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switching of infinite dimension. This is a Bayesian nonparametric model that
allows for changes in the unknown conditional distribution over time. Applied
to weekly U.S. data we find significant parameter change over time and strong
evidence of non-Gaussian conditional distributions. Our new model with an hi-
erarchical prior provides significant improvements in density forecasts as well as
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1 Introduction

Models of the term structure of interest rates are important in finance. They are used
to price contingent claims, manage financial risk and assess the cost of capital. In
most models the short-rate plays a very important role (Lhabitant et al. 2001, Musiela
& Rutkowski 2005, Canto 2008). The time-series dynamics of the short-rate are im-
portant and difficult to model over long periods due to changes in monetary regimes
and economic shocks. In this paper we extend the popular short-rate models to in-
clude Markov switching of infinite dimension. This is a Bayesian nonparametric model
that allows for changes in the unknown conditional distribution over time. Applied to
weekly data we find significant parameter change over time and strong evidence of non-
Gaussian conditional distributions. Our new model with an hierarchical prior provides
significant improvements in density forecasts as well as point forecasts.

Markov switching model have been used extensively to model interest rates. Early
applications include Hamilton (1988), Albert & Chib (1993) and Garcia & Perron
(1996). Markov switching and GARCH or stochastic volatility are combined by Cai
(1994), Gray (1996) and Kalimipalli & Susmel (2004) to better capture volatility dy-
namics. However, Smith (2002) finds that stochastic volatility and Markov switching
are substitutes with the latter being preferred. In related work Lanne & Saikkonen
(2003) combine a mixture autoregressive process with time-varying transition probabil-
ities and GARCH.

Ang & Bekaert (2002) show that a state dependent Markov switching model can
capture the non-linearities in the drift and volatility function of the US short-rate. Ev-
idence for nonlinear behaviour in the drift term is also found in Pesaran et al. (2006)
using a model of structural change. In contrast, Durham (2003) finds no significant evi-
dence of nonlinearity in the drift and concludes that volatility is the critical component.
Guidolin & Timmermann (2009) use a four-state Markov switching model to capture
the dynamics in US spot and forward rates. They improve point forecasts by combining
forecasts of future spot rates with forecasts from time-series models or macroeconomic
variables.

What is clear from this literature is that some form of regime switching is necessary
to capture changes in the short-rate dynamics over time. Volatility clustering is im-
portant and simple two-state models are insufficient to deal with this. In addition, the
papers that consider forecasting have focused on point forecasts and ignored density
forecasts.

This paper contributes to this literature by designing an infinite hidden Markov
model (IHMM) to capture the dynamics of U.S. short-term interest rate. IHMM can
be thought of as a first-order Markov switching model with a countably infinite number
of states. Given a finite dataset, the number of states is estimated along with all the
other parameters. This is essentially a nonparametric model and part of our focus is
to flexibly model the conditional distributions of the short-rate and investigate density
forecasts. The unbounded nature of the transition matrix allows for both recurring
states from the past as well as new states to capture structure change. An advantage
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of this approach is that as new data arrives, if a new state is needed to capture new
features of the conditional density, it is automatically introduced and incorporated into
forecasts. These type of dynamic features cannot be captured by fixed state MS models.

The prior for the infinite transition matrix is a special case of the hierarchical Dirich-
let process of Teh et al. (2006). Each row of the transition matrix is centered around a
common draw from a top level Dirichlet process. This also aids in posterior simulation
and centers the model around a standard Dirichlet process mixture model (Escobar &
West 1995) which does not allow for time dependence. A sticky version of the infinite
hidden Markov model which favours self transitions between states was introduced by
Fox et al. (2011) and applied to inflation (Jochmann 2014, Song 2013), ARMA models
(Carpantier & Dufays 2014) and conditional correlations (Dufays 2012). The sticky
version is less attractive for financial data in which rapid switching between states is
necessary to capture the unknown distribution as well as changes in this distribution
over time.

An IHMM extension is applied to the Vasicek (1977) (VSK) model and the Cox
et al. (1985) (CIR) model. Applied to weekly data from 1954 to 2014, on average, the
model uses about 8 states to capture the unknown conditional distribution. Overall,
the CIR specification performs the best while the VSK version requires a few more
states on average to fit the data. There is evidence of states reoccurring from the past
as well as new unique states being introduced over time. This is especially true from
2008 on as this interest rate regime is historically unique and represents a structural
break.

We find evidence of parameter change in both the conditional mean as well as
the conditional variance with the latter showing the largest moves. Predictive density
plots display significant asymmetry and fat tails that are frequently multimodal. For
instance, in 2009 the predictive density has local modes in the right tail. These account
for the small probability of returning to a higher interest rates regime.

Consistent with Song (2013), adding a hierarchical prior for the data density pa-
rameters leads to gains in out-of-sample forecast accuracy. The model provides large
gains in density forecasts compared to several finite state Markov switching models and
a GARCH specification. All of the benchmark models we consider are strongly rejected
by predictive Bayes factors in favour of the new nonparametric models. Point forecasts
are competitive with existing models.

This paper is organized as follows. The next section discusses benchmark models
used for model comparison and extension. Section 3 introduces the Dirichlet process,
hierarchical Dirichlet process and the infinite hidden Markov model. Posterior sampling
is discussed in Section 4 while empirical results are found in Section 5. The Appendix
collects the details of posterior simulation.

2 Benchmark Models

Chan et al. (1992) show that the following specification for the short-term riskless rate
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yt nests many popular models

dyt = (λ+ βyt−1)dt+ σyxt−1dWt. (1)

dWt is a Brownian motion and both the drift term λ+βyt−1 and spot variance σyxt−1 can
be a function of the level of yt−1. The discrete time version of the model, conditional
on y1:t−1 = {y1, . . . , yt−1}, is

∆yt = λ+ βyt−1 + σyxt−1ǫt, ǫt ∼ N(0, 1). (2)

In the empirical application we will consider a rolling window version of this model and
focus on x = 0 and 1/2 which correspond to the Vasicek (1977) (VSK) model and the
Cox et al. (1985) (CIR) model, respectively.

The next specification is a finite state Markov switching model. Let st ∈ {1, . . . , K}
the model is

∆yt = λst + βstyt−1 + σsty
x
t−1ǫt, ǫt ∼ N(0, 1), (3)

st|st−1 ∼ Pst−1
, (4)

where Pst−1
denotes row st−1 of the K × K transition matrix P and is the discrete

distribution governing the move from state st−1 to st. This model can be estimated
following Chib (1996). The VSK model (x = 0) is labelled as MS-K-VSK while the
CIR version (x = 1/2) is MS-K-CIR. We also consider specifications with a hierarchical
prior (MS-K-VSK-H,MS-K-CIR-H). This is discussed in more detail in the next section.

The final comparison model is a GARCH specification

∆yt = λ+ βyt−1 + yxt−1ǫt, (5)

ǫt = σtzt zt ∼ N(0, 1) (6)

σ2
t = ω0 + ω1ǫ

2
t−1 + ω2σ

2
t−1, (7)

with ω0 > 0 and ω1 ≥ 0, ω2 ≥ 0. This gives the GARCH-VSK (x = 0) and the
GARCH-CIR (x = 1/1) models.

3 Infinite Hidden Markov Model (IHMM)

An infinite Hidden Markov Model (IHMM) is a Bayesian nonparametric extension of
the Markov-switching (MS) model. This builds on the Dirichlet process (DP), the
hierarchical Dirichlet process (HDP) and their associated mixture models. We first
discuss the Dirichlet process and the Dirichlet process mixture model before moving
onto the HDP and the IHMM.
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3.1 The Dirichlet Process Mixture Model

The Dirichlet process (DP) was introduced by Ferguson (1973) and is a distribution of
probability measures over a measurable space Θ. G ∼ DP (α,H) denotes a distribution
G drawn from the DP with base measure H and α > 0 a concentration parameter. A
key property of the DP is for any finite partition {A1, . . . , AK} of Θ,

G(A1), . . . , G(AK)|α,H ∼ Dir
(

αH(A1), . . . , αH(AK)
)

, (8)

where Dir
(

αH(A1), . . . , αH(AK)
)

denotes a Dirichlet distribution with parameter vec-

tor (αH(A1), . . . , αH(AK)). Therefore, by the properties of the Dirichlet distribution
E[G(Ai)] = H(Ai) and Var(G(Ai)) = G(Ai)(1−G(Ai))/(1 + α).

A constructive definition of the DP is due to Sethuraman (1994) who defined a
stick-breaking representation. The stick-breaking representation considers a unit-length
stick that has been divided into multiple sub-sticks, where each sub-stick (πk) is a
random proportion (vk) of the remaining stick. Let δθk denote a probability measure
concentrated at θk then the stick-breaking construction of G ∼ DP (α,H) is,

G =
∞
∑

i=1

πiδθi where θi
iid
∼H i = 1, 2, . . . ,∞ (9)

πi = vi

i−1
∏

l=1

(1− vl), vi
iid
∼Beta(1, α). (10)

We denote the construction of the weights in (10) as {πi}
∞

i=1 ∼ Stick(α) and they form
a distribution over the natural numbers.

The parameter α governs the distribution of the unit mass over the weights πi.
Large values of α spread the mass over many clusters θi while small values concentrate
most of the mass on a few clusters. The DP is a distribution over a discrete probability
measure, which guarantees that the probability measure G from equation (2) is a subset
of base distribution H.

With this we can now define the Dirichlet process mixture (DPM) model for yt, t =
1, 2, . . . , as

st|α ∼ Stick(α) (11)

yt|st,Θ ∼ F (yt|θst) (12)

where Θ = {θi}
∞

i=1, F (·|·) is the distribution of yt given parameter θst and Stick(α) and
θst are defined above. This is the basic model for Bayesian density estimation (Escobar
& West 1995) and is appropriate for modeling an unconditional distribution. However,
if there is time variation in the distribution of yt this model is not suitable. We will
introduce time-varying weights in (9) that result in st following a first-order Markov
chain.
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3.2 Hierarchical Dirichlet process

The hierarchical Dirichlet process (HDP) prior is introduced by Teh et al. (2006) as
an extension to the DP prior. The HDP is a family of Dirichlet processes that share
a common base measure which is also distributed according to a DP prior. Thus, the
HDP has a hierarchical structure which is constructed by two DPs,

G0|η,H ∼ DP (η,H) (13a)

Gj|α,G0
iid
∼DP (α,G0), j = 1, . . . ,∞, (13b)

where the process defines group-specific probability measures Gj conditional on a global
probability measure G0. α and η are concentration parameters and H is the base
measure. Using the stick-breaking construction, we have the following representations
of the HDP.

G0 =
∞
∑

i=1

γiδθi , Γ = {γi}
∞

i=1 ∼ Stick(η), θi
iid
∼H, (14)

Gj =
∞
∑

i=1

πjiδθi , Πj = {πji}
∞

i=1
iid
∼Stick2(α,Γ), (15)

where the weights of the latter measure Gj, are denoted as Stick2(α,Γ), and are con-
structed as

πji = π̂ji

i−1
∏

l=1

(1− π̂jl), π̂ji
iid
∼Beta

(

αγi, α

(

1−
i
∑

l=1

γl

))

, (16)

i = 1, 2, . . . . Note that all Gj share the same atoms but have different weights, πji.
Each Gj can serve as a prior for row j of the transition matrix an an infinite Markov
chain. That is, if st ∈ {1, 2, . . . }, then row j of the transition matrix is Πj and directs
the possible moves of st = j to st+1. The model is completed with a conditional data
distribution F (yt|θst).

3.3 Polya Urn Process for HDP

Before moving to the full specification of the model it is insightful to understand the
conditional sampling distribution of the states in the IHMM induced by the HDP. First,
we begin with the Polya urn process for the basic DP. In the DPM model of (11)-(12),
the sequential sampling of the states st and their associated parameter θst obeys a Polya
urn sampling scheme (Blackwell & MacQueen 1973). The Polya urn sampling scheme
is obtained by integrating out G ∼ DP (α,H). Let ni be the current number of sampled
states i (initially 0) and let the current number of different states be K. If δi,j denotes
the Kronecker delta then draws from G are obtained as follows.

1. Set s1 = 1, K = 1, n1 = 1 and θ1 ∼ H.
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2. Given s1:t−1 sample st as

st|s1:t−1 ∼

K
∑

i=1

ni
(

α +
∑

j nj

)δi,st +
α

(

α +
∑

j nj

)δK+1,st . (17)

3. nst ← nst + 1 and if st = K + 1 draw θst ∼ H and set K ← K + 1. Increment t
and go to 2.

This process is equivalent to starting with an empty urn and placing a ball of colour θ1
in and incrementing n1. Thereafter, a ball of colour θi, i = 1, . . . , K is randomly drawn
with probability ni/(α +

∑

j nj) and otherwise a new ball is drawn from θi ∼ H with
probability α/(α +

∑

j nj). Then if an existing ball was selected it is replaced in the
urn along with another copy, while if a new colour ball is selected it is put in the urn
and its count set to 1 (that is, ni is incremented). This process is repeated. Note that
states that are sampled frequently have a larger count ni and reinforce their likelihood
of being sampled in the future.

The Polya urn process for the infinite Markov chain model in Teh et al. (2006) is
closely related and results from integrating out G0 and Gj in (14) and (15). However,
it involves a separate urn for each state (ball) sampled, as well as a top level oracle urn.
Sampling states involves a two step process. First, we decide whether to sample from
the existing urns (states) or to sample from the oracle urn. Sampling from an existing
state is influenced by previous state counts and results in the recurrence of a past state.
This is the next state in the Markov chain and we are done. On the other hand, if
the oracle urn is selected it allows for previous states to be sampled, with probabilities
related to previous counts from oracle draws, as well as new states. New states (balls)
are only obtained from the oracle. Therefore, the next state in the Markov chain is
either selected from the existing urns which contain pre-existing states or it is selected
from the oracle urn in which case a previous state could be sampled or a new state
sampled.

Let ci denote the counts of the sampled states (balls) i = 1, 2, . . . , in the oracle urn
and let nij be the current number of times state j was sampled conditional on being in
urn i. Both ci and nij are initialized to 0. New states st and the associated parameters
θst are generated as follows.

1. Set s1 = 1, K = 1, n1 = 1, c1 = 1 and θ1 ∼ H.

2. Sample s̃ according to

s̃|st−1 = i, s1:t−2 ∼
K
∑

j=1

nij

(α +
∑

i nij)
δj,s̃ +

α

(α +
∑

i nij)
δK+1,s̃. (18)

3. If s̃ ≤ K then st = s̃, nist ← nist +1 and go to 4. If s̃ = K +1 then st is obtained
by sampling from the oracle.

st|c1, . . . , cK ∼
K
∑

j=1

cj
(η +

∑

l cl)
δj,st +

η

(η +
∑

l cl)
δK+1,st , (19)
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nist ← nist + 1 and cst ← cst + 1. If st = K + 1, θst ∼ H and K ← K + 1.

4. Increment t and go to 2.

State transitions are largely governed by the past count of transitions nij and α, except
for when a transition is queried from the oracle. In this case, the past counts of states
sampled from the oracle affects the choices. As in the DP case, states that have a larger
number of transitions between themselves will reinforce this in future moves. Clearly,
the parameters α and η play an important role in governing the likelihood of querying
the oracle and the likelihood of new states being introduced over time. The Polya urn
sampling scheme of the IHMM is important for setting priors on α and η but it also
plays a critical role in posterior sampling for these parameters and other components
in the model.

Larger values of α and η increase the likelihood of new states occurring. A small α
but large η will favor the infrequent introduction of new states over time. Small values
of α and η promote parsimony of states.

3.4 Infinite Hidden Markov Model

If st ∈ {1, 2, 3, . . . } is the unobserved state variable and Πj = (πj1, πj2, . . . ) is the jth
row of the transition matrix, then πji becomes the prior probability of st moving from
state j to i at time t+1. The infinite hidden Markov (IHMM) model, a time dependent
version of (11)-(12), can be written as

Γ|η ∼ Stick(η) θi
iid
∼ H i = 1, 2, . . . , (20a)

Πj|α,Γ
iid
∼ Stick2(α,Γ), j = 1, 2, . . . , (20b)

st|st−1,Πst−1
∼ Πst−1

, t = 1, . . . , T (20c)

yt|st,Θ ∼ F (yt|θst). (20d)

Each row Πj, of the transition matrix Π is assumed to be drawn from a DP prior with
a common base measure Γ = (γ1, γ2, . . . ) and precision α. As a result, it can be shown
that E[πji] = E[γi] = ηi−1/(1+η)i. In other words, the prior on the transition matrix is
centered around equal values of row probabilities. This corresponds to the DPM model
in (11)-(12) and is a natural starting point for inference.

The parameters η and α play an important role in the distribution of the weights.
Different combinations of η and α can be used to enforce various prior beliefs about the
Markov chain. As discussed in the last section, larger values of η favour more active
states while larger values of α allow for the consideration of new states more often.
Rather that set these to specific values we place a prior on them and estimate them
along with all other model parameters.
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3.5 IHMM with Hierarchical Prior

When new states are introduced in the model there may be benefits to learning about
the distributional features of the data density parameters, Θ = {θ1, θ2, . . . } if they
share a common distribution. To allow the prior to be centered and concentrated in
empirically important regions of the parameter space we introduce a hierarchical prior
for H.

In the empirical work we will focus our attention on the following extension of the
CIR (x = 1/2) and VSK (x = 0) to the infinite hidden Markov model with hierarchical
prior (IHMM-CIR-H and IHMM-VSK-H).

Γ|η ∼ Stick(η), θi
iid
∼ H(ξ), ξ ∼ Q, i = 1, 2, . . . , (21a)

Πj|α,Γ
iid
∼ Stick2(α,Γ), j = 1, 2, . . . , (21b)

st|st−1,Πst−1
∼ Πst−1

, t = 1, . . . , T (21c)

∆yt|Yt−1, st,Θ ∼ N(λst + βstyt−1, σ
2
st
yxt−1), (21d)

where θi = (λi, βi, σi). The hierarchical priors for η and α are,

η ∼ Gamma(a1, b1) α ∼ Gamma(a2, b2) (22)

where Gamma(a, b) denotes a gamma distribution with mean a/b. Given ξ the prior
for θi is H(ξ) and if ϑi = (λi, βi) it follows

ϑi ∼ N(φ,B) σ−2
i ∼ Gamma(χ, ν). (23)

Finally, the prior for ξ = (φ,B, χ, ν) follows

φ ∼ N(h0, H0) B−1 ∼ W (a0, A0) χ ∼ Exp(ρ0) ν ∼ Gamma(c0, d0), (24)

where W (a0, A0) is a Wishart distribution with scale matrix A0, degree of freedom
parameter a0 and mean of a0A0. Exp(ρ0) is the exponential distribution with parameter
ρ0. According to this parametrization E(σ−2) = χ

ν
and E(χ) = ρ0. φ and h0 are 2 × 1

vector. H0 and A0 are 2 × 2 matrices.

4 Posterior Sampling

If the IHMM model was replaced with a finite state hidden Markov model much of the
posterior sampling complexity would be eliminated and existing methods of sampling
such as Chib (1996) could be used. The beam sampler of Van Gael et al. (2008) is
designed to exactly achieve this. It is a stochastic truncation that reduces the infinite
state space to a finite one and allows for the forward-filter backward sampler (FFBS)
of Chib (1996) to be applied.
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The idea behind beam sampling is closely related to slice sampling for DPM models
(Walker 2007) and involves the introduction of latent variables ut, t = 1, . . . , T such
that the conditional density of ut is

p(ut|st−1, st,Π) =
✶(0 < ut < πst−1,st)

πst−1,st

. (25)

The ut are sampled along with the other parameters but the sampling of the states
given u1:t in the filter step of the FFBS becomes,

p(st|y1:t, u1:t,Π) ∝ p(yt|y1:t−1, st)
∞
∑

st−1=1

✶(ut < πst−1,st)p(st−1|y1:t−1, u1:t−1,Π) (26)

∝ p(yt|y1:t−1, st)
∑

st−1:ut<πst−1,st

p(st−1|y1:t−1, u1:t−1,Π). (27)

The ut slices out states with small πst−1,st and results in a finite summation in (27) of
dimension K, since the number of states st−1 that satisfy ut < πst−1,st is finite. This
turns the infinite summation into a finite one. Once the forward pass is computed for
t = 1, . . . , T the backward pass follows from,

p(st|st+1, y1:T , u1:T ) ∝ p(st|y1:t, u1:t)✶(ut+1 < πst,st+1
), t = T − 1, . . . , 1. (28)

This is initiated with a draw of sT from the last value of the filter p(sT |y1:T , u1:T ,Π).
In each MCMC iteration the slice sampler effectively truncates the system to a

dimension of size K. We order each of the states that receive a non-zero weight as the
first K states and keep track of the K + 1 state as the residual probability. As such,
posterior sampling is over the quantities Γ = (γ1, . . . , γK , γ

r
K+1) with γr

K+1 =
∑

∞

l=K+1 γl
and Πj = (πj1, . . . , πjK , π

r
jK+1), j = 1, . . . , K, where πr

jK+1 =
∑

∞

l=K+1 πjl.
After initializing the parameters the full MCMC routine involves the following steps:

1. sample s1:T |y1:T , u1:T ,Π

2. sample Πj|s1:T ,Γ, j = 1, . . . , K.

3. sample u1:T |s1:T ,Π and update K

4. sample θj|s1:T , y1:T , ξ, j = 1, . . . , K

5. sample Γ|s1:T , η

6. sample ξ|θ1, . . . , θK , η|s1:T ,Γ and α|s1:T ,Γ.

Iterating over these sampling steps gives one draw from the posterior denoted as Ω =
{Γ,Π, K,Θ, s1:T , ξ, η, α}. Full details of each of the posterior sampling steps can be
found in the Appendix. After a suitable burn-in period a large number of draws are
collected from which features of the posterior and predictive densities can be estimated.
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For example, given N posterior draws of {θ
(i)
st }

N
i=1 then a simulation consistent estimate

of E[θst |y1:T ] is
1
N

∑N

i=1 θ
(i)
st . For full sample estimates we drop the first 80,000 draws and

collect the next 100,000 for posterior inference. For computing predictive likelihoods
and predictive means sequentially for the out-of-sample period we use a burn-in of 5000
and use the next 20,000 for posterior/predictive inference.

4.1 Predictive Density

Given a sequence of posterior draws, {Ω(i)}Ni=1, from the IHMM models using T obser-
vations, the predictive density can be computed at ∆yT+1 (or yT+1) as follows.

1. For each i, randomly draw a state sT+1 according to the multinomial distribution
ΠsT .

2. If sT+1 ≤ K(i) set (λ(i), β(i), σ2(i)) ≡ θsT+1
and otherwise set (λ(i), β(i), σ2(i)) ≡ θ,

where θ ∼ H(ξ(i)).

The predictive density for yT+1 is estimated as

p(yT+1|y1:T ) ≈
1

N

N
∑

i=1

N(yT+1|λ
(i) + (1 + β(i))yT , σ

(i)2yxT ), (29)

where N(·|·, ·) is the normal probability density function. Similarly, the predictive mean
of yT+1 can be estimated as

E[yT+1|y1:T ] ≈
1

N

N
∑

i=1

(λ(i) + (1 + β(i))yT ). (30)

The predictive density and prediction means can be used to compare and evaluate
the performance of several models in the out-of-sample period.

5 Application to Short Term T-Bill Rate

5.1 Data

The data is the 3-month T-bill of secondary market obtained from the Board of Gov-
ernors of the Federal Reserve System. The data is weekly, Friday to Friday from Jan-
15-1954 to Mar-28-2014 (3142 observations). Figure 1 displays the data while Table 1
reports summary statistics.
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5.2 Model Priors

For the IHMM-CIR-H and IHMM-VSK-H models h0 is set to a vector of zeros, H0

and A0 to an identity matrix, a0 = 2, ρ0 = 1, c0 = 5, and d0 = 1. For the precision
parameters η and α the hyperparameters are a1 = a2 = 5 and b1 = b2 = 1. The first
3 columns of Table 2 summarize the prior. In some cases the 0.9 density intervals are
obtained by simulation.

For the CIR, VSK, the MS-K-CIR, MS-K-VSK and GARCH-CIR and GARCH-VSK
the priors are λ ∼ N(0, 25), β ∼ N(0, 1), σ2 ∼ IG(2, 0.5). For the MS models, each
row of the transition matrix has the prior Dir(1, . . . , 1) where K is the fixed number of
states. We also consider MS models with the identical hierarchical prior of the IHMM-
CIR-H and IHMM-VSK-H specifications over θ and ξ. Finally, for the GARCH-CIR
and GARCH-VSK models all priors are assumed to be independent N(0, 1) with the
restrictions ω0 > 0, ω1 ≥ 0, and ω2 ≥ 0 imposed.

5.3 Posterior Analysis

Table 2 reports posterior summary statistics for the IHMM-CIR-H and IHMM-VSK-H
models. Compared to the prior (columns 2 and 3) there is significant learning in all the
parameters as the density intervals change in location and their length decreases. On
average, the two models are using 8 components in the mixture to capture the shape
and changes in the distribution. Figure 2 is a histogram of the sampled active states
K. Although the distribution is concentrated around 8 there is uncertainty in both
models. Forecasts from this model automatically incorporate this regime uncertainty.

Figures 3 and 4 display the posterior mean of the model parameters subject to regime
change (E[λst |y1:T ], E[βst |y1:T ] and E[σst |y1:T ]). There is considerable time variation
in all parameters. A fixed parameter model would have difficulty fitting such a long
time period with these parameter shifts. Some of the state changes appear to return
to previous values in the time history while some appear to be new and unique. This
is most apparent for the VSK model in Figure 4 where somewhere in 2008 the model
displays a combination of parameter estimates that are unique. This is like a structure
break in that the model identifies dynamics for the short term interest rates that differ
from all past states. The evidence for a structural changes is much less for the CIR
specification.

The second last panel in these figures displays E[βst > 0|y1:T ] over time. This
corresponds to the probability of an explosive regime. This probability is non-negligible
over the sample period for both models. In the case of the VSK model, Figure 4 shows
that it is almost certainly explosive from 2008 and onward.

The final panel of the plot displays the posterior evidence for state changes at each
point in the sample. There are a few periods where states persist but generally there
is regular changes in states. This is expected if the Gaussian assumption for the data
density does not fit the data as the model will resort to mixture of the Gaussian densities
to approximate the unknown distribution.
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Figures 5 and 6 display a heat map for the latent states st, t = 1, . . . , T for IHMM-
CIR-H and IHMM-VSK-H. A heat map is an estimate of P (si = sj|y1:T ) and reported
in a table in which colour differences denote different probabilities over the range of
i = 1, . . . , T and j = 1, . . . , T . High probability values (light colour) on the main
diagonal indicate new regimes that are unique to that time period. Many of these
occur for both models and indicate a relatively high number of states. On the other
hand, high probability values (light colour) off the main diagonal indicate regimes that
reoccur historically. Both models display significant periods of unique regimes which
is indicative of structure change, however, it is more pronounced in the VSK version.
What these figures show is that there are new states being introduced into the model
over time and there are frequent regimes changes back to previous states. These type
of dynamic features cannot be captured by fixed state MS models.

5.4 Out-of-Sample Analysis

The main out-of-sample results are based on the sample 1955-Dec-09 to 2014-Mar-28
(3043 observations). At each point t in the sample, the models are estimated using data
up to t and model forecasts are computed for yt+1. To compare models we focus on log-
predictive likelihood values and root-mean squared forecast errors based on predictive
means.

The predictive likelihood of yt+1 for the infinite hidden Markov models are estimated
by plugging in the data yt+1 into (29). Similarly, predictive likelihoods are estimated
for other models. We report LPLM =

∑τ2
i=τ1

log p(yi|y1:i−1,M) for model M . Several
models can be compared by log-predictive Bayes factors. The log-predictive Bayes
factors for model A against B is LPLA − LPLB where positive values favour A and
values in excess of 5 are considered strong support for A.

Forecast performance is reported in Table 3. Two sample periods are included,
along with various benchmark comparison models. Log-predictive Bayes factors can be
computed by subtracting any two log-predictive values in the table. The best model
in terms of LPLM , for the larger out-of-sample period is the IHMM-CIR-H. The log-
predictive Bayes factor against the next best model (IHMM-VSK-H) is 44 representing
a substantial improvement. The evidence for the IHMM-CIR-H against the best para-
metric model (MS-3-CIR-H ) is also strong with a log-Bayes factor of 52. The RMSE of
the IHMM-CIR-H is also the best but the gains over the benchmark models are modest.
It is 0.7% lower than the MS-3-CIR-H model.

The second portion of Table 3 record the forecast performance for a shorter more
recent sample. Consistent with the previous results the quality of density forecasts are
superior for the IHMM-CIR-H specification while the best point forecasts come from
IHMM-VSK model, but again, gains are small in the RMSE.

Figures 7 and 8 display the cumulative log-predictive likelihoods for various models
at each point in the out-of-sample period. All the specifications have difficulty with
high volatility episodes. The IHHM hierarchical versions recover the fastest. The
IHMM-CIR-H and IHMM-VSK-H models provide significant gains in density forecasts
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throughout the sample. The dominance of these models is not confined to any particular
period or outliers but involves steady ongoing gains over time.

Closely related to this is the estimate of the number of effective states (posterior
mean of K) at each point in the out-of-sample period. Figures 9 and 10 display these
estimates. It shows a regular increase in the dimension of the model over time. However,
there are periods in which the number of states level off or even drop (just before 97-
July, Figure 9). The VSK version of the model requires more discrete jumps in the
number of states to deal with heteroskedasticity. This can be seen after 72-Aug and
after 2007 in Figure 10.

Finally, to see why the IHMM-CIR-H performs so well in density forecasts Figure 11
produces the predictive density for this model along with a rolling window version of
the basic CIR model. For each of the selected dates the density and log-density are
displayed. It is clear that the IHMM-CIR-H is often very different than the parametric
specification. The model displays fat tails and asymmetry. The log-density plots show
the IHMM-CIR-H model to have several modes in the right tail. This is expected as
the model allows for the possibility of moving from low interest rate regimes back to
higher interest rate regimes.

5.5 Robustness

Table 4 reports the out-of-sample results for the shorter period for both IHMM models
and various prior configurations. In general, the top panel presents results for priors
that have an increased variance but centered in the same location. The second panel
reports the impact from more concentrated priors on η and α. These favor fewer clusters
in the model.

Different priors do lead to differences in the log-predictive likelihoods. However, the
IHMM-CIR-H specification continues to be the best model for density forecasts and is
always significantly better than the best performing benchmark model MS-3-CIR-H.
For instance, the MS-3-CIR-H model has a log-predictive likelihood of 1306.158 while
the least favorable prior gives the IHMM-CIR-H model a log-predictive likelihood value
of 1324.724.

The density forecasts for the IHMM-VSK-H show a bit less variation. The RMSE for
both models is very robust to changes in the prior. In summary, the new nonparametric
models continue to dominate the benchmarks for different prior configurations.

6 Conclusion

This paper extends popular discrete time short interest rate models to include Markov
switching of infinite dimension. This is a Bayesian nonparametric model that allows
for changes in the unknown conditional distribution over time. Applied to weekly
U.S. data we find significant parameter change over time and strong evidence of non-
Gaussian conditional distributions. Our new model with an hierarchical prior provides
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significant improvements in density forecasts as well as point forecasts. The empirical
study finds recurring regimes as well as unique regimes (structural breaks) in the US
short-term rate.
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7 Appendix

Several of the sampling steps are based on Teh et al. (2006), Van Gael et al. (2008) and
Fox et al. (2011).

7.1 Sampler Steps

Recall the notation: full sample of y1:T , state variables s1:T , Γ = (γ1, . . . , γK , γ
r
K+1)

with γr
K+1 =

∑

∞

l=K+1 γl, Πj = (πj1, . . . , πjK , π
r
jK+1), j = 1, . . . , K, where πr

jK+1 =
∑

∞

l=K+1 πjl and θ = {λ, β, σ}.

1. Sample u1:T : u1 ∼ U(0, γs1) and ut ∼ U(0, πst−1st), t = 2, . . . , T

2. Expand Π and K: If

max
{

πr
1K+1, . . . , π

r
KK+1

}

> min
{

u1, . . . , uT

}

, (31)

then repeat the following steps:

(a) Increment K ← K + 1 and θK ∼ H(ξ),

(b) Update γ. Note that with the increment in K, γK is the old residual proba-
bility which is broken as

τ ∼ Beta(1, η), γr
K+1 ← (1− τ)γK , γK ← τγK .

(c) ΠK = (πK,1, . . . , π
r
KK+1) ∼ Dir(αγ1, . . . , αγ

r
K+1).

(d) Update Πj, j = 1, . . . , K as

τj ∼ Beta
(

αγK , αγ
r
K+1

)

, πr
jK+1 ← (1− τj)πjK , πjK ← τjπjK

Steps a) – d) are repeated until (31) does not hold. This process expands Π until
the possibility of new state is too small to consider in the FFBS steps next.

3. Forward filter of s1:T . Let f(.|.) be the density function of yt.

(a) Initial forecast step for s1:

p(s1 = k|u1:T ,Γ,Θ) ∝ ✶(u1 < γk), for k = 1, . . . , K

(b) The updating step for s1:T : and k = 1, . . . , K.

p(st = k|y1:t, u1:T ,Π,Θ) ∝ f(yt|y1:t−1, θk)p(st = k|y1:t−1, u1:T ,Π,Θ)

(c) The forecasting step for k = 1, . . . , K

p(st+1 = k|y1:t, u1:T ,Π,Θ) ∝
K
∑

l=1

✶(ut+1 < πlk)p(st = l|y1:t, u1:t,Π,Θ)
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(d) Iterate step b and c until t = T .

4. Backward Sampler for s1:T :

(a) Sample the initial state of sT from p(sT |y1:T , u1:T ,Π,Θ).

(b) Sample st, t = T − 1, T − 2, . . . , 1 recursively from

P (st = i|st+1 = j, y1:t, u1:T ,Π,Θ) ∝ ✶(πij < ut+1)p(st = i|y1:t, u1:T ,Π,Θ).

After this step we perform a cleanup step to remove any empty states (states with
no observations allocated to them). This results in a redefined K and transition
matrix Π, and other model parameters are adjusted accordingly so that states
1, . . . , K are active states.

5. Sample c1:K : Recall ci is number of counts of state i sampled from the oracle.
It is an auxiliary variable that facilities several sampling steps below. Let oji be
the number of oracle draws out of the total transitions nji, of state j to state i.
Following Fox et al. (2011) we simulate the sequence of oji to obtain a draw of ci.
For each i = 1 . . . , K, j = 1, . . . , K, do the following steps.

(a) set oji = 0

(b) draw xl ∼ Bernoulli
(

αγi
l−1+αγi

)

, for l = 1, . . . , nji: if xl = 1 increment oji.

Then ci =
∑K

j=1 oji.

6. Sample η: Two auxiliary variables ν and λ are introduced to sample η. We apply
a Gibbs sampler to sample ν and λ conditional on c =

∑K

i=1 ci and previous η
first, then sample η through a gamma distribution.

(a) ν ∼ Bernoulli
(

c
c+η

)

(b) λ ∼ Beta
(

η + 1, c
)

(c) η ∼ Gamma(a1 +K − ν, b1 − logλ)

7. Sample α: The derivations follows directly from Fox et al. (2011).

(a) νj ∼ Bernoulli(
nj.

nj.+α
) for j = 1, . . . , K. nj. =

∑K

i=1 nji

(b) λj ∼ Beta(α + 1, nj.) for j = 1, . . . , K.

(c) α ∼ Gamma
(

a2 + c−
∑K

j=1 νj, b2 −
∑K

j=1 log(λj)
)

8. Sample Γ: Given the counts c1:K , which are from a sample from Γ, conjugacy
gives the update for Γ as

Γ|c1:K , η ∼ Dir(c1, c2, . . . , cK , η).
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9. Sample Πj: for j = 1, . . . , K, given (nj1, . . . , njK) and the conjugate property of
the Dirichlet distribution,

Πj|α, nj1:K ∼ Dir(αγ1 + nj1, . . . , αγK + njK , αγ
r
K+1).

10. Sample θ1:K : Let θk = (ϑk, σk) and ϑk = (λk, βk)
T , for k=1.. . . ,K:

Let Ŷk ≡ {∆yt|st = k}, X̂k ≡ {(1, yt−1)|st = k} and Tk = {#t|st = k}. Therefore,
Ŷk is a vector with dimension Tk × 1 and X̂k is a matrix with dimension Tk × 2.
This gives the linear model

Ŷk = X̂kϑk + u u ∼ N(0, σ2
kI)

with the following Gibbs sampling steps

ϑk ∼ N
(

V (
1

σ2
X̂T

k Ŷk + φB−1), V
)

, V =
( 1

σ2
X̂T

k X̂k +B−1
)

−1

σ−2
k ∼ Gamma

(

T + 2χ

2
,
(Ŷk − X̂kϑk)

T (Ŷk − X̂kϑk) + 2ν

2

)

.

11. Sample ξ, hierarchical priors, which are φ,B, χ, ν. H(ξ) is defined as follows,

ϑ ∼ N(φ,B) σ−2 ∼ Gamma(χ, ν).

Q is defined as follows,

φ ∼ N(h0, H0) B−1 ∼ W (a0, A0) χ ∼ Exp(ρ0) ν ∼ Gamma(c0, d0).

(a) Sample φ |B, h0, H0, ϑ1:K ∼ N(µφ,Σφ) where

ϑ =
1

K

K
∑

j=1

ϑj, µφ = Σφ

(

H−1
0 h0 +KB−1ϑ

)

, Σφ =
(

H−1
0 +KB−1

)

−1

.

(b) Sample B−1|φ, a0, A0, ϑ1:K ∼Wishart(ωB,ΩB) where,

ωB = K + α0 and ΩB =
(

A−1
0 +

K
∑

j=1

(ϑj − φ)(ϑj − φ)T
)

−1

(c) Sample ν|χ, c0, d0, σ
−2
1:K ∼ Gamma

(

c0 +Kχ, d0 +
∑K

j=1 σ
−2
j

)

(d) Sample χ|ν, ρ0, σ
−2
1:K . There is no conjugate prior so we apply a Metropolis-

Hastings step. The conditional posterior is

π(χ|ν, ρ0, σ
−2
1:K) = Exp(χ|ρ0)

K
∏

j=1

G(σ−2
j |χ, ν).
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The proposal is

q(χnew|χold) ∼ Gamma(ζ, ζ/χold)

and we choose ζ so the rejection rate is between 0.3 and 0.6. The proposal
χnew, is accepted with probability

min

[

π(χnew|ν, ρ0, σ
−2
1:K)/q(χ

new|χold)

π(χold|ν, ρ0, σ
−2
1:K)/q(χ

old|χnew)
, 1

]

.

12. Repeat 1-11.
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Table 1: Statistical Summaries of 3-Month T-Bill

Name Mean SD Median 25%Q 75%Q Skewness Kurtosis

Level 4.658 3.030 4.615 2.720 6.110 0.840 1.260
Change 0.000 0.190 0.000 -0.050 0.050 -0.730 24.150

This table reports summary statistics for weekly 3 month T-bill rates from Jan-
15-1954 to Mar-28-2014 (3142 observations).

Table 2: Posteriors and Prior Summary of Hierarchical-Priors

Prior Posterior of IHMM-CIR-H Posterior of IHMM-VSK-H

Mean 90% DI Mean 90% DI Mean 90% DI

η 5.000 (2.459, 8.110) 3.810 (2.258, 5.591) 4.104 (2.490, 5.944)
α 5.000 (2.541, 7.797) 0.768 (0.530, 1.023) 0.717 (0.503, 0.953)
χ 1.000 (0.996, 2.081) 0.678 (0.368, 1.046) 0.502 (0.283, 0.755)
ν 1.000 (0.093, 2.180) 8.07e-4 (3.11e-4, 1.41e-3) 7.02e-4 (2.6e-4,1.23e-3)
φ

1
0.000 (-0.857, 0.892) 0.002 (-0.220, 0.229) 2.62e-4 (-0.196, 0.196)

φ
2

0.000 (-0.881, 0.980) −0.003 (-0.211, 0.204) 6.23e-4 (-0.167, 0.170)
B11 (0.227, 4.333) 0.396 (0.093, 0.770) 0.354 (0.079, 0.669)
B22 (0.206, 4.572) 0.341 (0.081, 0.673) 0.203 (0.069, 0.332)
B12 (-1.515, 1.603) -0.157 (-0.428, 0.054) -0.097 (-0.234, 0.048)
Regimes # 7.985 (7.000, 9.000) 8.771 (8.000, 10.000)

This table reports the mean and 0.90 density intervals (DI) from the benchmark
prior and the posteriors of the IHMM-CIR-H and IHMM-VSK-H models.
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Table 3: Forecast Performance
Model Log-Predictive Likelihood RMSE

1955-Dec-09 to 2014-Mar-28 (3043 observations)

IHMM-CIR-H 2860.079 0.1937

IHMM-CIR 2432.647 0.1951
MS-3-CIR-H 2805.243 0.1947
MS-3-CIR 2435.441 0.1949
MS-2-CIR-H 2631.190 0.1949
MS-2-CIR 2422.794 0.1950
GARCH-CIR 2118.011 0.1946
CIR-Roll 1761.328 0.1954

iHMM-VSK-H 2815.764 0.1954
iHMM-VSK 2381.192 0.1956
MS-3-VSK-H 2647.157 0.1951
MS-3-VSK 2371.533 0.1956
MS-2-VSK-H 2177.383 0.1953
MS-2-VSK 2143.111 0.1952
GARCH-VSK 2055.751 0.1954
VSK-roll 1332.411 0.1955

2000-Jan-07 to 2014-Mar-28 (743 observations)

IHMM-CIR-H 1333.426 0.09638
IHMM-CIR 1244.576 0.09717
MS-3-CIR-H 1306.158 0.09679
MS-3-CIR 1247.913 0.09744
MS-2-CIR-H 1244.722 0.09671
MS-2-CIR 1230.406 0.09681
GARCH-CIR 1054.613 0.09714
CIR-Roll 965.030 0.09677

IHMM-VSK-H 1309.384 0.09628
IHMM-VSK 1015.873 0.09611

MS-3-VSK-H 1205.062 0.09660
MS-3-VSK 1002.516 0.09650
MS-2-VSK-H 908.486 0.09694
MS-2-VSK 877.123 0.09686
GARCH-VSK 1112.603 0.09715
VSK-Roll 677.907 0.09671

This table displays log-predictive likelihoods and root-mean
squared forecast errors over two sample periods for various
models. MS-K denotes a Markov switching model of dimen-
sion K, IHMM an infinite hidden Markov model, H a hierar-
chical prior, CIR-Roll and VSK-Roll refer models estimation
with a rolling window of size 500. VSK models set x = 0
while CIR set x = 0.5. For additional details see the text.
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Table 4: Sensitivity Analysis of 2000-Jan-07 to 2014-Mar-28 (743 observations)

Changes to Prior IHMM-CIR-H IHMM-VSK-H

LPL RMSE LPL RMSE

benchmark prior 1333.426 0.09638 1309.384 0.09628

a1 = 2.5, b1 = 0.5 1324.724 0.09723 1306.500 0.09632
a2 = 2.5, b2 = 0.5 1331.880 0.09630 1305.404 0.09672

h0 = (0, 0)T Diag(H0) = 5 1327.240 0.09721 1303.035 0.09575
a0 = 2, Diag(A0) = 2 1330.226 0.09626 1307.847 0.09561
ρ0 = 3,c0 = 1, d0 = 0.5 1333.953 0.09534 1304.624 0.09550
All Above Combined 1324.741 0.09677 1308.507 0.09610

a1 = 2, b1 = 8 1326.314 0.09597 1308.049 0.09545
a2 = 2, b2 = 8 1333.778 0.09632 1300.221 0.09626

a1 = a2 = 2, b1 = b2 = 8 1328.790 0.09600 1308.854 0.09515

This table displays log-predictive likelihoods (LPL) and root-mean squared fore-
cast errors (RMSE) for the two models, IHMM-CIR-H and IHMM-VSK-H, for
various changes in the prior parameters from the assumed benchmark prior listed
in Section 5.2.
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Figure 1: Weekly 3-Month T-Bill Rate Level (Top) and Change (Bottom)
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Figure 2: Histograms of States
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Figure 3: Posterior of iHMM-CIR-H
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Figure 4: Posterior of iHMM-VSK-H
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Figure 5: Heap Map of states for IHMM-CIR-H

Figure 6: Heap Map of states for IHMM-VSK-H
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Figure 7: Log-predictive Likelihood Comparison of CIR Based Models

Figure 8: Log-predictive Likelihood Comparison of VSK Based Models
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Figure 9: Regime Evolution of IHMM-CIR-H

Figure 10: Regime Evolution of IHMM-VSK-H
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Figure 11: Predictive, Log-Predictive Densities
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