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Abstract

Across the social sciences, lagged explanatory variables are a common strategy
to confront challenges to causal identification using observational data. We show
that “lag identification”—the use of lagged explanatory variables to solve endogene-
ity problems—is an illusion: lagging independent variables merely moves the channel
through which endogeneity biases causal estimates, replacing a “selection on observ-
ables” assumption with an equally untestable “no dynamics among unobservables”
assumption. We build our argument intuitively using directed acyclic graphs, then
provide analytical results on the bias resulting from lag identification in a simple lin-
ear regression framework. We then present simulation results that characterize how,
even under favorable conditions, lag identification leads to incorrect inferences. These
findings have important implications for current practice among applied researchers
in political science, economics, and related disciplines. We conclude by specifying the
conditions under which lagged explanatory variables are appropriate for identifying
causal effects.
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1 Introduction

It is common for researchers using observational data in the applied social sciences

to lag explanatory variables in an effort to purge their estimates of endogeneity, i.e., to

eliminate the correlation between the explanatory variables and the error term, a prob-

lem which prevents teasing out causal relationships from mere correlations. The lagged

independent variable strategy—what we refer to as “lag identification” throughout this

paper—is attractive because it purports to alleviate threats to causal identification with-

out requiring any other data than that available in the dataset. This approach, however, is

grounded in a pre-Credibility Revolution understanding of the problem of endogeneity

(cf. Angrist and Pischke 2009, 2010, and 2014), one that is rooted in the work of the Cowles

Commission on simultaneous equations in the middle of the 20th century (Christ, 1994).

In this paper we demonstrate that lag identification is almost never a solution to en-

dogeneity problems in observational data, and that rather than allowing for the identifi-

cation of causal relationships, lag identification merely moves the channel through which

endogeneity biases estimates of causal effects. Specifically, we characterize precisely the

conditions under which lagging an explanatory variable can achieve causal identification:

these are (i) serial correlation in the potentially endogenous explanatory variable, and (ii)

no serial correlation among the unobserved sources of endogeneity. This replaces the se-

lection on observables assumption that motivates the regression with a new identification

assumption of “no dynamics among unobservables.” This assumption is intuitively prob-

lematic, because it requires substantive restrictions on the properties of a variable that is

not observed. Put differently, lagging an explanatory variable to obtain an estimate of

a causal parameter assumes the existence of temporal dynamics in the explanatory vari-

able, but the same temporal dynamics must not characterize the unobservables. Our main

conclusion is that the use of lagged explanatory variables is almost never justified on iden-

tification grounds, and so it does not buy causal identification on the cheap. The central

identification assumption has simply been moved to a different point in the data generat-
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ing process, and that new identification assumption is unlikely to be more defensible than

the selection on observables assumption that motivates the regression.

This argument is most closely related to concurrent research by Reed (2014), who also

studies the use of lagged explanatory variables for causal inference but focuses on simul-

taneity bias and proposes the use of lagged explanatory variables as instruments for en-

dogenous explanatory variables.1 In contrast, our work focuses on more general forms of

endogeneity, and our results imply that Reed’s recommendations are unlikely to represent

a valid solution to the identification problem. Our work is also related to Blackwell and

Glynn (2014), who are broadly concerned with establishing theoretical results about causal

inference using time-series cross-sectional (i.e., large-T and large-N panel) data. All of our

arguments are consistent with theirs. Our contribution is more focused, and designed to

identify a specific practice in applied social science research whose consequences are not

properly understood.

This paper is motivated by the same concern for credible statistical techniques for the

estimation of causal effects that has motivated recent advances in randomized controlled

trials (Duflo et al. 2007, Glennerster and Takavarasha 2013), field experiments (Harrison

and List 2004, Gerber and Green 2012), instrumental variables (Angrist et al. 1996, Sovey

and Green 2011, Imbens 2014), regression discontinuity (Imbens and Lemieux 2008), and

differences-in-differences estimation (Bertrand et al. 2004) in the social sciences. The com-

mon theme uniting this literature is the critical importance of research design; in the words

of Sekhon (2009), “without an experiment, a natural experiment, a discontinuity, or some

other strong design, no amount of econometric or statistical modeling can make the move

from correlation to causation persuasive.” Lag identification is a response to an imperfect

research design that relies on a simple—much too simple, it turns out—statistical fix to

strengthen the argument that correlations are causal. Our results demonstrate that this

fix does not work.

1Villas-Boas and Winer (1999), for example, use lagged prices as instruments for endogenous contempo-
raneous prices.
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The rest of this paper is organized as follows. In section 2, we discuss the general prob-

lem posed by the use of lagged variables as regressors using directed acyclic graphs (Pearl

2009), and present an overview of recent articles in the top economics and political science

journals which rely on lagged explanatory variables as a source of exogenous variation.

Section 3 derives analytical results for the biases of lag identification in the context of an

ordinary least squares (OLS) regression, providing a formal result for the “no dynamics

among unobservables” condition that allows for conservative estimates of causal effects

using lagged explanatory variables in the presence of endogeneity. Section 4 presents

Monte Carlo results showing that the use of lagged explanatory variables can worsen the

identification problem, with consequences for inference that are often worse than simply

ignoring endogeneity. Section 5 concludes by summarizing our argument, offering recom-

mendations for applied work and for future research, and outlining a set of guidelines for

researchers to follow when using lagged explanatory variables to identify causal effects.

2 Problem Definition

There are three reasons why a lagged value of an independent variable might appear

on the right hand side of a regression.

1. Theoretical: In some contexts, there are clear theoretical reason to expect that the ef-

fect of an explanatory variable only operates with a one-period lag. Such is the case,

for example, when estimating Euler equations in order to study intertemporal substi-

tution behaviors, or when considering the efficient market hypothesis in its random

walk version, wherein pt, the price of an asset today, is a function pt = pt−1 + et of

the price of the same asset yesterday, pt−1, and an iid error term et. It could also be

the case that the analysis is directly interested in lagged effects conditional on con-

temporaneous effects, in which both current and lagged values of the independent

variable would appear on the right hand side of a regression.
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2. Statistical: In other contexts, lagged independent variables serve a statistical function.

Examples include dynamic panel data analysis (Arellano and Bond 1991) as well as

distributed lag, error correction, and related families of dynamic statistical models

(see De Boef and Keele 2008).

3. Causal Identification: Frequently, applied researchers propose to use a lagged value

of an explanatory variable X in order to “exogenize” it when estimating the causal

effect of X on Y . Since Yt cannot possibly cause Xt−1, the argument goes, replacing

Xt with Xt−1 obviates concerns that X is endogenous to Y .

Our focus in this paper is on the use of lagged explanatory variables for causal iden-

tification, i.e., the use of such variables to mitigate inferential threats that arise from en-

dogeneity. None of our critiques of lag identification apply to theoretical or statistical

motivations for including lagged values of independent variables on the right hand side

of a regression, although we will touch briefly on both of these in our Monte Carlo analysis

in section 4.

How common is the practice of lagging explanatory variables for identification pur-

poses? To answer this question, we examined all articles published in the top general

journals in political science, economics, and sociology, as well as several top journals in

the political science subfields of comparative politics and international relations (see Table

1). We identified articles that used lagged explanatory variables by searching the full text

of each for the word “lag,” and then discarding articles that used lags purely for the pur-

poses of forecasting, or that used the word “lag” in some other context, including articles

that lagged only their dependent variable, or included only spatial lags.

The resulting count of articles in Table 1 suggests that this practice is much more com-

mon in political science relative to economics or sociology. The low number for the Ameri-

can Political Science Review in 2014 is also not typical for that journal: we uncovered twenty-

three articles between 2010 and 2014. We also looked closely at the justifications that au-

thors provided for including lagged explanatory variables. Articles in economics journals
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Table 1: Journals Reviewed

Journal Name Discipline Lag Articles Lag “Identified”
American Political Science Review Political Science 3 1
American Journal of Political Science Political Science 10 6
Journal of Politics Political Science 10 8
Comparative Political Studies Political Science 14 7
International Organization Political Science 8 8
International Studies Quarterly Political Science 15 10
World Politics Political Science 7 6
American Economic Review Economics 4 2
Econometrica Economics 1 1
Journal of Political Economy Economics 1 1
Quarterly Journal of Economics Economics 2 0
Review of Economic Studies Economics 1 1
Review of Economics and Statistics Economics 8 6
American Sociological Review Sociology 1 1
American Journal of Sociology Sociology 0 0
European Sociological Review Sociology 1 1

Notes: Lag Articles is a raw count of the number of articles published in 2014
that employed a lagged explanatory variable. Lag“Identified” is the number
of Lag Articles that either involved endogeneity as a justification for lagging
an explanatory variable, or contained no justification at all for lagging an
explanatory variable.

frequently invoked theoretical concerns, and rarely justified their lag choices on endo-

geneity grounds.2 However, articles in political science journals frequently invoked “si-

multaneity” or “reverse causality” explicitly as the sole motivation for lagging explanatory

variables.3 Somewhat more concerning, a substantial minority of articles that we identi-

fied in this survey contained no justification whatsoever for their lag choice. We did iden-

tify a number of cases where authors employed lagged explanatory variables as part of an

2An example is Kellogg (2014:1710), who justifies a three-month lag between his main predictor of interest
(expected oil price volatility) and his outcome of interest (drilling an oil well) based on interviews with
“industry participants” who suggested that this is how long it takes “between the decision to drill and the
commencement of drilling.”

3Some examples are as follows: Baccini and Urpelainen (2014:205) write “Most of these variables are
lagged by one year to avoid endogeneity problems.” Lehoucq and Perez-Linan (2014:1113) write “We lag
both economic variables one year to minimize problems of endogeneity.” Steinberg and Malhotra (2014:513)
write “All independent and control variables are lagged by one year to mitigate the possibility of simultane-
ity or reverse causality bias.”
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error correction or distributed lag model, but these remain the minority of the articles that

we identified. As Table 1 shows, in 2014, across a range of journals, more than half of the

articles that employed lagged exogenous variables either explicitly invoked endogeneity,

or contained no justification at all.

This review of recent scholarship reveals that the practice of lagging explanatory vari-

ables for identification purposes remains common in the most influential and widely cited

political science journals. We now turn to closer examination of the conceptual problems

that this strategy creates.

2.1 Directed Acyclic Graphs

Following Pearl (2009), we begin with an intuitive discussion of the problem which

relies on directed acyclic graph (DAGs). The DAG in Figure 1 shows the fundamental

identification problem in observational data: the identification of the causal relationship

flowing from X to Y is compromised by the presence of unobservable factors U which are

correlated with both X and Y .

Figure 1: The Identification Problem

X Y

U
Notes: This is a representation of a causal relationship from X to Y where
identification is compromised by unobservables U .

Figure 2, wherein we add subscripts t to clarify temporal ordering, illustrates the lag

identification strategy that we study in this paper. Lag identification means replacing Xt

with its lagged value, Xt−1 in a regression of X on Y . The DAG representation in Figure 2

clarifies the logic behind this strategy. It must be the case that there is a causal pathway

from Xt−1 → Xt, or else Xt−1 could not be unrelated to Y . However, the fact that there is

no direct causal link running from Ut to Xt−1 means that there is no possibility that this
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particular unobserved confounder Ut threatens causal identification.

But Figure 2 also shows that replacing Xt with Xt−1 merely moves the endogeneity

problem back one time period. It is true that Xt−1 is unaffected by Ut, but it is affected by

Ut−1 for the same reason that Ut → Xt. As a result, if there are any temporal dynamics in

the unobservables, then the causal pathways Ut−1 → Ut → Yt and Ut−1 → Xt−1 → Xt →

Yt prevent causal identification using Xt−1. The critical identification assumption in lag

identification, therefore, is that there are no temporal dynamics among the unobservables.

This assumption is not testable: doing so would require observing U , the unobservable

confounder that motivates lagging X on identification grounds.4

Figure 2: Lagged Independent Variable as a Solution?

Xt−1 Xt Yt

Ut−1 Ut

Notes: This is a representation of the causal relationship from X to Y that
is implied when using a lagged value of X to overcome the identification
problem in figure 1. The dashed line represents the causal relation among
unobservables in time t and t− 1 that must be zero.

Our discussion thus far has focused on endogeneity in the form of unobserved hetero-

geneity. In many applications, however, lag identification is justified on “reverse causality”

grounds rather than unobserved heterogeneity grounds. The argument that temporal or-

dering prevents current realizations of the dependent variable from affecting past values

of a causal variable of interest appears more reasonable as a defense against simultaneous

or reverse causation. However, this perspective is misplaced. From a conceptual stand-

point, we can reformulate most cases of reverse or simultaneous causation as problems

of unobserved heterogeneity, in which a latent variable representing the “likelihood” or

“propensity” of Y is an unobserved confounder that causes both Y and X .

4There also might be cases where Ut → Xt but Ut−1 6→ Xt−1. This would be a case of “time-varying
endogeneity,” and could yield identification even if there are dynamics in the unobservables. We are not
aware of any case where this assumption has been invoked, much less been made explicit. At any rate, even
if it were to be made, such an assumption would be unlikely to hold.
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Because this idea may not be intuitive, we illustrate this argument using two concrete

examples. Kelley and Simmons (forthcoming) study “the effect of monitoring and rank-

ing on state behavior” (8), arguing that U.S. human rights reports shame countries into

criminalizing human trafficking. They model their dependent variable Y (a dummy for

“whether countries criminalize human trafficking in their domestic legislation”) as a func-

tion of several key explanatory variables, including whether a country is named in the U.S.

annual Trafficking in Persons Report. They are explicitly concerned about reverse causal-

ity: “All explanatory and control variables are lagged to help address reverse causality and

selection issues” (8), and ask “Does the United States strategically shame countries that are

likely to criminalize anyway?” (9). This articulation of the inferential threat facing their

analysis is illuminating: the identification problem is not that criminalizing human traf-

ficking causes countries to be named in the Trafficking in Persons Report, which would

be a case of reverse causality. Rather, it is that strategic dynamics not captured in the ob-

servables determine both criminalization and being included in the report. In this case,

the unobservable confounder U can be understood as whatever unobserved propensity

to criminalize human trafficking is not captured in the explanatory or control variables,

but which also drives U.S. scrutiny of a country’s human trafficking problem. Substan-

tively, this may be something like activism and political pressure by D.C.-linked activists

in trafficking countries. The methodological point is that the inferential threats of “reverse

causality” can be expressed as threats from unobserved heterogeneity: Ut−1 → Shamingt−1

and Ut−1 → Ut → Criminalizationt.

Warren (2014) offers another example. This article tests the hypothesis that “states

with high levels of media accessibility will be less likely to experience the onset of civil

war” (123). The independent variable of interest is a media density index. Identifica-

tion is a problem, however: “to guard against spurious results due to reverse causation,

all independent variables are lagged by one year” (126). In this case, it is theoretically

possible that the onset of war directly reduces the density of countries’ media markets.
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But a more general formulation of the inferential problem is that there is a latent, unob-

served probability of civil conflict that both leads to civil war onsets and that hampers

media development even when a civil war onset does not actually occur. In this case, U

is the latent probability of civil war, the past values of which affect past values of media

density as well as the current onset of civil war: P(Conflict)t−1 → MediaDensityt−1 and

P(Conflict)t−1 → P(Conflict)t → Conflictt.

We note that we are not conjuring these endogeneity problems ourselves. Instead, we

are articulating them on behalf of authors who have proposed statistical models that ex-

plicitly recognize that these challenges exist. Our point in highlighting them is to show

that it is easy to reformulate problems of reverse causality as problems of unobserved het-

erogeneity.5 For this reason, our formal analysis in the next section will represent endo-

geneity as unobserved heterogeneity, which we can capture as an omitted variable. Never-

theless, it is useful to highlight that our argument will also travel to contexts with “pure”

reverse or simultaneous causation between X and Y . A classic example of this form of

simultaneous causation is Haavelmo’s (1943) treatment of the joint determination of con-

sumption and investment. This causal process is depicted in figure 3, which shows that if

Yt causes Xt, Yt−1 also causes Xt−1.

Figure 3: Lagged Independent Variable with Pure Reverse Causality

Xt−1 Xt Yt

Yt−1

Notes: This is a representation of pure simultaneous causation with no unob-
servables. The dashed line represents the causal relation among dependent
variables in time t and t− 1 that must be zero.

The identification assumption is now that there are dynamics in X but not Y . If Yt−1 →

Xt−1 and Yt−1 → Yt, then substituting Xt−1 for Xt does not avoid the identification prob-

5See Pearl (2009:145-149) for a related argument on the observational equivalence of structural equation
models. His argument begins as follows: “if we regard each bidirected arc X ←→ Y as representing a latent
common cause X ← L→ Y ...”
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lem. We will analyze a system of this sort in section 4.3.3 below.

3 Analytical Results

The DAGs in the preceding section are useful for clarifying the intuition behind lagged

independent variables, and also for demonstrating why they are unlikely to sidestep prob-

lems of endogeneity. To characterize precisely the inferential problems that arise from

lagged independent variables in the context of endogeneity, in this section we analyze for-

mally the consequences of lag identification in a bivariate OLS regression setup. Here,

assume that the OLS regression framework is the correct functional form for the estima-

tion of the causal effect of X on Y . If the correct functional form is unknown, then a

non-parametric approach such as those offered by Pearl or Rubin, as well as precise as-

sumptions about counterfactual outcomes, are necessary to define estimators that estimate

causal effects.

Consider the model

Yit =βXit + δUit + ǫit (1)

Xit =ρXit−1 + κUit + ηit (2)

Uit =Wit + φWit−1 + νit (3)

η

W
∼ N







0

0






,







σ2
η ση,W

ση,W σ2
W






(4)

where i and t index units and time, respectively; 0 ≤ ρ < 1; and ǫit ∼ N(0, σ2
ǫ ), ηit ∼

N(0, σ2
η). Dropping i for the remainder of this section (it will reappear in the next section),

it is well known that if we estimate

Yt =bXt + et (5)

11



then the resulting estimate of β is biased because the unobserved confounder U is omit-

ted.6 The magnitude of the bias is a function of the variances and covariances of X and U

as well as magnitude of the causal effect of the unobserved confounder:

E[b̂Xt
] =β + δ ·

Cov(X,U)

V(X)
(6)

If either δ or Cov(X,U) = 0—if U has no effect on Y , or if U is uncorrelated with X—then

endogeneity is not a problem, and E[b̂Xt
] = β.7

The system of equations in (1 – 4) allows for two distinct channels that can produce

endogeneity. The first channel is the straightforward case of U → X , in which the unob-

servable confounder has a causal relationship with the endogenous variable. The size of

that causal effect of U on X is the parameter κ. But we also allow for a second source of

endogeneity that captures any other reason whyX andU might be correlated. That is the corre-

lation parameter ση,W in (4). This term will capture, for example, a still more deeper set of

causal relations where another unobserved confounder causes both X and U . We include

the term ση,W to emphasize that our derivation captures any such form of endogeneity

between X and U .

Now consider a regression that replaces X with Xt−1, but which otherwise remains

subject to the same endogeneity problems as in (1).8 This means estimating the following

equation:

Yt =bXt−1 + et (7)

While this is plainly not an unbiased estimate of β,9 one hope is that lag identification will

6We use Greek letters for population coefficients and Latin letters for sample coefficients.
7Based on the DGPs in Equations 1-3, one can also derive Cov(X,U). The derivation is presented in

Appendix 1.
8For purposes of clarity we do not consider here more complicated models that condition on past values

of Y . We will show in our simulation analysis and in the conclusion that lagging the dependent variable in
addition to the endogenous explanatory variable does not avoid endogeneity problems either.

9Indeed, even when equation (2) is such that Xit = Xit−1+ηit, β suffers from attenuation bias given that
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estimate a function of β and the autocorrelation in X , or ρ—a moderated, or “conserva-

tive,” estimate of β. Indeed, by expressions (1 – 4), lag identification implies estimating

the following population parameter:

Yt = β(ρXt−1 + κUt + ηt) + δUt + ǫt (8)

= βρXt−1 + βκUt + βηt + δUt + ǫt (9)

This immediately makes clear why lag identification fails, for the error term et in (7) now

contains (βκ+δ)Ut+βηt+ǫt. Therefore, b̂Xt−1
from (7) is not a consistent estimate of either

β or the conservative βρ. To see why, recall that b̂Xt−1
= Cov(Xt−1,Yt)

V (Xt−1)
. We may write

plimn→∞
b̂Xt−1

= βρ+
Cov(Xt−1, (βκ+ δ)Ut + βηt + ǫt)

V(Xt−1)
(10)

= βρ+
Cov(ρXt−2 + κUt−1 + ηt−1, (βκ+ δ)Ut + βηt + ǫt)

V(Xt−1)
(11)

=

βρ+
ρ(βκ+ δ)Cov(Xt−2, Ut) + ρβCov(Xt−2, ηt) + ρCov(Xt−2, ǫt)

V(Xt−1)

+
κ(βκ+ δ)Cov(Ut−1, Ut) + κβCov(Ut−1, ηt) + κCov(Ut−1, ǫt)

V(Xt−1)

+
(βκ+ δ)Cov(ηt−1, Ut) + βCov(ηt−1, ηt) + Cov(ηt−1, ǫt)

V(Xt−1)

(12)

We know that by design, given expressions (1 – 4), that Cov(Ut−1, Ut) = φσ2
W and

Cov(ηt−1, Ut) = φσW,η with all the other covariances set at zero. Thus, equation (12) re-

duces to

plimn→∞
b̂Xt−1

=βρ+
φ(βκ+ δ)(κσ2

W + ση,W )

V(Xt−1)
(13)

Contrasting lag identification bias in (13) with the standard result for omitted variable

bias in (6) usefully highlights the troublesome properties of lagged independent variables

Xit is simply Xit−1 measured with error.
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from a causal identification perspective. As ση,W , κ, and δ grow larger, b̂Xt−1
grows larger

as well. And critically, in the cases where (7) does not yield a biased estimate of β, (13) does.

Those are the cases where δ = 0 but φ 6= 0 (or there exists dynamics in the unobservable

variable Ut). More substantively, lagging Xt and using it as a regressor can open up a

“backward channel” through Ut−1 → Xt−1 and Ut−1 → Ut → Yt.

In fact, expression (13) confirms that either one of the following conditions should hold

for lag identification to produce a consistent estimate of βρ (which is a “conservative”

estimate of the effect of X on Y , attenuated by ρ).

1. No serial autocorrelation in U (φ = 0), i.e., no dynamics among unobservables.

2. There is no endogeneity of any type, which means that κ = ση,W = 0.

The former condition is precisely the condition identified in Section 2.1 above. In that case,

the second term reduces to zero, and b̂Xt−1
= βρ.

4 Monte Carlo Analysis

We have argued so far that when researchers believe that endogeneity threatens their

ability to estimate causal effects, lagging independent variables does not alleviate these

concerns, it simply moves the identification assumption to a different point in the data-

generating process. We have also characterized analytically the magnitude of the bias

in a lagged independent variables framework in a simple OLS regression setup. In this

section, we use Monte Carlo experiments to demonstrate the consequences of using lagged

independent variables in empirical research.

4.1 Setup

Our task is to estimate β, the causal effect of X on Y . Figure 4 is an extension of our

earlier analysis which parameterizes the causal relations of interest. As above, the source
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Figure 4: Monte Carlo Simulations

Xt−1 Xt Yt

Ut−1 Ut

et−1 et

vtvt−1

ǫt

FE

ρ β

κ κ

φ

Notes: This is a schematic representation of our Monte Carlo simulations,
with Greek letters representing the parameters that we vary in our simu-
lations. X is the causal variable of interest, represented here as a function
of a random variable e and its own past value as well as unit fixed effects
FE. U is an unbserved source of endogeneity, and is itself a function of a
random variable v and its own past value. Y is the dependent variable, and
is a function of observed X , unobserved U , fixed effects FE, and a random
error term ǫ. β is the causal parameter to be estimated, κ measures the size
of the endogeneity problem, and ρ and φ capture dynamics in X and U , re-
spectively.

of endogeneity bias is the unobserved confounder U , which is correlated with both X and

Y . In all simulations, we set the direct effect of U on Y (which we called δ above) equal

to 1, and explore the consequences of endogeneity bias by varying κ, the causal pathway

that makes X endogenous to Y by forcing Cov(X,U) 6= 0. The remaining two parameters

are the autocorrelation parameters ρ and φ, which capture serial correlation in X and U ,

respectively. When either of the autocorrelation parameters is zero, then the value of each

variable is statistically independent of its own lag. These are the four parameters that we

vary across simulations; a summary appears in Table 2.

Table 2: Simulation Parameters

Parameter Causal Pathway Simulation Values
β Xt → Yt 0, 2
κ Ut → Xt, Ut−1 → Xt−1 0, .5, 3
ρ Xt−1 → Xt 0, .5, .9
φ Ut−1 → Ut 0, .5, .9
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For each simulation, we generate a panel with N = 100 units and T = 50 periods, for

a total of 5,000 unit-period observations. To replicate a standard panel data problem, we

also include time-invariant unit fixed effects FEi, which we do not observe, and which

affect both Y and X . Altogether, then, we simulate the following system of equations.10

Yit =βXit + 1 · Uit + 1 · FEi + ǫit (14)

Xit =ρXit−1 + κUit + 1 · FEi + eit (15)

Uit =φUit−1 + vit (16)

where

FEi

ǫit

eit

vit

∼ N



















0

0

0

0



















,



















5 0 0 0

0 5 0 0

0 0 1 0

0 0 0 1



















(17)

We replicate each combination of parameter values in Table 2 a total of 100 times, and then

test the performance of three estimators in estimating β: (i) the “naı̈ve” estimator that re-

gresses Y on X and ignores endogeneity, (ii) the “lag explanatory variables” estimator

that regresses Y on Xt−1 in an attempt to avoid endogeneity problems, and (iii) a “true”

estimator that conditions on the unobservable U .11 The “true” estimator is, of course,

counterfactual: we presume that the researcher does not observe U , else she would con-

dition on it. The estimates obtained from a regression model that correctly follows the

data generating process, however, will serve as our empirical benchmark against which to

10We set the variance of FE and ǫ at 5 in order to allow for a realistic amount of model uncertainty. Most
estimates from our simulations have an overallR2 between 0.05 and 0.1, which is comparable toR2 measures
in much applied work. Note also that the covariance matrix in (17) reflects an assumption that ση,W = 0,
so the only form of endogeneity that we model in our simulations is where U → X . Our results, of course,
generalize to other forms of endogeneity reflected in (4) as well.

11Each estimator is a fixed effects regression, which is necessary given our data generating process. We
estimate these models using the “within” estimator implemented in the plm library in R.
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gauge the performance of the other two estimators.

We emphasize that our causal model has many moving parts, but is still simple in terms

of the dynamics that it allows. Among many other simplifications, we assume that there

are no dynamic causal relationships among unobservables and observables. For example,

lagged omitted variables U are not direct causes of current values of Y —they only affect Y

through the pathwayUt−1 → Ut → Yt. Moreover, there are no complex temporal dynamics

inX orU , just simple one-period autocorrelation, and the fixed effectsFE are independent

ofU . We view this relatively straightforward setup as a conservative way to show just how

difficult it is to justify lagged independent variables as sources of exogeneity in even the

most favorable cases.

We evaluate the consequences of lag identification according to three criteria: (i) bias,

(ii) root mean squared error (RMSE), and (iii) the likelihood of Type 1 or Type 2 error. The

last of these is perhaps the most important from the perspective of applied researchers, as

it tells us the extent to which researchers will make faulty inferences—rejecting true null

hypotheses that β = 0, or failing to reject the null hypothesis when the true β > 0—when

using lagged independent variables to sidestep problems of endogeneity.

4.2 Results

We begin by comparing bias across the three estimators. For each combination of pa-

rameter values, we save the estimated parameter β̂ from each of the 100 simulations, and

the plot the distribution of estimates along with the true value of β from the data gener-

ating process. Figure 5 summarizes our main results for the case where the true causal

effect β is equal to 2 and the autocorrelation in the unobservables φ is set equal to 0, and

Figure 6 shows there results when φ = 0.5.12

The results from these simulations are clear. For any value of φ, and regardless of

12Our results are comparable when φ = 0.9, but we do not report them here to save space. They are
available upon request.
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Figure 5: Bias in Lag Explanatory Variable Regressions, φ = 0
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Notes: This figure plots the empirical density of estimated coefficients β̂ from
100 simulations of the data generating process in Figure 4. The dashed line
corresponds to the true value of β = 2. The dotted line is β × ρ.

whether the data generating process makes X endogenous to Y , lagged explanatory vari-

able estimates are biased towards zero. This result is intuitive: Xt−1 is a proxy forXt which

measures the latter with error, producing attenuation bias in β even without endogeneity.

Moreover, and as expected, when there is no endogeneity (i.e., κ = 0), then regressing Yt

on Xt suffices to identify β. However, when κ > 0, we find that neither the “naı̈ve” nor the

“lag explanatory variable” estimator identifies β. The amount of bias in both is a function

of ρ: the higher the correlation between Xt and Xt−1, the less the bias.

In Table 3 we calculate the root mean squared error (RMSE) of each estimator for each

combination of parameters. We also add two additional estimators in which we condition
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Figure 6: Bias in Lag Explanatory Variable Regressions, φ = .50
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100 simulations of the data generating process in Figure 4. The dashed line
corresponds to the true value of β = 2. The dotted line is β × ρ.

on Yt−1 in an attempt to account for dynamics.

The results show that the RMSE of the lag explanatory variable estimator is far larger

than that of the naı̈ve estimator, which in turn is much larger than the estimator that con-

ditions on U . The same is true even when conditioning on lagged values of Y . The only

exceptions are purely incidental: when the true value of β = 0 (not reported in Table 3),

there are a small number of parameter combinations in which the lower variance of the

lag explanatory variable estimator yields a lower RMSE than that of the estimator that

conditions on U . Purely on RMSE grounds, our results indicate that the lag explanatory

variable estimator is almost always worse than the naı̈ve estimator which simply ignores
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Table 3: Root Mean Squared Error

Xt|Ut Xt Xt−1 Xt|Yt−1 Xt−1|Yt−1 β φ κ ρ

0.071 0.072 2.035 0.073 1.994 2 0.0 0.0 0.0
0.072 0.413 2.048 0.412 2.000 2 0.0 0.5 0.0
0.064 0.300 2.044 0.300 1.996 2 0.0 3.0 0.0
0.055 0.057 1.252 0.058 1.210 2 0.0 0.0 0.5
0.061 0.348 1.395 0.365 1.313 2 0.0 0.5 0.5
0.071 0.295 1.957 0.295 1.877 2 0.0 3.0 0.5
0.056 0.057 1.051 0.061 1.010 2 0.0 0.0 0.9
0.048 0.248 1.183 0.272 1.093 2 0.0 0.5 0.9
0.058 0.278 1.890 0.280 1.793 2 0.0 3.0 0.9
0.079 0.079 2.046 0.078 2.044 2 0.5 0.0 0.0
0.071 0.472 1.677 0.470 1.700 2 0.5 0.5 0.0
0.077 0.308 1.193 0.310 1.167 2 0.5 3.0 0.0
0.080 0.082 1.244 0.085 1.236 2 0.5 0.0 0.5
0.057 0.407 1.093 0.412 1.084 2 0.5 0.5 0.5
0.066 0.299 1.131 0.305 1.085 2 0.5 3.0 0.5
0.050 0.053 1.045 0.053 1.040 2 0.5 0.0 0.9
0.052 0.300 0.974 0.309 0.954 2 0.5 0.5 0.9
0.045 0.289 1.112 0.296 1.057 2 0.5 3.0 0.9
0.063 0.066 2.041 0.066 2.067 2 0.9 0.0 0.0
0.073 0.613 1.452 0.602 1.525 2 0.9 0.5 0.0
0.066 0.313 0.952 0.314 0.935 2 0.9 3.0 0.0
0.066 0.069 1.250 0.070 1.271 2 0.9 0.0 0.5
0.070 0.539 0.938 0.531 0.961 2 0.9 0.5 0.5
0.063 0.310 0.919 0.314 0.890 2 0.9 3.0 0.5
0.059 0.061 1.050 0.062 1.073 2 0.9 0.0 0.9
0.060 0.394 0.876 0.390 0.895 2 0.9 0.5 0.9
0.049 0.300 0.903 0.305 0.861 2 0.9 3.0 0.9

endogeneity entirely.

Of course, the finding that an incorrect regression specification generates biased pa-

rameter estimates is not surprising. In fact, for most applied researchers, attenuation bias

does not matter because—all too commonly, in our view—the size of the estimate of β is

not of direct interest, but rather its p-value. That is, scholars are less interested in whether

their estimate β̂ = 2 or β̂ = 0.02, but whether the associated p-value from their t-test leads

them to reject the null that β = 0 at some level of significance, which supports the pres-

ence of a causal relationship. Some readers may even believe that the attenuation bias of
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the lag explanatory variable estimator is one of its strengths relative to the naı̈ve estimator

that ignores endogeneity altogether because attenuation bias leads to more conservative

hypothesis tests, although our discussion in the previous section should dispel that no-

tion. We think that the overwhelming focus placed on statistical significance in applied

work is a major problem, but this is nonetheless an accurate description of current prac-

tice. And so we ask what would happen if an applied researcher were to use a lagged

independent variable in the standard fashion to test the hypothesis that X causes Y when

the true β = 0. In Figure (7), we plot the estimates of β against their t-statistics for models

where φ = 0.5.

These results are troubling, yet consistent with the analytical results previously de-

scribed. When there is no endogeneity problem (κ = 0, as in the top three panels) then

Type 1 error is rare, corresponding to just about 95% of models when the level of statisti-

cal significance is α = .05. But the likelihood of Type 1 error increases dramatically when

κ > 0, as in the bottom six panels. The reason for this is apparent in expression (13), which

shows that b̂Xt−1
is a function of the causal effect of the unobserved confounder U , δ, as

well as Cov(X,U). Unless both are exactly zero, lag identification will produce non-zero

estimates of β even when β = 0.

Substantively, this means that lagging independent variables in response to concerns

about endogeneity will lead analysts working within the mainstream approach to hypoth-

esis testing to reject null hypotheses that are true, and to find too many estimates of causal

effects that are spurious. As suggested in the formal analysis, the direction of the error

depends on the correlations between X and U and Y and U . When both are positive,

lag explanatory variable models estimate β̂ > 0; when both are negative, lag explanatory

variable models estimate β̂ < 0; and when one is positive and the other is negative the

sign of the β̂ depends on their relative absolute size.13 When φ = .9 (not reported), in-

13In such cases there is a range of parameter values in which lag explanatory variable models do not
generate Type 1 errors, but there is also a range of parameter values for which lag explanatory variable
models generate Type 2 errors when the true value of β 6= 0.
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Figure 7: Type I Error in Lag Explanatory Variable Regressions, φ = 0.5
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line corresponds to the true value of β = 0, and the horizontal dotted lines
denote the 95% confidence region from -1.96 to +1.96.

dicating even stronger autocorrelation among the unobservables U , Type 1 error (given

our parameters) is almost certain with any degree of endogeneity and regardless of the

autocorrelation in X .

The summary message from these Monte Carlo simulations is unambiguous. Under

favorable conditions, lagging independent variables generates estimates that are more bi-

ased, and with higher RMSE, than simply ignoring endogeneity altogether. Worst of all,

such estimates are more likely to produce Type 1 error when endogeneity actually does

threaten causal identification and the true causal effect of X on Y is zero. One worry-
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ing implication of this last result is that lagged independent variables may be a popular

identification strategy under conditions of endogeneity precisely because they generate

statistically significant results.

4.3 Extensions

In this section we entertain several potential objections to our simulation results, fo-

cusing on temporal sequencing of causal effects, dynamic panel data estimators, and pure

cases of simultaneous causality.

4.3.1 Lagged Causal Effects

One criticism of our baseline results is that they do not realistically reflect the kinds of

data generating processes that scholars mean to capture using lag identification to avoid

endogeneity problems. If theory suggests that causal effects operate with a one-period

time lag, for example, then lag identification is not just a way to avoid endogeneity, it is

also the natural way to estimate the correct causal parameter β. Such an objection might

suggest that the disturbing results in the previous subsection are simply a consequence

of proposing a different data generating process than the one that might justify the lag

identification strategy.

Attuned to such concerns, in Figure 8 we propose a different causal model for Monte

Carlo analysis. Here, as before X is endogenous to Y through U , but the causal effect

of interest β is the one-period lagged effect of X on Y . We therefore assume that the

causal effect operates with a one-period lag, that the empirical specification is designed to

estimate that quantity, and also that the contempaneous casual effect of Xt on Yt is exactly

zero. This reflects perhaps the most favorable case for lag identification, one in which

causal effects operate over time and in which there is no direct causal pathway that runs

from the unobserved source of Ut to the causal variable Xt−1.

In Figure 9 we compare estimates of β̂ from the lag explanatory variable estimator, an
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Figure 8: Monte Carlo Simulations: Xt−1 as the Causal Variable

Xt−1 Xt Yt

Ut−1 Ut

et−1 et

vtvt−1

ǫt

FE

ρ

β
κ κ

φ

Notes: This is a schematic representation of our Monte Carlo simulations
where Xt−1 is the true causal variable (the causal effect of Xt is, by assump-
tion, 0). It is otherwise identical to Figure 4.

extended version of the lag explanatory variable estimator that also conditions on Yt−1

in an attempt to capture temporal dynamics in the unobservables, and the “true” model

that conditions on Ut, once again as an empirical benchmark against which to judge the

others. Our results show that even under the favorable assumption that Xt−1 is the causal

variable of interest, lagged independent variables do not alleviate endogeneity bias. As

above, when there is no endogeneity (κ = 0), then the three models are equivalent. When

κ > 0, however, lagging independent variables generates biased estimates of β whose

variance narrows as endogeneity grows larger. The results in Figure 9 also highlight that

when Xt−1 is the true causal variable, lag identification is not even “conservative,” for

estimates are further away from zero than β.

We also find similar results for Type 1 error, which appear in Figure 10. As before,

these results indicate that with any amount of endogeneity, t-statistics associated with the

β̂ from a lagged explanatory variable estimate are likely to lead applied researchers to

reject the null that β = 0 when the null is true. The implication of this analysis is that even

if a strong theory dictates that the causal process linking X to Y operates with exactly

and exclusively a one-period lag, lagged independent variables do not avoid problems of

endogeneity.
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Figure 9: Bias in Lag Explanatory Variable Regressions, φ > 0, Xt−1 is the Causal Variable
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Notes: This figure plots the empirical density of estimated coefficients β̂ from
100 simulations of the data generating process in Figure 8. The dashed line
corresponds to the true value of β = 2. The dotted line is β × ρ.

4.3.2 GMM Estimation

Another possible interpretation of our results is that standard panel data techniques

are inappropriate for the dynamic causal processes that we have proposed. Specifically,

when we include Yt−1 as a regressor in an attempt to account for the dynamics in U , we

generate biased estimates of the coefficient on Yt−1 that might in turn bias our estimates

of β, at least in finite samples. See Nickell (1981) for a fuller treatment.

We explore whether standard dynamic panel data models (Arellano and Bond 1991,

Blundell and Bond 1998), which use higher order lags and differences of both X and Y
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Figure 10: Type I Error in Lag Explanatory Variable Regressions, φ = 0.5, Xt−1 is the
Causal Variable
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Notes: This figure compares estimated coefficients β̂ and t-statistics from 100
simulations of the data generating process in Figure 8. The vertical dotted
line corresponds to the true value of β = 0, and the horizontal dotted lines
denote the 95% confidence region from -1.96 to +1.96.

as instruments for X , Xt−t, and Yt−1, yield better results.14 The results of these analyses

are available upon request, but the summary finding is straightforward: GMM estimation

does a better job of recovering the causal effect of Xt−1 on Y when the data generating

process follows Figure 8 than does a simple lag explanatory variable strategy, but results

remain biased away from zero and Type 1 errors remain very likely. Relative to the “true”

14We estimate these models using the pgmm estimator implemented in the plm library in R. We estimate two
families of models, using the second and third lags of X and Y as instruments in the full panel of T = 50,
and using all available lags of X and Y as instruments in a short panel of T = 10. We also vary the lag
structure, estimating models in which we condition on Xt−1 only as well as models where we condition on
both X and Xt−1.
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estimates obtained by conditioning on the confounder U , moreover, GMM estimates are

much less efficient.

4.3.3 True Simultaneous Causality

Our final extension returns to the problem of simultaneous causality. Above, we ar-

gued that most instances of simultaneous or reverse causality can be reformulated in terms

of an unobserved confounder U . Here, we entertain the possibility that true simultaneous

causality has different implications for the estimation of causal effects.

Specifically, we consider the causal model in Figure 11, which is an extension of Haavel-

mo’s (1943) classic treatment of simultaneous equations and the problem of causal infer-

ence (see also Pearl forthcoming). We incorporate into this model both unit-of-observation

fixed effects and a (possible) instrument for X , denoted Z. Endogeneity in Figure 11 is not

Figure 11: Monte Carlo Simulations: Pure Reverse Causality

Xt Yt

ǫ2t ǫ1tZt

FE

β

α
γ

Notes: This is a schematic representation of our Monte Carlo simulations
where X and Y are truly “simultaneous” equations. Z serves as an instru-
ment for X whenever γ > 0. ǫ2t follows an autoregressive process in our
simulations: ǫ2t = φǫ2t−1 + η.

a function of unobserved confounders, but rather of a simultaneous causal relationship

in which Y and X directly cause one another. We simulate using the following system of
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equations to represent this causal structure:

Yit =βXit + δY FEi + ǫ1it (18)

Xit =αYit + δXFEi + γZit + ǫ2it (19)

ǫ2it =φǫ2it−1 + ηit (20)

where

FEi

ǫ1it

ǫ2it

ηit

∼ N



















0

0

0

0



















,



















5 0 0 0

0 5 0 0

0 0 1 0

0 0 0 1



















(21)

We introduce dynamics in X into the system by allowing for autocorrelation in ǫ2, as in

(20). If φ = 0, meaning there is no autocorrelation in ǫ2, then Xt and Xt−1 are also uncorre-

lated. We note here that by substituting equations (18) and (20) into (19), we can express

X solely in terms of model parameters and errors:

Xit =
αδY FEi + αǫ1it + δXFEi + ηit + φǫ2t−1

1− αβ
(22)

This expression reveals the magnitude of endogeneity bias when regressing Yt on Xt.

Because there are no unobserved variables in the data generating process represented

in Figure 11, there is no identification strategy available—even theoretically—that involves

conditioning on an unobservable, as there was in our prior simulations. Identification

requires an instrumental variable Z. Throughout this subsection, we maintain the as-

sumption in Figure 11 that Z is a valid instrument for X , and vary only the relevance (or

“strength”) of Z as an instrument for X , which we capture with the parameter γ. The
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parameters for this final set of simulations are summarized in Table 4:

Table 4: Simulation Parameters: Simultaneous Causality

Parameter Causal Pathway Simulation Values
β X → Y 0, 2
α Y → X 0, 1, 3
φ ǫ2t−1 → ǫ2t 0, .5, .9
γ Zt → Xt 0, 1, 10

Our main results appear in Figure 12. Relative to other figures, these results are slightly

more difficult to interpret. When γ = 0, meaning that the instrumental variable Z is unre-

lated to X , instrumental variables regression is completely uninformative, as reflected in

the essentially flat density plot. When γ > 0, instrumental variables uncover the proper

estimate of β, and the larger γ is, the better the instrumental variables estimator performs

(recall that the larger γ is relative to its standard error, the stronger Z is as an instrument;

see Bound et al. 1995). And regardless of the value of γ, the lag explanatory variable esti-

mator always returns an estimate of β that is biased towards zero when β = 2.15 The size of

this lag explanatory variable estimator bias is increasing in α, the degree of endogeneity.

We conclude by studying Type 1 and Type 2 error for the pure simultaneous causality

case. First consider the case where β = 0. We discover in Figure 13 that lag explanatory

variable estimators are more likely to generate statistically significant negative estimates

of β when the data generating process is characterized by true simultaneous causation as

in Figure 11 and where there is any degree of endogeneity (α > 0). However, additional

complications arise where β = 2. Figure 14 reveals that here, Type 1 error—failing to reject

a null that β = 0 when the null is actually false—is common when there is any amount of

endogeneity.

The results of this analysis once again demonstrate the pitfalls of using lagged indepen-

dent variables to achieve causal identification. Even under true simultaneous causality,

where there are no unobserved confounders that generate endogeneity, lagged indepen-

15This result also holds regardless of the existence or strength of autocorrelation in ǫ2 (the parameter φ).
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Figure 12: Bias in Lag Explanatory Variable Regressions, φ = 0.5, Pure Reverse Causality
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Notes: This figure plots the empirical density of estimated coefficients β̂ from
100 simulations of the data generating process in Figure 11. The dotted line
corresponds to the true value of β = 2.

dent variables lead to greater rates of both Type 1 and Type 2 error. Instrumental variables

fare better, but only so long as Z is a relevant instrument for X . When relevant instru-

ments are unavailable, there is no strategy for identifying statistically the causal effect of

X on Y .

5 Summary and Conclusions

The genesis of this paper was a conversation among ourselves in which we commiser-

ated about the frequency with which we reviewed manuscripts that used lagged explana-
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Figure 13: Type I Error in Lag Explanatory Variable Regressions, φ = 0.5, Pure Simultane-
ous Causality
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tory variables to address endogeneity concerns. Many social scientists trained since the

Credibility Revolution (Angrist and Pischke 2010) have an intuitive sense that this iden-

tification strategy is problematic, yet we suspect that few are able to precisely articulate

the reasons why that is. In this paper, we showed the extent of the problem by showing

how common lag identification is in political science relative to the cognate disciplines of

economics and sociology. We then provided a simple treatment of the nature of the prob-

lem using directed acyclic graphs to uncover the “no dynamics among unobservables”
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Figure 14: Type I Error in Lag Explanatory Variable Regressions, φ = 0.5, Pure Reverse
Causality
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Notes: This figure compares estimated coefficients β̂ and t-statistics from 100
simulations of the data generating process in Figure 11. The vertical dotted
line corresponds to the true value of β = 2, and the horizontal dotted lines
denote the 95% confidence region from -1.96 to +1.96.

assumption necessary to justify lagging independent variables as an identification strat-

egy. We then showed analytically how lag identification introduces bias, even relative to

a naı̈ve identification strategy wherein one chooses to ignore the endogeneity of Xt alto-

gether, and derived a formal result for the no dynamics among unobservables assumption

in a simple OLS regression setup. To explore the consequences of lag identification in prac-

tice, we then presented the results of Monte Carlo simulations that show how the practice

of lag identification not only fails to avoid the identification problem, it will lead to faulty
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inferences under the null hypothesis significance testing paradigm.

Reed (2014), commenting on lagged explanatory variables and simultaneity bias, sug-

gests that lagged values of X might be more defensible as instrumental variables (rather

than proxies) for current values of X . He warns, however, that “is only an effective esti-

mation strategy if the lagged values do not themselves belong in the respective estimating

equation, and if they are sufficiently correlated with the simultaneously-determined ex-

planatory variable” (8). Our analysis shows that even these conditions are too generous:

in the “pure simultaneity case” consistent IV estimation will require that there are no dy-

namics in Y (cf. Figure 3), and in the more general endogeneity case it will still require

no dynamics in U (cf. Figure 2). This is the case even if the lagged values can be excluded

from the main estimating equation.

Practically, then, when scholars suspect that endogeneity may bias their estimates, the

solution cannot arrive at the analysis stage. It must come earlier in the research process,

at the study design stage. As Sekhon (2009) notes in a critical discussion of matching and

causal inference, “for causal inference, issues of design are of utmost importance; a lot

more is needed than just an algorithm. Like other methods, matching algorithms can al-

ways be used, and they usually are, even when design issues are ignored in order to obtain

a nonparametric estimate from the data. Of course, in such cases, what exactly has been es-

timated is unclear.” This point—invoked in a discussion of matching—applies equally to

our critique lagged explanatory variables. As we have argued, lag identification replaces

the assumption of “selection on observables” with the assumption of “no dynamics among

unobservables.” For causal inference to be credible, that assumption must be invoked and

defended explicitly, not relied upon implicitly, as is currently the dominant practice in

empirical political science. We stress that the assumption of no dynamics among unob-

servables could in principle be defensible. Unfortunately, however, we think it unlikely

that many authors will be comfortable conceding that unobservable confounders exist,

yet insisting that unobserved realizations of those confounders are temporally indepen-
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dent from one another. For this reason, we conclude that without careful arguments on

substantive grounds, lagged explanatory variables should never be used for identification

purposes.

This argument, we emphasize, does not imply that lagged explanatory variables are always

and everywhere inappropriate. We therefore conclude by providing some simple guidelines

for researchers seeking to use them. There are several kinds of data generating processes

in which lagged explanatory variables are appropriate:

1. In the context of unobserved confounding, in which case we have shown that the

following two auxiliary assumptions are necessary:

(a) No dynamics among unobservables U .

(b) The lagged endogenous variable X is a stationary autoregressive process.

2. In the context of no unobserved confounding, in which case one of the following

DGPs must be assumed:

(a) There is no reverse causality (Y 6→ X) and the causal effect operates with a one

period lag only (Xt−1 → Y but Xt 6→ Yt)

(b) There is reverse causality (Y → X), but reverse causality is contemporaneous

only, and the causal effect of X on Y operates with a one period lag only (see

Appendix 2 Figure A1 for one example).

(c) There is reverse causality, and the causal effect of X on Y is contemporaneous,

there are no dynamics in Y (Yt−1 6→ Yt), but there are dynamics in X (Xt−1 →

Xt) (see the Appendix Figure A2 for one example).

Our focus in this manuscript has been on showing why Scenario 1 is almost always inde-

fensible. But Scenarios 2(a), 2(b), and 2(c) are valid justifications for lagging explanatory

variables.16

16The causal effect of Xt−1 is identified under Scenarios 2(a) and 2(b) only. See Appendix Figure A2 for a
discussion of why Scenario 2(c) does not allow for identification of causal effects of either Xt or Xt−1 on Y .
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Invoking 2(a), 2(b), or 2(c) requires that endogeneity takes the form of reverse or simul-

taneous causality, and also requires assumptions about the temporal dynamics in the data

generating process. As assumptions, these are ultimately untestable. However, Scenarios

2(b) and 2(c) do suggest falsification tests that can be used to rule out each. Because each

assumes selection on observables, each requires only data that is already available to the

analyst.

Those tests are as follows:

1. Under Scenario 2(b), it must be the case that there there is no contemporary corre-

lation between X and Y . If a regression of Yt = b1Xt + b2Xt−1 uncovers a non-zero

coefficient on b1, then the data reject Scenario 2(b) as the data generating process.

2. Under Scenario 2(c), it must be the case that there are no dynamics in Y . If a regres-

sion of Yt = bXt + λYt−1 uncovers a non-zero coefficient on λ, then the data reject

Scenario 2(c) as the data generating process.

When employing lagged explanatory variables in the context of endogeneity, following

these guidelines will help researchers to make explicit the data generating process that

underlies their identification strategy. Doing so, in turn, will ensure that research designs

with lagged explanatory variables are credible.
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Appendix 1 Bias in b as Estimated in Equation

In this section, we derive bias in our estimate of β in Model 7 based on the DGPs for

Y , X , and U defined in expressions (1 – 4). The derivation is presented below:

plimn→∞
b̂Xt

= β +
Cov(Xt, Ut)

V(Xt)
(23)

= β + δ
Cov(ρXt−1 + κ(Wit + φWt−1 + vit) + ηt,Wit + φWt−1 + vit)

V(Xt)
(24)

= β + δ
(ρφ2 + φ2 + 1)κσ2

W + κσ2
v + σηW

V(Xt)
(25)

Appendix 2 Valid Data Generating Processes

Figure A1: Scenario 2(b)

Xt−1 XtXt−2

YtYt−1Yt−2

Notes: This is a representation of a data generating process in which reverse
causality exists (Yt → Xt) but the causal effect of Xt−1 on Y is identified
because Xt 6→ Yt.

Figure A2: Scenario 2(c)

Xt−1

Xt Yt

Yt−1

Notes: This is a representation of a data generating process in which reverse
causality exists (Yt → Xt) but a “conservative” effect of Xt−1 on Y is identi-
fied because Yt−1 6→ Yt. To be clear, however, neither the direct effect of Xt on
Yt nor the total effect of Xt−1 on Yt is identified because of the simultaneous
relationship between X and Y .
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