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Abstract 

 

The study develops the methodology for a copula-based weather index insurance 

rating. As the copula approach is better suited for modeling tail dependence than the 

standard linear correlation method, we suppose that copulas are more adequate for 

pricing a weather index insurance contract against extreme weather events. To capture 

the dependence structure in the left tail of the joint distribution of a weather variable 

and the farm yield, we employ the Gumbel survival copula. Our results indicate that, 

given the choice of an appropriate weather index to signal extreme drought 

occurrence, a copula-based weather insurance contact might provide higher risk 

reduction compared to a regression-based indemnification.       

Keywords: catastrophic insurance, weather index insurance, copula, insurance 

contract design   

JEL classification: C18, Q14 

 

  



 2 

INTRODUCTION  

Weather index insurance has been considered as a valuable alternative for traditional 

crop insurance. The main advantage of the former is that it is better suited to combat 

asymmetric information problems, that is, adverse selection and moral hazard. An 

additional important advantage of weather-based insurance is that it considerably 

reduces transaction costs and thus allows a faster settlement of claims. The latter 

characteristic of weather index insurance makes it particularly relevant in the context 

of extreme weather event management, when the relief must be provided within a 

short period of time to a large number of affected farms.   

Yet, as recent empirical evidence shows, despite substantial efforts of developing 

agencies such as the World Bank and governmental support to promote the market of 

weather index insurance in a number of developing countries, the demand for this 

instrument of risk reduction remains rather low (Cole et al. 2013; Mobarak and 

Rosenzweig 2012; Norton et al. 2011). Recent empirical studies examine and discuss 

different factors affecting farmers’ demand for weather index insurance. In addition 

to factors evaluated in the context of traditional agricultural insurance such farm’s 

socio-economic characteristics as risk aversion, level of production diversification 

etc., the literature discusses the effect of informal insurance (Mobarak and 

Rosenzweig 2012; Akter and Fatema 2011), basis risk (Barnett and Mahul 2010), and 

model prediction uncertainties (Bokusheva and Breustedt 2012). 

Given this recent evidence, we analyze an option which would address the above 

mentioned issues and potentially increase risk reducing effectiveness of weather index 

insurance. We propose to design weather index insurance as an insurance against 

extreme events rather than an instrument to cope with moderate weather risks, as has 

been done in previous studies (Wang et al. 2013; Breustedt et al. 2008; Vedenov and 

Barnett 2004; Skees et al. 1997). In our view, this approach should positively 

influence the demand for weather index insurance as it could: (i) improve 

affordability of weather index insurance; (ii) reduce scope of basis risk; and (iii) 

improve predictive power of yield-weather models used for insurance contract rating.   

(i) The presence of informal insurance might reduce demand for formal insurance 

against moderate risks due to a certain capacity of rural communities to share risk 

among their members (Mobarak and Rosenzweig 2012). However, financial reserves 
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within a rural community might be insufficient to cope with catastrophic risks, which 

usually have a systemic character and thus affect a large number of producers 

simultaneously. Accordingly, wealthier households of a community themselves might 

experience substantial yield losses in the case of a catastrophic event, which would 

affect their capacity and willingness to provide informal insurance to other members 

of the community. In this context, weather index insurance designed to cope with 

catastrophic risks might be better targeted to the needs of rural households, compared 

to insurance products insuring against moderate yield losses: moderate losses would 

be covered by using informal insurance, while extreme yield losses would be 

indemnified by a catastrophic weather index insurance.  

(ii) The main reasons for basis risk are: (a) a low correlation of farm yields with a 

weather index due to the presence of other important risks, namely those beyond the 

hazard, to be insured by a particular weather-based insurance product (i.e., so-called 

loss-specific basis risk); (b) a low sensitivity of the farm yield to weather data of 

meteorological stations situated at a considerable distance to the farm (i.e., spatial 

basis risk); and (c) a low correlation between a weather index and a crop yield due to 

the timing of the occurrence of the insured event (i.e., temporal basis risk) (Skees et 

al. 2007). We presume that catastrophic weather index insurance against catastrophic 

events might be less affected by spatial basis risk as extreme events have a higher 

extent of spatial correlation. Compared to common weather index insurance, it would 

indemnify insured farms less frequently, but would potentially allow a more adequate 

coverage for yield losses in the case of extreme events.  

(iii) Finally, we suppose that the application of methods appropriate for modeling 

extreme dependence, such as copulas could provide more robust estimates of yield 

dependence on weather and, thus, substantially limit the scope for model prediction 

uncertainties.   

In our study, we evaluate the effectiveness of a catastrophic weather index insurance 

against drought by applying two alternative methods—the standard regression 

analysis and the copula approach. Most empirical analyses obtain estimates of the 

dependence of crop yields on a weather index by assuming a linear correlation 

structure in yield-weather dependence; i.e. they regard yield-weather distribution as a 

Gaussian multivariate distribution. This procedure has an important implication: the 

effect of the weather index on the yield conditional mean is assumed to be constant 
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over the whole distribution of the conditioning variable—the weather index. We 

argue that, when insuring against catastrophic events, the prediction of farm extreme 

yield losses can be done more accurately by employing the concept of tail 

dependence. In this study we develop and evaluate a copula-based approach for rating 

catastrophic weather index insurance.  

In the empirical part of the analysis, we use the time series of wheat yield and weather 

variables for 47 large farms from two major grain-producing regions in Kazakhstan 

for the period from 1971 to 2010. We distinguish between three types of contracts. 

Weather index insurance is designed to pay indemnity whenever the weather index, 

chosen to indicate the extreme drought occurrence, falls below the first, second, and 

third deciles of its probability distribution. The risk-reducing effectiveness of 

insurance contracts is evaluated by employing three criteria: certainty equivalent, 

expected shortfall, and a modification of lower tail partial moment.  

The remainder of the paper is structured as follows: Section 2 provides an overview 

of the methodology. Section 3 describes our data and empirical procedure. The study's 

preliminary results for a selected copula model and weather index are presented in 

Section 4. Conclusions are drawn in the final section.  

 

METHODOLOGY  

Regression analysis is a standard tool used in empirical studies to estimate sensitivity 

of crop yields to a weather index when rating a weather index insurance contract. The 

use of regression analysis, however, introduces some restrictive assumptions on the 

joint distribution of variables employed in the model. In particular, the use of 

regression models limits the scope of the analysis to the Gaussian multivariate 

distributions and thus to the linear correlation dependence structure. The main 

implications of this procedure is that researchers implicitly assume that the sensitivity 

of crop yields to weather remains constant over the whole distribution of the yield 

variable as it is captured by the effect of weather on the yield conditional mean. 

Moreover, linear correlation is not adequate for representing dependency in the tails 

of multivariate distributions (McNeil et al. 2005). This quality of linear correlation 

questions its relevance for the assessment of extreme losses.    
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In our study, we design weather index insurance contracts by employing estimates of 

the linear regression, and compare them with estimates obtained from a copula-based 

approach, which we present below.  

Copulas 

A copula allows marginal distributions to be linked together to form the joint 

distribution. A d-dimensional copula  is a multivariate 

distribution function on  with standard uniform marginal distributions (McNeil 

et al. 2005).  

Sklar’s theorem (1959) states that, if F is a joint distribution function with marginal 

distributions , then there exists a copula  such that for all 

 in , 

F x!,… , x! = C F! x! ,… , F! x! . (1) 

Therefore, according to Sklar’s theorem, any continuous multivariate distribution can 

be uniquely described by two parts: the marginal distributions Fi and the multivariate 

dependence structure captured by the copula C. This definition explains the 

usefulness of copulas for modeling multivariate dependence.  

In general, there are many families of copulas. Most important distinction is done 

between parametric and nonparametric (e.g., kernel) copulas. Empirical 

investigations primarily employ parametric copulas, which are better suited for 

simulation purposes. Parametric copulas consist of implicit and explicit families of 

copulas. Implicit copulas are defined by well-known multivariate distribution 

functions, e.g., the Gaussian copula and Student’s t copula (McNeil et al. 2005). An 

important property of the explicit copulas is that they possess a simple closed form.  

The best-known class of explicit copulas is Archimedean copulas, which comprises 

such copulas as Clayton, Gumbel, Frank, and Joe copulas. While the Gaussian, 

Student’s t, and Frank copulas are elliptical copulas and assume radial symmetry, 

Clayton, Gumbel, and Joe copulas allow the modeling of joint distributions with 

asymmetric dependence structures. In particular, the Clayton copula exhibits strong 

left-tail dependence and weak right-tail dependence, whereas the Gumbel and Joe 

copulas demonstrate strong right-tail dependence and relatively weak left-tail 

 )u, ,C(u  )C( d1 …=u

d
1] [0,

d1 F, ,F … 1] [0,1] [0,  :C
d
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d1 x, ,x … [ ]∞∞−= ,R
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dependence. The definition of different families of copulas can be found in Nelsen 

(1999).   

Copula model estimation  

The seasonality of agricultural production determines the length of time series 

available for empirical analyses. Regularly only one or two observations can be 

recorded within a calendar year. This fact reduces the scope for applying some 

methods, which require sufficiently long time series, to times series from agriculture. 

This issue concerns the application of the copula approach too. As the estimation of 

copula models necessitates a relatively large number of observations in the tails of a 

joint distribution, the estimation of the copula model for each single unit of 

investigation is rather problematic and might affect the model validity. To cope with 

this issue in our study, similar to Bokusheva (2012), we adopt the hierarchical 

Bayesian modeling framework, which allows model parameter estimation for each 

single study unit in a sample by employing the data of the whole sample population 

and considering its hierarchical structure.  

To specify the Bayesian model for the copula estimation, we consider a bivariate 

vector (Y, W), representing a crop yield and a weather variable, respectively. Then, 

the joint probability density function 
 
for these two variables can be 

defined as: 

𝑓 𝑌,𝑊   𝜽 = 𝑐 𝐹! 𝑌   𝜽 ,𝐹! 𝑊   𝜽 𝜽 𝑓! 𝑌   𝜽 𝑓! 𝑊   𝜽 , (2) 

where θ is the vector of copula and marginal distributions’ parameters, f and F denote 

a particular probability density and cumulative marginal distribution function, 

respectively, and c is a copula density. Then, regarding a sample of size N and length 

T, the respective likelihood function is given by: 

𝐿 𝑌,𝑊   𝜽 = 𝑐 𝐹! 𝑌   𝜽 ,𝐹! 𝑊   𝜽 𝜽 𝑓! 𝑌   𝜽 𝑓! 𝑊   𝜽
!∗!

!  (3) 

Successively, the likelihood function is used to obtain the posterior distribution, 

defined as: 

 𝑔 𝜽   𝑌,𝑊 = 𝐿 𝑌,𝑊   𝜽 𝑔(𝜽), (4) 

where 𝑔(𝜽) is the prior distribution.  

( )θWYf ,
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The copulas are usually estimated by a two-step procedure: In the first step, the 

parameters of marginal distributions are obtained by fitting a parametric distribution 

to the empirical data; In the second step, the parameters of the copula function are 

estimated by means of the Maximum Likelihood (ML) method. In this study, we also 

apply the two-step procedure. However, instead of the ML method, Markov chain 

Monte Carlo (MCMC) algorithms for Bayesian computation (Gamerman and Lopez 

2006) were employed to obtain the joint posterior distributions of copula parameters.  

Insurance contract parameters  

To design and rate a weather index insurance contract, we employ the concept of 

marginal expected shortfall (MES), introduced in Acharya et al. (2012) and further 

elaborated on in Mainik and Schaanning (2012). MES is defined as the conditional 

expected shortfall of the target random variable (Y) given that the conditioning 

variable (X) exceeds its value at risk (VaR) at the α confidence level, i.e.: 

,       (4) 

where E is the expectation operator.  

We assume that the dependence structure between crop yields and a vegetation index 

might be stronger in the left tail than in the center or the right tail of the joint 

distribution. Thus, in our analysis we suggest focusing on the MES of the yield  

conditioned on the realization of the weather index W below some specified 

quantiles. Then, given that W falls below a predetermined critical level, e.g., its α 

quantile qα(W), it is measured as: 

,  (5)  

To determine 
 
we have to define the conditional distribution of the yield variable, 

which is: 

𝐻𝒀 !!! 𝑦 = 𝑐!(!)!(!!!) 𝑣 ! ! !!

! ! !!

,  (6)                                            

where F(W) and G(Y) are the marginal distributions of the index and crop yield, 

respectively.  

MESαY X = E Y X ≤VaR
1−α X( )( )

*
~µ

µ*=MES qα W( ) = E Y W ≤ qα W( )( )

*
~µ
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 can be derived by taking the first derivative of the copula, which 

describes the joint distribution of the weather and yield variables, with respect to u 

corresponding with the weather variable marginal distribution as defined in (6), i.e.:  

,     
 (7) 

Employing the definition in (7) and adjusting (6) to consider all realizations of the 

weather index below its VaRα, we rewrite the conditional distribution of the yield 

variable in (6) as follows:  

 
 (8) 

The expression in (8) determines the conditional distribution of the yield variable in 

terms of a copula and the marginal distribution of the weather index. The integration 

of the expression in (7) over the whole yield marginal distribution [0,1], and taking 

the inverse of the resulted expression, allows to determine the yield distribution 

quantile corresponding with , i.e.: 

 (9) 

where denotes the generalized inverse with respect to the yield marginal 

distribution function.  

Once computed,  can be used to determine the indemnity value for each single 

realization of the weather index as the difference between the strike value of yield 

and corresponding value of the conditional expected yield, i.e.: 

 𝑖𝑛𝑑𝑒𝑚𝑛𝑖𝑡𝑦! = 𝑦𝑖𝑒𝑙𝑑!"#$%& − 𝜇!
∗
𝑊! ≤ 𝑞! 𝑊 ,  0 𝑊! > 𝑞! 𝑊 ,  (10) 

where t is the year index. 

Successively, fair insurance premium can be calculated as expected indemnity value. 

Consequently, the insured yield was defined as:  
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. (11) 

The design of the insurance contract, based on the regression analysis, was done in 

accordance with the methodology presented by Skees et al. (1997). The threshold 

value of the weather index was set to the selected quantile values of the weather 

variable distribution. The insurance payout was conditioned on the same threshold 

values of the weather index in both approaches.   

Risk reduction evaluation 

The comparison of the effectiveness of weather index insurance contracts derived by 

the copula and regression approaches were done by employing three criteria: 

certainty equivalent, expected shortfall (also called conditional VaR), and lower 

partial moment of distribution.  

The certainty equivalent (CE) was computed for insured and uninsured farm yields 

assuming negative exponential utility function, i.e.:  

,  (12) 

where ra is the Arrow-Pratt absolute risk aversion coefficient, the value of which was 

approximated by assuming a rather risk-averse decision-maker, as captured by the 

relative risk aversion coefficient (rr) equal to 2.0 (Hardaker et al. 2007) and setting 

the farmer’s temporal wealth to the farm expected yield value.  

The expected shortfall was calculated for three specified probability levels  as: 

,  (13) 

where qα is the yield distribution α-quantile. 

A modification of the lower partial moment (LPM) was computed as the expected 

value of squared negative deviations from the expected uninsured yield value for 

yield realizations below the third decile of the yield distribution: 

   (14) 

The evaluation of the risk-reducing effectiveness of insurance contracts was based on 

the relative risk reduction obtained by each type of insurance contract. 

yt
insured

= yt + indemnityt − fair premium

( ) )exp(1 xrxU
a

−−=
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ES =
1

1−α
qp

p=0

1−α

∫ dp
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N
min(y

t
− y y

t
< q
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Based on the certainty equivalent criterion, the relative risk reduction of insured 

yields was calculated as:  

. (15) 

Analogously, the relative risk reductions based on two other criteria were computed 

as:  

, and (16) 

. (17) 

 

DATA AND EMPIRICAL PROCEDURE 

Data 

The study employs spring wheat yield data for 47 large farms from five counties 

located in two major grain-producing regions in Northern Kazakhstan. The farm yield 

time series were provided by the county statistical offices. The weather data was 

acquired from the National Hydro-Meteorological Agency of the Republic of 

Kazakhstan–Kazgydromet. The weather data originates from five weather stations 

situated in single study counties (one in each county) and comprises monthly records 

of cumulative precipitation and average daily temperature. Both yield and weather 

data cover the period from 1971 to 2010.  

The yield time series were tested for the presence of structural breaks and were 

detrended by employing linear, and second and third degree polynomial time trend 

models. To enable consistent trend parameter estimates in the context of highly 

variable yield time series, we augmented trend models by adding a weather variable. 

Several weather indices, such as cumulative rainfall in different periods of the spring 

wheat vegetation, and modifications of the Selyaninov and Ped drought indices 

(Breustedt et al. 2007), were regarded as potential candidates for detecting extreme 

droughts. As the Ped drought index computed for two summer months (June and July) 

provided the highest levels of Pearson’s and Kendall’s rank correlations with 

undetrended farm yields on average for single counties, this index was selected to be 

RR
CE
=
CE

insured
−CE

uninsured

CE
uninsured

RR
ES
=
ES

insured
−ES

uninsured

CE
uninsured

RR
LPM

=
LPM

uninsured
− LPM

insured

LPM
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employed for the trend model estimation and to indicate the drought occurrence in the 

weather index insurance design. We specify the Ped drought index as: 

, (18) 

where t is the year index. The variables R, P, and T are the cumulative rainfall, 

precipitation in millimeter, and average daily temperature in degree Celsius in an 

indicated sub-period,
 
 respectively; , , and  are their respective averages, and 

σR, σP, and σT are the respective long-term standard deviations. 

We distinguish between three potential threshold levels of the weather index to signal 

occurrence of an extreme drought; we specify them to correspond with the Ped 

drought index (PDI) realizations below the first, second, and third quantiles of its 

distribution.  

Several distribution families were employed to fit yield and weather marginal 

distributions. The selection of the distribution was done on the basis of the 

Kolmogorov-Smirnov test. Accordingly, the Weibull distribution was chosen to 

model yields in the case of 15 farms; the gamma distribution provided the best fit for 

14 farms; while logistic, normal, and log-normal distributions were selected for eight, 

eight, and two study farms, respectively.  

Empirical Procedure 

As the estimation of copula models by means of hierarchical Bayesian models is a 

rather elaborate and time-consuming procedure, we reduce this part of the analysis by 

considering only one copula model—namely, the Gumbel survival copula. The 

choice of the copula model was done by estimating different copula models for single 

sample farms by employing the ML method
1
 and evaluating their goodness of fit on 

the basis of the Cramer-von Mises statistics (Genest et al. 2009). 

The survival Gumbel copula, defined as the Gumbel copula, applied to survival 

functions of marginal distributions2 allows for measuring dependence in the left tail 

                                                        
1
 To select an appropriate copula to be estimated by means of the hierarchical Bayesian model, we tested totally 6 

copula models: the Gaussian copula, t-copula, Frank copula, Clayton copula, and Gumbel and Joe survival 

copulas. The Gumbel and Joe survival copulas provided best fits for a majority of the sample farms. The Gaussian 

copula corresponding with the lienear correlation model showed best fit only for two sample farms.     
2
 A survival function is defined as 𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥 = 1 − 𝐹(𝑥) (e.g. Nelsen 1999, p.32) 

Ped
t
=
R
t

June−July
− R

σ
R

+
P
t

August−May
− P

σ
P

−
T
t

June−July
−T

σ
T
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of the joint distribution. According to Nelsen (2005, p. 32), the survival copula is 

defined in terms of the corresponding copula model as:  

 (19) 

Given the bivariate Gumbel copula 

with , (20) 

where𝜃  is the copula dependence parameter, and the expression in (16), the 

conditional distribution of the weather variable in (6) can be defined in terms of the 

Gumbel survival copula as: 

, 

 (21) 

where (1-u) and (1-v) are the survival functions of the weather index and yield 

marginal distributions, respectively. 

The estimation of the survival Gumbel copula in the framework of the Bayesian 

hierarchical modeling was done by deriving its density as: 

,         (22) 

where = (1-u) and = (1-v). 

We employed the uniform distribution as the prior distribution of the copula 

dependence parameter to be estimated, i.e., . This allowed us to easily 

account for the left-hand censoring of the dependence parameter of the Gumbel 

copula. We used non-informative prior distributions by defining  and 
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. The estimation of the hierarchical Bayesian model was done for the 

study farm sub-samples from single countries. 

Two alternative specifications of the regression model—a linear and a quadratic 

model—were employed. In both the copula-based and regression approaches, the 

yield strike level was set to the expected value of the farm yield. The evaluation of 

the insurance contract risk reduction was done by measuring risk reductions for 

catastrophic years which were determined in two alternative ways: (i) by detecting 

years with lowest yield observations, i.e. based on the farm yield distribution; (ii) by 

using weather index to identify extreme drought years, i.e. based on the weather 

index distribution. Accordingly, three above specified risk measures were calculated 

for the 10, 20, and 30% left-tail realizations of the unconditional and conditional farm 

yield distributions. The evaluation of the insurance contracts with weather index 

thresholds equal to the first, second, and third deciles of the weather index 

distribution was done with respect to three above-mentioned parts of the 

unconditional and conditional yield distributions, respectively.    

 

PRELIMINARY RESULTS 

The estimates of the dependence parameter of the survival Gumbel copula (Figure A1 

in Appendix) indicate a solid level of dependence of the study farm yields on the 

selected drought index. For almost all study farms, the estimates of the dependence 

parameter are above 1.5. However, the highest degree of dependence was estimated 

for the farms in the first county, where the dependence parameter estimates are above 

2.0 for the majority of the farms, while the lowest level of dependence on average was 

found for the farms in county 3. 

Table 1 summarizes the estimates of the risk reduction for single weather index 

insurance contacts. Independent of the approach used for contract rating, as well as 

the choice of the weather index threshold level, risk reduction evaluated in terms of 

certainty equivalent is almost negligible. This result is not surprising considering the 

independence assumption of the expected utility model, which implies that risk 

preferences are linear in probabilities. Accordingly, relatively small changes in the 

left tail of the outcome distribution should not have a substantial inflence on the 

expected utility value.  

)100,10(~Ub
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The estimates of risk reduction based on the expected shortfall criterion show that a 

substantially higher risk reduction was found for the copula-based approach than for 

the regression-based approach. On average, for the whole sample, the copula-based 

insurance contract with the threshold equal to the first decile of the weather index 

distribution would increase expected yield of the lowest 10% yield records by 79%.   

Table 1. Relative risk-reduction estimates for copula-based approach and regression-

based approach (3 weather index thresholds): catastrophic years determined based on 

farm yield distribution  

 

Source: author’s estimates 

The corresponding values for the hypothetical insurance contacts based on the linear 

and quadratic regression models are 59 and 39%, respectively. Risk reduction 

reduces for contracts with higher threshold levels of the weather index. Additionally, 

insurance contracts based on the linear regression model specification are found to 

provide higher risk reductions than those corresponding with the quadratic model. 

Consequently, in the following we reduce our discussion to the comparison of results 

obtained from the copula-based insurance approach and the linear regression model. 

The results of the t-test for the difference between two sample means indicate that the 

copula-based weather index contracts with the threshold levels equal to q0.2(W) and 

q0.3(W) would allow for a significantly higher average risk reduction (at the 5% level 

of significance) than corresponding contracts derived on the basis of the linear 

q(PDI)=0.1 q(PDI)=0.2 q(PDI)=0.3 q(PDI)=0.1 q(PDI)=0.2 q(PDI)=0.3 q(PDI)=0.1 q(PDI)=0.2 q(PDI)=0.3

Certainty)equivalent

county31 0.019 0.013 0.020 0.019 0.019 0.024 0.018 0.018 0.022

county32 0.003 0.000 70.001 0.006 0.006 0.007 0.003 0.003 0.005

county33 0.013 0.012 0.012 0.012 0.012 0.013 0.007 0.007 0.008

county34 0.004 0.003 0.004 0.005 0.005 0.008 0.005 0.005 0.007

county35 0.007 0.019 0.015 0.009 0.009 0.016 0.006 0.006 0.011

whole3sample 0.009 0.008 0.010 0.010 0.010 0.014 0.008 0.008 0.011

Expected)shortfall

county31 1.496 0.574 0.450 1.233 0.530 0.338 0.987 0.424 0.290

county32 0.552 0.285 0.205 0.399 0.173 0.117 0.128 0.061 0.055

county33 0.704 0.348 0.182 0.626 0.262 0.129 0.317 0.124 0.058

county34 0.418 0.257 0.254 0.212 0.105 0.120 0.179 0.092 0.112

county35 0.560 0.579 0.349 0.323 0.196 0.184 0.174 0.100 0.104

whole3sample 0.790 0.407 0.298 0.594 0.266 0.186 0.393 0.176 0.135

Lower)partial)moment)

county31 0.347 0.310 0.451 0.343 0.348 0.430 0.309 0.306 0.390

county32 0.160 0.116 0.175 0.208 0.227 0.267 0.109 0.134 0.159

county33 0.320 0.327 0.307 0.295 0.314 0.304 0.154 0.159 0.150

county34 0.164 0.196 0.318 0.187 0.233 0.304 0.173 0.218 0.286

county35 0.209 0.548 0.509 0.224 0.439 0.422 0.140 0.283 0.263

whole3sample 0.238 0.277 0.346 0.253 0.304 0.346 0.186 0.223 0.261

copula3approach linear3regression3model quadratic3regression3model
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regression; for the insurance contracts with the q0.1(W) threshold the difference 

between average risk reductions from two alternative approaches is not significant.  

Though our estimates of the lower partial moment suggest a solid reduction in the 

variability of farm yields in the left tail of the yield distribution, there are no 

significant differences in the average risk reductions between the contracts based on 

the copula approach and those derived by means of the linear regression model 

according to the two-sample mean t-test. Obviously, because they provide higher 

levels of coverage for the yield losses caused by extreme drought events, the copula-

based contracts charge higher premiums; also in the years when an extreme yield loss 

was caused by another peril and thus no indemnity was paid by the specified 

insurance contract. This might be an explanation for a relatively moderate 

performance of copula-based insurance contracts as evaluated by using the lower 

partial moment.  

Table 2. Relative risk reduction estimates for copula-based approach and regression-

based approach (3 weather index thresholds): catastrophic years determined based on 

weather index distribution 

 

Source: author’s estimates 

An additional cause of the relatively moderate performance of the weather index 

insurance contracts might be explained by the capacity of the weather index to signal 

extreme drought occurrence. The estimates of risk reduction presented in Table 1 are 

obtained by employing the yield unconditional distribution. In this case, left-tail 

quantiles of the yield distribution may not necessarily correspond with left-tail 

quintiles of the weather index. If the number of disconcording pairs of joint yield and 

weather index realizations is not negligible, the evaluation of the insurance contract 

q(PDI)=0.1 q(PDI)=0.2 q(PDI)=0.3 q(PDI)=0.1 q(PDI)=0.2 q(PDI)=0.3 q(PDI)=0.1 q(PDI)=0.2 q(PDI)=0.3

Expected(shortfall

county31 1.906 0.791 0.610 1.601 0.361 0.384 0.424 0.290 0.893

county32 0.811 0.591 0.462 0.504 0.197 0.202 0.061 0.055 0.873

county33 0.957 0.494 0.335 0.689 0.205 0.196 0.105 0.058 0.849

county34 0.756 0.519 0.405 0.377 0.142 0.187 0.092 0.112 0.824

county35 1.062 0.825 0.508 0.590 0.252 0.237 0.100 0.104 0.945

whole3sample 1.142 0.650 0.479 0.800 0.237 0.251 0.384 0.174 0.137

Lower(partial(moment(

county31 0.572 0.615 0.873 0.520 0.585 0.754 0.309 0.306 0.390

county32 0.391 0.582 0.849 0.447 0.571 0.694 0.109 0.134 0.159

county33 0.627 0.749 0.824 0.541 0.628 0.670 0.169 0.167 0.150

county34 0.375 0.471 0.945 0.329 0.449 0.617 0.173 0.218 0.286

county35 0.283 0.940 0.979 0.314 0.601 0.623 0.140 0.283 0.263

whole3sample 0.449 0.643 0.893 0.435 0.562 0.679 0.187 0.223 0.259

copula3approach linear3regression3model quadratic3regression3model
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effectiveness should account for this fact. In Table 2, we summarize risk reduction 

estimates obtained by employing yield realizations, conditioned of the weather index 

distribution quantiles. These estimates show what would be the risk reduction, if the 

selected weather index would perfectly identify the occurrence of drought and there 

were no other risk causing extreme yield losses. In this case, the copula-based 

insurance contracts would clearly outperform the contracts derived by employing the 

linear regression model. The t-test indicates that the average risk reductions due to 

the copula-based contracts with the q0.2(W) and q0.3(W)-thresholds would be 

significantly higher at the 1% level than the average risk reduction for equivalent 

contacts based on the linear regression as measured by both criteria - expected 

shortfall and lower partial moment. The difference in the average risk reduction 

between two alternative approaches for the contracts with the q0.1(W) threshold is 

found to be significant at the 5% level for the expected shortfall and not significant 

for the lower partial moment. The highest risk reduction, in terms of an increase of 

the expected shortfall, were obtainable by setting the weather index threshold to 

correspond with the first quantile of its distribution, while higher reductions in the 

variability of the outcome would be achieved at higher levels of the index threshold.   

 

CONCLUSIONS 

The paper presents a copula-based approach for rating weather index insurance 

designed to provide coverage for yield losses due to extreme weather events. The 

effectiveness of this approach is compared with the common regression-based 

approach. Our preliminary results suggest that the application of the copula approach 

might improve the performance of weather index insurance. However, the 

identification of drought seems to be problematic.  Therefore, the selection of an 

adequate weather indicator to signal occurrence of an extreme event is a precondition 

for developing effective weather index insurance.  
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Appendix  

 
Source: author’s estimates 

Figure A1. Estimates of survival Gumbel copula dependence parameter  
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