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Abstract. We consider consumers with the same reservation price, who desire

to buy at most one unit of a good. Firms compete only in prices but there

are other features firms cannot control that would eventually lead an agent to

buy in one firm or another. We introduce such uncertainty in a model of a

price competition game with incomplete information. This competition takes

place under stability and we provide equilibrium existence results. We analyze

different specifications of residual demands which yield further interpretations

that deepen the phenomenon of price dispersion, Bertrand’s paradox and market

power.
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Keywords: Price competition, incomplete information, Nash equilibrium, ap-

proximate equilibrium, price dispersion.
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1 Introduction

This work adds to the literature on price competition which goes back to the

classical Bertrand model that has originated numerous studies with alternative

assumptions on economic primitives. In this scenario of oligopolistic price com-

petition, the formulations of the demands faced by firms play a key role. Different

ways of defining these residual demands lead to different games with a variety

of equilibrium notions and a wide range of results. For instance, different works

considering that the demand faced by each firm depends on the consumers’ in-

formation, lack stability in competition due to the discontinuity of such demands

(see Salop and Stiglitz, 1977, and Varian, 1980). However, it is not easy to argue

that arbitrarily small variations in the prices lead to significant changes in the

demand functions. This was already pointed out by Hotelling (1929); if a seller

gradually increases the price of a good while her rivals keep their prices fixed,

sales will diminish continuously, rather than fall in an abrupt way.

In this paper, we consider a continuum of consumers with the same reservation

price, who desire to buy at most one unit of a good. There is a finite set of firms

that produce and sell such a commodity and compete in prices but the demand

each firm faces does not depend only on prices. There are other features, collected

in a variable that we call “type”, that have influence on determining the mass of

consumers that buy in a firm or another. This type variable is not a strategy for

any firm but represents certain attributes of the stores which may be assessed

differently by consumers and may encompass many different specifications, like

reputation, kind sellers, crowding effects, or even something as simple as having

heating in winter time, or air conditioning in summer.1

Thus, given a vector of prices, the measure of the set of consumers that each

firm absorbs (residual demands) is defined by taking into account the type of

every firm. We assume that these residual demands are continuous and we elab-

orate on consumers’ behavior that ensures such a continuity property, allowing

for gradual shiftings of consumers from one firm to another when they perceive

differences in the price of the good. Thus, sometimes consumers choose a cer-

tain shop even though they are aware that the price of the good is slightly more

1Indeed, we can find somehow the idea of the type variable in Hotelling’s work, when he

mentions some reasons for which a costumer would prefer to buy a good in one shop than in

another even if she pays more for the good, such as location, way of doing business, family

relationship or friendship with the owner, etc.
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expensive than in another because of the effect that the type variable has in the

distribution of demand.

On the other hand, the types of the firms are not necessarily perfectly known.

Therefore, we introduce a game with incomplete information where firms compete

in prices, and where such competition takes place in a stable way. Thus, there is

an exogenous information structure which is defined by a probability distribution

on the set of type vectors which is common knowledge for the firms. When

this probability distribution is degenerated we are in the complete information

scenario.

In this way, we adapt the incomplete information game theoretical setting

proposed by Milgrom and Weber (1985) to a game where firms compete in prices

and the lack of information is associated to the type variable that jointly with the

prices determine the residual demands. Therefore, the incomplete information

our game presents is symmetric. There are papers that also analyze price com-

petition with incomplete information but differ from our approach since they

consider information asymmetries that mainly refer to the fact that firms are

privately informed about their respective cost functions (see, for instance, Spul-

ber,1995, and Bagwell and Lee, 2014).

Under standard assumptions, we show existence of equilibrium in distribu-

tional strategies.2 We also prove that there exists an approximate equilibrium

in pure strategies. We emphasize that, in the incomplete information setting, a

pure strategy of a firm is a function that assigns a price to each type. A game

with demand functions which are linear on prices illustrates this point.

The model we consider opens up the possibility of testing it with different

specifications of the information structure and the demands, which lead to many

different games, explaining a variety of concerns in the light of a price competition

analysis under stability.

First, taking residual demand functions which are linear in prices, and in a

context of incomplete information, price dispersion arises as an equilibrium in

pure strategies, in contrast with other approaches that explain this phenomenon

by means of a mixed strategy equilibrium (see, for instance, Varian, 1980). Then,

we also explore whether the incomplete information framework might give ad-

vantage to some firms over the complete information situation. For it, using the

2We remark that Milgrom andWeber (1985) showed that distributional strategies are simply

another way of representing mixed and/or behavioral strategies.
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same game, we show that in the equilibrium, the expected payoffs of a firm are

higher under uncertainty on its type than in a complete information scenario.

Therefore, an analysis of the expected payoffs under complete or incomplete in-

formation would be an interesting exercise for the firms in order to apply it to

their advertising policy: depending on the result, firms may prefer to advertise

in such a way their type becomes public information, or on the contrary, to do

it trying to keep their type “hidden”.

Next, we consider a particular formulation of the residual demands by sep-

arating the effects of prices and types. Within this setting, we state a game

which not only provides a different way to overcome the Bertrand paradox, but

also shows a situation where arbitrarily small firms have market power. This is

basically due to the shape of the residual demands and not to the cost functions.

Finally, types may become a relevant variable only when the difference in

prices is small enough. Thus, when the differences among prices are sufficiently

large, the effect of types becomes negligible and the firm charging the lowest

price faces all the demand. We state specific demands highlighting this fact. In

this case, we point out that our analysis allows for a better explanation of the

degree of price dispersion.

The remainder of the paper is organized as follows. In Section 2, we present

an incomplete information game where a finite number of firms compete in prices

and there is stability in competition. We also show existence results for different

notions of equilibrium. In Section 3, we analyze a more particular situation

where the demands faced by the firms depend separately on types and prices. In

Section 4, we study a game in which the type becomes the relevant variable only

when prices do not differ too much. Each section includes different specifications

of the residual demands which illustrate our general approach and give rise to a

variety of further results and interpretations. The demands that we consider in

each example can be explained by a behavior of consumers taking into account

perturbed prices as we state in a final appendix.
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2 The game

Let us consider a continuum of consumers3 represented by the interval [0, 1], who

desire to buy, at most, one unit of a commodity. Every consumer has the same

reservation price r, which is the maximum price they are willing to pay for the

good.

There are n firms or stores that produce the commodity. Let N = {1, . . . , n}.

Each firm i ∈ N has a continuous cost function Ci : [0, 1] → IR+ defined on

the mass of customers. Firms have market power and compete in prices. Let

Ki be a closed real subinterval of [0, r] where firm i selects a price4, and let

K = K1 × . . .×Kn. We consider a scenario with stability in competition in the

sense that small changes in prices do not lead to abrupt modifications in the

residual demands. This relies on the fact that the demand each firm faces does

not depend only on prices; there are other features that are collected in a variable

that takes values in a real compact set Θ and that we refer to as “type”.5

The type variable is not necessarily perfectly known by firms. Thus, the

information structure is given by a probability measure η on Θn which is assumed

to be common knowledge. Let ηi, i = 1, . . . , n, be the marginal distributions of

η.

In this incomplete information setting, a strategy is a complete plan of actions

that covers every contingency of the game. That is, a pure strategy for firm i

is a measurable function from Θ to Ki. Moreover, a distributional strategy6 for

the firm i is given by a probability measure on Θ × Ki for which the marginal

distribution on Θ is ηi, that is, the one specified by the information structure.

Note that pure strategies are in one-to-one correspondence with distributional

strategies whose conditional distributions are Dirac measures for each type.

3Note that the consideration of a continuum of consumers allows us to provide reasons for

their non-strategic behavior. We might also consider a large number of consumers as in Varian

(1980).
4For instance, if we consider a technology resulting in strictly decreasing average costs, we

may consider Ki = [δi, r], where δi is the minimum average cost Ci(1).
5The type variable encompasses several features. For instance, it may be interpreted in

terms of reputation, transmission of the degree of satisfaction by previous clients, skills of

each firm’s employees or any other characteristic of the firm itself which affects the number of

customers it is able to get.
6See Milgrom and Weber (1985) for a discussion on distributional, mixed and behavioral

strategies.
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To define the payoff functions of the game, let di(θ, p) denote the demand

that firm i faces whenever the vector of types is θ and firms choose prices p. We

point out that, given a strategy profile of prices p and the vector of types θ, the

aggregate demand equals 1, that is,
∑n

i=1 di(θ, p) = 1 for every (θ, p) ∈ Θn ×K.

We also assume the following continuity property:

(A.1) di : Θ
n ×K → [0, 1] is a continuous function for every firm i = 1, . . . , n.

A consumers’ behavior leading to continuous demands. We stress

that different behaviors of consumers may ensure that the above assumption

holds since when the firms charge prices below r, the consumers choose one firm

or another depending on the vector of prices and types. For instance, consider

a situation where consumers decide in which firm to buy taking into account

perturbed prices, that is, prices that are adjusted by the types of the firms.

Let ρ̂ : Θn × K → IR
n
+ be the price adjustment function. Indexing these prices

in a non-decreasing order we obtain ρ(θ, p) =
(

ρ(1)(θ, p), . . . , ρ(n)(θ, p)
)

, where

ρ(i)(θ, p) ≤ ρ(i+1)(θ, p). Therefore, when (θ, p) is the vector of types and prices,

ρ(1)(θ, p) is the minimum perturbed price.7 Then, consumers present diverse

degree of tolerance regarding the significant differences of the modified prices

with respect to the minimum perturbed price. To be precise, given (θ, p), the

differences ∆i = ρ(i)(θ, p)− ρ(1)(θ, p) define a partition of the interval [0, 1] given

by Ii(θ, p) = [∆i,∆i+1) if i < n(θ, p) = max{j ∈ N |∆j < 1} and In(θ,p)(θ, p) =
[

∆n(θ,p), 1
]

. Consumers in Ii are indifferent to buy in the set of shops {(j)|j ≤ i}.

In other words, consumer t selects with the same probability any firm whose

perturbed price belongs to
[

ρ(1)(θ, p), ρ(1)(θ, p) + t
)

since she dismisses the firms

whose modified prices differ from the minimum more than t. Thus, consumers

are heterogeneous about the significant differences of perturbed prices as they

are perceived. In this case, we have

d(i)(θ, p) =















n(θ,p)
∑

j=i

µ(Ij(θ,p))

j
if (i) ≤ n(θ, p)

0 for every (i) > n(θ, p)

We remark that the continuity of ρ̂ implies the continuity of the residuals

demands. However, this continuity of the perturbed prices is not a necessary

condition to get continuous residual demands. Note also that different perturbed

7Note that it is possible to have several perturbed prices equal to the minimum.
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prices could lead to the same demand each firm faces. The first example stated

in Section 4 shows these points.

Despite the consumers’ behavior we have explained is not the only one that

guarantees the continuity of the residual demands, for all the examples we state

along this paper, we specify in an appendix the perturbed prices that eventually

lead to the corresponding demand each firm faces, and we use the same notation

previously stated.

Now we state the following regularity assumptions on the information struc-

ture of the game which allow us to state the players’ expected payoff (firms’

expected profits) in a convenient manner and, moreover, to get existence re-

sults for both distributional strategy equilibria and pure strategy approximate

equilibria, which we define later on.

(A.2) The informational variable θi belongs to a compact set Θ ⊂ IR+ for every

firm i = 1, ..., n.

(A.3) The measure η is absolutely continuous with respect to η̂ = η1 × . . .× ηn.

Given a profile (ν1, . . . , νn) of distributional strategies, assumption (A.3) al-

lows us to write the expected payoff Πi for firm i as follows:

Πi(ν1, . . . , νn) =

∫

Θn×K
πi(θ, p) f(θ) dν1 . . . dν1

where f is the density of η with respect to η̂ and πi(θ, p) = di(θ, p)pi−Ci(di(θ, p)).

Note that the continuity of demands guarantees that the functions πi, i = 1, . . . , n,

are continuous, which is a standard condition in games with incomplete informa-

tion. Observe also that assumption (A.2) guarantees the equicontinuity property

of the functions (θ, p) → πi(θ, p) which is the usual hypothesis to obtain purifi-

cation results.

The price competition game G with incomplete information is defined by the

informational structure η, the strategy set Ki for each firm i = 1, ..., n and the

payoff functions Πi, i = 1, ..., n.

A profile (ν1, . . . , νn) of distributional strategies is an equilibrium of the game

G if for every firm i one has Πi(ν1, . . . , νn) ≥ Πi(ν1, . . . , ν
′
i, . . . , νn) for every

alternative distributional strategy ν ′
i.
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Theorem 2.1 The set of equilibrium points in distributional strategies for the

game G is non empty.

Proof. First, assumption (A.1) guarantees that the functions πi, 1 = 1, . . . , n

are continuous. By assumption (A.2) the type set is compact and therefore the

continuity of πi(θ, ·) is uniform over types.

Second, by assumption (A.3) the game G has absolutely continuous informa-

tion. Therefore, we conclude that there exists a distributional strategy equili-

brium for the game G (see Theorem 1 in Milgrom and Weber, 1985).8

Q.E.D.

An ε-equilibrium point of the game G is an n-tuple (ν1, . . . , νn) such that

Πi(ν1, . . . , νn) + ε ≥ Πi(ν1, . . . , ν
′
i, . . . , νn) for every firm i and every alternative

strategy ν ′
i. That is, we have an approximate equilibrium (i.e., ε-equilibrium)

whenever every firm is not able to increase its expected profit more than ε by

deviating unilaterally.

Theorem 2.2 If each ηi is atomless, then for every ε > 0 there exists a pure

strategy ε-equilibrium point for the game G.

Proof. Since each ηi is atomless, it follows that for every player, the set of de-

generated distributional strategies (those which are in one-to-one correspondence

with pure strategies) is dense in her set of distributional strategies (see Theo-

rem 3 in Milgrom and Weber, 1985). This denseness property together with the

equicontinuity properties of the functions πi allow us to conclude, as in Milgrom

and Weber (1985), that for any mixed strategy equilibrium we can find an ε-

equilibrium in pure strategies which is actually arbitrarily close to the former

(for the weak∗ topology).

Q.E.D.

For the special situation where the payoff function for each firm depends only

on her own type and each firm’s strategy set is restricted to a finite subset,

Theorem 4 in Milgrom and Weber (1985) allows us to conclude that the game

with incomplete information has an equilibrium point in pure strategies.

8We remark that this existence result by Milgrom and Weber (1985) was extended by Balder

(1988) to a setting with abstract type spaces under weaker assumptions in the payoff functions

and the proofs are based in the theory of weak convergence for transition probabilities. See

also Balder (2004) for more recent developments.
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Our model allows us to specify different residual demands, which lead to

different games, each of them shedding light on a precise issue in economic theory

within an industrial economics framework. This is the aim in the reminder of

the paper.

Example 1: Price dispersion as pure strategy equilibrium. Consider

two firms competing in prices and facing residual demands that depend continu-

ously on prices and types. Both have just fixed costs and choose prices in [0, r],

where r is the reservation price of their customers represented by the unit in-

terval [0, 1]. The type of each firm takes values in the closed interval [1, 2].9 The

demands associated to firms are given by

d1(p1, p2, θ1, θ2) =
1

2
−

θ2
θ1 + θ2

p1 +
θ1

θ1 + θ2
p2 and

d2(p1, p2, θ1, θ2) =
1

2
−

θ1
θ1 + θ2

p2 +
θ2

θ1 + θ2
p1

if these values are both positive, otherwise one of the firms absorbs all the demand

and the other sells nothing.

Consider the informational structure such that the type of firm 1 is known,

namely, θ1 = c, while the type of firm 2 is uniformly distributed in [1, 2]. Then,

some calculations show that there is an equilibrium in pure strategies given by

p̄ =
1

∫ 2

1
θ

θ+c
dµ(θ)

=
1

1 + c ln 1+c
2+c

and p(θ) =
2θp1 + θ + c

4c
,

where p̄ is the price charged by firm 1 and p : [1, 2] → [0, r] is the pure strategy for

firm 2 defining the equilibrium. Note that since there is incomplete information

regarding the type of firm 2, a pure strategy for this firm assigns a price to

each type. We remark that, in this case, price dispersion arises as pure strategy

equilibrium of a game with incomplete information.

Observe that when the informational structure η is given by a Dirac measure

on the set of vector of types Θn, there exists just one possible profile of types

θ ∈ Θn. Therefore, in this situation, the uncertainty disappears and then we

recast a complete information game, where the payoff functions are πi(θ, ·) :

K → IR, i = 1, . . . , n. The continuity of these functions ensures existence of

Nash equilibrium in mixed strategies.10 Furthermore, if for every i, the profit

9We consider Θ = [1, 2] for simplicity.
10We recall that, in this normal form game, a mixed strategy for firm i is a probability

measure on the set of pure strategies Ki which is compact and convex.
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πi(θ, ·) is also quasi-concave in the strategy (price) selected by firm i, there is

Nash equilibrium in pure strategies. Therefore, our framework paves the way to

compare equilibria with complete and incomplete information.

Complete vs. incomplete information. Consider again the previous

game but with complete information. For every vector of types (θ1, θ2), there is

an equilibrium in pure strategies, given by p∗1 =
θ1+θ2
2θ2

and p∗2 =
θ1+θ2
2θ1

, which leads

to profits π∗
1 = θ1+θ2

4θ2
and π∗

2 = θ1+θ2
4θ1

for firms 1 and 2, respectively. Then, we

find price dispersion provided that firms with different attributes charge different

prices, whereas in the incomplete information setting price dispersion appears as

an equilibrium in pure strategies (where each firm sets a price for every type in

Θ). We remark that, in this case, the ratio of prices is given by the ratio of types,

which determines the degree of dispersion of prices.

To compare, let us return to this example with incomplete information. Com-

puting the expected payoffs at the equilibrium, we have Π∗
1 = p̄

4
= 1

4(1+c ln 1+c
2+c)

and Π∗
2 = 3p̄2

8c
+ p̄(3−2c)

8c
+ 3

32c
+ 1

16
for firms 1 and 2, respectively. It is not hard

to show that the equilibrium payoff Π∗
1 of firm 1 is increasing in its own type,

whereas the equilibrium profits Π∗
2 of firm 2 decreases as the type of their op-

ponent increases. Moreover, the minimum equilibrium expected payoff of firm

2, that is attained when c = 2, is higher than the maximum payoff that firm

2 can obtain at equilibrium with complete information, which is attained when

θ1 = 1 and θ2 = 2. A conclusion from this fact is that firms may prefer a sit-

uation with incomplete information and this preference may have implications

regarding their advertising policy.

3 Separating the effects of types and prices

Let us consider a particular game where the demand that each firm gets depends

separately on the two kinds of variables that we have considered, namely, prices

and types. The way in which the prices affect the demands is captured by

a function denoted by α while the implication of the types is expressed by a

function β. The overall effect is then stated by a convex combination of these

functions, α and β, depending on the profiles of prices and types, respectively.

To be precise, α is a continuous function fromK to [0, 1]n, where the parameter

αi(p) defines the part of demand faced by firm i that is determined by the profile
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of prices selected by the stores. On the other hand, given a vector of types

θ, βi(θ) reflects the proportion of consumers that firm i gets coming from such

types. That is, a realization of types θ determines β(θ) ∈ [0, 1]n which, joint

with the previous function α, affects the residual demands.

Finally, the demands’ dependence on prices and types is given by a convex

combination of the aforementioned functions α and β. The balance of the corre-

sponding effects is given by the weights defining such a convex combination which

may depend on the prevailing prices and types. Thus, for each (θ, p) ∈ Θn ×K,

let us consider the parameter λ(θ, p) ∈ [0, 1]. Then, the residual demand for each

store i is

di(θ, p) = λ(θ, p)αi(p) + (1− λ(θ, p))βi(θ).

Let us consider this particular formulation of the residual demands in the

game with incomplete information described in the previous section. Applying

Theorems 2.1 and 2.2 we have existence of equilibrium in distributional strategies

and also of approximate equilibrium in pure strategies.

Note that taking λ(θ, p) = 1 for every (θ, p) there is no effect of types and

therefore we have a game with no incomplete information. In this case, if we con-

sider a duopoly, we can obtain as a particular situation the classical Bertrand’s

model resulting in the Bertrand paradox. In addition, as the next example points

out, this way of separating the effects of types and prices gives light to some other

interesting features of price competition even when one considers complete in-

formation. Actually, the following price competition game highlights a way of

overcoming the Bertrand paradox that differs from those that have already been

considered in the literature. Furthermore, the same game allows us to illustrate

a situation where arbitrarily small firms have market power as it happens in

monopolistic competition situations à la Chamberlin (1933, 1937).

Example 2. Take n > 1 firms with the same technology and consumers in

[0, 1]. For a set of consumers of measure m, the cost function for every firm is

C(m) = cm+F, where F denotes the fixed costs and c < r. Firms choose prices

in the compact set [c, r].

Let θ = (θ1, . . . , θn) be a vector of types of firms. For each profile of prices

p = (p1, . . . , pn), the demand faced by firm i is di(θ, p) = λαi(p) + (1− λ) βi(θ),

where αi(p) =
1

n−1

(

1− pi∑
j∈N pj

)

and βi(θ) =
θi∑

j∈N θj
. Note that λ(·) is constant

and equals λ ∈ (0, 1). Then, the profit function for each firm i ∈ N = {1, . . . , n}

is given by

12



πi(θ, p) = pi

(

λ
n−1

(

1− pi
p̂

)

+ (1−λ)θi
θ̂

)

− C
(

λ
n−1

(

1− pi
p̂

)

+ (1−λ)θi
θ̂

)

,

where p̂ =
∑

j∈N pj and θ̂ =
∑

j∈N θj.

Some calculations show that the payoff function πi of firm i is strictly increas-

ing in the price selected by firm i. That is, ∂πi

∂pi
is positive for every i. Therefore,

independently of the number n of firms and their types, the unique Nash equili-

brium in pure strategies is the profile where all the firms charge the reservation

price r.

In this situation, for the case of a duopoly, Bertrand paradox is overcome.

Moreover, when the number of firms is enlarged, the equilibrium is also attained

when all the firms choose the reservation price r > c, although the profits of

every firm i tend to zero when n increases. Therefore, this example also illus-

trates a situation of monopolistic competition in the sense that arbitrarily small

firms have market power.11 Moreover, the result is the same when there are

no fixed costs and then we have constant returns to scale. Thus, our remark

is in accordance with Chamberlin (1933, 1937), who pointed out, in contrast to

Kaldor (1935), that what marks the contrast between monopolistic competition

and perfect competition is the shape of demand curve and not the shape of the

cost curve.

4 Types affect demand only if prices are similar

In many markets the type variable becomes really effective or shapes the demand

functions only when prices belong to a certain threshold. In other words, when

prices differ too much the type is not a relevant variable and the firms that offer

the lowest price face all the demand. However, when prices are close, individuals

are more vulnerable to the abilities of firms to attract costumers.

To address this feature, let us consider again the game presented in Section 2

where demand di that firm i faces is a continuous function on types and prices

(θ, p). Given a vector of prices p ∈ K that firms select, let m(p) denote the

minimum price. Now, let us consider a threshold ε > 0 and define the new

11The definition of the residual demands that underlies this imperfect competition situation

is not an explicit commodity differentiation approach, even though the variables defining these

demands may be interpreted as a degree of “differentiation of firms”.

13



residual demands as follows:

dεi (θ, p) =







di(θ, p) if pi ≤ m(p) + ε

0 if pi > m(p) + ε

If the above demands are continuous, the additional assumptions stated in

Section 2 allow us to apply Theorems 2.1 and 2.2 obtaining existence of equili-

brium.

To illustrate how types affect demands only if prices are similar, we consider

the next two different scenarios where the demands satisfy the aforementioned

continuity property.

Example 3. Consider two firms with types θ1 and θ2 for which the demand

functions are given as follows: If the difference between the prices is large (i.e.,

above a given threshold) then the firm charging the lowest price gets all the

demand, but when this difference is small (i.e., below the given threshold) then

the demand is shared by both firms in such a way that the firm with the better

type will face a higher demand. To be precise, without loss of generality, let

θi ≥ θj. Let us fix a threshold ε > 0 and consider the following residual demands:

di(θ1, θ2, p1, p2) =











1 if pi < pj − ε

1−
(pi−pj+ε

2ε

)1+θi−θj
if | pj − pi |≤ ε

0 if pi > pj + ε

dj(θ1, θ2, p1, p2) = 1− di(θ1, θ2, p1, p2).

We observe that when θi < θj and pi < pj − ε firm i gets all the demand (i.e.,

firms j sells nothing) but once it increases the price so that | pi − pj |≤ ε, its

residual demand decreases very quickly, equivalently, the demand faced by firm

j increases promptly. Thus, the type variable not only provides stability in the

demands but also determines the shape of such demands. (See next figures).
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In the figure on the left (resp. right) d1 (resp. d2) is represented taking

ε = 3/2, θ1 = 1 and θ2 = 4.

When θ1−θ2 = 1, we obtain the following Nash equilibrium: p1 =
(

3
√
17−5
8

)

ε =

0.92ε and p2 =
p1+ε

3
= 0.64ε. However, when both firms have the same type, we

have that the equilibrium is p1 = p2 = ε. Note that when types are different

(θ1 − θ2 = 1) we obtain price dispersion. Moreover, if we understand price dis-

persion as the difference between both prices, such a dispersion is increasing

with ε. Note also that when types are equal, we find no dispersion of prices at

equilibrium.

We conclude that at equilibrium the difference between prices is less than the

threshold. Moreover, when types are distinct, then the prices can actually be

different and, as we have obtained in the example, the difference depends on the

threshold. Thus, the type variable can explain not only price dispersion in the

sense that at equilibrium different prices can arise, but also the degree of price

dispersion, that is, how different the equilibrium prices can be.

Let us state a final specification of the residual demands that separates the

effect of prices and types (as in the previous section) and, in addition, types

affect demands only if prices are similar.

Example 4. Consider two firms producing with null variable costs. Given

types θ = (θ1, θ2) and prices p = (p1, p2), the residual demands are di(θ, p) =

λ(p)αi(p) + (1− λ(p))βi(θ), i = 1, 2, where

λ(p1, p2) =











1 if |p1 − p2| > ε

|p1−p2|
ε

if |p1 − p2| ≤ ε
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αi(p1, p2) =











1 if pi < pj

1/2 if pi = pj

0 if pi > pj

and βi(θ1, θ2) =
θi

θ1 + θ2

That is, the demands faced by firm 1 and 2 are

d1(θ1, θ2, p1, p2) =























1 if p1 − p2 < −ε
(

1− |p2−p1|
ε

)

θ1
θ1+θ2

+max{0, p2−p1
ε

} if |p1 − p2| ≤ ε

0 if p1 − p2 > ε

d2(θ1, θ2, p1, p2) = 1− d1(θ1, θ2, p1, p2).

Note that when prices differ more than ε the demands do not depend on

types. However, as we show below, at the equilibrium the prices differ less than

ε and they depend basically on the ratio τ = θ1/θ2. Thus, first we calculate the

equilibrium when types are different and then when they are equal.

To obtain the best response functions when types differ, two cases are consid-

ered: and θ2 > θ1 and θ1 > θ2, respectively.

For the case θ2 > θ1, some calculations allow us to write the best response

functions as follows:

Reaction function for firm 1:























p1 =
p2
2
+ ε

2
if p2 ∈ (0, ετ)

p1 =
p2
2
+ ε

2
τ if p2 ∈ [ετ, ε(2 + τ))

p1 = p2 − ε if p2 ≥ ε(2 + τ)

Reaction function for firm 2:



































p2 =
p1
2
+ ε

2
if p1 ∈ (0, ε)

p2 = p1 if p1 ∈ [ε, ετ−1)

p2 =
p1
2
+ ε

2
τ−1 if p1 ∈ [ετ−1, ε(2 + τ−1))

p2 = p1 − ε if p1 ≥ ε(2 + τ−1)
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The figure above represents the reaction functions for firm 1 (red line)

and for firm 2 (blue line), taking θ1=1, θ2 = 2, and ε = 1.5

For the case θ1 > θ2, the best response functions are as follows:

Reaction function for firm 1:



































p2 = 2p1 − ε if p1 ∈
[

ε
2
, ε
)

p2 = p1 if p1 ∈ [ε, ετ)

p2 = 2p1 − ετ if p1 ∈ [ετ, ε(1 + τ))

p2 = p1 + ε if p1 ≥ ε(1 + τ)

Reaction function for firm 2:























p2 =
p1
2
+ ε

2
if p1 ∈ (0, ετ−1)

p2 =
p1
2
+ ε

2
τ−1 if p1 ∈ [ετ−1, ε(2 + τ−1))

p2 = p1 − ε if p1 ≥ ε(2 + τ−1)

Note that in this second situation, to simplify the expressions, the reaction

function of firm 1 is written with p2 in terms of p1.
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p1
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Reaction functions for firm 1 (red line) and for firm 2 (blue line),

taking in this case θ2=1, θ2 = 1, and ε = 1.5

When τ = θ1/θ2 > 1, the equilibrium of this game is p1 = ε
3
(1 + 2τ) and

p2 = ε
3
(2 + τ) . However, when τ < 1, the equilibrium is p1 = ε

3

(

1 + 2
τ

)

and

p2 =
ε
3

(

2 + 1
τ

)

. Then, at equilibrium, the firm with higher type selects a higher

price. Moreover, the ratio of prices γ = p1/p2 does not depend on the threshold

ε and just depends on the ratio of types τ. To be precise, γ = 1+2τ
2+τ

if τ > 1

whereas γ = 2+τ
1+2τ

if τ < 1 instead. Therefore τ , and in turn, the dispersion of

prices is uniformly bounded on types. As in the example 3, when both firms are

of the same type (i.e., τ = 1), they charge the same price equal to ε.

In the setting addressed in this section, when ε = 0 we have the classical

Bertrand’s price competition model. Moreover, when ε goes to zero, the contin-

uous demands dεi converge to the discontinuous residual demands, leading to the

Bertrand paradox. Thus, our approach provides a way of solving smoothly such

a paradox. This is due to the presence of stability in competition, jointly with

the consideration that types matter only when prices are similar.

5 Concluding remarks

We have provided a game with incomplete information, where firms compete in

prices, for which we have shown existence of different kinds of equilibrium. We
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have also specified residual demand functions, as particular cases of our model,

that lead to different games which are used to explain several topics in economic

theory. We have considered the case when the effects of types and prices enter

separately in the residual demands, and also the situation where the types matter

only if the prices belong to a certain threshold. We have also drawn conclusions

regarding each case. For instance, we have provided alternative explanations to

those already present in the literature for the phenomenon of price dispersion and

also for Bertrand’s paradox. In addition, our approach gives room to compare

the equilibria with complete and incomplete information.

We remark that the argument we have stated on perturbed prices has allowed

us to describe a behavior of consumers which results in continuous residual de-

mands (i.e. assumption (A.1) holds); however other different approaches could

also guarantee stability in competition.

The different specifications of the residual demands that we have considered

lead to a decrease in the competition in the sense that the equilibrium of the game

deviates from the competitive equilibrium and therefore allows for the analysis

of several issues where market power is strengthened through the type variable.

Appendix

In this appendix we specify the perturbed prices that lead to the different con-

tinuous residual demands of the examples we have addressed along this paper.

That is, adapting the consumers’ behavior described in Section 2 to the per-

turbed prices we state below, we obtain the corresponding demands we have

considered as particular cases in each of the four examples we have studied.

Example 1. Consider the perturbed prices ρ̂(p1, p2, θ1, θ2) =
(

2θ2
θ1+θ2

p1,
2θ1

θ1+θ2
p2

)

.

We observe that whenever | ∆2 |=| ρ(2)(p, θ) − ρ(1)(p, θ) |< 1, both firms face

the positive demand that we have analysed in the first example. Note that the

perturbed price ρ̂i is increasing in the price selected by firm i and in the type of

the other firm whereas is decreasing in its own type. Note also that when both

types are equal there is no adjustment of prices, that is, the perturbed prices are

those that each firm chooses.
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Example 2. Let λ ∈ [0, 1]. For each vector of types θ = (θ1, . . . , θn) and

profile of prices p = (p1, . . . , pn), let us define, for each firm i, the signals si(θ, p) =
λ

n−1
pi
p̂
− (1 − λ) θi

θ̂
, where p̂ =

∑

j∈N pj and θ̂ =
∑

j∈N θj. These signals define a

ranking for the perturbed prices where the effect of prices and types is separated.

To be precise, we index the vector of signals in a non-decreasing order, i.e.,

s(1)(θ, p) ≤ s(2)(θ, p) ≤ . . . ≤ s(n)(θ, p) and the signal indicates an order for the

perturbed prices which are given by:

ρ(i)(θ, p) =



















0 if i = 1
(

1− λn
n−1

)

+ ns(n)(θ, p) if i = n

ρ(i+1)(θ, p)− i
(

s(i+1) − s(i)
)

otherwise

The above perturbed prices conduct to the continuous residual demands that

we have studied in the second example.

Example 3. Consider the perturbed prices given by

ρ̂(p1, p2, θ1, θ2) =



































(0, 1) if p1 < p2 − ε
(

2
(

p1−p2+ε

2ε

)1+θ1−θ2 , 1
)

if θ1 ≥ θ2 and | p2 − p1 |≤ ε
(

2− 2
(

p2−p1+ε

2ε

)1+θ2−θ1 , 1
)

if θ1 < θ2 and | p2 − p1 |≤ ε

(2, 1) if p1 > p2 + ε

where ε > 0 is the threshold considered in our example 3.

Note that when the prices selected by both firms coincide, the perturbed prices

are adjusted by the vector of types in a continuous way avoiding instability. In

addition, when either p1 < p2−ε or p1 > p2+ε, the perturbed prices are constant

and the difference is 1 implying that one of the firms has all the demand. How-

ever, when the difference between the prices charged by the firms is small (i.e.,

| p2 − p1 |≤ ε), the firm with a higher type is associated with a lower perturbed

price and therefore will face a larger demand. These perturbed prices lead to

the continuous residual demands considered in the third example. Moreover,

we remark that we obtain the same demands if we consider the same perturbed

prices except when θ1 < θ2 and | p2 − p1 |≤ ε that are
(

1, 2
(

p2−p1+ε

2ε

)1+θ2−θ1
)

.

Therefore, we show that to obtain continuous residual demands we do not need

continuity of the perturbed price and, moreover, different perturbed prices can

result in the same residual demand.

Example 4. The residual demands in the Example 4 can be obtained by
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defining the following perturbed prices:

ρ̂(θ1, θ2, p1, p2) =























(1, 2) if p1 − p2 < −ε
(

1, 2
((

1− |p2−p1|
ε

)

θ1
θ1+θ2

+max{0, p2−p1
ε

}
))

if |p1 − p2| ≤ ε

(1, 0) if p1 − p2 > ε
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