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Abstract. 

The aim of this paper is to explore the impact of intra- and inter-industry spillover components 

on productivity of large International firms. We use data from all EU R&D investment 

scoreboards editions issued every year until 2011 by the JRC-IPTS (scoreboards). The analysis is 

based upon a new dataset composed of 879 worldwide R&D-intensive manufacturing firms 

whose information has been collected for the period 2002-2010. Given the panel data structure 

of the sample, ad hoc econometric techniques that deal with both firm’s unobserved 

heterogeneity and weak exogeneity of the right hand-side variables are implemented. The main 

contribution to the literature is that of further investigating the industry spillovers at firm level 

within the Triad for a period of time that considers also the economic crisis. In order to measure 

the distribution of the firm’s research interests through the different technological areas, we use 

the patent distribution over technological sectors according to the International Patent 

Classification (IPC). The patent distribution relies on the whole number of patent applications 

filed to the European Patent Office until 2011. The empirical results suggest a significant impact 

of R&D spillover effects on firms’ productivity but the results are quite differentiated according 

to the spillover stock type and this may represent a relevant source of policy implications.  
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1. Introduction 

 

The aim of this paper is to analyse the role of R&D spillovers on firms’ productivity 

performance. The framework implemented relies on the assumption that knowledge externalities 

are realised in two steps: first, knowledge flows take place whenever ideas generated by a firm are 

learned by another firm and then in the second step such learning process creates a pool of 

accessible external knowledge, which may affect the productivity. The pool of external 

knowledge is usually measured as the amount of R&D conducted elsewhere weighted by some 

measure of proximity in the technological space. These weights are assumed to be representative 

of the intensity of knowledge flows between the source and the recipient of R&D spillovers.  

As in Capron and Cincera (1998), Aldieri and Cincera (2009), the pool of knowledge spillovers 

are computed following the Jaffe’ s procedure (1986): the closer two firms are in the 

technological space, the more the research activity of one firm is supposed to be affected by the 

technological spillovers generated by the research activities of the second firm. Hence, it is 

assumed that each firm faces a potential ‘stock’ of spillovers, which is a weighted sum of the 

technological activities undertaken by all other firms. In order to measure the technological 

closeness between firm i and j, Jaffe uses the ‘angular separation’ between them, i.e. he computes 

the uncentered correlation between their respective vectors of technological position. This 

measure of closeness takes values between one and zero according to the common degree of 

research interest of both firms. In order to measure the distribution of the firm’s research 

interests through the different technological areas, we use the patent distribution over 

technological sectors according to the International Patent Classification (IPC). The patent 

distribution relies on the whole number of patent applications filed to the European Patent 

Office until 2011. We divide the potential stock of spillovers into two distinct components: intra-

industry stock which corresponds to the sum of R&D stocks of firms belonging to a same cluster 

of technological activities and an inter-industry stock which is computed from the other firms. 

Thanks to the international dimension of our sample, distinguishing, besides the intra and inter-

industry stocks, national stocks from international ones, extends Jaffe’s methodology. In this way, 

we will be able to appreciate to what extent geographical and cultural contiguity matters. 

Furthermore, in order to consider the technological as well as the geographical closeness, the 

potential stock of spillovers is dissociated into four components: the intra-industry national stock, 

the intra-industry international stock, the inter-industry national stock and finally the inter-

industry international one. 

 



The remainder of the paper is organized as follows. The next section briefly reviews the literature 

on R&D spillovers at the firm level. Section 3 outlines the theoretical framework. The data and 

empirical methods are described in section 4 and the empirical results in section 5. Finally, 

section 6 offers some concluding comments as well as some points deserving further research.  

 

2. Literature review 

 

Knowledge accumulation and its progress have been for a long time recognized as one of the 

central tenets of economic growth (Jones, 2002). Also Rogers (2003) shows that countries that 

are good at acquiring and diffusing new knowledge actually achieve faster economic growth. For 

Romer (1990), the non-rival and partially non-excludable feature of the knowledge good does not 

allow inventors to fully prevent other firms from using their inventions. More generally, 

knowledge spillovers may be driven by a variety of channels such as the mobility of workers, the 

exchange of information at technical conferences, or knowledge available in the scientific and 

technological literature including patent documents. These knowledge externalities or R&D 

spillovers can benefit to competitors’ R&D by lowering the costs of their own R&D activities 

and in turn may contribute to their productivity performance. However, new products and 

processes can also render existing ones obsolete or less competitive and firms that encounter 

difficulties to stay in the R&D race may suffer from rivals’ R&D. In this case, R&D externalities 

are associated with competitive pressures, which will translate into negative effects on firms’ 

performance (Kafouros and Buckley, 2008). The specific type of knowledge flows that 

economists have most been interested in concerns pure knowledge spillovers. There are studies 

relative to knowledge spillovers in product and process innovation (Ornaghi, 2006), while other 

economists often investigate the patterns of these knowledge flows from a geographic or a 

technological perspective, i.e. in terms of geographic proximity or technological linkages between 

the unit generating these flows and the recipients. Over the last decade, several studies in the 

literature that examines the spatial dimension of innovative activities find that knowledge 

spillovers tend to be locally concentrated (Jaffe, 1989; Jaffe et al., 1993) or they raise in firms 

organized in ‘networks’ (Meagher and Rogers, 2004). At the same time, other studies show 

evidence of a positive relationship between the R&D of ‘technological neighbours’ and the firm’s 

R&D productivity (Griffith, Harrison and Van Reenen, 2006). In terms of productivity 

performance, the effects of R&D spillovers also appear to be mainly technologically localised 

(Jaffe 1986, 1988). While very important for economic growth, the two types of geography and 

technology based R&D externalities have rarely been investigated together (Orlando 2004). Also 



Aldieri and Cincera (2009) implement an empirical investigation to gauge the extent to which 

R&D spillover effects are intensified by both geographic and technological proximities between 

spillover generating and receiving firms, but they also control for the firm’s ability to identify, 

assimilate and absorb the external knowledge stock (absorptive capacity) in a unified framework. 

Following this line of research, Lychagin, Pinkse, Slade and Van Reenen (2010) assess the 

contributions to productivity of three sources of research and development spillovers: 

geographic, technology and product–market proximity. To do this, they construct a new measure 

of geographic proximity that is based on the distribution of a firm’s inventor locations rather 

than its headquarters, and they report both parametric and semiparametric estimates of their 

geographic–distance functions. In particular, they find that: i) Geographic space matters even 

after conditioning on horizontal and technological spillovers; ii) Technological proximity matters; 

iii) Product–market proximity is less important; iv) Locations of researchers are more important 

than headquarters but both have explanatory power; and v) Geographic markets are very local. In 

order to analyse the relationship between R&D spillovers and productivity, O’Mahoni and 

Vecchi (2009) consider a different instrument of technological proximity. Indeed, they implement 

a cluster analysis and they summary the industry data in two different taxonomies: factor and skill 

intensive groups, which account for differences in the knowledge intensity and innovative 

activities within sectors. The results provide evidence of higher productivity in R&D and skill 

intensive industries and this can be interpreted as evidence in favour of the presence of spillover 

effects. There are also studies which examine to what extent the total factor productivity by local 

firms can be affected by the presence of affiliates of foreign multinationals (Bernard and Jensen, 

2004; Muûls and Pisu, 2008). In particular, they investigate how local spillovers from foreign 

affiliate and local firm internationalization through import and export activities interact in 

affecting the productivity levels of local firms. In this context, we may distinguish the effects of 

horizontal (intra-industry) spillovers within the sector as well as vertical (inter-industry) spillovers 

across industries through local client and supplier relations with affiliates of foreign 

multinationals. As far as the horizontal spillovers are concerned, Caves (1974) and Globerman 

(1975) find positive externalities in Australia and Canada, respectively. More recently, Driffield 

(2001) and Dimelis and Louri (2002) confirm the existence of intra-industry spillovers using data 

from UK and Greece respectively. Haskel et al. (2002) find that the foreign-affiliate presence in 

an industry is correlated with the domestic firms’ total factor productivity in that industry, but 

other studies report non-significant or negative effects on productivity (Girma and Wakelin, 

2001; Barrios and Strobl, 2002). As far as vertical or inter-industry spillovers are concerned, 

Javorcik (2004) and Kugler (2006) do not find any evidence of forward spillover effects, but 



report significant backward spillovers to local firms. Their results are not robust across all 

different specifications of the models. This phenomenon may occur because foreign 

multinationals have strong incentives to protect their technology by patenting mechanism 

(Veugelers and Cassiman, 2004).  

The contribution of our paper to the existing literature is twofold: first, we use an international 

sample in such a way that we may compare the empirical results among different economic 

markets; second, we assess the importance of technological activity of firms on productivity, by 

exploring different components of potential stock of spillovers also after the beginning of world 

economic crisis. In particular, we extend Jaffe’s methodology to distinguish, besides the intra and 

inter-industry components, national and international stocks. In this way, we will be able to 

appreciate to what extent geographical and cultural contiguity matters. Furthermore, in order to 

consider the technological as well as the geographical closeness, the potential stock of spillovers 

is dissociated into four components: the intra-industry national stock, the intra-industry 

international stock, the inter-industry national and inter-industry international one.  

 

3. A basic model with search and random matching in the labour market 

 

Following an interesting strand of economic literature based on Acemoglu (1996) we consider a 

simple Non-Overlapping Generation Model in which each generation is assumed to consist of 

workers and entrepreneurs a continuum of normalized to unity. All agents, assumed to be risk 

neutral and with an intertemporal preference rate equal to zero live for two periods. In the first 

workers choose their desired labor intensity, and firms must select the optimal levels of R&D 

and physical capital. The entrepreneurs‘ choice will depend on the impact of technological R&D 

spillovers on firms productivity growth besides traditional inputs and the firms’ own R&D stock. 

In the second one production takes place in the form of a partnership of one worker and one 

entrepreneur. Consumption takes place at the end of this second period and then agents die 

leaving no bequests. Workers are assumed to choose the amount of labor input before they know 

the entrepreneurs they will match, as a consequence their private decisions depend on what types 

of physical capital and R&D they will expect to use. On the other hand the reverse is obviously 

true in the sense that entrepreneurs decisions concerning physical and R&D capital levels depend 

on the workforce human capital In this economy there is a homogeneous final good with the 

following extended Cobb-Douglas production function:  

Yi, j ,t = ALi,t
β1C j ,t

β 2K j ,t

β 3X j ,t

γ
   with:0 < β

1
,β

2
,β

3
,γ <1  (1) 



where Yi, j ,t  is the firm’s output at time t, L
i,t

 the labor input of the i-th worker, C j,t
 and K j,t

 

stand for physical and R&D capital levels, and finally X j,t
 is a vector of spillover components. 
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where α > 0 (α < 0 ) in case 

of positive (negative)  impact of the R&D stock on X j,t
. The positive parameter A captures all 

the exogenous components (such as technology of the economy) that affect productivity. In what 

follows we will focus on the case of an economic system where the labor market is characterized 

by no unemployment and a costly search activity and a matching technology function assumed 

random and constant returns to scale in its arguments: job vacancies and unemployed workers 

give rise to the fact that entrepreneurs and workers have the same probability to meet each other, 

and once a match has been created to break it up is a very costly activity in order to search new 

partnership for each agents. Following the standard search literature it will be assumed a 

bargaining process, and the consequent distribution rule according to which the total output has 

to be shared in constant proportions b and (1-b) between workers and firms that captures their 

respective bargaining strength.  Further, as well emphasized in Acemoglu (1996) the randomness 

of the matching technology function implies anonymity of contracts in the sense that each 

worker (entrepreneur) does not know the entrepreneur (worker) she/he is going to meet and 

consequently her/his expected wage bill  (firm’ s return) will depend on the total distribution of 

R&D and physical (human) capital across all the entrepreneurs (workers). 

 

 

The i-th worker expected wage bill, and the j-th entrepreneur expected income will respectively be:  
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Rj,t

e
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Each worker will choose her/his optimal labor input by maximizing the following utility 

function:  

U
i,t
= c

i,t

e −
θ
i
L
i.t

(1+η )

(1+η)
   (4), 



where c
i,t

e  stands for the worker expected consumption, θ
i
 is a taste positive parameter from 

disliking working. The distribution of θ
i
 across workers is taken as common knowledge. The 

above utility function (eq. (4)) has to be maximized subject to the following budget constraint:  

c
i,t

e
≤W

i,t

e

 (5) 

The f.o.c. of  the worker maximization process of eq (4) subject to eq (5) we may easily derive: 
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    (6) 

Entrepreneurs will invest in physical capital and in capital from R&D in order to maximize the 

following expected profits1: 

∏ j,t

e
= R j,t

e − r
1
C j,t − r2K j,t

   (7). 

Being evident the assumption of production price equal to unity, and with r
1

 and r
2

 standing 

respectively for the per unit cost of physical and R&D capital, the f.o.c., after simple algebraic 

manipulations,  we may easily derive: 
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From the above results we may derive: 

Proposition Assuming: θ
i
=θ , the randomness of the matching technology function, the nature of the spillover 

components and the above distribution rule, from the analysis of the interaction between labor, physical and R&D 

capital we may state what follows: 

• There exists a unique equilibrium in the decentralized search economy. 

• The above equilibrium is inefficient in the sense of Pareto. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

1 We remind that the expected value for profits depends on the  assumption of the randomness of the matching 

technology function resulting in the lack of knowledge of the workers’  quality they are going to match. 



• The equilibrium exhibits social increasing returns in the labor input an in the physical capital 

accumulation in the sense that small increases in entrepreneurs’ (workers ‘) in physical capital (real labor) 

investments will push workers (firms) to work hardly (to invest in physical capital). 

• The equilibrium exhibits social increasing returns in labor and in R&D capital accumulation if α ≥ 0

and if α > −
β
3

γ
 in case of α ≤ 0 . In all other cases we will have social decreasing returns 

 

The above proposition (proved in Appendix B) states that with the incompleteness of contracts 

and a costly search activity in the labor market social increasing returns a la Acemoglu (1996) in 

labor and in both R&D and physical capital accumulation operate when α ≥ 0and if α > −
β
3

γ
 

for α ≤ 0 . The uncertainty of the results obviously depends on the impact of R&D spillover 

effects on firms’ productivity. Since this result comes from the R&D stock type, and this may be 

a very relevant source for economic policies, in the following section we will proceed with 

empirical analysis. 

 

 

4. Data and empirical framework 

4.1 Data sources and matching procedure 

The dataset is constructed with the view of setting up a representative sample of the largest firms 

at the international level that reported R&D expenditures. The information on company profiles 

and financial statements comes from all EU R&D investment scoreboards editions issued every 

year until 2011 by the JRC-IPTS (scoreboards). R&D data from the scoreboards represent all 

R&D financed by the companies, regardless of the geographical localization of R&D activities. 

Scoreboard data are collected from audited financial accounts and reports2. Combining the most 

recent scoreboard to avoid multiple counting of the same observation, we obtain an unbalanced 

panel of 22697observations for 3430 firms, for the period 2000-2010. For each firm, information 

is available for net sales (S), the number of employees (L), the annual capital expenditures (Cexp), 

annual R&D expenditures (RD) and main industry sectors according to the Industrial 

Classification Benchmark (ICB) at the two digits level. OECD, REGPAT database, January 

20123,4 is the second source of information used in this study. This database covers firms’ patent 

applications to the European Patent Office (EPO) including patents published up to December 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

2	  See Moncada Paternò Castello et al. (2009) for more details. 
3	   See Maraut S., H. Dernis, C. Webb, V. Spieazia and D. Guellec (2008) for the methodology used for the 
construction of REGPAT. 
4	  Please contact Helene.DERNIS@oecd.org to download REGPAT database. 



2011. The dataset covers regional information for most OECD and EU27 countries, plus BRICS 

countries. 

The matching between the firms in the R&D scoreboard and their counterpart in OECD, 

REGPAT database, January 2012 is not straightforward and involves a manual matching 

procedure considering two difficulties. First, patents are assigned to firms on the basis of their 

names which can vary from one data source to the other, e. g. ‘Co’ instead of ‘Company’, ‘LTD’ 

instead of ‘Limited’, ‘Inc’ instead of ‘Incorporated’ and other such changes or abbreviations. 

Second, many large firms have several R&D performing subsidiaries in several countries and it is 

not obvious to link the patents applied by these subsidiaries to the parent company. We should 

have a ‘mapping’ of the main firms company to their subsidiaries and affiliates. Unfortunately, it 

is not easy to construct an accurate mapping, since it changes over time through the process of 

merger and acquisition. 

Following our criteria, the matching procedure consists of two steps. In a first step, patents are 

assigned to firms on the basis of their generic name. For instance, when searching for the firm 

‘INTEL’ we retrieve 3177 patent documents. Examining more in detail the firm’s full names 

reported in these documents, it appears that 3166 patents are assigned to ‘Intel Corporation’ 

(located in USA), 2 patents to ‘Intel Network Systems, Inc.’ (also located in USA), 4 patents to 

‘Intel China Ltd.’ (located in China), 1 patent to ‘Intel DSPC’ (located in Israel), 2 patents to 

‘Intel GASGARDS PRIVATE LIMITED’ (located in India) and 2 patents to ‘Intel Mobile 

Communications Technology GmbH’ (located in Germany). These last companies are clearly 

foreign subsidiaries of the American firm. Thus, the patents of which these firms are applicants 

are consolidated with the ones of ‘INTEL’. In a second step, this procedure is repeated for each 

firm of the sample. For about 22% of the sample, there is only one first name in the retrieved 

documents. For the rest, firm names that could be identified without any doubts as subsidiaries 

are matched with generic names. 

 

4.2 Construction of the variables 

Each monetary observation is converted into constant currency (in EUR) and prices5. It should 

be noted that data in the R&D scoreboards are already expressed in Euros and that a single 

scoreboard uses a fixed exchange rate for each currency to convert data into Euros for every 

periods that it covers. Thus, first we convert the data into original currencies by using the 

exchange rates specific to each scoreboard. Second, data in original currencies are converted into 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

5	  Reference year is 2007. Sources for exchange rates and deflators are EUROSTAT. 



Euros using a fixed exchange rate6. Data are transformed into constant prices7 using national 

GDP price deflators with 2007 as the reference year. The R&D and physical capital stocks (K 

and C, respectively) are constructed by using a perpetual inventory method (Griliches, 1979), by 

considering a depreciation rate of 0.15 for R&D capital stock and 0.08 for physical capital stock, 

which are usually assumed in the literature. The growth rates that are used for the initial values in 

this study are the sample average growth rates of R&D and physical capital expenditures in each 

two-digit Industry Classification Benchmark (ICB) industry.  

Once the firms with missing values for some variable of our sample are removed, we get 909 

firms over the period 2002-2010. Furthermore, in order to trim the dataset from outliers, the 

following procedure is implemented. All observations for which the R&D intensity (defined as 

the R&D investments divided by the firm’s net sales) is below 0.1% or above 100% are deleted. 

This removes 5 firms for the first threshold (mainly firms from the retail and travel and leisure 

industry sectors) and 25 firms for the second criteria (firms mainly in the pharmaceuticals 

sector8). This leads to an unbalanced panel of 879 firms. 

 

Table 1 gives a view of the geographical and sectorial composition of the sample. In particular, 

we assign ICB sectors into High-, Medium- and Low-tech sectors according to R&D intensity. 

Low-tech firms have a R&D intensity below 2%, Medium-tech firms have a R&D intensity below 

5% and High-tech firms have a R&D intensity above 10%. With more than 30% of firms, USA 

and European area are well represented in the sample. Also Japan is quite represented with 26% 

of firms. The R&D intensity of industries goes from below 1% in the Oil & Gas, Basic Resources 

and Banks industries to above 10% in the Health care and Technology industries. If we look at 

the sectorial distribution of firms, we observe that the weight of American firms is particularly 

important in High-tech taxonomy (Health care and Technology sectors), while European and 

Japanese have the highest number of firms in Medium-tech taxonomy (Industrial goods and 

services sector). This explains why the American firms included in the sample are more R&D 

intensive than European and Japanese ones. 

 

 

 

 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

6	  We use the exchange rates in Eurostat for year 2007.  
7	  Eurostat GDP deflators. 
8	  These firms are research specialized laboratories whose unique activity is R&D. Sales are very limited and this 
explains a very high R&D intensity, i. e. above 100%. 



Table 1. Sectorial and Geographical characteristics of Variables 

(Average over the period 2002-2010)  

   Sectors                           Number of firms             Sc         L       C      K     RD     TS    R&D                                                                                             

                                       RWa  EUb    JP   US                                                                  intensity 

Low-tech 
            Oil & Gas 5 7 4 8 

 
5273 8908 1607 110 24 54157 0.9 

Basic Resources 3 11 10 3 
 

1939 7577 655 82 14 44189 0.8 
Construction & 
materials 0 12 9 4 

 
975 4486 265 62 11 50797 1.4 

Food & Beverage 0 11 12 6 
 

2087 8788 721 151 30 76492 1.7 

Telecommunications 2 9 2 1 
 

3146 10410 5269 257 46 57913 1.9 

Utilities 1 6 9 1 
 

1994 5292 3209 204 20 85770 1.1 

Banks 0 4 0 0 
 

6777 41823 2874 210 72 110734 0.9 

Medium-tech 
            Automobiles & parts 0 27 22 13 

 
2818 10191 1515 668 116 72162 4.1 

Industrial goods & 
services 5 93 53 44 

 
766 4360 247 146 27 62671 4.7 

Chemicals 1 26 34 20 
 

766 2725 318 180 30 65250 3.6 
Personal & household 
goods 0 21 24 18 

 
1313 6923 428 331 62 79193 4.4 

Media 0 4 2 3 
 

1081 3973 554 132 22 70621 4.1 

Retail 0 2 1 4 
 

1199 3137 238 55 13 53202 4.6 

Travel & leisure 1 0 1 1 
 

108 405 23 19 5 31517 4.3 

High-tech 
            Health care 8 42 29 59 

 
749 2904 404 407 103 84864 16.8 

Technology 15 41 20 105 
 

638 3289 234 360 68 78181 15.5 

             Average 
     

1744 7765 1164 227 45 69955 4.4 

             Rest of the World 41 
    

1705 8464 881 254 56 90807 3.3 

Europe 
 

316 
   

1452 5880 777 297 55 64834 3.8 

Japan 
  

232 
  

993 4079 497 199 40 89654 4 
United-States of 
America 

   
290 

 
1090 4244 436 333 69 60746 6.3 

 

a: Australia, Canada, China, Croatia, Hong Kong, India, Israel, Norway, Russia, South Africa, South Korea, Taiwan 

b: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Luxembourg, Spain, Sweden, Switzerland, 

The Netherlands and the United Kingdom 

c: S=net sales, L=number of employees, C=physical capital stock, K=R&D capital stock, RD=R&D expenditures, 

TS=Total stock of spillovers, R&D intensity=R&D expenditures/net sales (in %) 

 

 

 



A key issue in the empirical analysis on knowledge spillovers is the measurement of the pool of 

external knowledge. This stock is usually built as the amount of R&D conducted elsewhere 

weighted by some proximity measure, which reflects the intensity of knowledge flows between 

the source and the recipient of spillovers9. In this paper, we follow the methodology developed 

by Jaffe (1986) to compute the technological proximity. This procedure rests in the construction 

of a technological vector for each firm based on the distribution of its patents across technology 

classes10. These vectors allow one to locate firms into a multi-dimensional technological space 

where technological proximities between firms are performed as the uncentered correlation 

coefficient between the corresponding technology vectors: 

 

𝑃!" =
!!"!!"

!

!!!

!
!"
!

!!"
!!

!!!
!

!!!

                       (10) 

 

where Ti is the technological vector of the firm i and Pij is the technological proximity between 

firm i and j. 

According to this procedure, the total weighted stock of R&D spillovers is computed as follows: 

 

𝑇𝑠! = 𝑃!"𝐾!!!!                (11) 

 

where Kj is the R&D capital stock of firm j. 

 

 

Table 2 illustrates some technological proximity measures for different firms in the dataset. We 

observe that ‘BASF’ and ‘BAYER’ are closer to each other than ‘SAMSUNG’ or ‘SONY’. This is 

quite normal given the nature of the research activities of these firms. 

 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

9	  See Griliches (1992), Mohnen (1996) or Cincera and Van Pottelsberghe (2001) for a review of different proximity 
measures used in the literature. 
10	  118 technological classes compose the International Patent Classification (IPC) at the two-digit level. In order to 
ease the calculations, these 118 classes are grouped into broader classes. On this basis, a table of contingency, i. e. a 
table reporting the distribution of the firms’ patents across the 50 IPC classes, is constructed, as in Cincera (1998). 
This table is used to compute the index of technological closeness and then the stocks of spillovers. 



Table 2. Example of technological proximity between firms 

Firm                                NPAa               BASF           BAYER    SAMSUNG    SONY 

 

BASF 
 

25651 
 

1 
      BAYER 

 
23666 

 
0.933 

 
1 

    SAMSUNG 
 

9498 
 

0.258 
 

0.202 
 

1 
  SONY 

 
16780 

 
0.142 

 
0.109 

 
0.954 

 
1 

a: # of patent applications field to the European Patent Office during the period 2002-2010 

 

As emphasised by Jaffe (1986), this technological distance index, which takes only positive values, 

relies on the strong assumption that the appropriability conditions of knowledge are the same for 

all firms. The more outcomes of R&D activities are appropriable, the less there is knowledge 

flows between R&D performers and the potential users of this knowledge. Since these variables 

are not observable at the firm level, their direct assessment is hard to pick up. However, in a 

context of panel data, we may assume that these firm specific unobserved effects are constant 

over the period considered.  

 

4.3 Econometric framework 

Following Griliches (1979), the impact of technological R&D spillovers on firms’ productivity 

growth besides traditional inputs and the firms’ own R&D stock, is estimated by means of an 

extended Cobb-Douglas production function: 

 

𝑌 = 𝐴𝐿
!!
𝐶
!!
𝐾
!!
𝑋
!      (12) 

 

Taking the logarithms and introducing a set of time dummies leads to: 

 

𝑙𝑛𝑌!" = 𝛼! + 𝜆! + 𝛽!𝑙𝑛𝐿!" + 𝛽!𝑙𝑛𝐶!" + 𝛽!𝑙𝑛𝐾!" + 𝛾𝑋!" + 𝜀!"   (13) 

 

Where 𝑙𝑛 is the natural logarithm; i indices the firm; t indices time; 𝑌!" is the net sales; 𝐿!" is the 

number of employees; 𝐶!" is the physical capital stock; 𝐾!" is the R&D capital stock; 𝛼! is the 

firm’s fixed effect; 𝜆! is a set of time dummies; 𝑋!" is a vector of spillover components; 𝛽  and 𝛾 

are vectors of parameters and 𝜀!" is the disturbance term. 

Six alternative specifications of 𝑋!" are considered: 

 

- Specification I: Impact of the total stock of spillovers 



 

𝛾𝑙𝑛𝑋!" = 𝛾!𝑇𝑆!"  (14) 

 

where 𝑇𝑆 is the total stock of spillovers; 

 

- Specification II: Differentiated impact of the national and international spillovers stocks 

 

𝛾𝑙𝑛𝑋!" = 𝛾!𝑁𝑆!" + 𝛾!𝐼𝑆!"  (15) 

 

where 𝑁𝑆 and  𝐼𝑆 are the national and international stocks of spillovers respectively; 

 

- Specification III: Differentiated impact of the intra-industry and inter-industry spillovers 

stocks, according to ICB at the two-digit level (16 technological sectors, as in table 1) 

 

𝛾𝑙𝑛𝑋!" = 𝛾!"#$%&𝐼𝑛𝑡𝑟𝑎𝑆!" + 𝛾!"#$%&𝐼𝑛𝑡𝑒𝑟𝑆!"  (16) 

 

where 𝐼𝑛𝑡𝑟𝑎𝑆 and 𝐼𝑛𝑡𝑒𝑟𝑆 are the intra-industry and inter-industry stocks of spillovers 

respectively; 

 

- Specification IV: Totally differentiated impact of spillover stocks, according to ICB at the 

two-digit level (16 technological sectors, as in table 1) 

 

𝛾𝑙𝑛𝑋!" = 𝛾!"#$%&'𝐼𝑛𝑡𝑟𝑎𝑁𝑆!" + 𝛾!"#$%&'𝐼𝑛𝑡𝑒𝑟𝑁𝑆!" + 𝛾!"#$%!&𝐼𝑛𝑡𝑟𝑎𝐼𝑆!" + 𝛾!"#$%!&𝐼𝑛𝑡𝑒𝑟𝐼𝑆!"  

(17) 

 

where 𝐼𝑛𝑡𝑟𝑎𝑁𝑆, 𝐼𝑛𝑡𝑒𝑟𝑁𝑆, 𝐼𝑛𝑡𝑟𝑎𝐼𝑆 and 𝐼𝑛𝑡𝑒𝑟𝐼𝑆 are the intra-industry national, inter-industry 

national, intra-industry international and inter-industry international spillover stocks respectively; 

 

 

- Specification V: Differentiated impact of the intra-industry and inter-industry spillovers 

stocks, according to High-, Medium- and Low-tech taxonomy 

 

𝛾𝑙𝑛𝑋!" = 𝛾!"#$%&𝐼𝑛𝑡𝑟𝑎𝑆2!" + 𝛾!"#$%&𝐼𝑛𝑡𝑒𝑟𝑆2!"  (18) 

 



where 𝐼𝑛𝑡𝑟𝑎𝑆2 and 𝐼𝑛𝑡𝑒𝑟𝑆2 are the intra-industry and inter-industry stocks of spillovers 

respectively; 

 

- Specification VI: Totally differentiated impact of spillover stocks, according to High-, 

Medium- and Low-tech taxonomy 

 

𝛾𝑙𝑛𝑋!" =

𝛾!"#$%&'𝐼𝑛𝑡𝑟𝑎𝑁𝑆2!" + 𝛾!"#$%&'𝐼𝑛𝑡𝑒𝑟𝑁𝑆2!" + 𝛾!"#$%!&𝐼𝑛𝑡𝑟𝑎𝐼𝑆2!" + 𝛾!"#$%!&𝐼𝑛𝑡𝑒𝑟𝐼𝑆2!"  (19) 

 

where 𝐼𝑛𝑡𝑟𝑎𝑁𝑆2, 𝐼𝑛𝑡𝑒𝑟𝑁𝑆2, 𝐼𝑛𝑡𝑟𝑎𝐼𝑆2 and 𝐼𝑛𝑡𝑒𝑟𝐼𝑆2 are the intra-industry national, inter-

industry national, intra-industry international and inter-industry international spillover stocks 

respectively. 

To estimate equation (13), we use standard panel data estimation procedures that allow one to 

take into account firms unobserved over time fixed effects. These effects take into account 

permanent differences among firms (such as the ability of engineers to discover new inventions). 

Neglecting these effects, as it is the case in cross-section estimates may lead to some omitted 

variables biases. In the context of panel data, it is possible to get around this issue by appropriate 

transformations of data in order to remove fixed effects.  

The fixed effects can be deleted through the so-called within transformation which can be 

estimated by OLS provided that 𝛼! are fixed over time and the regressors are strictly exogenous. 

Another way to eliminate the unobserved fixed effects consists of first-differencing the 

productivity equation (13). An advantage of this transformation is that it does not longer require 

the strict exogeneity of regressors. However, because of possible measurement in all the 

variables, this procedure leads generally to estimates which are more biased towards zero than 

does the within correction. For this reason, we implement the system Generalized Method of 

Moments (GMM) 11 estimator, which combines the standard set of equations in first difference 

with suitably lagged levels as instruments (GMM in First Differences), with an additional set of 

equations in levels with suitably lagged first differences as instruments. The validity of these 

additional instruments, which consist of first difference lagged values of the regressors, can be 

tested through difference Sargan over-identification tests. The system GMM (GMM SYS) 

estimator can lead to considerable improvements in terms of efficiency as compared to the GMM 

in First Differences (GMM FD). Furthermore, GMM-SYS takes into account the possible 

endogeneity or simultaneity issue of the explanatory variables with the error term. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

11	  See Arellano and Bover (1995), Blundell and Bond (1998). 



In the following section, we present the empirical estimates for two estimators: Within-Group12 

estimator and GMM-SYS13 one. 

 

5. Empirical findings 

Estimates of the productivity equation are given in Table 3. We may observe that the two 

estimation methods lead to different results, particularly for the spillover variables. Given the 

reasons discussed in the previous section, our favourite estimates are given by the GMM-SYS 

model. The Sargan test of overidentifying restrictions as well as tests for first order (AR(1)) and 

second order (AR(2)) serial correlation tests of the first-differenced residuals are reported. While 

the latter are consistent with the assumption of no serial correlation in the residuals in levels14, the 

Sargan test rejects the null hypothesis of valid instruments, indicating that some of the 

instruments in our sample are correlated with the error term. As in O’Mahoni and Vecchi (2009), 

given the plausibility of the results, we rely on existing evidence on the tendency of the Sargan 

test to over-reject the null hypothesis in equations specified in first-differences (Blundell and 

Bond, 1998). The coefficients obtained for the employment and the physical capital are 

significant. The estimated elasticities associated with the labour variable is 0.56-0.57, while for the 

physical variable the coefficients are 0.24-0.26. The results of own R&D capital on productivity 

performance are not significant for the possible multicollinearity issue with the spillover 

components, while there is a strong link between technologically based R&D spillovers and 

firms’ productivity performance. The estimated elasticity associated with the total stock of 

spillovers (TS) is 0.86. By considering the classification of industries according to ICB at the two-

digit level (16 sectors) or according to High-, Medium-, Low-tech taxonomy, the distinction 

between intra- and inter-industries components exhibits a higher elasticity of output with respect 

to the inter-industry stock. This observation seems to indicate that the inter-industry spillover 

effects are relatively more important than the intra-industry ones, as far as we consider that there 

is a close relationship between industries and technological classes, as in Capron and Cincera 

(1998). The distinction between national and international R&D components puts forward the 

importance of foreign R&D activities, while national stock is not significant. This result is 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

12	   Hausman’s test is also implemented to test fixed effect versus random effect model, providing that the null 
hypothesis may be rejected at the value of 5%, and then fixed effect model is the best. Results from this analysis are 
available from the authors upon request. 
13	  See Capron and Cincera (1998), Aldieri and Cincera (2009) for other applications of GMM-SYS estimator to R&D 
technological spillovers. 
14	  The assumption of no serial correlation in the residuals in levels is very relevant to obtain consistent GMM 
estimates. This assumption holds if there is evidence of significant and negative first-order serial correlation and no 
evidence of second-order serial correlation in the first-differenced residuals (Arellano and Bond, 1998). 



confirmed when the spillover stock is completely disaggregated. Indeed, the intra-national and 

inter-national components are not significant.  

 

Table 3. Productivity Estimates 

Dependent variable: ln S                        sample: 879 firms x 9 years 

WITHIN Level                                                 GMM-SYS 

                          Est.             S. Ea.                                                      Est.                      S. E. 

lnL 0.66*** (0.041) 
 

∆lnL 0.57*** (0.037) 

lnC 0.23*** (0.073) 
 

∆lnC 0.24*** (0.066) 

lnK 0.15** (0.065) 
 

∆lnK  0.01 (0.001) 

lnTS 0.99*** (0.237) 
 

∆lnTS 0.86*** (0.129) 

       

    
AR(1)c test p=-8.91 p>z=0.000 

    
AR(2) test p=-0.72 p>z=0.471 

R2 

 
0.65 

 
Sarganb:χ2 (80)=405.11 

 
[0.000] 

       lnL 0.66*** (0.041) 
 

∆lnL 0.57*** (0.038) 

lnC 0.21*** (0.076) 
 

∆lnC 0.24*** (0.068) 

lnK 0.17** (0.068) 
 

∆lnK 0.01* (0.001) 

lnintraS 0.19*** (0.062) 
 

∆lnintraS 0.07* (0.039) 

lninterS 0.39*** (0.112) 
 

∆lninterS 0.23** (0.109) 

       

    
AR(1) test p=-8.90 p>z=0.000 

    
AR(2) test p=-1.00 p>z=0.317 

R2 

 
0.64 

 

Sargan 

χ:2(100)=482.89 
 

[0.000] 

       lnL 0.67*** (0.042) 
 

∆lnL 0.57*** (0.038) 

lnC 0.22*** (0.074) 
 

∆lnC 0.24*** (0.066) 

lnK 0.16** (0.066) 
 

∆lnK  0.01 (0.001) 

lnNS 0.11* (0.063) 
 

∆lnNS  0.03 (0.062) 

lnIS 0.75*** (0.199) 
 

∆lnIS 0.67*** (0.086) 

       

    
AR(1) test p=-8.57 p>z=0.000 

    
AR(2) test p=-0.50 p>z=0.619 

R2 

 
0.65 

 

Sargan 

χ:2(100)=497.17 
 

[0.000] 

       lnL 0.65*** (0.041) 
 

∆lnL 0.57*** (0.037) 

lnC 0.21*** (0.077) 
 

∆lnC 0.26*** (0.062) 

lnK 0.17** (0.069) 
 

∆lnK  0.01 (0.001) 

lnintraNS  0.03 (0.019) 
 

∆lnintraNS -0.02 (0.011) 

lnintraIS 0.11** (0.051) 
 

∆lnintraIS 0.10*** (0.026) 

lninterNS -0.06 (0.053) 
 

∆lninterNS -0.06 (0.047) 

lninterIS 0.41*** (0.103) 
 

∆lninterIS 0.31*** (0.083) 



       

    
AR(1) test p=-9.54 p>z=0.000 

    
AR(2) test p=-1.12 p>z=0.262 

R2 

 
0.64 

 

Sargan: 

χ2(140)=504.38 
 

[0.000] 

       lnL 0.66*** (0.041) 
 

∆lnL 0.56*** (0.037) 

lnC 0.23*** (0.076) 
 

∆lnC 0.24*** (0.067) 

lnK 0.16** (0.066) 
 

∆lnK 0.01*** (0.001) 

lnintraS2 0.54*** (0.193) 
 

∆lnintraS2 0.28*** (0.085) 

lninterS2 0.27** (0.127) 
 

∆lninterS2 0.45*** (0.069) 

       

    
AR(1) test p=-8.95 p>z=0.000 

    
AR(2) test p=-0.77 p>z=0.442 

R2 

 
0.64 

 

Sargan: 

χ2(100)=459.48 
 

[0.000] 

       lnL 0.66*** (0.041) 
 

∆lnL 0.57*** (0.038) 

lnC 0.22*** (0.076) 
 

∆lnC 0.25*** (0.067) 

lnK 0.16** (0.067) 
 

∆lnK 0.01** (0.001) 

lnintraNS2 0.04 (0.048) 
 

∆lnintraNS2 -0.08 (0.051) 

lnintraIS2 0.39*** (0.149) 
 

∆lnintraIS2 0.31*** (0.057) 

lninterNS2 0.01 (0.047) 
 

∆lninterNS2  0.04 (0.031) 

lninterIS2 0.14 (0.093) 
 

∆lninterIS2 0.32*** (0.055) 

       

    
AR(1) test p=-8.76 p>z=0.000 

    
AR(2) test p=-0.81 p>z=0.418 

R2 

 
0.64 

 
Sargan:χ2(140)=554.30 

 
[0.000] 

 

a: heteroskedastic-consistent standard errors. b: Sargan is the Sargan-test of over identifying restrictions, the p-value 

is in squared brackets. c: AR(1) and AR(2) are tests for first and second order serial correlation. ***,**, * Coefficient 

significant at the 1%, 5%, 10%. Time dummies are included. 

 

In Table 4, we present the productivity estimates by geographical area. Also in this case, the 

Sargan test of overidentifying restrictions as well as tests for first order (AR(1)) and second order 

(AR(2)) serial correlation tests of the first-differenced residuals are reported. The latter confirm 

the assumption of no serial correlation in the residuals in levels and this time the Sargan test does 

not reject the null hypothesis of valid instruments at the 1% (US case) and 5% (JP and EU cases). 

 

 

 

 

 

 



Table 4. Productivity Estimates by Geographical Area 

WITHIN LEVEL                                               GMM-SYS 

                       Sample: 290 US firms x 9 years 

                         Est.             S. Ea.                                                               Est.                     S. E. 

lnL 0.69*** (0.084) 
 

∆lnL 0.57*** (0.054) 

lnC 0.30** (0.123) 
 

∆lnC 0.31*** (0.091) 

lnK 0.16 (0.149) 
 

∆lnK  0.01 (0.001) 

lnNS 0.68** (0.302) 
 

∆lnNS  0.89*** (0.234) 

lnIS 1.04*** (0.306) 
 

∆lnIS  0.59*** (0.154) 

       

    
AR(1)c test p=-7.13 p>z=0.000 

    
AR(2) test p=-0.36 p>z=0.715 

R2 

 
0.68 

 
Sarganb:χ2(100)=134.91 

 
[0.011] 

 

                        Sample: 232 JP firms x 9 years 

lnL 0.61*** (0.085) 
 

∆lnL   0.54*** (0.100) 

lnC 0.12* (0.063) 
 

∆lnC   0.07 (0.148) 

lnK 0.12** (0.061) 
 

∆lnK   0.01 (0.001) 

lnNS 0.71*** (0.256) 
 

∆lnNS  -0.28** (0.115) 

lnIS -0.22 (0.197) 
 

∆lnIS   1.07*** (0.174) 

       

    
AR(1) test p=-2.43 p>z=0.015 

    
AR(2) test p=-0.51 p>z=0.612 

R2 

 
0.58 

 
Sargan:χ2(100)=102.78 

 
[0.404] 

 

                               Sample: 316 EU firms x 9 years 

lnL 0.67*** (0.053) 
 

∆lnL 0.57*** (0.064) 

lnC 0.08* (0.048) 
 

∆lnC 0.18** (0.086) 

lnK 0.11** (0.052) 
 

∆lnK  0.01 (0.001) 

lnNS 0.46*** (0.120) 
 

∆lnNS  0.28*** (0.088) 

lnIS -0.18 (0.212) 
 

∆lnIS  0.58*** (0.198) 

       

    
AR(1) test p=-5.34 p>z=0.000 

    
AR(2) test p=-0.94 p>z=0.347 

R2 

 
0.69 

 
Sargan:χ2(100)=121.86 

 
[0.068] 

 

 

a: heteroskedastic-consistent standard errors. b: Sargan is the Sargan-test of over identifying restrictions, the p-value 

is in squared brackets. c: AR(1) and AR(2) are tests for first and second order serial correlation. ***,**, * Coefficient 

significant at the 1%, 5%, 10%. Time dummies are included. 

 

 



In the United-States, the national stock affects significantly and positively the output and its 

magnitude is higher than international stock. An opposite observation emerges for Japan and 

European area that appear to benefit from the international stock. So, Japan and European 

countries seem to depend, to a large extent, on technologies developed outside while American 

firms are mainly turned to their domestic technologies. These empirical observations are in 

accordance with the positioning often emphasized for the three geographical areas. As a 

technological leader, the United-States is principally concerned by its own technological 

development.  

 

6. Discussion and conclusions 

The purpose of this paper is that to analyze the relationship between R&D activity, spillovers and 

productivity at the firm level. Particular attention is put on the formalization of technological 

spillovers. The analysis is based upon a new dataset composed of 879 worldwide R&D-intensive 

manufacturing firms whose information has been collected for the period 2002-2010. Given the 

panel data structure of the sample, ad hoc econometric techniques that deal with both firm’s 

unobserved heterogeneity and weak exogeneity of the right hand-side variables are implemented. 

We use data from all EU R&D investment scoreboards editions issued every year until 2011 by 

the JRC-IPTS (scoreboards). In order to measure the distribution of the firm’s research interests 

through the different technological areas, we use the patent distribution over technological 

sectors according to the International Patent Classification (IPC). The patent distribution relies 

on the whole number of patent applications filed to the European Patent Office until 2011.  

The contribution of our paper to the existing literature is twofold: first, we use an international 

sample in such a way that we may compare the empirical results among different economic 

markets; second, we assess the importance of technological activity of firms on productivity, by 

exploring different components of potential stock of spillovers also after the beginning of world 

economic crisis. In particular, we extend Jaffe’s methodology to distinguish, besides the intra and 

inter-industry components, national and international stocks. In this way, we will be able to 

appreciate to what extent geographical and cultural contiguity matters. Furthermore, in order to 

consider the technological as well as the geographical closeness, the potential stock of spillovers 

is dissociated into four components: the intra-industry national stock, the intra-industry 

international stock, the inter-industry national and inter-industry international one. The estimates 

obtained are performed by using ad hoc panel data estimation methods, the system GMM 

(GMM-SYS), which control for specific hypothesis typically associated with this kind of data, 

namely, correlated firms’ unobserved fixed effects with regressors and weakly exogenous 



explanatory variables. From the empirical results, we observe that the coefficients obtained for 

the employment and the physical capital are significant. The estimated elasticities associated with 

the labour variable is 0.56-0.57, while for the physical variable the coefficients are 0.24-0.26. The 

results of own R&D capital on productivity performance are not significant for the possible 

multicollinearity issue with the spillover components, while there is a strong link between 

technologically based R&D spillovers and firms’ productivity performance. The estimated 

elasticity associated with the total stock of spillovers (TS) is 0.86. By considering the classification 

of industries according to ICB at the two-digit level (16 sectors) or according to High-, Medium-, 

Low-tech taxonomy, the distinction between intra- and inter-industries components exhibits a 

higher elasticity of output with respect to the inter-industry stock. This observation seems to 

indicate that the inter-industry spillover effects are relatively more important than the intra-

industry ones, as far as we consider that there is a close relationship between industries and 

technological classes, as in Capron and Cincera (1998). The distinction between national and 

international R&D components puts forward the importance of foreign R&D activities, while 

national stock is not significant. This result is confirmed when the spillover stock is completely 

disaggregated. Indeed, the intra-national and inter-national components are not significant.  

As far as the analysis by geographical area is concerned, the results show that United-States are 

mainly sensitive to their national spillover’s stock while Japan and European countries appear to 

mainly draw from the international stock, by evidencing the role of technological leader of 

United-States. 

In order to further explore these questions, further analyses are needed. First, we could consider 

the distribution of patents’ inventors rather than patents’ application to compare the robustness 

of our results. Furthermore, since every Patent Office has some weaknesses, we could construct 

the technological proximity between the firms, taking into account both their patents in 

European Patent Office (EPO) and US Patents and Trademarks Office (USPTO), as in Aldieri 

(2013). Finally, we could use information on patent citations to construct a more direct measure 

for R&D spillovers.  
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Appendix A. 

Correlation between technological spillover components 

                         (1)      (2)       (3)      (4)      (5)       (6)       (7)       (8)      (9)      (10)     (11)   (12)     (13)    (14)  (15) 

TS (1) 1 
              NS (2) 0.47 1 

             IS (3) 0.93 0.17 1 
            IntraS (4) 0.43 0.27 0.35 1 

           InterS (5) 0.76 0.34 0.75 -0.14 1 
          IntraNS (6) 0.34 0.59 0.14 0.83 -0.13 1 

         InterNS (7) 0.36 0.83 0.15 -0.11 0.55 0.17 1 
        IntraIS (8) 0.44 0.17 0.41 0.97 -0.10 0.71 -0.14 1 

       InterIS (9) 0.77 0.16 0.83 -0.10 0.96 -0.16 0.33 -0.05 1 
      IntraS2 (10) 0.59 0.34 0.51 0.80 0.11 0.67 0.02 0.77 0.15 1 

     InterS2 (11) 0.17 0.02 0.21 -0.47 0.53 -0.42 0.34 -0.42 0.48 -0.61 1 
    IntraNS2 (12) 0.47 0.70 0.26 0.69 0.07 0.82 0.36 0.60 0.01 0.85 -0.55 1 

   InterNS2 (13) 0.08 0.55 -0.06 -0.34 0.37 -0.06 0.77 -0.36 0.18 -0.46 0.74 -0.13 1 
  IntraIS2 (14) 0.61 0.24 0.58 0.78 0.15 0.59 -0.04 0.78 0.22 0.99 -0.57 0.76 -0.49 1 

 InterIS2 (15) 0.21 -0.09 0.31 -0.45 0.55 -0.46 0.22 -0.38 0.56 -0.58 0.98 -0.59 0.61 -0.52 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix  B 
Proof  o f  Proposi t ion : The combinations of eqs.(6), (8) and (9) give the following equilibrium 

values: 
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with σ =
1

(η +1) (1−β
3
−β

2
−αγ)−β

1[ ]
. 

 

In order to demonstrate Pareto-inefficiency we may write firms’ returns as:  

∏ = (1−b)AL∗
β1
K

∗(β3 +αγ )
C
∗β2 − r

1
C
∗ − r

2
K

∗ and consider the effects of  small changes in the 

equilibrium values: L∗,C∗
,K

∗. As a result it will be: 

d∏ = (1− b)β
1
AC

∗β2
K

∗(β 3 +αγ )
L
∗β1−1[ ]dL∗ + (1− b)(β

3
+αγ)AL∗

β1
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2[ ]dK ∗ +

+ (1− b)β
2
AC

∗(β 2−1)
K

∗(β 3 +αγ )
L
∗β1 − r

1[ ]dC∗  

from inspection of which since the terms multiplied by dC∗and  dK∗ are zero by the f.o.c. it will 

be: d∏ > 0 . Similar reasoning may be applied to workers’ welfare: 

dU = bβ
1
AC

∗β 2
K

∗(β 3 +αγ )
L
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3
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L
∗β1 − r

1[ ]dC∗  

from which it is clear that the term multiplied by dL∗  is = by the foc, while the one multiplied by 

multiplied by dC∗ is positive and that multiplied by multiplied by dK∗is 
>

<
0 if (β

3
+αγ)

>

<
0. 

Further it is very interesting to consider that if   it may be possible that dU = 0 only if 

dC
∗

C
∗

K
∗

dK
∗
=
−(β

3
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 since it will be that: (1− b)β
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The last points of the above proposition derive from inspection of eqs. (6,8 and 9). 
 

 


