. The dynamic model will

9See [GL] for further details.
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be solved in the order of this hierarchy of strategical advantages 10 .

We first implement the time binding constraint w + f = 1 for Agent C ’s actions and replace directly
f = 1− w in the utility functions:

UB = −1
2
(n+ 1− w)2−αnsn

UU = −1
2
ρ(1− w − f̃)2−1

2
γ(w − w̃)2−1

2
s2n−

1

2
s2n−

1

2
s2w

UC = −1
2
(w − w0)2 −

1

2
δn2 − νnw − κsf (1− w − f̃)− ηsw(w − w̃)

Recall that Agent U influences Agent C in two competing ways. Directly, through the strains sf and sw,
and indirectly, by triggering a need in Agent B through sn. The relative strengths of the parameters will
determine Agent U ’s preferred channel of action, and lead to different behaviors in the individual.

Hidden and patent manipulation Two types of unconscious manipulation emerge.
In the first, the unconscious does not mask its action. The individual is driven away from w′s conscious
optimum, and physical needs n may consequently be under or over-satisfied, depending on the unconscious’
optimum. However, the individual will be aware of this disequilibrium. If physical needs are under-satisfied,
the situation may not be sustainable in the long run. It will be less so if they are over-satisfied.
In the second type of manipulation, the individual is driven away from the conscious optimum w, but the
unconscious can manipulate physical needs to mask the disequilibrium. The unconscious may, for instance,
sustain phase of hyperactivity by reducing physical needs, so that the individual will not be conscious of the
disequilibrium. This situation may be more sustainable, but may lead to a breakdown in the longer run.

1.2 Dynamic model

Summing weighted expectations of future utilities transforms the above static utilities into intertemporal
ones, and turn this static model into a dynamic one. However, delays between consecutive actions will induce
some adaptations and, more importantly, the information setup needs to be precisely described.

1.2.1 Presentation of the three-agent model.

Given it’s own information set, each agent optimizes a forward-looking intertemporal utility function of the
form:

(Vit) =
∑

m≥0

βmi EiUi(t+m)

where the discount factor βi is Agent i rate of preference for the present, and Ei its expectation operator at
time t. Agent i forecasts of future quantities will be computed given its information set.

The information setup follows the order of domination among agents11 . Agent B, the less informed of
all agents, is only aware of the strains he’s affected by. Agent C is aware of it’s own influence on Agent
B, and of the strains Agent U puts on him. Agent U , the most informed of all agents, knows the utilities
function of both Agent C and Agent B.
The instantaneous utility Ui(t +m) at time t +m reproduces the static utility of section 1, but introduces
a time dependency in each action variable. We moreover assume that each action taken at time t by any

10For a complete resolution of the model and the discussion of its solutions, see [GLW].
11For the sake of clarity we do not present here the information set up. It will be fully described in the resolution of the

general model.
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agent will only be perceived by the other agents at time t+ 1.
Taking into account all of the above, utilities take the following dynamic form:

UB (t) = −1
2
(n (t) + 1− w (t− 1))2 − αn (t) sn (t− 1) (2)

UU (t) = −1
2
ρ
(
1− w (t− 1)− f̃

)2
− 1
2
γ (w (t− 1)− w̃)2 − 1

2
s2n (t)−

1

2
s2f (t)−

1

2
s2w (t)

UC (t) = −1
2
(w (t)− w0)2 −

1

2
δn2 (t− 1)− vn (t− 1)w (t)− κsf (t− 1)

(
1− w (t)− f̃

)
− ηsw (t− 1)

(
w (t)− t̃

)

Note that in each of the above utilities, the agent own action variables appear with a time index t, as expected
for utility at time t, whereas other agents’ action variables appear with a time index t− 1.
The full resolution of the dynamical model being presented in the general resolution method, we postpone
the description of the information setup and directly present the results of the dynamic three-agent model.

1.2.2 Solution of the dynamic model

Assuming that the discount rates βi are identical and equal to a given β, we obtain the following result.

The long-run equilibrium is given by the action variables values :

n̄ = β2
(
K − νw0
ν + 1

− β να
2 + 2K∆

ν + 1

) γ (w̃ − w0) + σ
(
1−

(
f̃ + w0

))

ζ

w̄ = β2
(
K − νw0
ν + 1

+ β
ν2α2 − 2K∆

ν + 1

) γ (w̃ − w0) + σ
(
1−

(
f̃ + w0

))

ζ
+ w0

s̄n = β3αν
γ (w̃ − w0) + σ

(
1−

(
f̃ + w0

))

ζ

s̄w = −β2η (1−∆β)
γ (w̃ − w0) + σ

(
1−

(
f̃ + w0

))

ζ

s̄f = β2κ (1−∆β)
γ (w̃ − w0) + σ

(
1−

(
f̃ + w0

))

ζ

where we set:
∆ = δ − ν2, K = η2 + κ2, and ζ = ρ+ γ.

The results are very similar to the static case12 . Here again, two different general patterns appear for the
equilibrium. Agent U can drive Agent C toward its own objectives by implementing a stress on the need of
Agent B.
However, the reaction of Agent B is ambiguous, and depends on the relative strength of the parameters.
Two different regimes appear in the dynamic setting.

Under the condition :

K >
νw0 + α

2νβ

1− 2∆β

both w̄ and n̄ are positively correlated to Agent U’s goal.

To explain this, recall that Agent U has two channels of actions on Agent C.

12See [GLW] for comparison.
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The direct channel acts through the strains sf and sw. It’s efficiency on Agent C ’s utility is measured by
the coefficients η and κ and thus by

K = η2 + κ2

The indirect channel influences the needs of Agent B, that will in turn impact Agent C ’s action. Its strength
α measures the sensitivity of Agent B ’s to the strain sn

The above inequality therefore compares the relative strengths of the direct versus the indirect channel.
If the direct channel is more efficient, it is optimal for U to drive Agent C ’s activity by acting on the direct
strains s̄w and s̄f . Higher feeding will satisfy the higher needs induced by a higher activity for Agent C.

On the other hand, under the condition :

K <
νw0 + α

2νβ

1− 2∆β

the indirect channel is relatively more efficient than the direct one. Agent U will impose a strain on Agent
B, inducing a decrease of Agent B ’s needs, and indirectly allowing Agent C to increase its task. This will be
achieved at a comparatively lower feeding cost than the direct channel. As a result, the equilibrium values
w̄ and n̄ will respectively be positively and negatively correlated to Agent U ’s goal.
The difference in patterns of behavior appears clearly in the feeding of the individual. Alongside a normal

pattern, where higher feeding is associated with increased work, we find an “anorexic” pattern, where reduced
feeding is associated with increased activity.

Fluctuations around the equilibrium. The dynamics and stability of the system may be fully under-
stood by computing the fluctuations around the equilibrium. The utility functions being quadratic, these
fluctuations are given by a linear first order dynamic system of the kind

[Y (t)] =M [Y (t− 1)] +
[
Ŵ (t)

]
(3)

where [Y (t)] is the - five dimensions13 - vector of action variable fluctuations around their equilibrium.

[Y (t)] =




n(t)− n̄
w(t)− w̄
sn(t)− s̄n
sw(t)− s̄t
sf (t)− s̄f




The coefficients of the matrix M depend on the parameters of the model and
[
Ŵ (t)

]
is a - five components

- vector of random perturbation at time t14 .

The effects of an initial shock on the system are computed using Equation (3). Assume a system in

equilibrium with [Y (0)] = 0 at time t = 0, and consider a single initial shock
[
Ŵ (t)

]
such that Ŵ (0) 6= 0

and Ŵ (t) = 0 for t > 0. Given these assumptions, the solution of Equation (3) is :

[Y (m)] =MmŴ (0)

13The number of action variables.
14The explicit forms are given in Section 3.
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Stability of the system The stability of the system depends on the nature of the matrix M eigenvalues.
Section 3 will show that 0 is a triple eigenvalue, and that the two other eigenvalues are the complex conjugates:

λ± = ±i
√
ν

(
1− 1

2
β2 (ξK +∆) +

1

2
β3ξ

(
−α2ν2 + 2∆K

))
+O(β4) (4)

at the third order approximation in β.

λ± being imaginary, the system is oscillating. This is a direct consequence of our model, where non collab-
orating agents alternately try to stir the equilibrium towards their respective goals by detering other agents
actions.

The system is stable if the modulus |λ±| of λ± is lower than 1, stably cyclical if it is equal to 1, and
unstable if |λ±|>1.

Let us consider, as a benchmark case, the eigenvalues for β = 0, where all agents only care about the
present. The eigenvalues are ±i√ν, and the dynamic is diverging if ν > 1, cyclic if ν = 1, and converging if
ν < 1.

We can interpret these results in the following way. Agent B reacting to Agent C ’s feeding in a 1 to 1
ratio, and Agent C ’s w reacting to Agent B ’s need with a ratio ν, both agents’ actions will be multiplied
by ν over a two-period horizon. Agent U’ s action paying only over a two to three-periods horizon, it is
irrelevant when β = 0, and prevents Agent U from taking it. Myopic behavior among agents leads to an
oscillatory dynamics. Each agent, reacting sequentially, adjusts its action to undo other agents’ previous
actions, describing cyclical and apparently inconsistent or irrational behaviors in the dual agent. These os-
cillations may diverge or fade away with time, depending on the value of ν.

When β is different from 0 but relatively small, the system is still oscillatory. However the time concern
β will have an ambiguous effect on its stability. Decomposing Equation (4) in it’s second and third order
contributions will illustrate this point.
Because of the delay in the actions’ impact, the feedback on the originating agent will be seen in two periods
- under the direct channel - or possibly three periods, under the indirect channel15 .

At the second order in β, Equation (4) shows that the agents’ concern about the future has a stabiliz-
ing effect and reduces the magnitude of the oscillations. At this order, the eigenvalues’ module is

|λ±| =
√
ν

∣∣∣∣1−
1

2
β2 (ξK +∆)

∣∣∣∣+O(β
3)

which is lower than
√
ν.

The stabilization effect appears at the two-period horizon16 , since Agent U cannot use the indirect channel
in time scale. The stabilization is obtained by Agent U ’s direct action on Agent C, and by Agent C ’s direct
action on Agent B.
At the three-period horizon (the third order in β), the stability is more ambiguous. Agent U can use the
indirect channel to stabilize the system around an equilibrium to its own advantage. On the other hand,
Agent C can react to Agent U ’s action, by destabilizing Agent U ’s optimum. Because of theses antinomic
actions, the stability of the system depends on the parameters’ relative strength.
Neglecting higer order contributions, an overall interpretation of the system can be reached by combining
these two different horizon effects. The time concern total correction to the eigenvalues is :

−1
2
β2 (ξK +∆) +

1

2
β3ξ

(
−α2ν2 + 2∆K

)

15 i.e. from Agent U to Agent B, then from Agent B to Agent C and ultimately from Agent C to Agent U.
16 the second-order in β

10



Recall that ξ measures the overall concern of the unconscious for the conscious activity, K the sensitivity
of the conscious agent to the strains imposed by the unconscious, and ∆ the relative strength of the direct
effect of the need on the conscious agent compared to it’s effect via the effort term −νnw of UC in equations
1.
The above quantity is positive if

K (2∆β − 1)− α2βν2 > 0

and

ξ >
∆

K (2∆β − 1)− α2βν2 ≡ ξthreshold

Since ∆ > 0, if ∆ and K are large enough, i.e. if they are such that :

2∆β − 1 > 0

and
K (2∆β − 1)− α2βν2 > 0

there exists a threshhold ξthreshold such that when ξ > ξthreshold , the instability of the system is increased
by the forward-looking nature of its agents, and its stability reinforced otherwise. As a result, given a
time rate preference β, if the conscious is highly sensitive to the other agents’ actions, and if conscious and
unconscious goals are strongly divergent, an instability in the system may arise. The system is driven away
from its equilibrium, leading to an explosive and suboptimal pattern for all agents.
Moreover, the higher the time concern β, the lower the sensitivity ∆ can be to make the unstability case
arise. In other words, the more the system is forward looking, the more can we expect some unstability.
These results provide a pattern of the nature of structures’ utilities as well as their interactions, and give
a hint about internal sub-structures’ capacity to plan their actions. Inconsistent preferences and apparent
switches in behaviors can be ascribed to the unknown action of some strategic structures behind conscious
choices. The system’s cyclicality, the striking differences emerging between dynamic patterns of behaviors of
forward and non-forward looking structures, may, through empirical observations, support forward-looking
decisions in hidden partial processes, and give a better understanding of the sequence of mental processes.

2 A general model of several interacting structures

Let us now present and solve the general dynamic model of several interacting structures that encompasses
the three-agents example presented above. We will first briefly recall the general static formalism of [GLW],
on which the dynamic version will be developed.

2.1 Static several interacting agents.

This static version introduces the various agents’ utility functions and the domination graph that commands
the resolution algorithm.

Strategic relations between agents The agents’ strategic relations define the model setup. An oriented
graph Γ whose vertices are labelled by the agents involved describe these relations.
When Agent i has a strategic advantage over Agent j, we draw an oriented edge from i to j and write i→ j.
If there exists an oriented path from i to j, we write the relation i� j, and state that Agent i dominates
directly or indirectly Agent j or, equivalently, that Agent j is subordinated to Agent i. If there is no oriented
path from i to j, we write j 6� i, where it is always understood that i 6= j. In the following, we merely
consider connected graphs without loops.
Under these conventions, the situation is modeled by an oriented graph whith vertices labelled after B,C,
and U , and whose edges orientation summarize the agents’ strategic advantages

C → B, U → B, U → C

11



Matricial formalism Agents’ utilities are described by the following matricial formalism. Agents’ actions
are encompassed in a vector of actions, or control variables. The number of possible actions determine the
size of the vector. Utilities being quadratic, matrices may be associated with them.

Let Xi ∈ Rni be Agent i’s vector of control variables, and X̃
(i)
j ∈ Rni the vector of goals associated

with the variables Xj , as expected by agent i. We normalize X̃
(i)
j to 0, so that Agent i wishes to achieve

Xi = 0 and Xj = X̃
(i)
j .

Agent i′s utility is given by:

Ui = −1
2
tXiA

(i)
ii Xi −

1

2

∑

j�i

t
(
Xj − X̃(i)

j

)
A
(i)
jj

(
Xj − X̃(i)

j

)

−
∑

j�i

tXiA
(i)
ij Xj −

∑

j 6�i

t
(
Xi − X̃(j)

i

)
A
(i)
ij Xj − tXiPi

In the absence of any interaction, Agent i′s utility is given by the term

−1
2
tXiA

(i)
ii Xi

The variables Xi are normalized so that A
(i)
ii is a fi × ni diagonal matrix whose coefficients are 1 or 0.

If Agent i′s subordinate agents’ actions Xj depart from X̃
(i)
j , Agent i

′s will experience a loss of utility
of the form : ∑

j�i

t
(
Xj − X̃(i)

j

)
A
(i)
jj

(
Xj − X̃(i)

j

)

The fj × nj matrix A(i)jj of parameters is of course symmetric.
The impact of Agent j′s action on Agent i’s utility is

∑

j�i

tXiA
(i)
ij Xj −

∑

j 6�i

t
(
Xi − X̃(j)

i

)
A
(i)
ij Xj

where j � i can be seen as the impact of Agent j′s action on Agent i. In our model, Agent j does not
know the agents to whom he is subordinated, and processes their signals as external ones. The second term
models the strain imposed on Agent i by Agent j to achieve its own objectives for Xi.

Remark 1 Since the linear term in Xj disappears during the resolution,
∑

j 6�i

tXiA
(i)
ij Xj

is equivalent to ∑

j 6�i

t
(
Xi − X̃(j)

i

)
A
(i)
ij Xj

Notation 2 By convention, for the ni × nj parameters matrices A(i)ij , we will write tA
(i)
ij = A

(i)
ji .

The last term tXiPi models the change in utility caused by external perturbations summarized by the
vector Pi ∈ Rni . For instance, the utilities of our three-agent model can be rewritten in the matricial
formalism as:

UB = −1
2
tXBXB − tXBA

(B)
BUXU − tXBA

(B)
BCXC −

1

2
tXCA

(B)
CCXC + (

tXC − tXB)EB

UU = −1
2
tXUA

(U)
UUXU −

1

2
t
(
XC − X̃(U)

C

)
A
(U)
CC

(
XC − X̃(U)

C

)

UC = −1
2
tXCA

(C)
CCXC −

1

2
t
(
XB − X̃(C)

B

)
A
(C)
BB

(
XB − X̃(C)

B

)
− tXCA

(C)
CBXB − tXUA

(C)
UCXC − tXUǍ

(C)
UCX̌C

12



where the control variables for the agents are concatenated in the following vectors:

XB =
(
n
)
, XU =



sn
st
sf


 , XC =

(
w − w0

)
.

where the left upper-script t( · ) denotes the usual transposition of matrices. The goals of Agent U are
condensed in the vector :

X̃
(U)
C =

(
γ(w̃−w0)+ρ(1−(f̃+w0))

ρ+γ

)

and those of Agent C are described by:

X̃
(C)
B =

(
−νw0
δ

)

All others goals are normalized to 0 . We also set :

X̌C =

(
− (w̃ − w0)
1−

(
f̃ + w0

)
)

The utilities quadratic relations are commanded by the parameters matrices :

A
(B)
BU =

(
α 0 0

)
, A

(B)
BC =

(
−1
)
, A

(U)
CC = (ξ)

A
(C)
CC =

(
1
)
, A

(C)
BB =

(
δ
)
, A

(C)
CB =

(
ν
)

A
(B)
CC = (1) , EB =

(
1
)
,

A
(U)
UU =



1 0 0
0 1 0
0 0 1


 , A

(C)
UC =



0
η

−κ


 , Ǎ

(C)
UC =



0 0
η 0
0 κ




By convention, we set A
(i)
ji =

t
(
A
(i)
ij

)
.

Moreover, since Agent B is dominated by both Agent C and Agent U, and Agent C is dominated by Agent
U, the following matricial utilities will lead to the same equilibrium as UB, UU, UC.

U ′B = −1
2
tXBXB − tXBA

(B)
BUXU − tXBA

(B)
BCXC −

1

2
tXCA

(B)
CCXC −tXBEB

U ′U = −1
2
tXUA

(U)
UUXU −

1

2
t
(
XC − X̃(U)

C

)
A
(U)
CC

(
XC − X̃(U)

C

)

U ′C = −1
2
tXCA

(C)
CCXC −

1

2
t
(
XB − X̃(C)

B

)
A
(C)
BB

(
XB − X̃(C)

B

)
− tXCA

(C)
CBXB − tXUA

(C)
UCXC

2.2 Presentation of the dynamic version

This section describes the general model for dynamics interacting structures.The procedure is identical to
that described in the three-agents case17 . We adapt the matricial static utilities to a dynamic context, and
assume that each agent optimizes a forward-looking intertemporal utility function, given it’s own information
set.

The intertemporal utility is of the form :

Vi(t) =
∑

m≥0

βmi EiUi (t+m)

17See Section 1.2.1
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where βi is Agent i
′s discount factor, and Ei his conditional expectation at time t. We give the information

pattern allowing an agent to compute it’s own expectations. Ui (t+m) is period t+m utility.

Ui (t+m) = −1
2
Xt
i (t+m)A

(i)
ii Xi (t+m) (5)

−1
2

∑

j�i

Xt
j (t+m− 1)A

(i)
jj Xj (t+m− 1)

−
∑

j�i

Xt
i (t+m)A

(i)
ij Xj (t+m− 1)

−Xt
i (t+m)Pi (t+m)

+
∑

j�i

Xt
j (t+m− 1)A

(i)
jj X̃

(i)
j

−
∑

j 6�i

(
Xt
i (t+m)− X̃

(j)
i

)
A
(i)
ij Xj (t+m− 1)

This utility function is,up to some constant irrelevant term, a straightforward generalization of the particular
three-agents model18 . Recall that external and other agents’ signals are perceived by Agent i with a one
period delay19 .

2.3 Resolution of the dynamic model

The resolution proceeds in the reverse order of the domination graph, starting from the bottom of the graph
with the optimization for the less strategic agents, and proceeding to the top of the graph.

2.3.1 Optimization problem and form of the solution

At time t, the optimization problem for Agent i is :

∂

∂Xi(t)
Vi(t) = 0

For every Agent j such that i � j, the optimization has already been performed, so that, Xj (t+m) for
m ≥ 1 are functions of Xi(t). We thus obtain :

A
(i)
ii Xi(t) +Ei

∑

m≥1



∑

j�i

βmi

(
Aiij

∂Xj (t+m− 1)
∂Xi(t)

)t

Xi (t+m)

+Ei
∑

j�i


A(i)ij Xj (t− 1) +

∑

m≥1

βmi

(
∂Xj (t+m− 1)

∂Xi(t)

)t
A
(i)
jj Xj (t+m− 1)




+
∑

j 6�i

A
(i)
ij Xj(t− 1) (6)

= εi(t)

where

εi(t) = −Pi(t) + Ei
∑

j�i

∑

m≥1

βmi

(
∂Xj (t+m− 1)

∂Xi(t)

)t
A
(i)
jj X̃

(i)
j

Each agent optimizes an intertemporal utility function that only depends on present and future variables.

18See Equations 2 and explanations below.
19 In (5) we have developed the quadratic terms, to isolate the terms linear in X̃

(i)
j
.
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The model is thus forward looking. Each structure reacts to its own forecasts of future variables. These
forecasts are built from the signals Xj(t− 1), the information set, where j runs over the set of agents. The
solution of the model is found by identification. Utilities being quadratic, the linear solution is of the form:

Xi(t) =Mi [X(t− 1)] +Wi(t)

where [X(t)] is a one-column concatenation of the vectors Xi(t) in an arbitrary chosen order. The coefficients
of matrix Mi depend on the parameters of the model, and must be identified by way of the optimization
equations. The size of Mi is determined by the dimensions of Xi(t) and [X (t− 1)]. The constant vectors
Wi(t) depend on the perturbation parameters Pi(t) and the objectives X̃

(i)
j .

For later purpose we need a concatenated form of the previous set of equations :

[X(t)] =M [X(t− 1)] + [W (t)] (7)

Its iteration describes the dependency between the variables at time t and t+m:

[X (t+m)] =Mm [X(t)] +

m∑

k=1

Mm−k [W (t+ k)] (8)

where [W (t)] is the concatenation of theWi(t), and the square matrixM is the concatenation of the matrices
Mi.

We use the postulated solution (8) to compute
∂Xj(t+m)
∂Xi(t)

for i� j in the optimization problem for Agent i.

This yields:
∂Xj (t+m)

∂Xi(t)
= (Mm)ji (9)

where (Mm)ji is the block ji in the m the power of the concatenated matrix M .
Inserting (9) in (6) we rewrite the optimization problem at time t for the agent i:

A
(i)
ii Xi(t) +Ei

∑

m≥1



∑

j�i

βmi
t
(
Aiij

(
Mm−1

)
ji

)

Xi (t+m)

+Ei
∑

j�i


A(i)ij Xj (t− 1) +

∑

m≥1

βmi
t
(
Mm−1

)
ji
A
(i)
jj Xj (t+m− 1)




+
∑

j 6�i

A
(i)
ij Xj(t− 1)

= εi(t)

which can be rewritten in a more compact form :

A
(i)
ii Xi(t) = −Ei




∑

m≥1



∑

j�i

βmi
t
(
Aiij

(
Mm−1

)
ji

)

Xi (t+m)

+
∑

j�i



∑

m≥1

βmi
t
(
Mm−1

)
ji
A
(i)
jj Xj (t+m− 1)








−
∑

j

A
(i)
ij Xj (t− 1) + εi(t) (10)
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2.3.2 Pattern of information

The full resolution of the model relies on the expectations EiM
m−1 which itself relies on each agent’s infor-

mation set, i.e. it’s knowledge of other agents parameters.
We propose a pattern of information over the domination graph, which describes the way an agent performs
its forecasts.
Each agent knows the domination relations of the subtree he strategically dominates, but ignores the reac-
tivity of the subtree’s agents to external, non dominated agents. In other words, Agent i knows the values

of the A
(k)
k` for i� k and i� `. The remaining coefficients A

(k)
k` are forecasted to 0 for this agent. Remark

that, as a consequence of our assumptions, agents do not attribute a probability to the coefficients they
forecast, but rather a fixed value.
Moreover, we assume that, at each period t, Agent i knows the signals Xj(t − 1) for i � j and for the
Xj(t− 1) j 6� i by which he is affected.
From our hypotheses we can infer some results about the agents’ forecasts.
First, Agent i forecasts to 0 the actions of all agents he does not dominate. That is for j 6� i and m ≥ 0:

EiXj (t+m) = 0

Consider the optimization equation (10) of Agent j, and compute it’s expectation by Agent i. Agent’s i
forecasts of all coefficients in the equation equal 0 which implies EiXj(t) = 0.
In the same way,

EiXj (t+m) = 0 for m ≥ 0.

Using Equation (7) the last relation can be translated in an expectation formula about matrix M :

EiMj = 0 for j 6� i

Moreover, Agent i knowing it’s own parameters, and it’s own reaction to perceived signals, one set :

EiMi =Mi

More precise forecasts of the remaining blocks of matrix M will be needed. We set:

(EiM)`,j = 0 for j 6� i and any `

(EiM)`,j = (M)`,j for i� j and i� `

Having defined the forecasts of the matrix M of parameters by the various agents, we have to complete the
information scheme by fixing the forecasts of the random perturbations as well as the goals vectors.
Future shocks are unknown, and random shocks Pi are assumed to be :

EiPj (t+m) = 0 for m ≥ 1 and EiPj(t) = 0 for i 6= j and EiPi(t) = Pi(t)

At time t, agent i is only aware of the shock he is affected by, Pi(t).
Agent i is aware of the goals of the agents he is strategically dominating, so that :

EiX̃
(i)
j = X̃

(i)
j for j � i

and
EiX̃

(j)
k = X̃

(j)
k for k� j � i.

Given this scheme of forecasts and the dynamical equation (8) , we can infer for m ≥ 0 that, for i� j :

Ei [Xj (t+m)] = Ei

((
(M)

m+1
)

j
[X(t− 1)]

)

=
(
(EiM)

m+1
)

j
Ei [X(t− 1)] ,
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and for j = i :

Ei [Xi (t+m)] =
(
(EiM)

m+1
)

i
Ei [X(t− 1)]

The information setup and the agents’ parameters forecasts being detailed, we can turn to the resolution
of the optimization equations. This is done in the most general way, in the form of an algorithm.

2.3.3 The resolution algorithm

The postulated form of the dynamic (Equation (8)) is:

[X (t+m)] =Mm [X(t)] +

m∑

k=1

Mm−k [W (t+ k)]

or under the form of its i block line :

Xi (t+m) =
∑

j∈Γ

(
(Mm)ij Xj(t) +

m∑

k=1

(
Mm−k

)
ij
Wj (t+ k)

)

To identify the matrix M and the vectors W (t+ k), this relation is inserted in Equation (10) for each i.20

Since we have a set of equation, one for each agent, the resolution follows the order of the graph. We proceed
upstream, solving for the less to the most strategical agent.
Rewriting Equation (10) for Agent i, and using the relation

Ei (M
m) = (Ei (M))

m

yields

A
(i)
ii Xi(t) = −




∑

m≥1



∑

j�i

βmi
t

(
Aiij

(
(EiM)

m−1
)

ji

)
EiXi (t+m)

+
∑

j�i



∑

m≥1

βmi
t
(
(EiM)

m−1
)

ji
A
(i)
jj EiXj (t+m− 1)








−
∑

j

A
(i)
ij Xj(t− 1) + εi(t).

Implement the a priori form of the solution :

[X (t+m)] =Mm [X(t)] +

m∑

k=1

Mm−k [W (t+ k)] for m ≥ 0

The variables Xi(t − 1) and Wi(t) being independent, the expectation pattern
21 leads to two systems of

equations defining both Mi and Wi(t).

A
(i)
ii Mi [X(t− 1)] = −




∑

m≥1



∑

j�i

βmi
t

(
Aiij

(
(EiM)

m−1
)

ji

)

(
(EiM)

m+1
)

i
[X(t− 1)]

+
∑

j�i



∑

m≥1

βmi
t
(
(EiM)

m−1
)

ji
A
(i)
jj ((EiM)

m
)j [X(t− 1)]






 (11)

−
∑

j

A
(i)
ij Xj(t− 1)

20The expectations in (10) are computed with the rules given in Section 2.3.2.
21See Section 2.3.2.
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A
(i)
ii Wi(t) = −




∑

m≥1



∑

j�i

βmi
t

(
Aiij

(
(EiM)

m−1
)

ji

)

m+1∑

k=1

(
(EiM)

m+1−k
)

i
Ei [W (t− 1 + k)]

+
∑

j�i



∑

m≥1

βmi
t
(
(EiM)

m−1
)

ji
A
(i)
jj

m∑

k=1

(
(EiM)

m−k
)

j
Ei [W (t− 1 + k)]








+εi(t). (12)

Since
(
(EiM)

m−1
)

ji
is the (ji) block of the concatenated matrix (EiM)

m−1
, and M appears in both

Equations (11) and (12), we will first solve Equation (11) to find M , then solve Equation (12).

Equation (11) can be written equivalently


A

(i)
ii Mi +

∑

m≥1

βmi

∑

j�i

t
(
(EiM)

m−1
)

ji

(
A
(i)
ji

(
(EiM)

m+1
)

i
+A

(i)
jj ((EiM)

m
)j

)


 [X (t− 1)]

= −
∑

j 6=i

A
(i)
ij Xj (t− 1)

which leads to the defining relation for Mi:

A
(i)
ii Mi +

∑

m≥1

βmi

∑

j�i

t
(
(EiM)

m−1
)

ji

(
A
(i)
ji

(
(EiM)

m+1
)

i
+A

(i)
jj ((EiM)

m
)j

)
= −

[
A
(i)
i

]
(13)

where
[
A
(i)
i

]
is the concatenation in line of the matrices A

(i)
ij with 0 in the i-th place.

Since one can always rescale the action variables Xi(t−1) so that the matrix A(i)ii is diagonal with eigenvalues
1,we will, starting from here and without any lack of generality, normalize the A

(i)
ii to be equal to 1. A null

eigenvalue would correspond, in this case, to a redundant action variable, since it could be expressed as a
function of others. It is therefore excluded.
Equation (13) cannot be solved analytically in a general way. However, it can be solved recursively as series
of βi. To do so, write the matrix Mi as a power series of βi, that is

Mi =
∑

m≥0

βmi M
(m)
i

Inserting this expression in Equation (13) leads directly to the recursive system for the matrices M
(m)
i :

M
(0)
i = −

[
A
(i)
i

]

M
(k)
i = −

∑

j�i

k∑

m=1

[
t
(
(EiM)

m−1
)

ji

(
A
(i)
ji

(
(EiM)

m+1
)

i
+A

(i)
jj ((EiM)

m
)j

)]

k−m

where the bracket [A]k−m denoting the k −m-th term in the power expansion in βi of any quantity A.

This can be computed for every model given any information pattern. The parameter βi being lower than 1,

the matrices M
(m)
i represent some corrections to the case βi = 0, when agents have no interest in the future.

To get an insight of the relevant dynamical mechanisms at stake, it will be sufficient to cut the series in βi
at some fixed order.

Equation (11) being solved for EiM , we turn to Equation (12) to find the perturbation vector [W (t)].
Recall that we set

εi(t) = −Pi(t) +Ei
∑

j�i

∑

m≥1

βmi
t
(
Mm−1

)
ji
A
(i)
jj X̃

(i)
j .
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Given the form of the expectations22 , we infer EiPj (t+m) = 0, so that the vector Wi(t) in Equation (12)

depends only on the random perturbation Pi(t) and the constants X̃
(i)
j for j � i. Moreover, since (12) is

linear, its solution is of the form :

Wi(t) = −
(
A
(i)
ii

)−1 (
P̂i(t) + X̂i

)
(14)

where P̂i(t) is proportional to Pi(t), and X̂i is a linear function of the X̃
(i)
j with j � k to be identified.

Since we assume the information pattern :

EiX̃
(i)
j = X̃

(i)
j for j � i.

we have also
EiX̂j = X̂j for j � i and j = i

.
and

EiWj (t+m) = −
(
A
(j)
jj

)−1
X̂j for j � i and j = i for m ≥ 0

and finally

Ei [W (t+m)] =
[
Ŵ (i) (t+m)

]
for m ≥ 0

where
[
Ŵ (i) (t+m)

]
denotes the concatenated vector whose components are:

Ŵ
(i)
i (t) =Wi(t)

and

Ŵ
(i)
j (t+m) = −

(
A
(j)
jj

)−1
X̂j

for j � i and 0 otherwise.

Replacing Equation (14) in Equation (12) leads to the following expressions for X̂i and P̂i(t) :

X̂i =
∑

`�i




∑

m≥1



∑

j�i

βmi
t

(
Aiij

(
(EiM)

m−1
)

ji

)

m+1∑

k=1

(
(EiM)

m+1−k
)

i`

+
∑

j�i



∑

m≥1

βmi
t
(
(EiM)

m−1
)

ji
A
(i)
jj

m∑

k=1

(
(EiM)

m−k
)

j`







(
A
(l)
``

)−1
EiX̂`

−
∑

j�i

∑

m≥1

βmi
t
(
(EiM)

m−1
)

ji
A
(i)
jj EiX̃

(i)
j (15)

22See Section 2.3.2.
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and

P̂i(t) =




∑

m≥1



∑

j�i

βmi
t

(
Aiij

(
(EiM)

m−1
)

ji

)
 ((EiM)m)ii

+
∑

j�i



∑

m≥1

βmi
t
(
(EiM)

m−1
)

ji
A
(i)
jj

(
(EiM)

m−1
)

ji







(
A
(i)
ii

)−1
P̂i(t)

+Pi(t). (16)

The first equation is a recursive relation which can only be solved in the inverse order of domination of the
graph. The vectors X̂i are determined by the vectors EiX̂j for j � i. Once the X̂j for j � i are computed,

the expectations EiX̂j can be calculated, and ultimately the vectors X̂i are obtained.

The second equation yields directly P̂i(t) as a function of Pi(t). One gets

P̂i(t) = (1− Ci)−1 Pi(t)

where the matrix Ci is given by

Ci =




∑

m≥1



∑

j�i

βmi
t

(
Aiij

(
(EiM)

m−1
)

ji

)
 ((EiM)m)ii

+
∑

j�i



∑

m≥1

βmi
t
(
(EiM)

m−1
)

ji
A
(i)
jj

(
(EiM)

m−1
)

ji







(
A
(i)
ii

)−1
.

which ends the resolution method of the general case. More explicit formulas are impossible at this level of
generality23 . Nevertheless, we provide a short account of the equilibrium and the fluctuation around it.

2.3.4 Equilibrium and dynamics around the equilibrium

Let us now briefly present the long run equilibrium of the system. Starting from the dynamic equation :

Xi(t) =Mi [X(t− 1)] +Wi(t).

Agent i long run equilibrium X̄i can be defined by equating Xi(t) = Xi(t−1) = X̄i for each i, and canceling
all random perturbations Pi(t). Concatenating all X̄i in the system long run equilibrium

[
X̄
]
, we get

[
X̄
]
=M

[
X̄
]
+
[
W̄
]

likewise,
[
W̄
]
is the vector [W ] where all external perturbations Pi(t) have been set to 0 :

[
X̄
]
= (1−M)−1

[
W̄
]
=
∑

m≥0

Mm
[
W̄
]
.

This last expression only exists if 1−M is invertible. Otherwise multiple equilibria or no equilibrium could
arise, a possibility that is neither the generic case, nor has any practical interest here24 .

To describe the fluctuation around
[
X̄
]
, recall that the vectors [W (t)] has Wi(t) = −

(
A
(i)
ii

)−1 (
P̂i(t) + X̂i

)

for components. Given the dynamic equation :

[X(t)] =M [X(t− 1)] + [W (t)]
23The eigenvalues of M relevant to the dynamic evolution of the system, for instance, can only be computed for particular

cases.
24Besides, it does not appear in the three-agent model example presented below.
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and the equilibrium relation [
X̄
]
=M

[
X̄
]
+
[
W̄
]
,

we define the fluctuations vectors :
[Y (t)] =

[
X(t)− X̄

]

and : [
Ŵ (t)

]
=
[
W − W̄

]
= −

[(
A
(i)
ii

)−1
P̂i(t)

]

Finally the relation : [
X(t)− X̄

]
=M

[
X(t− 1)− X̄

]
+
[
W (t)− W̄

]

leads to
[Y (t)] =M [Y (t− 1)] +

[
Ŵ (t)

]
.

Assume that the system, in equilibrium at time t = 0 at Y (0) = 0, is perturbed by one single initial shock
Ŵ (0), i.e. Ŵ (t) = 0 for t > 0. In this case, one has

[Y (m)] =MmŴ (0) .

and the eigenvalues of M will determine the stability of the system.

Now that we have all the apparatus to solve explicitly any model, analytically in some cases, we will apply
it in for the three-agent model25 .

3 Application of the general model: full resolution of the three-

agent model

This section details the resolution of the three-agent model presented in Section 2.2.2. The optimization
problems are solved in the inverse order of strategic domination, respectively here for Agent B, then for
Agent C and ultimately for Agent U. Solving the model amounts to finding the matrices Mi and the vectors
Wi. We proceed with the following steps.

1. Determination of the matrices Mi

• Solve the optimization problem for Agent B The body has no information about the conscious
and the unconscious so that its expectations about their present and future actions are set to zero. And
since it ignores the influence of the unconscious on the conscious and reciprocally, equation (11) reduces to

MB = −
[
A
(B)
B

]
= (0, 1,−α, 0, 0)

• Solve the optimization problem for Agent C Recall that we have set βi = β for all agents.
Thus Equation (11) for MC is

MC = −
[
A
(C)
C

]
−
∑

m≥1

βm t
(
(ECM)

m−1
)

BC

(
ν
(
(ECM)

m+1
)

C
+ δ ((ECM)

m
)B

)

with [
A
(C)
C

]
= (ν, 0, 0, η,−κ)

25For more complex situations and numerically defined parameters, this resolution algorithm allows finding solutions through
numerical computations.
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and

ECM =



MBB MBC 0
MCB MCC MCU

0 0 0




Under our hypotheses, Agent C knows Agent B ’s reaction to its own action, i.e. the reaction coefficient
MBC. However it does not know the impact of Agent U ’s action on Agent B. This implies that ECMBC = 0.
Similarly Agent C is neither aware of the impact of it’s own action over Agent U, nor of the impact of Agent
B’s action over Agent U. The last row of blocks is therefore set to 0 in ECM . The upper-right zero reflects
Agent C ’s ignorance of Agent U ’s action over Agent B26 .

To solve Equation (11) for i = C, we postulate the following general form for ECM :

ECM =



MBB MBC 0
MCB MCC MCU

0 0 0




=




(0) (1)
(
0 0 0

)

(x) (y)
(
0 z u

)


0
0
0






0
0
0






0 0 0
0 0 0
0 0 0







=




0 1 0 0 0
x y 0 z u

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




where the coefficients x, y, z, u have to be identified. To do so, we diagonalize ECM to determine its powers.
Its eigenvalues are 0 as a triple root, and

1

2
y ± 1

2

√
y2 + 4x

.

All computations done, this yields for m ≥ 1

(ECM)
m
=

1√
y2 + 4x




−xδm−1 −δm 0 −zδm−1 −uδm−1
−xδm −δm+1 0 −zδm −uδm
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




with:

δm =

(
1

2
y − 1

2

√
y2 + 4x

)m
−
(
1

2
y +

1

2

√
y2 + 4x

)m

Coming back to (11), we have :

MC = −
[
A
(C)
C

]
−
∑

m≥1

βm t
(
(ECM)

m−1
)

BC

(
ν
(
(ECM)

m+1
)

C
+ δ ((ECM)

m
)B

)
.

The generic term of the sum over m can thus be expressed as :

26For more details see 2.3.2.
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−
∑

m≥1

βm t
(
(ECM)

m−1
)

BC

(
ν
(
(ECM)

m+1
)

C
+ δ ((ECM)

m
)B

)

= β
∑

m≥0

βm
δm

y2 + 4x

(
ν
(
−xδm+2 −δm+3 0 −zδm+2 −uδm+2

)

+δ
(
−xδm −δm+1 0 −zδm −uδm

)
)

Moreover we have :
−
[
A
(C)
C

]
=
(
−ν 0 0 −η κ

)

By identification, the coefficients of the row MC =
(
x y 0 z u

)
satisfy the following equations:

x = −ν + 1

y2 + 4x


−xδβ

∑

m≥0

βmδ2m − xνβ
∑

m≥0

βmδm+2δm




y =
1

y2 + 4x


−νβ

∑

m≥0

βmδmδm+3 − δβ
∑

m≥0

βmδm+1δm




z =
1

y2 + 4x


−zδβ

∑

m≥0

βmδ2m − zνβ
∑

m≥0

βmδm+2δm




u =
1

y2 + 4x


−uδβ

∑

m≥0

βmδ2m − uνβ
∑

m≥0

βmδm+2δm




The sums over β can be explicitly computed using the relations

β

y2 + 4x

∑

m≥0

βmδ2m = β
1− βx

(βx+ 1)
(
(1− βx)2 − βy2

)
,

β

y2 + 4x

∑

m≥0

βmδmδm+1 = β2
y

(βx+ 1)
(
(1− βx)2 − βy2

)
,

β

y2 + 4x

∑

m≥0

βmδm+2δm = β
x (1− βx) + y2

(βx+ 1)
(
(1− βx)2 − βy2

)
,

β

y2 + 4x

∑

m≥0

βmδmδm+3 = yβ2
−x2β + 2x+ y2

(βx+ 1)
(
(1− βx)2 − βy2

)
,

and

∑

m≥1

βmδm−1δm+2 = β
∑

m≥0

βmδmδm+3 = β

(( −a3
1− βa2

)
+

a3 (a+ y)
3

1 + βa (a+ y)
+

(a+ y)
3

1− β (a+ y)2

)
.

The equations for x and y are then

x = −ν + xβ2 − (δ + xν) (1− βx)− y
2ν

(βx+ 1)
(
(1− βx)2 − βy2

)

y = yβ2
−δ − 2xν − y2ν + x2βν

(βx+ 1)
(
(1− βx)2 − βy2

)

The equation for y implies

y = 0 or 1 = β2
−δ − 2xν − y2ν + x2βν

(βx+ 1)
(
(1− βx)2 − βy2

)
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The second solution y 6= 0 implies a diverging behavior for x when β → 0. This contradicts agents’ myopic
behavior when β → 0. We must therefore discard this solution, and merely keep the case y = 0, which leads
directly to the following equation for x:

−x− ν + x3β2 − xβ2δ = 0.

We systematically refer to the benchmark case β = 0. An analytic solution for x is therefore useless. Rather,
we will look for a solution as a series of β and its explicit expression to the third order.
Indeed, the action of Agent U on Agent B, it’s consequence on Agent C and ultimately on Agent U, needs
three periods to be effective. By identification :

x = −ν + νβ2∆+O
(
β4
)
.

The parameters z and u depending x and y can then be computed, and are given by:

z = −η − z
(
β

δ + xν − xβδ − x2βν
(xβ + 1)

(
x2β2 − 2xβ + 1

)
)

and

u = κ− uz
(
β

δ + xν − xβδ − x2βν
(xβ + 1)

(
x2β2 − 2xβ + 1

)
)
.

It leads to the third order to the following series expansion:

z = −η + βη∆− β2η∆2 + β3η∆
(
∆2 + 2ν2

)
+O

(
β4
)

u = κ− βκ∆+ β2κ∆2 − β3κ∆
(
∆2 + 2ν2

)
+O

(
β4
)

• Solve the optimization problem for Agent U MU and M can now be computed. Since agent U
is the most informed agent, EUM =M . For Agent U, Equation (11) is :



MU +

∑

m≥1

βm
∑

j�U

t
(
Mm−1

)
jU

(
A
(U)
ji

(
Mm+1

)
U
+A

(U)
jj (M

m)j

)


 = −

[
A
(U)
U

]
.

which, using EUM =M , reduces to

MU + ξ
∑

m≥1

βm t
(
Mm−1

)
U
(Mm)C = −

[
A
(U)
U

]
. (17)

We seek M as a series expansion to the third order in β and proceed by a recursive computation.

Write M as the matrix

M =




0 1 −α 0 0
x 0 0 z u

MU




Set the power series expansions

M =
∑

m≥0

βmMm
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and
MU =

∑

m≥0

βm (MU)m

Note that Mm is defined by

Mm =




(
0 1 −α 0 0
x y 0 z u

)

m

(MU)m




where (
0 1 −α 0 0
x y 0 z u

)

m

denotes the matrix (
0 1 −α 0 0
x y 0 z u

)

truncated at order 3 in β.

As a consequence, Equation (17) leads to the recursive relation:

(MU)m+1 = −ξ
m+1∑

k=1

(
t
(
Mk−1

)
U

(
Mk
)
C

)
m+1−k

.

Starting with (MU)0 = −
[
A
(U)
U

]
= 0, the above equation yields directly the successive terms (MU)k and

(M)k.

Ultimately, we get

M =




0 1 −α 0 0
−ν 0 0 −η κ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




+β




0 0 0 0 0
0 0 0 η∆ −κ∆
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




+β2




0 0 0 0 0
ν∆ 0 0 −η∆2 κ∆2

0 0 0 0 0
0 −νξη ανξη 0 0
0 κνξ −ακνξ 0 0




+β3




0 0 0 0 0
0 0 0 −∆η

(
∆2 + 2ν2

)
∆κ3

(
∆2 + 2ν2

)

αν3ξ 0 0 αν2ξη −ακν2ξ
0 −∆νξη ∆ανξη 0 0
0 ∆κνξ −∆ακνξ 0 0




+O
(
β4
)

with
∆ = δ − ν2 and K = η2 + κ2
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The computation of the eigenvalues is straightforward. One is equal to 0, as a triple root, and, the two other
ones are complex conjugates

±i
√
ν

(
1− 1

2
β2 (ξK +∆) +

1

2
β3ξ

(
−α2ν2 + 2∆K

))
+O

(
β4
)
.

2. Determination of the vectors Wi. The vectors Wi are linear combinations of the constant vectors
X̂i and the random vectors P̂i(t)

27 .

• Computation of the constant part X̂i The computation of X̂i yields the constant part of the Wi

and are given by equation (15). We have:

X̂i =
∑

`�i




∑

m≥1



∑

j�i

βmi
t

(
Aiij

(
(EiM)

m−1
)

ji

)
 ((EiM)m)i`

+
∑

j�i



∑

m≥1

βmi
t
(
(EiM)

m−1
)

ji
A
(i)
jj

(
(EiM)

m−1
)

j`







(
A
(l)
``

)−1
X̂`

−
∑

j�i

∑

m≥1

βmi
t
(
(EiM)

m−1
)

ji
A
(i)
jj X̃

(i)
j .

For i = B, there are no agents dominated by Agent B and X̂B = 0.

For i = C, since Agent C has a goal for Agent B, i.e. X̃
(C)
B 6= 0, replacing directly in the previous equation

yields X̂C =
(
−β2νw0

)
.

For i = U , it is easy to check that the contribution of X̂C in the previous equation is nul at the third order.

As a consequence, since Agent U has a goal X̃
(U)
C 6= 0 for Agent C, Equation (15) for i = U rewrites:

X̂U =
∑

m≥1

βm t
(
(EUM)

m−1
)

CU
X̃
(U)
C

=
∑

m≥1

βm t
(
Mm−1

)
CU
X̃
(U)
C .

which at our order, and all calculations done, reduces to

X̂U =


β2




0
−η
κ


+ β3




αν

∆η
−∆κ




 X̃(U)

C +O
(
β4
)
.

• Computation of the random part P̂i(t). Following Equation (16), the random part of P̂i(t) is
given by

P̂i(t) = (1− Ci)−1 Pi(t)
27See Equations (15) and (16)
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where Ci is the matrix

Ci =




∑

m≥1



∑

j�i

βmi
t

(
Aiij

(
(EiM)

m−1
)

ji

)
 ((EiM)m)ii

+
∑

j�i



∑

m≥1

βmi
t
(
(EiM)

m−1
)

ji
A
(i)
jj

(
(EiM)

m−1
)

ji







(
A
(i)
ii

)−1
. (19)

For i = B, no agent is dominated by Agent B and we have CB = 0 and P̂B(t) = PB(t).

For i = C, one has

CC =
∑

m≥1

(
βm t

(
A
(C)
CB

(
(ECM)

m−1
)

BC

))
((ECM)

m
)CC

+
∑

m≥1

βmi
t
(
(ECM)

m−1
)

BC
A
(C)
BB

(
(ECM)

m−1
)

BC
.

Using A
(C)
CB = ν, A

(C)
BB = δ and the expression for ECM computed previously, Equation (19) reduces to

CC = β
2∆+O

(
β4
)

and, we get
P̂C(t) = (1− CC)−1 PC(t) =

(
1− β2∆

)
PC(t)

For i = U , EUM =M and, in the same way, Equation (19), leads to

CU =



∑

m≥1

βm t
(
(M)

m−1
)

CU
ξ
(
Mm−1

)
CU




where
ξ = β + γ

At our order, it is equal to

CU = β
2ξ



0 0 0
0 η2 κη

0 κη κ2


+ β3ξ



α2ν2 0 0
0 −2η2∆ −2κη∆
0 −2κη∆ −2κ2∆


+O

(
β4
)
.

We find the vectors Wi(t) by gathering the results for the X̂i and Ci, and using Equation (14)

Wi(t) = −
(
A
(i)
ii

)−1 (
P̂i(t) + X̂i

)
.

Ultimately, we get :

WB(t) = −PB(t)
WC(t) = −

(
1− β2∆

)
PC(t)− β2νw0 +O

(
β4
)

WU(t) = −




αβ3ν

∆β3η − β2η
κβ2 −∆κβ3


 X̃(U)

C − (1 + CU)PU(t) +O
(
β3
)

27



and

X̃
(U)
C =

γ (w̃ − w0) + σ
(
1−

(
f̃ + w0

))

ζ
.

The matrix M and the vectors Wi being now known, they are used to determine the equilibrium.

3. Determination the equilibrium
[
X̄
]
The equilibrium is defined by the equation :

[
X̄
]
=M

[
X̄
]
+
[
W̄
]

Its solution is

[
X̄
]
= (1−M)−1

[
W̄
]

where

[
W̄
]
=




0
0

X̂U


 =




0

X̂C
X̂U




The expansion of
[
W̄
]
starting with a term of order 2, we need only to compute (1−M)−1 to the first

order:

(1−M)−1 =




1
ν+1

1
ν+1 − α

ν+1 − 1
ν+1 (η −∆βη) 1

ν+1 (κ−∆κβ)
− ν
ν+1

1
ν+1 α ν

ν+1 − 1
ν+1 (η −∆βη) 1

ν+1 (κ−∆κβ)
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



+O

(
β2
)

to find the equilibrium vector to the third order:

[
X̄
]
= β2X̃

(U)
C




1
ν+1 (κ−∆κβ)

2
+ 1

ν+1 (η −∆βη)
2 − α2β ν

ν+1
1

ν+1 (κ−∆κβ)
2
+ 1

ν+1 (η −∆βη)
2
+ α2β ν2

ν+1

αβν

∆βη − η
κ−∆κβ



+

1

ν + 1




1
1
0
0
0



X̃
(C)
B +O

(
β4
)

= β2X̃
(U)
C




K
ν+1 − β να

2+2K∆
ν+1

K
ν+1 + β

ν2α2−2K∆
ν+1

αβν

−η (1−∆β)
κ (1−∆β)



− β

2νw0

ν + 1




1
1
0
0
0



+O

(
β4
)
.

leading directly to the values presented in section 1:
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n̄ = β2
(
K − νw0
ν + 1

− β να
2 + 2K∆

ν + 1

) γ (w̃ − w0) + σ
(
1−

(
f̃ + w0

))

ζ

w̄ = β2
(
K − νw0
ν + 1

+ β
ν2α2 − 2K∆

ν + 1

) γ (w̃ − w0) + σ
(
1−

(
f̃ + w0

))

ζ
+ w0

s̄n = β3αν
γ (w̃ − w0) + σ

(
1−

(
f̃ + w0

))

ζ

s̄w = −β2η (1−∆β)
γ (w̃ − w0) + σ

(
1−

(
f̃ + w0

))

ζ

s̄f = β2κ (1−∆β)
γ (w̃ − w0) + σ

(
1−

(
f̃ + w0

))

ζ

4 Conclusion

This paper developed a dynamic model of interactions between several interacting agents (structures) and
solved as an example the dynamic version of the three-agent model presented in [GLW]. This model allows
to study the action of a “hidden” agent on the stability of a system, and the biases its presence introduces
in an equilibrium. It allows to model apparent irrational behaviors or switches in some agents’ goals and
cyclic behaviors. It can explain paradoxes such as the so-called “independence of irrelevant alternatives” or
sudden changes in goals when external signals, in a given situation, activate structures that will drive the
equilibrium toward an unexpected outcome.

A future, more complete treatment will allow for "unstable" structures switching on and off alternately
via the intrinsic dynamics of the model.

Our results allow to ascribe inconsistent preferences and apparent switches in behaviors to the unknown
action of some strategic structures behind conscious choices. They provide a pattern for the structures’
utilities and interactions. Besides, such a model is a framework in which the capacity of internal sub-
structures to plan their actions could be tested. The cyclicality of the system and the differences between the
behaviors of forward and non-forward looking structures could confirm, through empirical observation, the
existence of forward-looking decisions in some unconscious processes. It should provide a better understanding
of the mechanisms at stake in mental processes.This is left for future research.
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