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Introduction

The identification and estimation1 of production functions using data on inputs and outputs is
among the oldest empirical problems in economics dating back at least as early as the 19th century
(Chambers, 1997). While “production function” formulation appears to be a natural framework of
modeling single-output production processes, distance functions (Shephard, 1953, 1970) are more
popular among researchers in the instances of multiple-output multiple-input production. The
primary benefit of modeling the production process via distance functions is that it frees researchers
from having to make a judgment call of determining which output (input) is to be treated as a left-
hand-side endogenous variable in the production function (input requirement function) since the
results are not invariant to these choices. However, like the production functions (Marschak and
Andrews, 1944), distance functions suffer from an inherent endogeneity problem if inputs and/or
outputs are endogenous to the firm’s decision-making.2

When estimating the input distance function (IDF) researchers explicitly or implicitly assume
that outputs are exogenous to the firm’s input allocation decisions. Such an assumption is usually
justified by either the premise of cost minimizing behavior by firms (e.g., Kumbhakar et al., 2008)
or the structure of the industry (e.g., Das and Kumbhakar, 2012). However, the endogeneity3 of the
input ratios, which enter the IDF under the linear homogeneity normalization, is often assumed away
with little or no justification (e.g., Lambert and Wilson, 2003; Karagiannis et al., 2004; Atsbeha
et al., 2012). Since the assumption of exogenous outputs appears to be somewhat more reasonable4

than that of exogenous inputs required by the output distance function (ODF) [an alternative to
the IDF], in this article we focus on the issues related to the estimation of the IDF only.

In this article, we propose addressing the endogeneity of inputs in the IDF formulation of the
production process from the perspective of the economic theory. More specifically, we suggest
invoking the assumption of the firm’s cost minimizing behavior not only to justify the treatment of
outputs as exogenous but to also tackle the endogeneity of the input ratios in the IDF. We do so
by augmenting the IDF of a flexible translog form with the set of independent first-order conditions
(FOCs) from the cost minimization problem, which we then estimate as a system of simultaneous
equations via full-information maximum likelihood (FIML). Our identification strategy relies on
competitively determined input prices as a source of exogenous variation. The model we develop
also accommodates both technical and (input) allocative inefficiencies amongst firms.

We show that in the presence of allocative disturbances, the input ratios are functions of not only
input prices and outputs but also allocative inefficiencies. Consequently, if allocative inefficiencies
are correlated with technical inefficiency and/or a random productivity shock in the IDF, the
standard single-equation methods applied to the IDF are likely to produce inconsistent estimates of
both the production technology and stochastic inefficiency. Even if the input ratios are uncorrelated
with the composite error term in the IDF, there are advantages to using a system approach. First,
since additional equations (the FOCs) do not contain any extra parameters, the system-based

1Throughout this article, we focus on the estimation of stochastic production processes only. Our discussion of
endogeneity and methods of tackling it does not apply to the fitting of deterministic production and/or distance
functions by the definition of the latter.

2Färe and Primont (1995) deal with theoretical underpinnings of the multi-output multi-input distance function
models. However, since they provide little coverage of the estimation of distance functions, the endogeneity issue
never arises in their discussion.

3That is, the correlation with the error term as a result of the simultaneity of the input allocation.
4The cost minimization premise is in line with the economic theory. Furthermore, it may be relatively easier to justify
exogeneity of outputs in heavily regulated industries, such as airlines or electric power distribution, since outputs are
clearly not firms’ choice variables in these instances. Admittedly, the endogeneity in outputs may still continue to
persist even in the case of such regulated industries should there be an omitted variable that correlates with output
quantities included in the regression equation. We thank an anonymous referee for pointing this out.
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estimator is more efficient. Second, technological metrics obtained via the cost system approach are
likely to be more meaningful because the economic behavior is embedded into the system through
the FOCs.

The endogeneity in the stochastic IDF has also been considered in a somewhat different frame-
work by Atkinson and Primont (2002) and Atkinson et al. (2003). The two papers propose ad-
dressing the endogeneity problem using Generalized Method of Moments (GMM). In the case of
a single-equation IDF, Atkinson et al. (2003) suggest using input (and possibly output) prices to
instrument for inputs (and outputs). Similar to our article, Atkinson and Primont (2002) estimate
a cost system of the IDF where, consistent with the cost minimization assumption, input prices and
output quantities are instead used as instruments. In practice, the GMM approach is applicable
only if technical inefficiency is to be treated as a fixed-effect type inefficiency. That is, one needs to
assume technical inefficiency to be either time-invariant or parameterized as a firm-specific function
of time in the spirit of Cornwell et al. (1990). In this article, we explore an alternative approach
to modeling technical inefficiency, where the latter is treated as a time-varying random effect in
the spirit of a stochastic frontier analysis. Hence, unlike Atkinson and Primont’s (2002) GMM
formulation, we estimate the system of the IDF and cost-minimizing FOCs via FIML.

We note that the estimation of the IDF via a FIML system approach has also been discussed
in several related papers. For instance, Karagiannis et al. (2006) consider a system of the IDF
along with share equations where allocative inefficiency is defined in terms of shadow input prices.
Other studies whose primary interest lies in quantifying allocative errors (as opposed to resolving
the endogeneity issue) via a system approach using share equations have been found to still suffer
from the endogeneity problem (see Coelli et al., 2008, for an excellent review). Our article differs
from the earlier work in at least two respects. As opposed to considering share equations, our
primal system contains the FOCs (in explicit form) where we use observed input prices.5 Further,
we model allocative inefficiency in the spirit of Schmidt and Lovell (1978), i.e., in terms of input
quantities as opposed to input prices.6

Our contribution to the literature is threefold. First, we offer a flexible system approach to a
consistent estimation of the IDF based on the (behavioral) cost minimization assumption consistent
with the economic theory, while also allowing for a random-effect type technical inefficiency. The
model we develop also accommodates allocative inefficiency. Second, we present the methodology
for quantifying the cost of allocative inefficiency obtained from the primal IDF system. Lastly, we
showcase our model by applying it to study the production technology of Norwegian dairy farms
during the 1991–2008 period.

Production Technology under Cost Minimization

Consider a production process in which K inputs X ∈ R
K
+ are transformed intoM outputs Y ∈ R

M
+

via the production technology described by

Af(θX, λY) = 1 , (1)

where f(·) is the transformation function, and A captures observed and unobserved factors which
affect the transformation function neutrally. We specify the production technology in terms of the
transformation function f(·) because the latter is more general than the production/distance/input
requirement function (e.g., see Caves et al., 1981). Here, scalars θ ≤ 1 and λ ≥ 1 capture input

5The unavailability of input prices is the primary reason why Karagiannis et al. (2006) and others consider a system
of share equations, which are not based on the cost minimizing FOCs unlike our approach.

6This also differentiates our cost system from that considered by Atkinson and Primont (2002).
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and output technical inefficiency, respectively. For instance, if θ = 0.9, inputs are said to be 90%
efficient, i.e., the use of each input could be reduced by 10% without reducing outputs if inefficiency
is eliminated. Similarly, if λ is 1.1, each output could be increased by 10% without increasing the
use of any input if inefficiency is eliminated.

Since in general θ and λ are not jointly identified, researchers consider either of the three special
cases (depending on the choice of normalization): (i) input-oriented technical inefficiency θ < 1 in
the case of λ = 1; (ii) output-oriented technical inefficiency λ > 1 in the case of θ = 1; and (iii)
hyperbolic technical inefficiency corresponding to the case of λθ = 1 which seeks a simultaneous
expansion in outputs and a reduction in inputs at the same rate. All three are related to one
another (e.g., see Färe et al., 2002; Kumbhakar, 2013). In this article, we focus on the first case,
i.e., identifying and consistently estimating the input-oriented technical inefficiency.

Specifically, defining Ŷ ≡ λY and X̂ ≡ θX, we can rewrite the transformation function (1) in
the logarithmic form, i.e.,

lnA+ ln f(Ŷ, X̂) = 0 . (2)

We assume that ln f(·) takes the translog functional form, i.e.,

ln f(Ŷ, X̂) =
∑

m

αm ln Ŷm +
1

2

∑

m

∑

n

αmn ln Ŷm ln Ŷn +
∑

k

βk ln X̂k +

1

2

∑

k

∑

l

βkl ln X̂k ln X̂l +
∑

m

∑

k

γmk ln Ŷm ln X̂k , (3)

which satisfies the following symmetry restrictions: βkl = βlk and αmn = αnm.
Note that we cannot identify, and hence estimate, all parameters in (3) (even after imposing the

symmetry restrictions). Specifically, there are (M +K + 2) unidentified parameters. We therefore
need to impose identifying restrictions on the transformation function (3). We first rewrite (3) as

ln f(Ŷ, X̂) =
∑

m

αm ln Ŷm +
1

2

∑

m

∑

n

αmn ln Ŷm ln Ŷn +
∑

k=2

βk ln(Xk/X1) +

1

2

∑

k=2

∑

l=2

βkl ln(Xk/X1) ln(Xl/X1) +
∑

m

∑

k=2

γmk ln Ŷm ln(Xk/X1) +

[
∑

k

βk

]
ln X̂1 +

∑

k

[
∑

l

βkl

]
ln X̂k ln X̂1 +

∑

m

[
∑

k

γmk

]
ln Ŷm ln X̂1 . (4)

Imposing the following (M +K + 2) normalizations on (4):

∑

k

βk = 1;
∑

l

βkl = 0 ∀ k

∑

k

γmk = 0 ∀ m; λ = 1 (5)

yields an identified IDF representation of the production technology (2), i.e.,

− lnX1 = α0 +
∑

k=2

βk ln X̃k +
1

2

∑

k=2

∑

l=2

βkl ln X̃k ln X̃l +
∑

m

αm lnYm

1

2

∑

m

∑

n

αmn lnYm lnYn +
∑

m

∑

k=2

γmk lnYm ln X̃k − u+ v1 , (6)
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where X̃k ≡ Xk/X1 ∀ k = 2, . . . ,K, lnA = α0 + v1, and u ≡ − ln θ ≥ 0 measures technical
inefficiency. Note that the normalizations in (5) except for λ = 1 are most commonly referred to
as the linear homogeneity (in inputs) property of IDF. The remaining restriction λ = 1 provides an
input-oriented interpretation of the inefficiency term u.

Cost Minimization with No Allocative Inefficiency

Under the assumption of cost-minimizing behavior, according to which outputs and competitively
determined input prices are exogenous to the firm’s input allocation, the firm’s objective is defined
as

min
X

W′X : Af(X̂, Ŷ) = 1 , (7)

where W ∈ R
K
+ is a vector of input prices. The above objective function yields (K−1) independent

first-order conditions (FOCs):

WkXk

W1X1
=
∂ ln f

(
Ŷ, X̂

)
/∂ lnXk

∂ ln f
(
Ŷ, X̂

)
/∂ lnX1

∀ k = 2, . . . ,K . (8)

Define, for convenience, X̃k ≡ Xk/X1. Given the IDF representation of the production technology
in (6), the FOCs (8) take the following form:

Wk

W1
X̃k =

βk +
∑

l=2 βkl ln X̃l +
∑

m γmk lnYm

1−
∑

k=2 βk −
1
2

∑
k=2

∑
l=2 βkl

(
ln X̃k + ln X̃l

)
−
∑

k=2

∑
m γmk lnYm

∀ k = 2, . . . ,K ,

(9)

which can be rewritten in a more compact form using the identifying restrictions in (5), i.e.,

Wk

W1
X̃k =

βk +
∑

l=2 βkl ln X̃l +
∑

m γmk lnYm

β1 +
∑

l=2 β1l ln X̃l +
∑

m γm1 lnYm
∀ k = 2, . . . ,K . (10)

We note that equation (10) by no means implies that parameters β1, β1l and γ1m are identified and
can be estimated. Rather, they can be recovered using the (deterministic) identifying restrictions
in (5).

The system of the above FOCs along with the translog IDF in (6) can be used to solve for the
input demand functions conditional on outputs. These solutions will be functions of input price
ratios and outputs only. Since both W and Y are assumed to be exogenous in a cost minimizing
framework, the input ratios X̃k ∀ k = 2, . . . ,K are not affected by either the inefficiency u or
stochastic productivity shock v1 (which is absorbed in parameter A). Hence, one can argue in
support of treating the regressors in IDF (6) as exogenous (in the absence of allocative disturbances)
thereby justifying the use of standard stochastic frontier methods in order to estimate production
technology and inefficiency via a single-equation IDF.7

Cost Minimization with Allocative Inefficiency

The cost minimization framework can be relaxed to allow for the presence of allocative inefficiencies,
i.e., optimization errors. Following Schmidt and Lovell (1978), we augment the FOCs in (10) with

7Coelli (2000) reaches the same conclusion.
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allocative disturbances, i.e.,

Wk

W1
X̃k × exp(vk) =

βk +
∑

l=2 βkl ln X̃l +
∑

m γmk lnYm

β1 +
∑

l=2 β1l ln X̃l +
∑

m γm1 lnYm
∀ k = 2, . . . ,K , (11)

where vk ∈ R ∀ k = 2, . . . ,K represents the allocative inefficiency for the input pair (Xk, X1).
Unlike in the case of full allocative efficiency (as considered in the previous subsection), the

solution to the system of the FOCs in (11) along with the IDF can be shown to yield conditional
input demand functions that are functions of not only input price ratios and outputs but also
allocative inefficiencies. Consequently, if the allocative disturbances vk ∀ k = 2, . . . ,K are correlated
with technical inefficiency u and/or the productivity shock v1 in the IDF, the standard stochastic
frontier methods applied to a single-equation IDF (6) would produce inconsistent estimates of both
the technology and inefficiency.

Even if the input ratios X̃k ∀ k = 2, . . . ,K are uncorrelated with both error terms in the
IDF, thereby implying that allocative inefficiencies are uncorrelated with both technical inefficiency
and the productivity shock (stochastic noise in the IDF), there are advantages to using a system
approach. First, since additional equations (the FOCs) do not contain any extra parameters, the
system-based parameter estimates are likely to be more precise. Second, technological metrics
obtained based on the estimated IDF are likely to be more meaningful because the economic behavior
is embedded into the system through the FOCs. That is, if one believes in the economic behavior
of the producers, the FOCs ought to be used in the estimation.

However, firms may pursue economic objectives that differ from the cost minimization. One
such example is revenue maximization, under which outputs are endogenous to the firms’ decision-
making whereas inputs are exogenous. Under this scenario, for a system approach to remain valid,
one solely needs to replace inputs with outputs and vice versa. That is, the IDF needs to be
replaced with an equivalent ODF based representation of the production process, and the FOCs are
to be derived for outputs from the revenue maximization problem. Mechanically, the latter implies
switching X and Y in our discussion above.

If both inputs and outputs are endogenous to the firm’s decisions, then the endogeneity problem
remains no matter whether one estimates a single-equation IDF or the cost system we propose in this
article. Given that the joint endogeneity of inputs and outputs corresponds to profit-maximizing
behavior by firms, a plausible identification strategy would be to augment the IDF with the FOCs
obtained from the profit maximization problem. We do not consider such an instance here, leaving
the latter for a different paper.

Econometric Model

We consider the econometric model consisting of the translog IDF (6) and the FOCs with allocative
inefficiency in (11). Assuming the existence of panel data and denoting the log values of variables
by their lower-case versions (except for the time trend), e.g., x̃k ≡ ln X̃k, the model (system) takes
the following form:

−x1,it = α0 +
∑

k=2

βkx̃k,it +
1

2

∑

k=2

∑

l=2

βklx̃k,itx̃l,it +
∑

m

αmym,it +

1

2

∑

m

∑

n

αmnym,ityn,it +
∑

m

∑

k=2

γmkym,itx̃k,it +

δtt+
1

2
δttt

2 +
∑

k=2

ϕkx̃k,itt+
∑

m

ψmym,itt− uit + v1,it (12a)
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−x̃k,it + ln

(
βk +

∑

l=2

βklx̃l,it +
∑

m

γmkym,it + ϕkt

)
− ln

(
β1 +

∑

l=2

β1lx̃l,it +
∑

m

γm1ym,it + ϕ1t

)

= wk,it + vk,it ∀ k = 2, . . . ,K , (12b)

where, for convenience, we have denoted wk,it = ln (Wk,it/W1,it); variable t is the time trend to
allow for technical change which captures a temporal shift of the production frontier; and subscripts
i = 1, . . . , N and t = 1, . . . , T index firms and time periods, respectively.

Under the assumptions of competitive factor markets and the cost-minimizing behavior by firms,
which are said to minimize cost subject to given outputs and input prices, the system in (12) is
exactly identified. Specifically, the number of endogenous variables — in our case, an input x1
and (K − 1) input ratios x̃k ∀ k = 2, . . . ,K — equals the number of independent simultaneous
equations, i.e., (K−1) FOCs and the IDF itself. Hence, the order condition is satisfied. In addition
to exogenous variation generation by K competitively determined input prices Wk ∀ k = 1, . . . ,K,
the distributional assumption about a K-variate vector of stochastic disturbances vit provides an
additional source of identification. Our identification strategy can also be explained in a more
conventional instrumental variable (IV) framework. In particular, K endogenous inputs X are
being instrumented for by K exogenous input prices W, whereas exogenous outputs Y and a time
trend t instrument for themselves.

Estimation

We estimate the cost system in (12) using the FIML method. To implement it, we assume

vit = [v1,it, v2,it, . . . , vK,it]
′ ≡

[
v1,it,v

∗

it
′
]
′

∼ i.i.d. N(0,Σ) . (13)

The first issue we need to deal with during the estimation is the non-unit Jacobian of the
transformation when xit = [x1,it, x̃2,it, . . . , x̃K,it]

′ ≡ [x1,it, x̃it
′]′ are the endogenous variables. Then

the Jacobian of the transformation from vit to xit is equal to the Jacobian from v∗

it to x̃it since
∂v1,it
∂x1,it

= −1, and
∂vk,it
∂x1,it

= 0 ∀ k = 2, . . . ,K. To express the Jacobian in a more compact form, we

define
[
βk +

∑

l=2

βklx̃l,it +
∑

m

γmkym,it + ϕkt

]
−1

≡ Ak,it, k = 2, . . . ,K; a∗it ≡ [A2,it, . . . , AK,it]
′

B∗ ≡ [βkl; k, l = 2, . . . ,K] ; b ≡ [β1k; k = 2, . . . ,K]

Qit ≡ a∗it ⊗ ι′K−1; R ≡ ιK−1 ⊗ b′ ,

where ι′K−1 is the row vector of ones with (K − 1) elements.
Using the above notation we can write the Jacobian as

Jit (θ,xit,yit) = ‖B∗Qit −A1,itR− IK−1‖ , (14)

where IK−1 is the identity matrix of a (K − 1) dimension. While the Jacobian is easy to compute
in this form, it is still a function of all parameters as well as a function of the data.

The density function of endogenous variables xit conditional, among other things, on technical
inefficiency uit can be written as

f (xit|θ,Σ, uit,Ξ) = (2π)−K/2 |Σ|−1/2 exp

{
−
1

2
ξ′itΣ

−1ξit

}
× Jit (θ,xit,yit) , (15)
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where ξit ≡ vit −

[
uit

0K−1

]
, Ξ denotes the data (including input prices), and θ collectively denotes

the parameters αm, αmn, βk, βkl, γkm and ϕk ∀ k, l = 2, . . . ,K; m = 1, . . . ,M .
Next, we write the system in (12) in the following general notation:

Fit(θ) = vit − uitjK ≡ ξit , (16)

where jK = [1, 0, . . . , 0] is a (K × 1) vector, and the elements of Fit = [F1,it, F2,it, . . . , FK,it]
′ are

given by

F1,it ≡ − x1,it − α0 −
∑

k=2

βkx̃k,it −
1

2

∑

k=2

∑

l=2

βklx̃k,itx̃l,it −
∑

m

αmym,it −

1

2

∑

m

∑

n

αmnym,ityn,it −
∑

m

∑

k=2

γmkym,itx̃k,it −

δtt−
1

2
δttt

2 −
∑

k=2

ϕkx̃k,itt−
∑

m

ψmym,itt (17a)

Fk,it ≡ − x̃k,it + ln

(
βk +

∑

l=2

βklx̃l,it +
∑

m

γmkym,it + ϕkt

)
−

ln

(
β1 +

∑

l=2

β1lx̃l,it +
∑

m

γm1ym,it + ϕ1t

)
− wk,it ∀ k = 2, . . . ,K . (17b)

Formal integration with respect to uit in (15) produces a density that will be unconditional of
technical inefficiency. For the sake of exposition, suppose uit ∼ i.i.d. N+

(
0, σ2u

)
independently of

the data and the elements of vit.
8 Then, it is straightforward to show that

f (xit|θ,Σ,Ξ) = 2(2π)−K/2 |Σ|−1/2 (σuσ∗)
−1Φ (ûit/σ∗)×

exp

{
−
1

2

(
F′

itΣ
−1Fit − σ2

∗

(
F′

itΣ
−1ιK

)2)
}
× Jit (θ,xit,yit) , (18)

where σ2
∗
≡ σ2

u

1+σ2
uι

′

K
Σ−1

ιK
, ûit ≡ −σ2

∗
F′

itΣ
−1ιK , and Φ(·) is the standard normal distribution func-

tion. Note that F′

itΣ
−1Fit is a familiar “sum of squares” from a standard treatment of the nonlinear

simultaneous equations model or nonlinear seemingly unrelated regressions.
The density in (18) is used to obtain the likelihood function which is maximized with respect to

(θ,Σ). In (18), the term F′

itΣ
−1Fit − σ2

∗

(
F′

itΣ
−1ιK

)2
= F′

itΣ
−1MFit, where M ≡ IK − σ2

∗
JKΣ−1

and JK is a square matrix of dimension K, all elements of which are equal to unity. Although formal
concentration with respect to Σ−1 is not feasible, we can use the Cholesky decomposition Σ−1 =
C′C and treat the non-zero elements of C below the main diagonal as unrestricted parameters.

Further, we can show that uit| θ,Σ,Ξ ∼ N+

(
ûit, σ

2
∗

)
for which we extend the Jondrow et al.

(1982) formula to obtain observation-specific estimates of technical inefficiency E [uit|θ,Σ,Ξ] which
we can compute using properties of the truncated normal distribution.

In our discussion of the system approach to the (consistent) estimation of the IDF, we model
technical inefficiency uit as a random-effect type inefficiency in the spirit of the stochastic frontier
analysis (Kumbhakar and Lovell, 2000). However, given the IV interpretation of our identification
strategy outlined in the previous subsection, one may wonder if system (12) can be alternatively

8In our application, we consider a more general case of uit ∼ i.i.d. N+

(

µu,it, σ
2
u

)

allowing the mean of inefficiency to
vary with the dairy quota regime in Norway. For more details, see application.
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estimated via GMM as done in Atkinson and Primont (2002). The latter is meaningful only if
uit is to be treated as a fixed-effect type technical inefficiency. That is, uit is to be assumed to
be either time-invariant (“the” fixed effect) or parameterized as a firm-specific function of time in
the spirit of Cornwell et al. (1990). For instance, Atkinson and Primont (2002) pursue the latter
route. The random-effect treatment of (one-sided) technical inefficiency would however require a
two-stage GMM procedure, in which uit is to be recovered via maximum likelihood (ML) under the
distributional assumption about stochastic disturbances. The two stages can surely be combined
into a one-step multiple-equation GMM framework by augmenting the IDF by the log-likelihood
score functions from the second stage. Regardless whether a one– or two-step GMM procedure is
employed, it would still require a distributional assumption about uit and the random productivity
shocks. Given the asymptotic equivalence of ML and GMM under this scenario, employing ML has
the benefit of superior efficiency. Hence, in the stochastic frontier framework (as in this article),
the use of FIML which we opt for seems to be optimal.

Computing Cost of Allocative Inefficiency

Given system (12) where we allow for allocative disturbances, we can also compute the cost of
allocative inefficiency (CAI) which we define as the predicted difference between actual and frontier
cost, computed as a fraction of the predicted frontier cost. Both predicted actual and frontier costs
are “optimal” in the sense of being associated with the firm’s optimal input allocation. Predicted
frontier cost is the cost of (predicted) optimal input quantities in the absence of allocative inefficien-
cies, while predicted actual cost is the cost of optimal input quantities in the presence of allocative
inefficiencies. In this section, we show how to compute these optimal values of input quantities with
and without allocative inefficiency which we then use to evaluate CAI.

Suppressing the (i, t) subscripts for notational convenience, we rewrite the set of the FOCs in
(12b) as

ln

(
ck +

∑

l=2

βklx̃l

)
− ln

(
c1 +

∑

l=2

β1lx̃l

)
= x̃k + wk + vk ∀ k = 2, . . . ,K , (19)

where cκ ≡ βκ +
∑

m γmκym + ϕκt for κ = 1, ...,K. The (sub)system in (19) may be written as

Gk (x̃) = x̃k + wk + vk ∀ k = 2, . . . ,K (20)

or
G (x̃) = x̃+w∗ + v∗, G : RK−1 → R

K−1 , (21)

where G(·) = [G2(·), . . . , GK(·)]′ the elements of which are the left-hand sides of the FOCs in (19),
and w∗ = [w2, . . . , wK ]′.

We next show the existence and uniqueness of an optimal input-allocation solution. We first
derive the Jacobian matrix for the system in (21): J = [∂Gk (x̃) /∂x̃l; k, l = 2, . . . ,K]. From (19),
it follows that ∂Gk (x̃) /∂x̃l = [ŝ1ŝk]

−1 (βklŝ1 − β1lŝk − δklŝ1ŝk), where ŝκ = cκ +
∑

l=2 βκlx̃l for
κ = 1, . . . ,K, and δkl is the Kronecker delta. Further, using the normalizing restrictions in (5) we
can show that

∑
k=2 exp {Gk (x̃)} = 1.9 Hence, we can sum all FOCs in (19) in exponential form

to obtain
1−

(
c1 +

∑
l=2 β1lx̃l

)

c1 +
∑

l=2 β1lx̃l
=
∑

l=2

exp {x̃l + wl + vl} . (22)

9The equality is evident from equation (9).
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Dividing (19), after exponentiating, by the above expression yields

gk (x̃) ≡
ck +

∑
l=2 βklx̃l

1−
(
c1 +

∑
l=2 β1lx̃l

) =
exp {x̃k + wk + vk}∑
l=2 exp {x̃l + wl + vl}

∀ k = 2, . . . ,K . (23)

We use (23) to show the existence and uniqueness of a solution to the cost minimization system.

Specifically, since gk (x̃) =
ck+

∑
l=2

βklx̃l∑
k=2(ck+

∑
l=2

βklx̃l)
, we have that gk : R

K−1 → (0, 1). Showing that

gk (x̃) attains any value in (0, 1) would enable us to claim that there exists an optimal input-
allocation solution.

Suppose τ = [τ2, . . . , τK ]′ ∈ (0, 1)K−1. Then, consider a system gk (x̃) = τk for k = 2, . . . ,K,
which can be written in the form of Dx̃ = p, where D = [akl] and p = [bk] with akl = βkl + τkβ1l,
bk = τk (1− c1)− ck for k, l = 2, . . . ,K. Equations

∑
l=2 aklx̃l = bk are equivalent to

∑
l=2 βklx̃l =

τk(1−c1)−ck
1+τk

for k = 2, . . . ,K after substituting the restrictions. This system has a unique solution
provided the (K−1)×(K−1) matrixB∗ = [βkl, k, l = 2, . . . ,K] is invertible. In fact, this is so by the
translog regularity conditions. This concludes a proof of the existence of a unique input-allocation
solution. We next proceed to the discussion of how to compute it.

Let x̃(v∗) denote the solution to (19). We can approximate x̃(v∗) using a Taylor expansion
as x̃(v∗) ≃ x̃ (0K−1) + ∇x̃ (0K−1)v

∗, where 0K−1 denotes the zero vector of dimension (K − 1),
and x̃ (0K−1) is a solution to the system (19) at v∗ = 0K−1 (i.e., in the absence of allocative
inefficiencies) which exists and is unique as we have shown above.

Denote the system in (19) as H (x̃) = v∗ so that the solution satisfies the identity: H (x̃(v∗)) =
v∗. Differentiating the latter identity with respect to v∗ we obtain: ∇H (x̃(v∗)) × ∇x̃(v∗) =
IK−1, from which it follows that ∇x̃(v∗) = ∇H (x̃(v∗))−1. It further follows that ∇x̃(0K−1) =
∇H (x̃(0K−1))

−1 assuming that the Jacobian of the system J0 = ∇H (x̃(0K−1)) is non-singular.
Therefore, we have

x̃(v∗) ≃ x̃ (0K−1) + J −1
0 v∗ . (24)

From (24), it follows that the input distortions are

ζ∗ , x̃(v∗)− x̃ (0K−1) ≃ J −1
0 v∗ (25)

to the first order of approximation around the expected value of v∗, where ζ∗ = [ζ2, . . . , ζK ]′. Since
the Jacobian is already available from the FIML estimation, the additional computation involved
in (25) is minimal. Also note that one does not need to obtain x̃(v∗) separately for v∗ 6= 0K−1 and
v∗ = 0K−1, since we can obtain their difference ζ∗ directly from (25).

We also obtain v∗ = J0ζ
∗ from (25), whereas from (24) we can obtain x̃ (v∗) provided we have

x̃ (0K−1). We can get the latter by solving (21) for x̃ at v∗ = 0K−1, i.e.,

G
(
x̃ (0K−1)

)
−w∗ = x̃ (0K−1) . (26)

We solve system (26) using a fixed-point iteration starting from the observed value of x̃. We obtain
x1 (v

∗) and x1 (0K−1) from (24) using the IDF in (12a) by a simple substitution assuming u = 0.
This provides us with ζ1 = x1 (v

∗)−x1 (0K−1), i.e., the allocative distortion of the numeraire input.
We then compute the (observation-specific) cost of allocative inefficiency as

CAI =
∑

k

wkζk . (27)
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Table 1: Summary statistics for Norwegian dairy production, 1991–2008

Variable Units Mean Median SD 2.5% 97.5%

Outputs

Milk Liters 97,414.12 88,216.51 49,248.58 33,751.70 227,419.40
Other Outputs Real EUR 43,917.51 39,552.45 22,182.90 17,026.88 99,786.35

Inputs

Land Hectares (ha) 21.75 19.40 11.32 7.50 49.90
Feed Real EUR 15,819.04 13,877.61 9,312.38 4,787.15 37,570.52
Labor Hours (hr) 3,661.18 3,515.00 1,127.00 1,922.70 6,327.27
Materials Real EUR 10,665.31 9,572.84 5,655.30 3,492.88 24,187.41
Capital Real EUR 26,607.75 24,021.42 13,905.56 9,250.16 61,869.77

Input Prices

Price of Land Real EUR/ha 128.601 117.322 71.876 36.777 334.330
Price of Feed Real EUR 1.063 1.016 0.095 0.990 1.335
Price of Labor Real EUR/hr 14.151 13.749 2.538 10.615 18.561
Price of Materials Real EUR 1.036 1.0001 0.089 0.944 1.270
Price of Capital Real EUR 0.984 0.972 0.099 0.830 1.164

Data

We focus on the analysis of dairy farms in Norway. The data are a large unbalanced panel with 7,866
observations on 1,104 farms observed during the 1991–2008 period. Our farm-level data come from
the Norwegian Farm Accountancy Survey administered by the Norwegian Agricultural Economics
Research Institute. The survey includes the information on farm production and economic data
collected annually from about 1,000 farms from different regions, farm size classes and types of
farms. Participation in the survey is voluntary. There is no limit on the number of years a farm
may be included in the survey. Approximately 10% of the farms surveyed are replaced every year.
The farms are classified according to their main category of farming, defined in terms of the standard
gross margins of the farm. Hence, the dairy farms in our sample are the farms, the largest share of
the total standard gross margin of which is attributed to dairy production.

Dairy farms are often involved not only in the production of milk but also in other farm pro-
duction activities such as the production of various types of meat, crop, etc. Following Sipiläinen
et al. (2014), we consider two outputs: Y1 – milk, measured in liters sold, and Y2 – a single measure
of all other outputs, which includes cattle and crop products. Since Y2 includes several outputs
we measure it in monetary value terms, i.e., revenue from all these outputs. To covert the nom-
inal value into the real terms, we first deflate Y2 to real 2000 Norwegian Kroner (NOK) using a
weighted price index for cattle and crops, which we then convert from NOK to Euros (EUR) using
the average exchange rate. Further, we specify the following five inputs: X1 – land, measured in
hectares, X2 – own and hired farm labor, measured in hours, X3 – purchased feed, X4 – materials,
which include the cost of fertilizer, pesticides, preservatives, cost related to animal husbandry, etc.,
and X5 – physical capital, which includes farm machinery. Similar to Y2, purchased feed, materials
and capital are measured in real 2000 EUR. All are deflated using a respective price index. The
information on input prices Wk ∀ k = 1, . . . , 5 is taken from either the farm survey when available
(i.e., the price of land follows the regional average rents, the price of labor is obtained from the
value of paid labor) or the agricultural sector of the national accounts. Table 1 reports summary
statistics for the variables used in our analysis.

Dairy farming in Norway is highly regulated (Jervell and Borgen, 2000). Throughout the past
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decades, various regulatory schemes have been set up to align aggregate milk production to domestic
demand. A quota-based regulatory scheme was set up in 1983. From 1991, quotas of dairy farmers
exiting the industry were used to reduce national milk supply, and there was no redistribution of
quotas. The individual quotas have been reduced on several occasions in order to adjust total
supply to domestic demand. The exit rate from the dairy sector was however slow for many years.
Partly as a reaction to this outcome, a limited quota-trading scheme with quota prices defined by
the government as well as the administrative reallocation of quotas was introduced in 1997. The
objective of the change was to introduce greater flexibility to the quota system and to encourage
structural changes such as higher efficiency and productivity. To maintain the regional distribution
of production, the country was divided into milk-trade regions, and quota transfers were restricted
to a given region only. However, for many years, only a small fraction of the milk quota was
reallocated due to the reduction in the total quota. Since 2002, a farmer interested in selling (a
portion of) quota had to sell a portion to the government to be reallocated.

Empirical Results

We start by examining whether endogeneity is indeed a problem in our application. To do so,
we consider the IDF in (12a) alone [without the FOCs in (12b)]. For the time being, we also
abstract away from the technical inefficiency term in the equation, provided the latter is distributed
independently from the data (right-hand-side covariates). A common method to test for endogeneity
of the covariates in the IDF is to employ a Wu-Hausman test performed on the difference between the
OLS and two-stage least squares (2SLS) [or IV] estimates of the IDF parameters. To obtain the 2SLS
estimates of the IDF, one would need to first obtain the fitted values of x̃k,it ∀ k = 2, . . . ,K from the
respective reduced form equations (in terms of exogenous ym,it ∀ m = 1, . . . ,M , wk,it ∀ k = 2, . . . ,K
and t), which would then be used to replace x̃k,it in (12a). However, since the IDF and the reduced-
form equations are nonlinear it is unclear whether this is the best approach. In fact, Terza et al.
(2008) advocate for a more robust alternative: a two-stage residual inclusion (2SRI) estimation of
Hausman (1978).10

In accordance with 2SRI, the first-stage residuals from the reduced-form equations for each
of the potentially endogenous covariates are to be included as additional regressors while keeping
all original covariates intact (i.e., no replacement with first-stage fitted values). Intuitively, the
first-stage residuals are the estimates of all the other factors that affect the endogenous variables
in addition to the exogenous instruments that are explicitly accounted for. Those factors are also
likely to appear in the random error of the main equation (here, the IDF). Hence, by including these
residuals in the IDF, we are able to control for the correlation between endogenous regressors and the
random error thereby, essentially, avoiding the omitted variable problem. The test for endogeneity
then boils down to a joint F-test on the first-stage residuals. In the case of linear models, 2SRI and
2SLS are equivelent; in nonlinear models (like ours) 2SRI is generically consistent whereas 2SLS is
not.

The four included residuals from the reduced-form equations for x̃k ∀ k = 2, . . . , 5 are highly
significant both individually and jointly. The joint exclusion F-statistic is 48.69. Since the test is
not exact, we use pair panel bootstrap to obtain critical values. Specifically, we use 10,000 random
draws (with replacement) of cross-sections from our data to reestimate both stages and recompute
the F-statistic for the joint exclusion of the first-stage residuals from the IDF. The 99% bootstrap
critical value, which we compute as the 99th percentile of bootstrap distribution of the F-statistic,

10The 2SRI procedure is similar in its nature to Petrin and Train’s (2010) control function approach to handling
endogeneity in consumer choice models.
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Table 2: Estimates of selected technological metrics

Metric Mean Median SD 2.5% 97.5%

Single-Equation IDF

SE 0.5801 0.5754 0.2839 0.0324 1.1340
TC 0.0125 0.0127 0.0199 –0.0268 0.0518
Tech. Ineff. 0.0238 0.0213 0.0166 0.0009 0.0604

Cost System of IDF

SE 0.8486 0.8480 0.0740 0.7058 0.9932
TC 0.0132 0.0131 0.0199 –0.0258 0.0530
Tech. Ineff. 0.0523 0.0429 0.0402 0.0019 0.1451
CAI 0.0953 0.0690 0.0801 0.0040 0.3019

is 3.21. As a robustness check, we repeat the test while also controlling for fixed effects in the IDF.
The corresponding F-statistic is even larger and equals 97.10. Thus, the data lend strong support
in favor of endogeneity present in the IDF.11

We next proceed to the discussion of the main results. Instead of looking at the parameter
estimates, we rather focus on more meaningful technological metrics such as scale economies (SE),
technical change (TC), technical inefficiency and cost of allocative inefficiency (CAI). Observation-
specific estimates of technical inefficiency are obtained from the estimated conditional mean of u
in the spirit of Jondrow et al. (1982), and the estimates of CAI are obtained as described earlier.
Measures of scale economies and technical change are computed based on the estimated IDF, the
available data and the duality results (Färe and Primont, 1995; Karagiannis et al., 2004) as follows:

SE ≡
∑

m

∂ lnC

∂ lnYm
= −

∑

m

∂ ln f(Ŷ, X̂, t)

∂ lnYm
= −

∑

m

[
αm +

∑

n

αmnyn +
∑

k=2

γmkx̃k + ψmt

]

TC ≡ −
∂ lnC

∂t
=
∂ ln f(Ŷ, X̂, t)

∂t
= δt + δttt+

∑

k=2

ϕkx̃k +
∑

m

ψmym .

Scale economies are defined as the sum of output elasticities of cost thus capturing an increase in
the cost (in %) resulting from a proportional one-percent increase in all outputs. The instance of
SE > 1 corresponds to decreasing returns to scale, while SE < 1 indicates increasing returns to
scale. Lastly, technical change is defined as a secular decline in cost over time.

We estimate two models: (i) the cost system (12) via FIML and (ii) a single-equation IDF
(12a) via ML. We estimate a single-equation model, which suffers from simultaneity, in order to
examine the degree to which results get distorted should the endogeneity of the input ratios remain
unaddressed. We however acknowledge that this comparison is meaningful only if our identification
strategy is valid.

As discussed earlier, dairy farming in Norway is regulated via a quota-based scheme, which
underwent a (policy) regime change in the late 1990s. Specifically, a quota-trading system was
introduced in 1997 with the objective of encouraging structural changes that would lead to higher
efficiency and productivity in this agricultural sector. To investigate whether the farm-level technical
inefficiency has responded to this regime change,12 when estimating the system in (12) or a single-
equation IDF in (12a) we model inefficiency uit in a way that permits its mean to vary with the

11We note that we are unable to test for exogeneity of the input price ratios and/or outputs (our instruments) since
our model is exactly identified, and the test for over-identifying restrictions would require additional instruments.

12We thank the editor and one of the referees for this insightful suggestion.
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quota regime. Formally, we assume that uit ∼ N+

(
µu,it, σ

2
u

)
with the mean µu,it parameterized as

µu,it = η0 + η1Hit, where Hit is an indicator which equals one for years from 1997 onward and zero
otherwise.13

Table 2 reports summary statistics of the technological metrics computed from both the cost
system of the IDF and a single-equation IDF. In order to not confine our analysis to mean estimates
only (which are not that informative), we also provide the distributions for each of the metrics in
figures 1 and 2. The kernel densities are constructed using the second-order Epanechnikov kernel
with the optimal bandwidth selected via the data-driven least-squares cross-validation (Silverman,
1986).

Comparing the scale economies estimates from the system and single-equation IDF model, we
find that a single-equation approach commonly employed in the literature (e.g., Lambert andWilson,
2003; Karagiannis et al., 2004; Atsbeha et al., 2012), which takes endogeneity of the input ratios
for granted, produces unreasonable estimates of SE. In particular, the mean single-equation-based
estimate of SE is 0.58 with the corresponding 2.5%–97.5% interval ranging from 0.03 to 1.13. That
is, dairy farms are predicted, on average, to enjoy increasing returns to scale of an astounding
magnitude 1.72(=1/0.58). Furthermore, about 2% of the single-equation-based estimates of SE are
negative (see figure 1) as a result of the violated IDF regularity conditions. In contrast, the system-
based estimates of SE are uniformly positive and suggest the presence of increasing returns to scale
(i.e., mostly SE < 1) of reasonable magnitudes. For instance, the median system-based estimate of
SE is 0.85 with the standard deviation of 0.07, which is significantly larger than more dispersedly
distributed estimates from the single-equation model. To sum, empirical evidence suggests that
increasing the scale of farms may considerably improve farms’ performance.

In stark contrast to the results on scale economies, the estimates of TC are virtually indistin-
guishable across the two models. Both the system and single-equation models suggest that the
Norwegian dairy sector has experienced technical change (progress) at an average rate of 1.3% per
annum over the course of the 1991–2008 sample period. The Li (1996) test confirms the equality of
the two empirical distributions of the TC estimates.

We next consider empirical results on the cost of allocative inefficiency. Figure 2 plots the
distribution of the CAI estimates obtained from the cost system (12) estimated via FIML. The
distribution is highly skewed to the right. The CAI estimates average at 9.5% and range from 0.4%
to 30.2% (see table 2). These estimates indicate economically significant misallocation of inputs
which, if eliminated, may potentially reduce farms’ costs by the median of 6.9%. Also note that no
CAI estimates are obtained from the single-equation IDF model since the latter does not allow the
identification of allocative disturbances due to the omission of the cost minimizing FOCs.

We conclude our analysis by examining the results on technical inefficiency among farms and
studying the potential effect (if any) of the 1997 quota regime change on the former. When pooling
the technical inefficiency estimates over the entire sample period, we find that, on average, the
system FIML approach produces estimates of technical inefficiency of values twice larger than those
from a standard single-equation ML approach: 5.2% vs. 2.4% with the corresponding standard
deviations of 4.3% and 2.1% (see table 2). The system-based estimates are considerably more
dispersed and skewed to the right, as can also be seen in figure 1.

However, when differentiating between the technical inefficiency estimates corresponding to the
pre-1997 period (prior to regime change) from those corresponding to the period from 1997 onward
(post regime change), we see a substantially different picture. Figure 3 presents box-plots of the
distributions of the technical inefficiency estimates for the two time periods across the two models
we estimate. Based on our preferred cost system FIML model, we document both an economically

13The above specification of µu,it essentially models a “structural break”.
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Figure 1: Scale economies, technical change and technical inefficiency
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Figure 2: Cost of allocative inefficiency

and statistically significant improvement in the levels of technical efficiency among dairy farms
associated with the 1997 quota scheme change. The mean estimate of technical inefficiency has
declined from 8.5% in the pre-1997 period to 3.5% in the post-1997 period. This decline is non-
negligible as also confirmed by the statistical significance of the coefficient η1 on Hit in the equation
for the mean of uit. Table 3 reports the estimates of the mean function parameters with their
corresponding standard errors. From table 3 and figure 3, it is evident that the single-equation ML
model however fails to detect this structural improvement in the farms’ efficiency levels. Admittedly,
these differences in the results may not necessarily be due to the failure of a single-equation model
to account for the endogeneity of inputs. One may alternatively argue that the post-1997 period is
characterized by greater freedom for producers to choose milk outputs, which can potentially lead
to the endogeneity in outputs thus compromising the consistency of our system-based estimator.
It is possible that a single-equation method, which fails to account for endogeneity of either inputs
or outputs and thus is always inconsistent, is more insulated to such changes than our preferred
system approach, which becomes inconsistent only during the post-1997 period. The detected
improvements in technical efficiency may therefore be argued to be spurious.14 However, for many
years after the regulatory regime change only a small fraction of the milk quota was reallocated
due to the reduction in the total quota. Furthermore, since 2002, a farmer interested in selling (a
portion of) quota had to sell it to the government to be reallocated. In the light of the above, we
believe it is somewhat unlikely that the structural improvement in the farms’ efficiency levels that
our preferred system-based model estimates is spurious.

Conclusion

In this article, we offer a methodology to address the endogeneity of inputs in the IDF formulation
of the multi-output multi-input production process from the perspective of economic theory. We

14We would like to thank the editor for bringing this alternative explanation to our attention.
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Figure 3: Technical inefficiency pre- and post-regime change

Table 3: Mean of technical inefficiency (µu)

Coeff. Estimate SE

Single-Equation IDF

η0 –0.02103 0.01032
η1 0.00172 0.02732

Cost System of IDF

η0 0.08453 0.00442
η1 –0.07345 0.01723
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suggest invoking the assumption of the firm’s cost minimizing behavior not only to justify the
treatment of outputs as exogenous but to also tackle endogeneity of the input ratios in the IDF. We
do so by considering a flexible (simultaneous) system of the translog IDF along with the FOCs from
the firm’s cost minimization problem. The model we develop also accommodates both technical
and (input) allocative inefficiencies amongst firms. There are advantages to using our system
approach over the standard single-equation model even if the input ratios are uncorrelated with the
random productivity shocks in the IDF. Since additional equations (the FOCs) do not contain any
extra parameters, the system-based estimator is more efficient. Furthermore, technological metrics
obtained via the cost system approach are likely to be more meaningful because the economic
behavior is embedded into the system through the FOCs.

We showcase our model by applying it to study the production of dairy farms in Norway during
the 1991-2008 period. Having failed to reject the presence of endogeneity in the data, we find
that the single-equation IDF model produces unreasonable estimates of scale economies as well
as fails to detect a change in the level of technical inefficiency associated with the quota scheme
change in 1997. In contrast, the technological estimates obtained from the cost system indicate the
evidence of increasing returns to scale of reasonable magnitudes (the average of 1.18). Using the
system approach, we are also able to document both an economically and statistically significant
improvement in the levels of technical efficiency among dairy farms associated with the 1997 quota
scheme change. The mean estimate of technical inefficiency has declined from 8.5% in the pre-1997
period to 3.5% in the post-1997 period. The median cost of allocative inefficiency is estimated to
be 6.9%.
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