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1 Introduction

Vector autoregressions (VARs) are useful and thus frequently used tools to forecast macroeco-

nomic time series, in particular when the interest is not only in the outcome of a single variable

but the comovement of several major series. However, unrestricted VARs that are estimated by

ordinary least squares (OLS) often suffer from their dense parametrization, leading to unstable

parameter estimates and hence inaccurate multivariate forecasts. The literature proposes alter-

native ways to achieve parameter dimension reduction and improve multivariate forecast ac-

curacy. For instance Bańbura, Giannone, and Reichlin (2010) suggest that VARs combined with

Bayesian shrinkage (BVARs) can handle large datasets and produce relatively accurate forecasts.

The empirical restrictions they impose on the VAR parameters are motivated by the integrating

order of the underlying time series, shrinking the overparametrized VAR either towards a par-

simonious random walk (for non-stationary data) or a white noise process (for stationary data),

while the degree of shrinkage could be selected as in Carriero, Clark, and Marcellino (2015) by

maximizing the marginal likelihood or estimated in an hierarchical fashion as suggested by

Giannone, Lenza, and Primiceri (2014).

An alternative way to reduce the parameters to be estimated is to set up a dynamic stochastic

general equilibrium (DSGE) model which builds on explicit micro foundations and optimizing

economic agents. Under certain conditions1 the state-space representation of a linearized DSGE

model can be rewritten as a VAR and estimating such models hence amounts to shrinking a high

dimensional vector of VAR parameters towards a lower dimensional vector of structural param-

eters that can be motivated by economic theory. While DSGE models are particularly useful for

structural analyses and policy simulations, they are also widely used for forecasting (see, e.g.,

Edge and Gürkaynak, 2010; Christoffel, Coenen, and Warne, 2011; Del Negro and Schorfheide,

2013; Smets, Warne, and Wouters, 2014; Wolters, 2015, among others).

So far, the literature on BVARs and DSGE models has predominantly focused on point and

density forecasts for individual series but neglected that in particular policymakers are often

more interested in the comovement of major variables such as GDP growth and inflation.2 The

contribution of this paper is to extend the scope of the evaluation of BVARs and DSGE models to

multivariate forecasts. In particular, I assess the ability of BVARs and DSGE models of different

size to forecast comovements of major macroeconomic series in the euro area. Both approaches

1If these conditions are not met, the state-space representation has a VARMA form, where the moving
average term is not invertible, and a VAR may be a poor approximation (see Franchi and Vidotto, 2013).

2Exceptions are Herbst and Schorfheide (2012) for the U.S. and Adolfson, Lindé, and Villani (2007) as
well as Christoffel et al. (2011) for the euro area.
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are compared to unrestricted VARs in terms of multivariate forecast accuracy measures. The

forecast experiment allows me to explore to what extend multivariate forecast accuracy is af-

fected by the way restrictions are imposed on model parameters (empirical, theoretical, or no

restrictions) and the number of series included into estimation (from 3 up to 38).

One would expect that BVARs and DSGE models outperform unrestricted VARs in terms

of multivariate forecast accuracy, in particular when the size of the systems is relatively large.

Yet it is not clear whether DSGE models benefit from an explicit theoretical foundation of their

restrictions compared to the purely empirical restrictions of the BVARs. On the one hand, the

large number of cross-equation restrictions that emerge from micro foundations could help to

produce a more realistic covariance structure between variables and hence improve multivariate

forecast accuracy. On the other hand, if these restrictions are too rigid, forecasts could be biased

in some direction, inflating forecast errors. For instance, DSGE models impose a common trend

on real variables, an assumption that may not be supported in certain samples.

I compare the multivariate forecast accuracy of BVARs to that of three DSGE models, which

include progressively larger sets of variables and hence increase in complexity. First, the small-

scale closed economy model of An and Schorfheide (2007) that is estimated on three variables:

GDP, the GDP deflator, and a short-term interest rate. Second, the medium-scale closed econ-

omy model of Smets and Wouters (2007) including in addition consumption, investment, em-

ployment, and wages (seven variables). And third, the medium-scale open economy model of

Adolfson, Laséen, Lindé, and Villani (2007) which is fit also on exports, imports, the consump-

tion deflator, the investment deflator, an exchange rate, world GDP, the world GDP deflator,

and a world interest rate (fifteen variables). These models are frequently used at central banks

and policy institutions to conduct simulations and produce forecasts for major macroeconomic

series and are thus a natural competitor for BVARs.

Moreover, I add large and extra-large BVARs with, respectively, 23 and 38 variables, includ-

ing series that could be helpful in forecasting major macroeconomic variables, but are often

not included as observables in DSGE models, such as commodity prices, survey data, a long-

term interest rate, or share prices. Several authors found that such BVARs are useful for fore-

casting (see, e.g., Bańbura et al., 2010; Koop, 2013; Giannone et al., 2014; Berg and Henzel, 2014;

Pirschel and Wolters, 2014; Carriero et al., 2015, among others).

The forecast models are compared in terms of multivariate point and density forecast accu-

racy measures as well as event probabilities for different selections of euro area variables during

the evaluation period from 1999:1 to 2011:4. Excluding the Great Recession (and the euro crisis)

and shortening the evaluation period to 1999:1 to 2007:4 does not affect the model ranking.
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Point forecasts are evaluated according to the trace and log determinant statistic of the scaled

mean squared error (MSE) matrix. It turns out that the multivariate point forecast accuracy of

the unrestricted OLS-VARs declines with the number of series included into estimation, while

the accuracy of the BVARs does not. In fact, the large and extra-large BVAR deliver the smallest

forecast errors of all models for most variable selections. Therefore I conclude that BVARs can

deal with the dimensionality problem and exploit the information in high dimensional datasets.

The results are less clear cut for the DSGE models. While the small and medium-scale closed

economy models show a mixed performance, the open economy model of Adolfson et al. (2007)

dominates the OLS-VARs and performs similar to the BVAR of same size. Thus I conclude that

the underperformance of this model compared to the large and extra-large BVAR is not related

to its structure but the fact that the largest BVARs include series that are particularly helpful in

forecasting macroeconomic variables but are non-modeled in the open economy DSGE model.

Density forecasts are evaluated in terms of log predictive scores, which also reflect the uncer-

tainty that is associated with forecasting macroeconomic outcomes. As policymakers nowadays

closely monitor forecast uncertainty, the MSE might not be the relevant loss function. While the

satisfactory performance of the large and extra-large BVAR is confirmed when the focus shifts

from point to density forecasts, I also obtain that the predictive scores for all three DSGE models

are higher than their relative multivariate point forecasts accuracy suggests. I suspect that the

theoretical restrictions embedded in these models are helpful in producing a plausible covari-

ance structure between the forecasts. In fact, the open economy DSGE model of Adolfson et al.

(2007) outperforms all competitors in terms of predictive scores for most variable selections.

Finally, I provide additional evidence on the ability of BVARs and DSGE models to forecast

comovements of major macroeconomic variables in the euro area by conducting an event study.

Following Herbst and Schorfheide (2012) I compare model-implied event probabilities to actual

frequencies of events. If model probabilities and average frequencies coincide, density forecasts

are called well calibrated. In particular, I consider events that are highly relevant for policymak-

ers, as for instance GDP growth, inflation, and the short-term interest rate being above (below)

their respective long-run targets. The event study allows me to assess whether the models are

able to forecast the directional comovements of these variables, which provides some insights

that may not be reflected in MSE or predictive scores. It turns out that the large and extra-large

BVAR perform well in terms of multivariate event forecast accuracy for most events. The DSGE

models, on the other hand, are poorly calibrated for some events. One possible reason for this

deficiency is that the common trend assumption of the DSGE models is too restrictive.
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2 Dataset

The dataset contains 38 quarterly euro area macroeconomic series for the period 1984:1 to 2011:4

and covers seven categories labeled, respectively, national accounts, price index, international,

employment, survey, monetary aggregate, and financial data. In most cases the series are from

the 12th update of the Area-wide Model (AWM) database, which is maintained by the European

Central Bank (ECB) and made available by the Euro Area Business Cycle Network.3 The AWM

database is the preferred source for researchers and policymakers alike interested in the euro

area since historical series are backdated using individual country information in a consistent

manner. Moreover, I add survey data and monetary aggregates from the Main Economic Indi-

cators (MEI) of the Organisation for Economic Co-operation and Development (OECD) and a

share price index from the Thomson Reuters Corporation (TRC). A detailed description of the

dataset is provided in Table A.1.

I have to stress at this point that consistent vintage data is not available for the entire sample

period because the euro area did not exist before January 1999. While the absence of real-time

data is a potential drawback in studies where the objective is to mimic a realistic out-of-sample

forecast experiment, I believe it is not in this paper. My forecast experiment can be understood

as a model validation exercise designed to investigate the ability of BVARs and DSGE models of

different size to forecast comovements in major macroeconomic series. Evaluating pseudo out-

of-sample forecasts is an appropriate and established procedure to do so since forecasts reflect

all sources of error associated with the modeling of economic outcomes, including parameter

uncertainty and model misspecification.

In the forecast experiment I use five partitions of this dataset, which include progressively

larger sets of variables. The composition of each set is determined by the structure of the corre-

sponding DSGE model:

Small Selection (3 variables) In the smallest specification I work with real GDP, the GDP de-

flator, and a short-term interest rate. These series are considered in small-scale closed economy

DSGE models and always included (see, e.g., An and Schorfheide, 2007, among others).

Medium Selection (7 variables) I add real private consumption, real gross investment, total

employment, and real wages. Together with real GDP, the GDP deflator, and the interest rate,

these variables are typically included as observables in medium-scale closed economy DSGE

models such as the one by Smets and Wouters (2003).

3See also Fagan, Henry, and Mestre (2005). The vintage I use is as of September 2012.
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Medium-Large Selection (15 variables) The set of variables is extended to an open economy

setting by incorporating real exports, real imports, the private consumption deflator, the gross

investment deflator, a real effective exchange rate, real world GDP, the world GDP deflator, and

a world interest rate.4 The medium-scale open economy DSGE model of Adolfson et al. (2007)

is estimated on these series.

Large Selection (23 variables) I add several series that could be helpful in forecasting major

macroeconomic variables, but are often not included as observables in DSGE models: the har-

monized index of consumer prices (HICP), the oil price, the unemployment rate, a composite

leading indicator, a consumer confidence indicator, the M1 money stock, a long-term interest

rate, and a share price index. A similar selection for the U.S. is used in Giannone et al. (2014).

Extra-Large Selection (38 variables) Finally, I consider the full dataset, which includes, among

others, a number of additional price indexes and national accounts data. Berg and Henzel (2014)

apply their various BVAR specifications to a similar set of variables.

Except for those that are already expressed in rates (e.g. the short-term interest rate) or as-

sumed to be stationary in levels (e.g. the real effective exchange rate), I transform all series into

quarterly growth rates, approximated by the first difference of their logarithm. This proceeding

is consistent with the underlying assumption of the DSGE models that most variables contain a

stochastic trend in the level and need to be differenced to render them stationary. In Figure A.1

I provide time series plots for all variables that are included up to the medium-large selection.

3 Forecasting with BVARs

In this section I develop the BVAR models and discuss all major specification choices. Moreover,

I explain how the models are estimated and forecasts obtained.

3.1 BVARs

Consider the following VAR

yt = c+B1yt−1 + ...+Bpyt−p + ut, (1)

where yt is a n× 1 vector of endogenous variables; c is a n× 1 vector of intercepts; Bi are n× n

matrices of coefficients; i = 1, ..., p denotes the lags included; ut is a n × 1 vector of normally

4Unfortunately, the AWM database does not have a world interest rate. As Adolfson et al. (2007) I use
the federal funds rate from Federal Reserve Economic Data (FRED) as a proxy.
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distributed residual terms with zero mean and covariance matrix Σ; and data are available

for t = 1 − p, ..., T . Let us denote y = (y1, ..., yT )
′, xt =

(

y′t−1, ..., y
′
t−p, 1

)′
, x = (x1, ..., xT )

′,

B = (B1, ..., Bp, c)
′, and u = (u1, ..., uT )

′. The VAR in (1) can thus be written as y = xB + u.

Moreover, let β = vec (B) with vec (·) being the column stacking operator and k = n (1 + np).

Then β is a k × 1 vector containing all coefficients of the model.

In the forecast experiment the VAR is estimated on up to n = 38 variables including p = 2

lags of each (hence k = 2, 926).5 Such a large dimensional system of multivariate regressions

is, however, not estimable without imposing additional prior beliefs on the parameters. In ad-

dition, there is evidence that even VARs with only few variables might benefit from imposing

prior information (see, e.g., Robertson and Tallman, 1999, among others). Hence I follow com-

mon practice and use a variant of the Minnesota prior to deal with the dense parameterization

of the model. The basic idea is that a white noise process is a reasonable description of the

data generating process behind most macroeconomic series once transformed to stationarity. In

addition, the prior captures the belief that own lags are more informative than those of other

variables and that more recent lags contain more information than more distant ones. The VAR

is hence centered around the prior mean yi,t = ci + ui,t and imposing the white noise prior

amounts to shrinking all elements of Bi towards zero.

In contrast to the original Minnesota prior developed in Litterman (1980, 1986), I do not as-

sume the residual covariance matrix Σ to be known and diagonal. Instead, I use a generalized

version of the prior proposed in Kadiyala and Karlsson (1993, 1997) which allows for correlation

among residuals. The evidence in Bańbura et al. (2010) as well as Robertson and Tallman (1999)

suggests that a generalized Minnesota prior produces accurate forecasts for major macroeco-

nomic series such as GDP growth or inflation even though the n (n+ 1) /2 distinct elements of

Σ have to be estimated on top of the k coefficients.

In particular, I consider a conjugate Normal-Inverse-Wishart prior of the following form:

Σ ∼ IW (Ψ, d) and β|Σ ∼ N (b,Σ⊗ Ω) , (2)

where ⊗ denotes the Kronecker product and the elements Ψ, d, b, and Ω are functions of hy-

perparameters. The conjugate prior implies a likelihood and posterior that come from the same

family of distributions and hence makes Bayesian inference feasible even for large n.

Bańbura et al. (2010) recommend to implement the prior by constructing the following set

of artificial observations:

5The qualitative results are similar for p = 1 and p = 4.
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y+ =









0np×n

diag (σ1, ..., σn)

01×n









, x+ =









diag (1, 2, .., p)⊗ diag (σ1, ..., σn) /λ 0np×1

0n×np 0n×1

01×np ǫ









, (3)

where diag (·) denotes a diagonal matrix. The σi’s account for the different scale and variability

of the series and are set equal to the standard deviation of a residual from a univariate autore-

gression for the variable yi,t using the same lag order as in the VAR. The parameter ǫ is set to a

small number (10−4), reflecting a diffuse prior for the intercepts. Finally, the parameter λ gov-

erns the degree of shrinkage and hence the tightness of the prior. As λ → ∞ the prior becomes

uninformative and posterior expectations coincide with the ordinary least squares (OLS) esti-

mates. For λ → 0 the posterior approaches the dogmatic prior. λ is hence the key parameter in

the BVAR and its selection is discussed in detail below.

The artificial observations are added on top of the data matrices, which are then used for

inference. The augmented regression model reads as

y∗ = x∗B + u∗, (4)

where y∗ =
(

y′, y+
′
)′

, x∗ =
(

x′, x+
′
)′

, u∗ =
(

u′, u+
′
)′

, and u+
′

=
(

u+1 , ..., u
+

T

)

. The latter contains

the corresponding residual terms to y+.

The conditional posterior distributions of the covariance matrix and coefficients can be com-

puted in closed form as a function of the shrinkage parameter λ:

Σ|λ, y ∼ IW
(

Σ̂, T + n+ 2
)

and β|Σ, λ, y ∼ N

(

β̂,Σ⊗
(

x∗
′

x∗
)−1

)

, (5)

where Σ̂ and β̂ are the covariance matrix and the coefficients from an OLS regression of y∗ on

x∗, respectively.

3.2 Choice for Shrinkage Parameter and MCMC Estimation

Following Giannone et al. (2014) I treat λ as an additional unknown parameter that is estimated

in an hierarchical fashion. The approach hence accounts for the uncertainty related to this spec-

ification choice and requires to add one more layer to the prior structure by placing a prior on

the shrinkage parameter - a hyperprior. It can be shown that the marginal posterior for λ, i.e.

after integrating out the posterior uncertainty about the model’s parameters, is:

7



p (λ|y) ∝ p (y|λ) · p (λ) , (6)

where ∝ denotes proportionality. p (y|λ) is the marginal likelihood of the model (conditional on

λ) and p (λ) is the hyperprior. The former has a well-known analytic form which is provided in

Appendix B. The latter needs to be chosen and reflects how confident we are about the values

for λ. I follow common practice and choose a diffuse hyperprior. In particular, I consider a

Gamma density with mode equal to 0.2 and standard deviation of 0.4.

Since the joint posterior distribution for the parameters and λ is not available in closed form,

Giannone et al. (2014) recommend a Metropolis-Hastings algorithm to simulate the distribution.

The sampler is a Markov chain Monte Carlo (MCMC) method and generates λ from its marginal

posterior with a Metropolis update. After convergence of the sampler, the covariance matrix

and coefficients can be drawn from their posterior distribution conditional on λ and forecasts

computed in an iterative fashion. In detail, the algorithm works as follows.

Algorithm 1: Metropolis-Hastings sampler to obtain forecasts from BVARs

Let NB be the number of burn-in-draws and NR the number of retained draws. The maximal

forecast horizon is denoted by H . The steps are:

Step 1: Choose a starting point λ0. I use the posterior mode, which is obtained by numerical

optimization.6 For j = 1, ..., NB +NR run a loop over the following steps.

Step 2: Draw a proposal λ∗ from a jumping distribution J
(

λ∗|λj−1
)

= N
(

λj−1, c · σ2
m

)

, where

σ2
m is the inverse of the Hessian computed at the posterior mode, and c is a scaling constant

chosen to obtain an acceptance ratio of about 20 percent.

Step 3: Compute the acceptance ratio:

r =
p (λ∗|y)

p (λj−1|y)
, (7)

where p (λ|y) is given by Equation (6).

Step 4: Randomly draw ν from U (0, 1).

Step 5: Accept or discard the proposal λ∗ according to the following rule, and update, if neces-

sary, the jumping distribution:

6I use the Matlab routine fmincon.
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λj =







λ∗ : if ν ≤ r

λj−1 : otherwise
(8)

If j ≤ NB repeat the previous four steps, otherwise continue.

Step 6: Draw Σj |λj , y and βj |Σj , λj , y from their conditional posterior in (5).

Step 7: Generate ujT+1
, ..., ujT+H from ut ∼ N

(

0,Σj
)

.

Step 8: Compute the 1-step-ahead forecast as

ŷjT+1
= cj +Bj

1yT + ...+Bj
pyT−p+1 + ujT+1

, (9)

while the h-step-ahead forecasts are obtained by iteration:

ŷjT+h = cj +Bj
1ŷ
j
T+h−1

+ ...+Bj
pŷ
j
T+h−p + ujT+h, (10)

where h = 1, ..., H and ŷjT+h = yT+h−p for h ≤ p. �

This algorithm yields
(

ŷjT+1
, ..., ŷjT+H

)NB+NR

j=NB+1
as a sample of forecasts generated from the joint

posterior distribution for the parameters and λ, where NB = 5, 000 and NR = 50, 000.

In order to economize storage space and to reduce the correlation among draws, I thin the

chain and keep only one for every 10 draws. The remaining 5,000 draws are used for inference.

In Appendix C I provide diagnostics, suggesting that NB is long enough to let the Markov chain

for λ converge to its ergodic random distribution.

4 Forecasting with DSGE Models

In this section I present the main features of the DSGE models that compete with the BVARs. In

addition, I describe how the models are estimated and forecasts obtained.

4.1 DSGE Models

The forecast accuracy of the BVARs is compared to the following DSGE models: the small-scale

closed economy model of An and Schorfheide (2007) that is estimated on the small selection of

the dataset; the medium-scale closed economy model of Smets and Wouters (2007) including the

medium selection of the dataset; and the medium-scale open economy model of Adolfson et al.

(2007) which is fit to the medium-large selection of the dataset. The models are frequently used

at central banks and policy institutions to conduct simulations and produce forecasts for major

9



macroeconomic series, and are therefore a natural competitor for the BVARs. The main features

of the three models are as follows.

An and Schorfheide (2007) The first model is a variant of the new Keynesian baseline model,

which is developed in Woodford (2003) and Galí (2008). There are numerous applications of the

baseline model that differ with respect to the exogenous shocks or the specification of the mon-

etary policy rule. In this paper I use the variant of An and Schorfheide (2007) since they allow

for a stochastic growth rate driven by total factor productivity (TFP) growth, so that GDP does

not need to be detrended before estimation. Furthermore, Herbst and Schorfheide (2012) show

that their model produces reasonable forecasts for U.S. time series. The model consists of three

equations: an intertemporal Euler equation, a new Keynesian Phillips curve, and an interest rate

rule. The Euler equation is derived from the optimal plans of a representative household, while

the Phillips curve results from the optimal decision making of monopolistically competitive

firms that face nominal price rigidities. And according to the interest rate rule, monetary policy

responds to deviations of inflation and output growth from their respective targets. Finally, the

model features exogenous shocks to TFP growth, government spending, and the interest rate.

Smets and Wouters (2007) The second model is a more elaborate version of the baseline model,

which features several additional nominal and real frictions as well as exogenous shocks that

are needed to produce a reasonable behavior of consumption, investment, employment, and

wages. In particular, the model by Smets and Wouters (2007) allows for nominal wage rigidities,

consumption habit formation, capital adjustment costs as well as price and wage indexation to

past inflation. In contrast to the original version in Smets and Wouters (2003), it also introduces

labor-augmenting technology growth, implying that all real variables grow at the same rate in

steady-state and again no detrending is needed. Herbst and Schorfheide (2012) found that this

model performs well on U.S. data in terms of forecast accuracy.

Adolfson, Laseén, Lindé, and Villani (2007) The third model extends the closed economy set-

ting of Smets and Wouters (2007) by incorporating open economy aspects into it. Adolfson et al.

(2007) argue that the structure of their model is rich enough to explain the joint dynamics of a

large number of domestic and foreign variables, while Adolfson et al. (2007) also show its abil-

ity to produce reasonable forecasts. In particular, the model features the accumulation of net

foreign assets, incomplete exchange rate pass-through due to nominal rigidities in the import-

ing and exporting sectors, and a foreign economy. The latter is modeled as an exogenous VAR.

In addition, the model includes several domestic and foreign exogenous shocks as well as mea-

surement error in some observables.
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Appendix D shows the measurement equations and prior specifications for the three DSGE

models. For the complete derivation of the models I refer to the original articles.

4.2 Model Solution and MCMC Estimation

Before forecasts can be obtained from the DSGE models, they have to be solved with numerical

methods and estimated with Bayesian techniques (see, e.g., Del Negro and Schorfheide, 2011,

2013; Schorfheide, 2013, among others). In particular, the equilibrium conditions are cast into a

system of linear rational expectations difference equations:

Γ0 (θ) ξt−1 + Γ1 (θ) ξt + Γ2 (θ) ξt+1 = Π(θ) ǫt, (11)

where θ is a vector that contains the model parameters; ξt is a r× 1 vector of endogenous model

variables; Γi with i = 0, 1, 2 are r × r coefficient matrices that are functions of θ; ǫt is a q × 1

vector of exogenous shocks; Π is a r × q coefficient matrix that also depends on θ; and data are

available for t = 1, ..., T . Provided that a unique and non-explosive solution of the system exists

for a particular θ, the model variables can be rewritten as a VAR (see, e.g., Klein, 2000; Sims,

2002, among others):

ξt = Φ1 (θ) ξt−1 +Φǫ (θ) ǫt, (12)

where the coefficient matrices Φ1 (r × r) and Φǫ (r × q) again depend on θ. Let yt denote a n× 1

vector of observable variables that is linked to the model variables ξt as follows

yt = Ψ0 (θ) + Ψ1 (θ) ξt + ηt. (13)

Ψ0 is a n×1 vector containing the steady-state values of yt conditional on θ and provided that ξt

is stationary. Ψ1 is a n× r coefficient matrix and ηt is a n×1 vector of normally distributed mea-

surement errors with zero mean and covariance matrix R, which are assumed to be independent

of the exogenous shocks ǫt.

The transition equations in (12) together with the measurement equations in (13) are known

as the state-space representation of the DSGE models. It should be stressed that the dimension

of θ is much lower than the number of elements in the system matrices Φ1, Φǫ, Ψ0, and Ψ1.

Parsimony in DSGE models is thus achieved by imposing restrictions that come from economic

theory, while those in the BVAR were motivated by the integrating order of the data used.

Under the assumption that the exogenous shocks are Gaussian, i.e. ǫt ∼ N (0, Iq), the likeli-

hood function p (y|θ) for the observable data y = (y1, ..., yT ) given a value for θ can be evaluated
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using the standard Kalman filter (see, e.g., Giordani, Pitt, and Kohn, 2011, among others). The

posterior distribution for the parameters p (θ|y) is then obtained by combining the likelihood

function and the prior distribution p (θ):

p (θ|y) ∝ p (y|θ) · p (θ) . (14)

Since the relation between θ and the matrices Φ1, Φǫ, Ψ0, and Ψ1 is non-linear, no analytic ex-

pression for the posterior distribution is available and a Metropolis-Hasting algorithm is needed

to obtain posterior draws. The sampler is similar to that for the BVAR and works as follows.

Algorithm 2: Metropolis-Hastings sampler to obtain forecasts from DSGE models

Let NB be the number of burn-in-draws and NR the number of retained draws. The maximal

forecast horizon is denoted by H . The steps are:

Step 1: Choose a starting point θ0. I use the posterior mode, which is obtained by numerical

optimization.7 For j = 1, ..., NB +NR run a loop over the following steps.

Step 2: Draw a proposal θ∗ from a jumping distribution J
(

θ∗|θj−1
)

= N
(

θj−1, c · Σm
)

, where

Σm is the inverse of the Hessian computed at the posterior mode, and c is a scaling constant

chosen to obtain an acceptance ratio of about 20 percent.

Step 3: Compute the acceptance ratio:

r =
p (θ∗|y)

p (θj−1|y)
, (15)

where p (θ|y) is given by Equation (14).

Step 4: Randomly draw ν from U (0, 1).

Step 5: Accept or discard the proposal θ∗ according to the following rule, and update, if neces-

sary, the jumping distribution:

θj =







θ∗ : if ν ≤ r

θj−1 : otherwise
(16)

If j ≤ NB repeat the previous four steps, otherwise continue.

Step 6: Draw ξj |θj , y from N
(

ξ̂j , P j
)

, where ξ̂j and P j are computed with the Kalman filter.

7I use either the Matlab routine fmincon or Chris Sims’ csminwel depending on the DSGE model.
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Step 7: Generate ǫjT+1
, ..., ǫjT+H from ǫt ∼ N (0, Iq) and simulate a path for the model variables

using the transition equations in (12):

ξjt = Φ1

(

θj
)

ξjt−1 +Φǫ
(

θj
)

ǫjt , t = T + 1, ..., T +H (17)

Step 8: Generate ηjT+1
, ..., ηjT+H from ηt ∼ N (0, R) and simulate a path for the observable vari-

ables using the measurement equations in (13):

ŷjt = Ψ0

(

θj
)

+Ψ1

(

θj
)

ξjt + ηjt , t = T + 1, ..., T +H � (18)

This algorithm yields
(

ŷjT+1
, ..., ŷjT+H

)NB+NR

j=NB+1
as a sample of forecasts generated from the pos-

terior predictive distribution of a DSGE model, where NB = 50, 000 and NR = 50, 000.

In order to economize storage space and to reduce the correlation among draws, I thin the

chain and keep only one for every 10 draws. The remaining 5,000 draws are used for inference.

For all computations I use the software package Dynare. I inspected the standard convergence

diagnostics provided therein to ensure that posterior distributions are well behaved and draws

come from the ergodic random distribution.

5 Forecast Evaluation

In this section I explain the forecast experiment and compare the competing models using mul-

tivariate forecast accuracy measures.

5.1 Forecast Experiment

In the forecast experiment I work with 11 models. First, I start with an unrestricted VAR that is

estimated by OLS.8 The OLS-VAR is the natural benchmark in a multivariate context and con-

sidered up to the medium-large selection of the dataset (OLS-VAR Small, OLS-VAR Medium,

OLS-VAR Medium-Large). No forecasts are produced for the large and extra-large data selec-

tion since OLS-VARs cannot handle such large cross-sections. Second, I use the BVAR in combi-

nation with all five partitions of the dataset (BVAR Small, BVAR Medium, BVAR Medium-Large,

BVAR Large, BVAR Extra-Large). And finally, I consider the three DSGE models, again includ-

ing variables up to the medium-large selection (DSGE Small, DSGE Medium, DSGE Medium-

8In fact, I set λ = 10, 000, NB = 0, NR = 5, 000 and execute Steps (6) to (8) in Algorithm 1 repeatedly
to obtain a forecast distribution for the OLS-VAR.

13



Large). The forecast experiment hence allows me to assess to what extend multivariate forecast

accuracy is affected by the way restrictions are imposed on the model parameters (empirical,

theoretical, or no restrictions) and the number of variables included into estimation (from small

to extra-large data selection).

For each model I produce forecasts up to H = 4. I begin with the estimation sample 1984:1

to 1998:4 and generate forecasts for 1999:1 to 1999:4. I then iterate forward, always updating the

estimation sample one quarter at a time, until 2010:4, producing forecasts for 2011:1 to 2011:4.9

This proceeding yields a sequence of 49 forecasts for each model. The evaluation period hence

runs from 1999:1 to 2011:1 for the shortest forecast horizon (h = 1) and from 1999:4 to 2011:4 for

the longest (h = 4). The start of the evaluation period is chosen to coincide with the introduction

of the euro. With respect to the end I checked that the model ranking is not too sensitive to the

inclusion of the Great Recession (and the euro crisis). In Appendix E I provide point and density

forecast accuracy measures for a shortened evaluation period from 1999:h to 2007:h.

5.2 Point Forecasts

In order to investigate the ability of the competing models to produce relatively accurate point

forecasts for a set of m variables, I follow common practice and construct a scaled h-step-ahead

MSE matrix (m×m) (see, e.g., Adolfson et al., 2007; Christoffel et al., 2011, among others):

ΩM,h =
1

T1 − T0 + 1

T1
∑

T=T0

ẽT+h|T ẽ
′
T+h|T , h = 1, ..., H, (19)

where T0 = 60 and T1 = 108 denote the last observation of the first (1998:4) and final (2010:4)

estimation sample, respectively. The scaled h-step-ahead forecast error vector (m × 1) is cal-

culated as ẽT+h|T = M−1/2eT+h|T , with M being a m × m positive definite scaling matrix and

eT+h|T = ŷT+h|T − yT+h. The m× 1 vector of point forecasts ŷT+h|T is provided by the mean of

the multivariate forecast distribution that is computed from the 5,000 sampled forecasts, while

yT+h contains the actual values (m× 1).

Based on this scaled MSE matrix I compute two standard measures of multivariate point

forecast accuracy: the trace statistic tr [ΩM,h] and the log determinant statistic log|ΩM,h|. More-

over, I set M to a diagonal matrix containing the unconditional sample variances of the m vari-

ables during the evaluation period from 1999:1 to 2011:4. To understand the differences between

9In Berg and Henzel (2014) it is shown that BVARs benefit a lot in terms of predictive scores from recur-
sive estimation schemes that use all available observations up to period T compared to rolling window
schemes that discard the most distant observations. Therefore I prefer the former to the latter.
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both measures, it is important to note that the log determinant statistic is invariant to this choice

of the scaling matrix, while the trace statistic is not (see, e.g., Adolfson et al., 2007, among oth-

ers).10 But with M being diagonal, the trace statistic is simply an unweighted average of scaled

univariate MSE and hence easy to interpret.

In Table 1 I report the trace and log determinant (in parenthesis) of the scaled MSE matrix

for the competing forecast models up to four quarters. The lower the trace or log determinant

statistic is for a particular model, the better is its relative multivariate point forecast accuracy

with respect to a variable selection. In particular, I discriminate between models based on three

different sets of variables: the small selection (m = 3), the medium selection (m = 7), and the

medium-large selection (m = 15). Increasing the number of series to be evaluated ensures that

results are not too heavily influenced by a single variable. Of course, the number of models that

can be taken into account is decreasing in m.

The following picture emerges from the table. First, the multivariate point forecast accuracy

of the OLS-VARs clearly deteriorates with the number of variables included into estimation.

This conclusion holds true for all forecast horizons and both the small and medium selection of

the variables to be evaluated. And with only one exception (h = 2 and m = 3) both the trace and

log determinant statistic also deliver the same ranking of OLS-VARs. The dimensionality prob-

lem that arises when unrestricted OLS-VARs become larger apparently dominates the potential

benefits of a richer dataset.

Second, imposing restrictions on the parameters in form of a Minnesota-type prior uni-

formly improves multivariate point forecast accuracy compared to the unrestricted OLS-VARs.

The BVARs outperform the OLS-VARs of same size in terms of both accuracy measures at all

forecast horizons and for all variable selections. Even for small models it hence seems advisable

to shrink the parameter space by adopting an informative prior. Across BVARs I find that multi-

variate point forecast accuracy does not deteriorate with the size of the dataset. In contrast, the

large and extra-large BVARs deliver in most cases much smaller forecast errors than the small,

medium, or medium-large specifications. Therefore I conclude that the BVAR can deal with the

dimensionality problem and exploit the information contained in high dimensional datasets.

However, I also find that with only a few exceptions the large BVAR dominates the extra-large

BVAR in terms of multivariate point forecast accuracy, suggesting that the 23 variables may suf-

fice to produce reasonable forecasts and that the additional gains of enlarging the dataset are at

best small, if not negative. In a related study Berg and Henzel (2014) reach a similar conclusion

when evaluating forecasts for euro area HICP inflation and GDP growth.

10Note that tr [ΩM,h] = tr
[

M−1ΩI,h

]

and log|ΩM,h| = log|ΩI,h|−log|M |, where ΩI,h is based on M = I .
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Table 1: Trace and Log Determinant of Scaled MSE Matrix

Forecast Horizon h (in Quarters)

Forecast Model 1 2 3 4

Small Selection (m = 3)

OLS-VAR Small 1.93 (−2.90) 2.45 (−1.57) 3.09 (−0.71) 4.28 ( 0.19)
OLS-VAR Medium 2.08 (−2.85) 2.61 (−1.69) 3.33 (−0.68) 4.58 ( 0.22)
OLS-VAR Medium-Large 2.61 (−1.92) 3.39 (−0.40) 4.72 ( 0.53) 6.43 ( 1.22)

BVAR Small 1.87 (−3.05) 2.32 (−1.74) 2.87 (−0.84) 3.81 (−0.01)
BVAR Medium 1.95 (−2.96) 2.32 (−1.80) 2.93 (−0.84) 3.74 (−0.08)
BVAR Medium-Large 1.78 (−3.04) 2.45 (−1.50) 3.30 (−0.51) 4.15 ( 0.23)
BVAR Large 1.47 (−3.34) 1.96 (−1.83) 2.44 (−1.10) 3.09 (−0.57)
BVAR Extra-Large 1.72 (−2.98) 2.05 (−1.76) 2.50 (−1.18) 3.15 (−0.60)

DSGE Small 2.74 (−2.12) 3.36 (−0.59) 4.26 ( 0.45) 5.45 ( 1.25)
DSGE Medium 1.98 (−2.57) 1.93 (−1.53) 2.22 (−1.08) 2.45 (−0.75)
DSGE Medium-Large 1.94 (−2.96) 2.46 (−1.53) 3.46 (−0.49) 4.77 ( 0.31)

Medium Selection (m = 7)

OLS-VAR Medium 6.35 (−6.25) 7.62 (−5.39) 9.48 (−3.87) 11.46 (−3.00)
OLS-VAR Medium-Large 9.11 (−3.83) 9.86 (−2.86) 11.19 (−1.66) 12.84 (−1.33)

BVAR Medium 5.71 (−7.02) 6.66 (−5.84) 8.16 (−4.35) 9.47 (−3.64)
BVAR Medium-Large 5.33 (−6.94) 6.67 (−5.52) 8.05 (−4.14) 9.34 (−3.31)
BVAR Large 4.56 (−7.15) 5.82 (−5.44) 6.77 (−4.30) 7.79 (−3.71)
BVAR Extra-Large 5.17 (−6.26) 5.89 (−5.16) 6.40 (−4.49) 7.28 (−3.71)

DSGE Medium 7.26 (−3.33) 7.65 (−2.96) 8.48 (−2.92) 8.93 (−2.59)
DSGE Medium-Large 5.04 (−7.12) 6.62 (−5.40) 8.53 (−3.90) 10.50 (−3.10)

Medium-Large Selection (m = 15)

OLS-VAR Medium-Large 17.83 (−14.20) 21.55 (−12.76) 25.56 (−10.76) 28.90 (−10.73)

BVAR Medium-Large 11.73 (−19.31) 15.63 (−17.40) 18.96 (−14.87) 21.64 (−13.72)
BVAR Large 10.33 (−18.52) 13.04 (−16.41) 15.54 (−14.42) 17.78 (−12.91)
BVAR Extra-Large 11.08 (−17.07) 13.34 (−15.54) 15.72 (−13.94) 17.83 (−12.37)

DSGE Medium-Large 11.50 (−19.94) 15.58 (−16.56) 19.35 (−14.04) 23.00 (−12.25)

Notes: this table shows the trace and log determinant (parenthesis) of the scaled MSE matrix for compet-

ing forecast models. The evaluation period runs from 1999:h to 2011:h, depending on the forecast horizon

h. The MSE matrix is scaled by the unconditional sample variance of the variables during the evaluation

period. The lower the trace (or log determinant) is, the better is the multivariate point forecast accuracy of

the model with respect to the variable selection. The forecasted variables are: GDP, GDP deflator, interest

rate (Small Selection); consumption, investment, employment, wages (Medium Selection); exports, im-

ports, consumption deflator, investment deflator, exchange rate, world GDP, world GDP deflator, federal

funds rate (Medium-Large Selection).
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Third, the results are less clear cut for the DSGE models. For instance I find that the small

DSGE model is outperformed in terms of multivariate point forecast accuracy by both the small

BVAR and small OLS-VAR at all horizons. This finding is robust across both accuracy measures

and suggests that the structure of the small DSGE model might be too simplistic to generate a

plausible comovement of the three series. In contrast, the medium DSGE model does exception-

ally well for the small variable selection at all horizons and clearly dominates the medium OLS-

VAR. And except for the first horizon the model also outperforms the medium BVAR. However,

the forecast accuracy of the medium DSGE model is mixed with respect to the medium selection

of the variables. While it is competitive at longer forecast horizons, forecasts are less accurate in

the short-run compared to both the medium OLS-VAR and medium BVAR. A possible explana-

tion for the discrepancy of the forecast accuracy of the medium DSGE model between the small

and medium variable selection may be the observed difficulty of such models to generate rea-

sonable joint dynamics of consumption and wages (see, e.g., Christoffel et al., 2011; Smets et al.,

2014, among others).

The medium-large DSGE model I consider in the forecast competition seems to be less prone

to such difficulties though. The model dominates the medium-large OLS-VAR in terms of mul-

tivariate point forecast accuracy for all variable selections at all horizons and for both accuracy

measures, suggesting that the theoretical restrictions it imposes on the parameters indeed help

to produce plausible comovements between the variables and reduce estimation uncertainty. In

comparison to the medium-large BVAR, the model performs only slightly worse at all forecast

horizons for the small and medium-large variable selection. With respect to the medium selec-

tion it is even better than the BVAR in the short-run, but a bit less accurate at longer horizons.

However, the medium-large DSGE model cannot compete with the large and extra-large

BVAR. For all variable selections both BVARs substantially outperform the medium-large DSGE

model at most horizons and for both accuracy measures. Hence I conclude that the additional

information contained in the large and extra-large dataset is particularly helpful in forecasting

macroeconomic variables, which is not surprising since those cover several forward-looking

series, such as financial or survey indicators. The underperformance of the medium-large DSGE

model is hence not related to its structure, but the fact that these series are non-modeled.

5.3 Density Forecasts

In the previous section I compared the competing models with respect to their relative multi-

variate point forecast accuracy based on the scaled MSE matrix. In the following I extend the

competition to the entire multivariate forecast distribution and compute for each variant the
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h-step-ahead log predictive score, which is the height of the distribution pT (·) evaluated at the

actual outcome yT+h and summed over all evaluation periods:

Sh =

T1
∑

T=T0

log pT (yT+h) , h = 1, ..., H. (20)

Unfortunately, there is no analytic expression for the predictive likelihood pT (yT+h) avail-

able and it hence needs to be estimated from the simulated sample of forecasts. Since I evaluate

forecasts for up to 15 variables, multivariate kernel density estimation is not a feasible option.

Instead I follow Adolfson et al. (2007), assuming that pT (·) is multivariate normal for all T and

estimate the mean forecast vector as well as its covariance matrix for all T and h from the 5,000

sampled forecasts.11

The log predictive score for the competing forecast models up to four quarters and the dif-

ferent variable selections is shown in Table 2. The higher the score of a model is, the better is its

relative multivariate density forecast accuracy.

In sum, the table suggests that the conclusions of the previous section are largely confirmed

when the competition is extended to multivariate density forecasts, with some exceptions for

the DSGE models. Once more I find that the forecast accuracy of the OLS-VARs is negatively

related to the number of variables included into estimation. While the predictive scores for the

small and medium OLS-VAR are rather similar with respect to the small variable selection, the

medium-large OLS-VAR is clearly outperformed by both at all forecast horizons. And except for

the longest horizon, the medium-large OLS-VAR also shows a much smaller score compared to

the medium OLS-VAR for the medium selection, underlining that parameter proliferation can

be a severe problem for unrestricted VARs when the size of the dataset is relatively large.

For the density forecasts I also obtain that imposing prior information on the parameters is

beneficial with respect to multivariate forecast accuracy. Up to two quarters the BVARs clearly

dominate the OLS-VARs of same size in terms of predictive scores for all variable selections.

However, the relative advantage of the BVARs is declining with the forecast horizon. For h = 3

both approaches deliver similar predictive scores, while for the longest horizon the OLS-VARs

show even larger scores for all variable selections, suggesting that relatively accurate multivari-

ate point forecasts do not necessarily imply higher predictive likelihoods. In contrast, the large

BVAR again delivers an excellent forecast performance at all horizons for the small variable se-

lection, which confirms that the additional series contained in this dataset are informative for

11Warne, Coenen, and Christoffel (2014) propose a Kalman filter method as an alternative to the normal
approximation to obtain the predictive likelihood, but find small differences between both approaches.
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Table 2: Log Predictive Score

Forecast Horizon h (in Quarters)

Forecast Model 1 2 3 4

Small Selection (m = 3)

OLS-VAR Small −216.1 −222.5 −222.9 −228.6
OLS-VAR Medium −220.8 −222.1 −221.9 −228.6
OLS-VAR Medium-Large −254.6 −251.1 −232.9 −229.8

BVAR Small −209.8 −217.2 −222.1 −229.8
BVAR Medium −208.9 −216.7 −225.6 −233.9
BVAR Medium-Large −207.1 −225.4 −230.0 −235.8
BVAR Large −202.3 −216.4 −219.6 −219.1
BVAR Extra-Large −212.1 −224.6 −227.1 −229.6

DSGE Small −205.4 −217.8 −227.0 −237.7
DSGE Medium −209.0 −188.5 −185.3 −186.9
DSGE Medium-Large −185.4 −186.7 −190.2 −197.3

Medium Selection (m = 7)

OLS-VAR Medium −524.0 −488.3 −486.1 −494.7
OLS-VAR Medium-Large −609.1 −532.6 −500.8 −484.5

BVAR Medium −485.3 −480.0 −494.2 −506.2
BVAR Medium-Large −484.0 −488.5 −492.6 −501.7
BVAR Large −485.3 −489.8 −491.2 −486.3
BVAR Extra-Large −515.3 −495.8 −491.6 −483.1

DSGE Medium −484.0 −438.8 −432.7 −430.8
DSGE Medium-Large −409.2 −406.6 −416.5 −425.3

Medium-Large Selection (m = 15)

OLS-VAR Medium-Large −1595.4 −1329.3 −1235.8 −1181.7

BVAR Medium-Large −1194.2 −1223.0 −1247.0 −1252.4
BVAR Large −1246.8 −1264.5 −1264.5 −1250.5
BVAR Extra-Large −1302.2 −1277.6 −1271.3 −1235.2

DSGE Medium-Large −1129.6 −1153.0 −1169.5 −1185.4

Notes: this table shows the log predictive score for competing forecast models. The evaluation period

runs from 1999:h to 2011:h, depending on the forecast horizon h. The higher the log predictive score is,

the better is the multivariate density forecast accuracy of the model with respect to the variable selection.

The forecasted variables are: GDP, GDP deflator, interest rate (Small Selection); consumption, investment,

employment, wages (Medium Selection); exports, imports, consumption deflator, investment deflator,

exchange rate, world GDP, world GDP deflator, federal funds rate (Medium-Large Selection).
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the comovoment of the three variables. With respect to the medium and medium-large selection

the performance of the large BVAR is less remarkable though, but still satisfactory. Finally, the

table shows that the extra-large BVAR cannot quite confirm its ability to forecast comovements

in major macroeconomic series when the focus shifts from point to density forecasts. Since the

extra-large BVAR involves estimating a high dimensional covariance matrix (38× 38), I believe

that posterior uncertainty may be too high for this variant, leading to relatively low predictive

likelihoods. In fact, Berg and Henzel (2014) obtain similar evidence on density forecasts for euro

area HICP inflation and GDP growth coming from BVARs with 44 variables.

With respect to the DSGE models the most important finding is that their predictive scores

are higher than their relative multivariate point forecast accuracy suggests. Therefore I conclude

that the theoretical restrictions embedded in these models are helpful in producing a plausible

covariance structure between the forecasts. The small DSGE model, which displayed relatively

high forecast errors, is not worse than the small OLS-VAR and small BVAR in terms of predictive

scores, while the multivariate density forecast accuracy of the medium DSGE model is even

better. With only one exception (h = 1 and m = 3) it shows higher scores than all OLS-VARs

and BVARs at all forecast horizons as well as for both variable selections. The medium DSGE

model is competitive with the medium-large DSGE model for the small variable selection, but

not for the medium selection. In fact, the medium-large DSGE outperforms all competitors at all

forecast horizons with respect to the medium selection and except for the longest horizon also

for the medium-large selection. The structure of this model is therefore rich enough to produce

reasonable comovements between the 15 variables included into estimation.

5.4 Event Forecasts

Next I provide additional evidence on the ability of the competing models to forecast comove-

ments of major macroeconomic series in the euro area by conducting an event study. In partic-

ular, I follow Herbst and Schorfheide (2012) and consider two measures of absolute as well as

relative multivariate event forecast accuracy.

Let [yi,T+h ≥ a, yj,T+h ≥ b] be a multivariate event and pT [·] the model-implied probability

that the event occurs. The absolute multivariate event forecast accuracy is evaluated based on

Ph =
1

T1 − T0 + 1

T1
∑

T=T0

(ℓ [yi,T+h ≥ a, yj,T+h ≥ b]− pT [yi,T+h ≥ a, yj,T+h ≥ b]) , (21)

where ℓ [·] is an indicator function that takes on unity if the event occurs and zero otherwise. Ph

hence measures the difference between the actual frequency of events and the average model-
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implied probability. If Ph ≈ 0, the event forecasts are well calibrated. If Ph < 0 (> 0), the forecast

model overpredicts (underpredicts) the actual frequency of the events.

Furthermore, I assess the relative multivariate event forecast accuracy and rank models ac-

cording to the scoring rule:

P̃h =
1

T1 − T0 + 1

T1
∑

T=T0

(ℓ [yi,T+h ≥ a, yj,T+h ≥ b]− pT [yi,T+h ≥ a, yj,T+h ≥ b])2 . (22)

While any multivariate event could be used in principle to compute Ph and P̃h, I shall focus

on the small variable selection and consider four events that are particularly relevant for poli-

cymakers: First, GDP growth, inflation, and the interest rate are above (below) their respective

long-run targets (Event I and II). Second, GDP growth is below (above) and inflation is above

(below) their long-run targets (Event III and IV). The long-run targets for GDP growth, inflation,

and the interest rate are set to, respectively, 1.5%, 2%, and 3.5% (at annualized rates).12 Specified

in this way, the actual frequency of these events during the evaluation period for h = 1 is 10.2%,

16.3%, 44.9%, and 16.3%, respectively. All in all, the event study allows me to assess whether the

models are able to forecast the directional comovements of the three variables, which provides

some insights that may not be reflected in MSE or predictive scores.

Tables 3 and 4 show both measures of multivariate event forecast accuracy for all four events

up to h = 4. The lower the mean squared difference is, the better is the relative forecast accuracy

of a model with respect to the event, while the closer to zero the mean difference (in parenthesis)

is, the better is its absolute forecast accuracy.

From Table 3 we learn that all forecast models overpredict the occurrence of Event I, which

suggests that they do not adjust to the fact that the variables tend to decline over the evaluation

period. Given that the actual frequency of Event I at h = 1 is only 10.2%, absolute deviations of

1.8 percentage points (DSGE Small) and 5.5 percentage points (OLS-VAR Medium) appear large.

Such an incorrect calibration of density forecasts would not be reflected in MSE or predictive

scores. Consistently, the models also tend to underpredict the likelihood of Event II. However,

the absolute deviations from the actual frequency of Event II at h = 1 of 16.3% are smaller, vary-

ing between 1.0 percentage points (OLS-VAR Small) and 4.1 percentage points (DSGE Small).

Regarding the relative multivariate event forecast accuracy I obtain results that square with

previous findings. First, enlarging the size of the OLS-VARs does not improve forecast accuracy.

12This choice for the long-run targets can be rationalized as follows. First, long-run real GDP growth is
proxied by its sample mean (≈ 1.5%). Second, long-run inflation equals the ECB‘s target (2%). And third,
the long-run interest rate is proxied by long-run nominal GDP growth (1.5% + 2% = 3.5%).
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Table 3: Event Occurrence and Model-Implied Probability

Forecast Horizon h (in Quarters)

Forecast Model 1 2 3 4

Event I: GDP Growth (↑) & Inflation (↑) & Interest Rate (↑)

OLS-VAR Small 0.072 (−0.041) 0.078 (−0.043) 0.079 (−0.065) 0.107 (−0.082)
OLS-VAR Medium 0.073 (−0.055) 0.087 (−0.072) 0.089 (−0.086) 0.107 (−0.108)
OLS-VAR Medium-Large 0.081 (−0.034) 0.094 (−0.065) 0.102 (−0.067) 0.090 (−0.075)

BVAR Small 0.072 (−0.036) 0.079 (−0.037) 0.083 (−0.054) 0.105 (−0.069)
BVAR Medium 0.067 (−0.030) 0.082 (−0.034) 0.089 (−0.049) 0.103 (−0.061)
BVAR Medium-Large 0.073 (−0.020) 0.076 (−0.040) 0.097 (−0.047) 0.092 (−0.056)
BVAR Large 0.073 (−0.029) 0.070 (−0.062) 0.088 (−0.095) 0.078 (−0.111)
BVAR Extra-Large 0.052 (−0.024) 0.068 (−0.048) 0.077 (−0.082) 0.081 (−0.100)

DSGE Small 0.084 (−0.018) 0.088 (−0.009) 0.096 (−0.009) 0.102 (−0.010)
DSGE Medium 0.100 (−0.023) 0.097 (−0.051) 0.100 (−0.049) 0.099 (−0.046)
DSGE Medium-Large 0.068 (−0.048) 0.083 (−0.075) 0.094 (−0.102) 0.104 (−0.129)

Event II: GDP Growth (↓) & Inflation (↓) & Interest Rate (↓)

OLS-VAR Small 0.118 (−0.010) 0.145 (−0.010) 0.161 ( 0.016) 0.181 ( 0.039)
OLS-VAR Medium 0.118 (−0.016) 0.143 ( 0.001) 0.167 ( 0.021) 0.190 ( 0.043)
OLS-VAR Medium-Large 0.155 ( 0.021) 0.175 ( 0.025) 0.145 ( 0.011) 0.184 ( 0.004)

BVAR Small 0.118 (−0.013) 0.143 (−0.012) 0.157 ( 0.012) 0.179 ( 0.035)
BVAR Medium 0.121 (−0.032) 0.144 (−0.025) 0.158 (−0.003) 0.181 ( 0.018)
BVAR Medium-Large 0.123 (−0.013) 0.145 (−0.005) 0.145 (−0.004) 0.165 ( 0.006)
BVAR Large 0.110 ( 0.028) 0.134 ( 0.028) 0.120 ( 0.007) 0.167 ( 0.011)
BVAR Extra-Large 0.112 ( 0.039) 0.147 ( 0.048) 0.138 ( 0.039) 0.184 ( 0.046)

DSGE Small 0.130 (−0.041) 0.150 ( 0.014) 0.158 ( 0.057) 0.176 ( 0.092)
DSGE Medium 0.120 (−0.038) 0.141 (−0.032) 0.146 (−0.004) 0.156 ( 0.022)
DSGE Medium-Large 0.110 ( 0.013) 0.153 ( 0.065) 0.166 ( 0.109) 0.204 ( 0.146)

Notes: this table shows the mean squared difference as well as the mean difference (parenthesis) between

the occurrence of a multivariate event and the model-implied probability for competing forecast models.

The events are: GDP growth, inflation, and the interest rate are above ↑ (below ↓) their long-run targets,

which are, respectively, 1.5%, 2%, and 3.5% (at annualized rates). The evaluation period runs from 1999:h

to 2011:h, depending on the forecast horizon h. The lower the mean squared difference is, the better is the

relative multivariate forecast accuracy of a model with respect to the event. The closer to zero the mean

difference is, the better is the absolute multivariate forecast accuracy of a model with respect to the event.
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Table 4: Event Occurrence and Model-Implied Probability (continued)

Forecast Horizon h (in Quarters)

Forecast Model 1 2 3 4

Event III: GDP Growth (↑) & Inflation (↓)

OLS-VAR Small 0.229 ( 0.017) 0.238 (−0.001) 0.219 (−0.008) 0.247 (−0.028)
OLS-VAR Medium 0.238 ( 0.040) 0.241 ( 0.026) 0.226 ( 0.018) 0.244 ( 0.010)
OLS-VAR Medium-Large 0.285 ( 0.050) 0.281 ( 0.027) 0.244 ( 0.060) 0.262 ( 0.065)

BVAR Small 0.226 ( 0.013) 0.234 (−0.007) 0.219 (−0.019) 0.245 (−0.039)
BVAR Medium 0.232 ( 0.016) 0.237 ( 0.002) 0.235 (−0.017) 0.251 (−0.037)
BVAR Medium-Large 0.231 ( 0.020) 0.222 (−0.005) 0.231 (−0.015) 0.236 (−0.028)
BVAR Large 0.216 ( 0.033) 0.231 ( 0.050) 0.225 ( 0.086) 0.233 ( 0.098)
BVAR Extra-Large 0.235 ( 0.046) 0.226 ( 0.064) 0.230 ( 0.082) 0.244 ( 0.087)

DSGE Small 0.246 ( 0.054) 0.233 (−0.033) 0.225 (−0.093) 0.241 (−0.139)
DSGE Medium 0.224 ( 0.184) 0.257 ( 0.162) 0.247 ( 0.129) 0.242 ( 0.108)
DSGE Medium-Large 0.267 ( 0.185) 0.263 ( 0.186) 0.258 ( 0.191) 0.261 ( 0.190)

Event IV: GDP Growth (↓) & Inflation (↑)

OLS-VAR Small 0.148 ( 0.073) 0.144 ( 0.084) 0.141 ( 0.080) 0.144 ( 0.086)
OLS-VAR Medium 0.152 ( 0.069) 0.146 ( 0.078) 0.140 ( 0.067) 0.144 ( 0.073)
OLS-VAR Medium-Large 0.150 ( 0.020) 0.145 ( 0.063) 0.125 ( 0.039) 0.145 ( 0.038)

BVAR Small 0.147 ( 0.073) 0.143 ( 0.083) 0.142 ( 0.081) 0.144 ( 0.086)
BVAR Medium 0.148 ( 0.072) 0.143 ( 0.079) 0.142 ( 0.080) 0.144 ( 0.084)
BVAR Medium-Large 0.133 ( 0.045) 0.131 ( 0.071) 0.133 ( 0.072) 0.139 ( 0.075)
BVAR Large 0.134 ( 0.011) 0.125 ( 0.019) 0.116 ( 0.017) 0.131 ( 0.011)
BVAR Extra-Large 0.151 (−0.014) 0.124 (−0.001) 0.115 ( 0.000) 0.133 (−0.003)

DSGE Small 0.121 ( 0.012) 0.130 ( 0.012) 0.123 ( 0.018) 0.124 ( 0.022)
DSGE Medium 0.113 (−0.098) 0.128 (−0.059) 0.125 (−0.060) 0.126 (−0.064)
DSGE Medium-Large 0.138 (−0.079) 0.141 (−0.126) 0.156 (−0.164) 0.169 (−0.191)

Notes: this table shows the mean squared difference as well as the mean difference (parenthesis) between

the occurrence of a multivariate event and the model-implied probability for competing forecast models.

The events are: GDP growth is above ↑ (below ↓) and inflation is below ↓ (above ↑) their long-run targets,

which are, respectively, 1.5% as well as 2% (at annualized rates). The evaluation period runs from 1999:h

to 2011:h, depending on the forecast horizon h. The lower the mean squared difference is, the better is the

relative multivariate forecast accuracy of a model with respect to the event. The closer to zero the mean

difference is, the better is the absolute multivariate forecast accuracy of a model with respect to the event.
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Second, the BVARs meet the challenge of dimensionality and exhaust the information contained

in larger datasets. In particular, the large and extra-large BVAR perform well in terms of relative

multivariate event forecast accuracy. Third, the medium-large DSGE model shows a satisfactory

performance for both events and is particularly accurate for the first quarter. However, the small

DSGE model is less accurate and dominated by the small OLS-VAR and BVAR for both events at

most forecast horizons. Finally, the medium DSGE model also shows a rather poor performance

for Event I, but does better than the medium OLS-VAR and BVAR with respect to Event II.

Table 4 shows that most forecast models underpredict the occurrence of Event III and IV.

Exceptions include the medium and medium-large DSGE model, which clearly overpredict the

likelihood of Event IV at all forecast horizons. At a first glance all models seem to have difficul-

ties in correctly forecasting a situation in which GDP growth is above and inflation is below their

respective long-run targets. When inspecting the absolute deviations, however, the problem is

less severe. Taking into account that Event III happens quite frequently (44.9% at h = 1), de-

viations between 1.3 percentage points (BVAR Small) and 5.4 percentage points (DSGE Small)

are small. For the medium and medium-large DSGE model the divergence between average

probabilities and actual frequencies is much larger though. Both models underpredict the oc-

currence of Event III at h = 1 by about 18 percentage points. Despite their relatively accurate

multivariate point and density forecasts for the small variable selection, both DSGE models

are poorly calibrated for Event III. One possible reason for this deficiency is that the common

trend assumption of these models is too restrictive. This finding is also true for Event IV. The

medium and medium-large DSGE model overpredict situations in which GDP growth is be-

low and inflation is above their respective long-run targets at h = 1 by 9.8 and 7.9 percentage

points, respectively. Given that the actual frequency of that event is only 16.3%, these discrep-

ancies again point to a poor calibration of both DSGE models. For all other forecast models

the absolute deviations vary from 1.1 percentage points (BVAR Large) to 7.3 percentage points

(OLS-VAR Small). In particular, the large and extra-large BVAR are well calibrated for Event IV,

even for longer horizons.

With respect to the relative multivariate event forecast accuracy I obtain results that confirm

the main conclusions of this paper. For instance the OLS-VARs deliver forecast errors that either

increase (Event III) or at least do not decrease (Event IV) with the number of variables included

into estimation. Moreover, the table shows that BVARs often dominate OLS-VARs of same size,

while the large BVAR performs well for both events at most horizons. And finally, the evidence

is mixed for the DSGE models. While all models display a relatively poor performance for Event

III, the small and medium DSGE model forecast Event IV accurately.
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6 Conclusion

This paper assesses the ability of BVARs and DSGE models of different size to forecast comove-

ments of major macroeconomic variables in the euro area. While the literature as of today has

predominantly focused on point and density forecasts for individual series, I extend the scope

of the evaluation of BVARs and DSGE models to multivariate forecasts. In particular, I compare

both approaches to classical VARs in terms of multivariate point and density forecast accuracy

measures as well as event probabilities. The evidence for the evaluation period from 1999:1

to 2011:4 suggests that BVARs and DSGE models produce relatively accurate point and density

forecasts even for larger datasets. In fact, the large and extra-large BVAR as well as the medium-

scale open economy DSGE model of Adolfson et al. (2007) show an excellent performance in

terms of MSE and predictive scores for almost all variable selections. Moreover, I detect that

the large and extra-large BVAR produce event probabilities that are commensurable with actual

frequencies for most events. The medium-scale open economy DSGE model of Adolfson et al.

(2007), on the other hand, is poorly calibrated for some events. One possible reason for this

deficiency is that the common trend assumption of this model is too restrictive. Altogether, I

conclude that BVARs and DSGE models are both useful tools to achieve parameter dimension

reduction and forecast comovements of major macroeconomic variables. For future research it

could be fruitful to address the two main deficiencies of DSGE models to improve their mul-

tivariate forecast accuracy. First, the common trend assumption could be relaxed. Second, the

set of observables could be extended to forward-looking variables such as survey data. Recent

work by Smets et al. (2014) goes in this direction.
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Table A.1: Dataset

No. Mnemonic Label Category Source Code∗

Small Selection (3 variables)

01 YER Real GDP National Accounts AWM 1
02 YED GDP Deflator Price Index AWM 1
03 STN Short-Term Interest Rate Financial AWM 3

Medium Selection (7 variables)

04 PCR Real Private Consumption National Accounts AWM 1
05 ITR Real Gross Investment National Accounts AWM 1
06 LNN Total Employment Employment AWM 1
07 WRN/YED Real Wages Employment AWM 1

Medium-Large Selection (15 variables)

08 XTR Real Exports National Accounts AWM 1
09 MTR Real Imports National Accounts AWM 1
10 PCD Private Consumption Deflator Price Index AWM 1
11 ITD Gross Investment Deflator Price Index AWM 1
12 EEN/(HICP/YWD) Real Effective Exchange Rate Financial AWM 2
13 YWR Real World GDP International AWM 1
14 YWD World GDP Deflator International AWM 1
15 FEDFUNDS Federal Funds Rate International FRED 3

Large Selection (23 variables)

16 HICP Overall HICP Price Index AWM 1
17 POILU Oil Price International AWM 1
18 URX Unemployment Rate Employment AWM 3
19 EKOL2002Q Composite Leading Indicator Survey OECD 3
20 EKOCS002Q Consumer Confidence Indicator Survey OECD 3
21 EKQMA027B M1 Money Stock Monetary Aggregate OECD 1
22 LTN Long-Term Interest Rate Financial AWM 3
23 EMSHRPRCF Share Price Index Financial TRC 1

Extra-Large Selection (38 variables)

24 GCR Real Government Consumption National Accounts AWM 1
25 WIN Compensation to Employees National Accounts AWM 1
26 GON Gross Operating Surplus National Accounts AWM 1
27 TIN Indirect Taxes National Accounts AWM 1
28 SAX Household’s Savings Ratio National Accounts AWM 3
29 GCD Government Consumption Deflator Price Index AWM 1
30 XTD Exports Deflator Price Index AWM 1
31 MTD Imports Deflator Price Index AWM 1
32 YWRX Real World Demand International AWM 1
33 YWDX World Demand Deflator International AWM 1
34 COMPR Commodity Prices International AWM 1
35 LFN Labor Force Employment AWM 1
36 LEN Employees Employment AWM 1
37 EKQMA013B M3 Money Stock Monetary Aggregate OECD 1
38 EXR Euro per U.S.D. Exchange Rate Financial AWM 1

∗ Transformation code: 1 = Log Difference; 2 = Log; 3 = Raw.
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Figure A.1: Dataset. Notes: this figure shows the series included in the medium-large selection of the
dataset. The initial estimation sample is 1984:1 to 1998:4, while the evaluation period runs from 1999:1 to
2011:4 (gray shaded area).
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B Marginal Likelihood

The marginal likelihood is (see also Carriero et al., 2015):

p (y|λ) = k−1 × |Ψ+ (y − xb)′
(

I + xΩx′
)−1

(y − xb) |−
T+d

2 , (B.1)

where

k = π
TN

2 × |
(

I + xΩx′
)−1

|−
N

2 × |Ψ|−
d

2 ×
ΓN

(

d
2

)

ΓN
(

T+d
2

) , (B.2)

and with ΓN (·) denoting the N-variate gamma function.

C Convergence

In order to check for the convergence of the Markov chain, I follow Primiceri (2005) and calculate

autocorrelation functions as well as inefficiency factors (IFs) for the shrinkage parameter λ and

each BVAR model. Furthermore, I inspect the posterior distribution of λ for its plausibility.

The IF is defined as IF = 1 + 2
∑∞

s=1
ρs, where ρs is the estimated autocorrelation of the

chain at lag s. Since independence sampling produces an IF that is equal to one and dependence

sampling typically produces an IF greater than one, the IF quantifies the relative efficiency loss

in the computation of posterior draws from dependent versus independent samples. In practice,

values around 20 are regarded as efficient (see, e.g., Primiceri, 2005, among others), meaning

that the econometrician needs to draw 20 times as many draws as from uncorrelated samples.

The IFs are calculated as the inverse of the relative numerical efficiency measure (RNE) of

Geweke (1992):

RNE = (2π)−1 1

S (0)

∫ π

−π
S (ω) dω = IF−1, (C.1)

where S (ω) denotes the spectral density of the sequence of draws at frequency ω. I estimate the

spectral densities by smoothing the periodograms in the frequency domain using a 4 percent

tapered window as in Primiceri (2005).

In Figure C.1 I present the autocorrelation function for the shrinkage parameter up to lag 20

for the extra-large BVAR when all observations are used in estimation. The autocorrelation is be-

low 0.1 at the first lag and approximately 0 thereafter, suggesting that the chain mixes well and

draws are almost independent. This conclusion is confirmed by the IFs that are documented for

all estimation periods. The values vary between 5 and 10, indicating that draws come from the

ergodic distribution. The findings are similar for the other BVARs, but not reported here for the
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sake of brevity. Moreover, I show the posterior distribution of the shrinkage parameter for some

BVARs when all observations are used together with the prior distribution in Figure C.2. The

posterior distribution is obtained by smoothing the simulated histograms with a normal ker-

nel function. While the hyperprior is dispersed and uninformative, the posterior distributions

have plausible shapes. As suggested by De Mol, Giannone, and Reichlin (2008), the size of the

shrinkage parameter as well as its posterior uncertainty decline with the number of variables

included, meaning that the Minnesota prior becomes tighter the larger the model is.
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Figure C.1: Convergence Diagnostics for Shrinkage Parameter. Notes: this figure shows
the autocorrelation of the posterior draws using data from 1984:1 to 2010:4 (left panel); and inefficiency
factors for the period 1998:4 to 2010:4 (right panel). Both statistics are for the extra-large BVAR.
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Figure C.2: Prior and Posterior Distribution for Shrinkage Parameter. Notes: this figure
shows the prior and posterior distribution of the shrinkage parameter for the small, medium, and extra-
large BVAR using data from 1984:1 to 2010:4.
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D DSGE Models

This appendix provides the measurement equations and priors for the DSGE models. The mea-

surement equations relate the observable series to the model variables. In order to denote the

observables I use the mnemonics shown in Table A.1, while I adopt the original notation for

the model parameters and variables. For the Adolfson-Laseén-Lindé-Villani model I add small

measurement errors, accounting for approximately 10% of the variance of a series, which stabi-

lizes inference. The priors are also from the original articles, but slightly modified. For instance

I add steady-state labor force growth to series that are not measured in per capita terms to avoid

detrending before estimation. Moreover, I fix some additional parameters at reasonable values

to keep repeated recursive estimation manageable. Note: StDev = Standard deviation.

D.1 An-Schorfheide

The measurement equations are

∆YERt = γ̄ + ē+∆ŷt + ẑt (D.1)

∆YEDt = πA/4 + π̂t (D.2)

STNt =
(

πA + rA
)

/4 + γ̄ + R̂t (D.3)

Table D.1: Priors (An-Schorfheide)

Parameter & Description Density Mean StDev

τ Inverse intertemporal elasticity of substitution Gamma 2.00 0.50
κ Slope of Phillips curve Gamma 0.20 0.10
ψ2 Monetary policy response to output growth Gamma 0.50 0.25
ρR Interest rate smoothing Beta 0.50 0.20
ρG Autocorrelation of government spending shock Beta 0.80 0.10
ρZ Autocorrelation of TFP growth shock Beta 0.50 0.20
rA Transformation of discount factor (annual) Gamma 2.00 0.50
πA Steady-state inflation (annual) Gamma 4.00 1.00
γ̄ Steady-state TFP growth Normal 0.40 0.10
σR Standard deviation of monetary policy shock InvGamma 0.25 0.13
σG Standard deviation of government spending shock InvGamma 1.25 0.66
σZ Standard deviation of TFP growth shock InvGamma 0.63 0.33

Parameters fixed at constant value

ē Steady-state labor force growth 0.20
ψ1 Monetary policy response to inflation 1.50
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D.2 Smets-Wouters

The measurement equations are

∆YERt = γ̄ + ē+∆ŷt (D.4)

∆YEDt = π̄ + π̂t (D.5)

STNt = r̄ + R̂t (D.6)

∆PCRt = γ̄ + ē+∆ĉt (D.7)

∆ITRt = γ̄ + ē+∆ît (D.8)

∆LNNt = ē+∆êt (D.9)

∆(WRN/YED)t = γ̄ +∆ŵt (D.10)

Table D.2: Priors (Smets-Wouters)

Parameter & Description Density Mean StDev

ψ Elasticity of capital adjustment cost function Beta 0.50 0.15
Φ Fixed costs in production Normal 1.45 0.25
ρ Interest rate smoothing Beta 0.75 0.10
r∆y Monetary policy response to output growth Gamma 0.50 0.25
π̄ Steady-state inflation Gamma 1.00 0.25
rQ Transformation of discount factor Gamma 0.50 0.12
γ̄ Steady-state labor augmenting technology growth Normal 0.40 0.10
ē Steady-state labor force growth Normal 0.20 0.50
ρi Autocorrelation of all shocks Beta 0.50 0.20
µi Moving average term of price & wage mark-up shock Beta 0.50 0.20
σi Standard deviation of all shocks InvGamma 0.10 ∞

Parameters fixed at constant value

δ Depreciation rate 0.025
gy Steady-state government spending to output ratio 0.18
λw Steady-state labor market mark-up 1.50
ǫw Kimball labor market aggregator 10

ǫp Kimball goods market aggregator 10

ϕ Steady-state elasticity of capital adj. cost fct. 5.00
σc Intertemporal elasticity of substitution 1.50
h Habit formation 0.70
ξw Calvo wages 0.75
σl Labor supply elasticity 2.00
ξp Calvo prices 0.75
ιw Indexation wages 0.75
ιp Indexation prices 0.75
rπ Monetary policy response to inflation 1.50
α Capital share in production 0.30
ξe Calvo employment 0.50
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D.3 Adolfson-Laseén-Lindé-Villani

The measurement equations are

∆YERt = 100 · log µz + 100 · log µe +∆ŷt + ηY ERt (D.11)

∆YEDt = 100 · log π + π̂t + ηY EDt (D.12)

STNt = 100 · log R+ R̂t (D.13)

∆PCRt = 100 · log µz + 100 · log µe + (1− ωc)
(

∆ct + ηc∆γ̂c,dt

)

+ ωc

(

∆ct + ηc

(

∆γ̂c,dt −∆γ̂mc,dt

))

+ ηPCRt (D.14)

∆ITRt = 100 · log µz + 100 · log µe + (1− ωi)
(

∆it + ηi∆γ̂i,dt

)

+ ωi

(

∆it + ηi

(

∆γ̂i,dt −∆γ̂mi,dt

))

+ ηITRt (D.15)

∆LNNt = 100 · log µe +∆êt + ηLNNt (D.16)

∆(WRN/YED)t = 100 · log µz +∆ŵt + ηWRN
t (D.17)

∆XTRt = 100 · log µz + 100 · log µe +∆ŷ∗t − ηf∆γ̂xt +∆ˆ̃z∗t + ηXTRt (D.18)

∆MTRt = 100 · log µz + 100 · log µe + ωc

(

∆ct + ηc

(

∆γ̂c,dt −∆γ̂mc,dt

))

+ ωi

(

∆it + ηi

(

∆γ̂i,dt −∆γ̂mi,dt

))

+ ηMTR
t (D.19)

∆PCDt = 100 · log π + (1− ωc)
(

∆ct + π̂t + ηc∆γ̂c,dt

)

(D.20)

+ ωc

(

∆ct + π̂m,ct + ηc

(

∆γ̂c,dt −∆γ̂mc,dt

))

− (1− ωc)
(

∆ct + ηc∆γ̂c,dt

)

− ωc

(

∆ct + ηc

(

∆γ̂c,dt −∆γ̂mc,dt

))

+ ηPCDt

∆ITDt = 100 · log π + (1− ωi)
(

∆it + π̂t + ηi∆γ̂i,dt

)

(D.21)

+ ωi

(

∆it + π̂m,it + ηi

(

∆γ̂i,dt −∆γ̂mi,dt

))

− (1− ωi)
(

∆it + ηi∆γ̂i,dt

)

− ωi

(

∆it + ηi

(

∆γ̂i,dt −∆γ̂mi,dt

))

+ ηITDt

(EEN/ (HICP/YWD))t = x̄+ x̂t (D.22)

∆YWRt = 100 · log µz + 100 · log µe +∆ŷ∗t +∆ˆ̃z∗t (D.23)

∆YWDt = 100 · log π + π̂∗
t (D.24)

FEDFUNDSt = 100 · log R+ R̂∗
t (D.25)
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Table D.3: Priors (Adolfson-Laseén-Lindé-Villani)

Parameter & Description Density Mean StDev

λd Steady-state domestic mark-up InvGamma 2.600 ∞
λm,c Steady-state import consumption mark-up InvGamma 2.600 ∞
λm,i Steady-state import investment mark-up InvGamma 2.600 ∞
S Investment adjustment cost parameter Normal 7.694 1.500
ηi Substitution elasticity foreign/domestic investment InvGamma 2.100 1.050
ηf Substitution elasticity domestic/foreign good InvGamma 2.100 1.050
µz Steady-state technology growth Normal 1.004 0.0005
µe Steady-state labor force growth Normal 1.002 0.0005
x̄ Steady-state real exchange rate Normal 11.75 4

φ Risk premium parameter InvGamma 0.025 ∞
ρi Autocorrelation of all shocks Beta 0.850 0.100
ρR Interest rate smoothing Beta 0.800 0.050
r∆π Monetary policy response to change in inflation Normal 0.300 0.100
rx Monetary policy response to real exchange rate Normal 0.000 0.050
ry Monetary policy response to output Normal 0.125 0.050
r∆y Monetary policy response to output growth Normal 0.0625 0.050
σz Standard deviation of unit root technology shock InvGamma 0.450 ∞
σǫ Standard deviation of stationary technology shock InvGamma 1.500 ∞
σΥ Standard deviation of investment-spec. tech. shock InvGamma 0.450 ∞
σz∗ Standard deviation of asymmetric technology shock InvGamma 0.850 ∞
σςc Standard deviation of consumption preference shock InvGamma 0.450 ∞
σςh Standard deviation of labor supply shock InvGamma 0.450 ∞
σφ Standard deviation of risk premium shock InvGamma 0.100 ∞
σR Standard deviation of monetary policy shock InvGamma 0.350 ∞
σπc Standard deviation of inflation target shock InvGamma 0.100 ∞
σλi

Standard deviation of all mark-up shocks InvGamma 0.650 ∞

Parameters fixed at constant value

µ Steady-state money growth 1.010
β Discount factor 0.999
δ Depreciation rate 0.013
α Capital share in production 0.290
AL Constant labor disutility 7.500
σL Labor supply elasticity 1.000
λw Wage mark-up 1.050
ωc Import share in consumption 0.310
ωi Import share in investment 0.550
ρπ Autocorrelation of inflation target shock 0.975
gr Steady-state government spending to output ratio 0.204
Aq Cash-money ratio 0.378
σq Money demand parameter 10.620
ηc Substitution elasticity foreign/domestic consumption 5.000
σa Capital utilization parameter 106

ρλd
Autocorrelation of domestic mark-up shock 0.000

λx Steady-state export mark-up 1.000
ν Steady-state fraction of wages financed in advance 1.000
ξw Calvo wages 0.700
ξd Calvo domestic prices 0.900
ξm,c Calvo import consumption prices 0.450
ξm,i Calvo import investment prices 0.750
ξx Calvo export prices 0.650
ξe Calvo employment 0.800
κw Indexation wages 0.500
κd Indexation domestic prices 0.200
κm,c Indexation import consumption prices 0.150
κm,i Indexation import investment prices 0.200
κx Indexation export prices 0.150
b Habit formation 0.700
rπ Monetary policy response to inflation 1.700
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Table E.1: Trace and Log Determinant of Scaled MSE Matrix (excl. Great Recession)

Forecast Horizon h (in Quarters)

Forecast Model 1 2 3 4

Small Selection (m = 3)

OLS-VAR Small 2.71 (−2.15) 2.60 (−1.64) 2.81 (−0.97) 3.61 (−0.06)
OLS-VAR Medium 2.88 (−2.14) 2.71 (−1.81) 2.85 (−1.22) 3.45 (−0.41)
OLS-VAR Medium-Large 3.78 (−0.97) 4.19 (−0.06) 4.04 ( 0.71) 4.74 ( 1.20)

BVAR Small 2.63 (−2.26) 2.53 (−1.68) 2.81 (−0.94) 3.53 (−0.10)
BVAR Medium 2.63 (−2.12) 2.49 (−1.64) 2.88 (−0.82) 3.42 (−0.19)
BVAR Medium-Large 2.30 (−2.26) 2.39 (−1.53) 2.89 (−0.57) 3.29 ( 0.06)
BVAR Large 1.82 (−2.48) 2.23 (−1.20) 3.02 (−0.41) 3.97 ( 0.20)
BVAR Extra-Large 2.32 (−2.11) 2.25 (−1.35) 2.78 (−0.77) 3.52 ( 0.10)

DSGE Small 3.12 (−1.50) 3.58 (−0.42) 4.45 ( 0.40) 5.85 ( 1.11)
DSGE Medium 3.94 (−0.78) 2.62 (−0.61) 3.07 (−0.09) 3.35 ( 0.16)
DSGE Medium-Large 2.39 (−2.13) 2.35 (−1.12) 3.35 (−0.17) 3.43 ( 0.47)

Medium Selection (m = 7)

OLS-VAR Medium 8.78 (−3.44) 8.39 (−3.73) 9.25 (−3.04) 10.75 (−2.21)
OLS-VAR Medium-Large 13.59 (−0.61) 13.42 (−0.31) 11.12 ( 0.32) 11.59 (−0.12)

BVAR Medium 7.21 (−4.20) 6.87 (−4.00) 7.90 (−3.27) 9.19 (−2.53)
BVAR Medium-Large 6.91 (−4.16) 7.05 (−3.71) 7.56 (−2.83) 8.48 (−2.26)
BVAR Large 6.16 (−4.20) 6.78 (−2.87) 8.08 (−1.92) 9.78 (−1.27)
BVAR Extra-Large 7.65 (−3.24) 7.01 (−2.32) 7.16 (−1.98) 7.99 (−0.90)

DSGE Medium 10.86 (−0.47) 9.87 (−1.29) 10.74 (−1.37) 10.91 (−1.21)
DSGE Medium-Large 6.61 (−4.38) 7.42 (−3.29) 9.54 (−1.87) 10.79 (−1.60)

Medium-Large Selection (m = 15)

OLS-VAR Medium-Large 25.14 (−8.32) 24.64 (−7.57) 24.54 (−5.88) 26.92 (−6.89)

BVAR Medium-Large 15.42 (−14.36) 16.19 (−13.16) 18.35 (−10.68) 20.86 (−10.07)
BVAR Large 14.40 (−13.09) 15.55 (−10.94) 19.22 (−8.91) 22.11 (−7.61)
BVAR Extra-Large 15.99 (−11.24) 16.25 (−9.97) 18.87 (−7.93) 20.38 (−6.18)

DSGE Medium-Large 14.92 (−14.63) 18.94 (−12.63) 24.32 (−10.40) 28.81 (−8.97)

Notes: The evaluation period runs from 1999:h to 2007:h. See also notes to Table 1.
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Table E.2: Log Predictive Score (excl. Great Recession)

Forecast Horizon h (in Quarters)

Forecast Model 1 2 3 4

Small Selection (m = 3)

OLS-VAR Small −125.5 −119.6 −116.7 −120.1
OLS-VAR Medium −127.7 −119.4 −116.1 −118.1
OLS-VAR Medium-Large −154.8 −137.7 −126.3 −124.4

BVAR Small −122.9 −118.2 −117.0 −120.7
BVAR Medium −123.0 −118.2 −118.5 −121.3
BVAR Medium-Large −124.6 −120.8 −121.3 −122.5
BVAR Large −125.5 −123.9 −125.0 −124.7
BVAR Extra-Large −130.2 −122.3 −122.1 −121.8

DSGE Small −116.2 −115.3 −117.6 −121.3
DSGE Medium −137.5 −117.6 −116.7 −118.7
DSGE Medium-Large −115.4 −109.2 −110.1 −111.5

Medium Selection (m = 7)

OLS-VAR Medium −320.6 −285.6 −278.5 −282.1
OLS-VAR Medium-Large −394.6 −319.0 −295.0 −283.5

BVAR Medium −297.7 −282.3 −281.1 −286.7
BVAR Medium-Large −305.3 −287.3 −282.6 −282.7
BVAR Large −310.6 −299.2 −295.4 −289.9
BVAR Extra-Large −333.4 −297.5 −288.8 −280.1

DSGE Medium −312.1 −277.3 −273.8 −273.4
DSGE Medium-Large −261.0 −252.8 −255.6 −255.2

Medium-Large Selection (m = 15)

OLS-VAR Medium-Large −1058.1 −781.6 −725.0 −707.1

BVAR Medium-Large −749.5 −718.6 −729.3 −742.4
BVAR Large −793.7 −748.5 −736.6 −731.6
BVAR Extra-Large −836.0 −758.8 −733.5 −716.9

DSGE Medium-Large −674.1 −672.1 −684.3 −698.1

Notes: The evaluation period runs from 1999:h to 2007:h. See also notes to Table 2.
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