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1. Introduction

~ The binomial and multinomial distributions have found applications'
in many scientific fields, mainly because of their simplicity. Many
practical problems however cannot be adequately described by the sim-
ple binomial or multinomial model. In such cases more elaborate bi-
nomial-type or multinomial-type models are needed. In this context
many extensions and generalizations of the binomial and multinomial
distributions have been defined and their properties have been studied.

The present paper describes such situations in the form of some
urn schemes which lead to distributions more general than the usual
binomial or multinomial distributions (Sections 2 and 4). In Section 3
properties relating the binomial-type distribution of Section 2 to gen-
eralized Poisson distributions are stated and proved. Finally, the ob-
tained results are extended to multinomial-type distributions in Section 4.

2. The cluster binomial model and its probability distribution

Let us consider the follow‘ing game of chance: Suppose that an
urn containg balls. Each ball bears a number from 0 to k where k is
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a fixed positive integer. The game consists of the player drawing n
balls, with replacement, from the urn. The sum of the numbers on
the balls drawn determines the amount of money the player wins, or
looses at the end of the game. (The player, for example, can win, or
loose, as many units as the difference between the above mentioned
total and a number L determined by agreement beforehand).

Let X denote the sum of the numbers shown on the balls drawn.
To study this situation we need to know the probability distribution of
X.

Let p, denote the probability that a ball bearing the number i will

be drawn (=1, 2,- - -, k) with ﬁ‘, »;=p. Then, g=1-p is the probability
i=1

that a ball bearing a zero will be drawn. Therefore, the random vari-
able X takes the value » if, of the = balls drawn, r, bear the number

1, r, the number 2 and so on, r, bear the number %k so that Z w,=r

and each of the remaining n— S‘_, r; balls bear the number zero. Con-

sequently, the probability that the summation of the numbers on the
balls drawn is r (r=0, 1, 2,---, nk) is

bzl

(2.1) P(ler)zzwzi:,, (7‘1, Pogyeooy Ty B— Z’l"

PROPOSITION 2.1. The function defined by (2.1) vs a proper prob-
ability distribution. :

k
ProoF. Using the transformation r,—r, and r—3] (t—1)yr;—r we
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Note. One can easily observe that for k=1 the distribution defined
by (2.1) reduces to the ordinary binomial distribution.

DEFINITION 2.1. Let n, k be fixed positive integers and let p,, 1=
k
1,2,---, k be fixed numbers 0<p,<1. Set p—E p; and ¢g=1—p. Con-

sider a random variable X taking non—negatlve, integer values. The
probability distribution defined by (2.1) is called cluster binomial distri-
bution with parameters =, k, p,, 1y, - -, p, and is denoted by b, (n; i, s,

M) pk)'
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In the remaining of this section we derive G(s), the probability
generating function (p.g.f.), the mean and the variance of the distri-
bution defined by (2.1).

PRrROPOSITION 2.2. Let X follow the cluster binomial distribution with
probabilities given by (2.1). Then

(2.2) () Go=(¢+zps), Islst
(2.3) (i) E(X):néipz
2.4) (i) V(X):n(g ip,— (zk} 'ipi>2>.

The distribution defined in (2.1) was first arrived at by Steyn [5]
as the limit of a generalization of the hypergeometric distribution.

It is evident from the form of the p.g.f. of the cluster binomial
distribution as given by (2.2) that this distribution can be thought of
as a binomial distribution generalized by a finite discrete distribution.
More precisely, if N is a non-negative, integer-valued random variable
following a binomial distribution with parameters » and p and X, X;,---
is a sequence of independently and identically distributed random vari-
ables, which are independent of N with probability distributions P (X;=j)
=pJp, 7=1,2,-+-,k, i=1,2,---, then the random variable X=X+ X,+
++++ X, follows the cluster binomial distribution with parameters =, k
and Py, Dy, . This representation justifies the choice of the name
cluster binomial for the distribution defined by (2.1) as it shows that
this distribution can be viewed as the distribution of events that occur
in clusters of size X, 1=X,<k. (Charalambides [2] provided an ex-
pression that permits the recursive evaluation of the probabilities of
generalized binomial distributions in terms of the Bell polynomials).

Therefore, the cluster binomial distribution can have potential ap-
plications in many diverse fields of statistical analysis whenever there
are multiple “ groups” (clusters) of “items” and one is interested in
the distribution of the total number of “items”. It could be used, for
example, in accident analysis as the distribution of the number of deaths
resulting from = accidents with p, representing the :probability with
which an accident will result in ¢ deaths, i=1,2,---, k (p,=¢). On the
other hand, the above representation of the cluster binomial distribu-
tion offers some other possibilities in the area of applications. As an
illustration, consider a building with » elevators. Let k& be the maxi-
mum number of people each of the elevators can take. Let p be the
probability that an elevator is working at a given point in time and
assume that this remains the same from elevator to elevator. It is not
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unrea.sonable to assume that the probability that the elevator 3 will be
c?rrymgir Xi.persons (%,=1,2,---,k) is 1/k. Then the total number X
of people using the elevators at any given point in time will follow the

cluster, binomial distributi .
2. I istribution with parameters =, k and p,=pfk, i=1,

3. The refarionsiip of 1Nt TfudTer RIMemime —erraeorosc oo

generalized Poisson distributions

The association of the ordinary binomial distribution to the ordinary
Poisson distribution is well-known. The representation of the cluster
binomial distribution, defined in Section 1, as a generalized binomial
distribution makes one wonder whether there exists any association be-
tween the cluster binomial and the class of generalized Poisson distri-
butions.

A random variable X is said to follow a generalized Poisson distri-
bution if it can be written as the random sum of N independent, iden-
tically distributed random variables with N following a Poisson distri-
bution. (Feller uses the term compound Poisson instead of generalized
Poisson). It is well-known (see Feller [3], p. 291) that the p.g.f. of a
generalized Poisson distribution G(s)=exp {2(g(s)—1)}, with 2 the param-
eter of the Poisson distribution and g(s) the p.g.f. of the common dis-
tribution of the X,’s, can always be written in the form

3.1) G(s)=exp {§ li(s"—l)}

where 1,=2p, and p,=P(X;=1), 9=1,2,---, E: keI"U{+0}, é A<
+oo. -
Recently, the distribution in (3.1) was studied by Aki et al. [1]
who refer to it as the generalized Poisson distribution with parameter
A=Ay A3 )
In what follows some results are presented relating the cluster bi-
nomial distribution to the generalized Poisson distribution given by (3.1)

ProposITION 3.1. Let X, Y be two non-negative, integer-valued ran-
dom variables such that the conditional distribution of Y given that (X=
n) is the cluster bimomial distribution bym; Dy, Day- -, D) a8 i (2.1).
Then, X follows a Poisson distribution with parameter 2 if and only if
Y follows a generalized Poisson distribution with parameters Ap:, AP

“ 2p]c'

PrOOF. “Only if” part. From the assumptions it follows that
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o L k z & A £ it_k :
GY(S)':% GYI(sz)(S)P(X:w)-—_g (CI"!“EI pi‘8i> e“%:e (;p s ;}11)) .

“If” part:
Gy(s)=eEPt-D=G (q + ié pis‘> .
Making the transformation
q-+ ?;; ps—s we get
Gx(s)=€= PsteB 1) — gHE=0=E P — gh-D) |
This completes the proof of the proposition.

ProPOSITION 3.2.° Let X be a non-negative, integer-valued r.v. that
has the Poisson distribution with parameter 2>0. Let Y be another non-
negative, integer-valued r.v. such that the conditional distribution of Y
given (X=mn) is independent of 2. Then Y|(X=n) follows the cluster
binomial distribution with parameters (n, Dy, s+, D) a8 in (2.2) if
and only if Y follows a generalized Poisson distribution with parameter
(A, ADy, - -+, AD,) and p.g.f. given by (3.1).

Proor. The “Only if” part holds by Proposition 3.1. For the
“If” part observe that B,(s), the p.g.f. of the b (n; py, 0+, Pr), 18
one solution for Gyx-.(8) in the equation

3.2) Gol(s)= i Grixem(8)P(X=n) .

It will be shown that B,(s) is the only solution. Suppose that B}(s) is
another solution of (3.2), independent of A. Then, it is obvious from
(3.2) that

3 (BH&)—By(s) 2-=0

i.e. that B}(s)=DB,(s). Hence the result has been established.
For k=1, Proposition 3.2 is a special case of a result shown by
Xekalaki and Panaretos [7]. .

PRrOPOSITION 3.8. Let X~by(n; py, D5+, 0:) as tn (2.1). Then as
n—oo and p,—0 so that np;— A, 1=1,2,--+,k the by(n; Dy, Do+, Ps)
tends to the gemeralized Poisson distribution with p.g.f. as in (3.1).

Proor. Let us denote by H the set of conditions n— o0, p,—0
so that np,— ;. Using the inequalities (t—1)/(sInt<t—1 for ¢ >0,
we have
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PP BP) <uln @+ D ps)SUS P -T) s a5 pst>0

where ¢=1—3p,. Taking the lim yields
o
248" =2 4=<limnln (¢+ 3 psYH< 3] 48— 37 4,
H

and therefore, |
k
lim (g+ 3 pis')*=exp (g‘{ L-(si-l)) .

Hence the result has been established.

4. The cluster multinomial model and its probability distribution

- As'is well known, a natural extension of the urn scheme that gives
rise to the usual binomial distribution leads to the usual multinomial
distribution. In a like manner, one can extend the urn genesis scheme
of the cluster binomial distribution to arrive at the definition of a mul-
tinomial type distribution, the cluster multinomial distribution.

The urn contains balls of m different colours. The balls of colour
1 are numbered from 0 to k,, ¢=1,2,---,m. n balls are drawn at ran-
dom with replacement. Let pi, be the probability that a ball of colour
¢ will bear number j, j=0,1,.-«,k,; 9=1,2,---, m and let X,; denote
the number of balls of colour 7 in the sample that bear the number j.

Then X,=— 2 JX,; represents the sum of the numbers shown on balls of

colour ¢, i= 1 2,--+,m, and it can be shown that
(4.1) P(X1=x1, crey, szxm)

n 2. . om 1 .
= =1 74y
Z (lll""vyllkly"’:lmly"'ylmk,h>po nﬂptj

=,

2,=0,1,..-,nk;, 1=1,2,---,m

One can easily verify that (4.1) defines a proper multivariate prob-
ability distribution which for k,=k,=--.=Fk,=1 reduces to the ordinary
multinomial distribution. In the sequel, we will refer to this distribu-
tion as the cluster multinomial distribution and denote it by mr(n, p,
Py -+, Pr) Where k=(k;,- -, k,) and p,=(py,- - Y Dix))s =104+, m.

PROPOSITION 4.1. Let XE(XI, X,,- -+, X,,) follow the cluster multi-
nomial distribution with parameters n, k and p,, i=1,2,---, m. Then
the p.g.f. of X is given by
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4.2) Gx()=(p+5 S )

Proor. The proof follows exactly as in the univariate case.
Steyn [6] studied the asymptotic behaviour of a certain. transfor-
mation of r.v.’s having a probability distribution generated by (4.2).

ProposiTION 4.2. Let X=(X,,---, X)) be a random vector having
the cluster multinomial distribution, i.e. X~mr(n, py,- -+, pn). Then
( i ) Xi"’bki(n’ Dirs Pizs* *» pzki)’ 1= L,2,.---,m
(11) In the case kl-«kg—-"‘ =k

kn
E Xi~blc<n1 2 Dy Z Dizs - % )
=1 =1 i=1 i=1

PrOOF. The results follow using (4.2) by setting ¢,=1, =1, 2,.-,
m, l#1 for (i) and t,=t, i=1,2,.--, m for (ii).

The form of the p.g.f. of the mi(n, p,, ps,- -+, P.) implies that the
cluster multinomial distribution ean be thought of as the generalization
of a multinomial d1str1but1on with parameters =, ., s, - -, P Where the

1-th generalizer has p.g.f. 2 (/0 1=1,2,-

The results of Propositions 3.1, 3.2 and 3.3 can easily be extended
to analogous results concerning the cluster multinomial distribution and
its relationship to the generalized Poisson distribution as indicated by
the propositions that follow.

PROPOSITION 4.3. Let X, Y, Y;,---,Y,. be non-negative, integer-
valued r.v.’s such that the conditional distribution of (Y, Y-, Y,)
given that (X=mn) is the cluster multinomial distribution mi(n; py, P,
<oy, D) as in (4.1). Then X follows a Potisson distribution with param-
eter 1>0, if and only if Yy, Yy, -+ -, Y, are independent generalized Poisson
r.v.’s with parameters Ap,= APy, ADsy -+ + ADw), 1=1,2,---, m and p.g.f.’s.

(4.3) Gyi(si)_—_exp {2 ,é p”(s{—-l)} , i=1,2,---,m.
PROOF. “Only if” part. Let X be a Poisson (1) r.v. Then

GYI,Y2,---,Ym(819 ) sm) g C;Y1 m[(X:n)(siv A sm)P(in)

& gyt
1721 nl
k

exp {2 Z Di(si— 1)} .

fl

nMs

S

fl
ﬁ‘:]s

“1f” part. Suppose that Y3,---, Y, are independent generalized Poisson
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r.v.’s with p.g.f.’s given by (4.3). Then Y=Y +Y,+--.-+Y, follows a

generalized Poisson distribution with parameter (2 f‘, Pi, A i Digs* * s
=1 i=1

A Z} pm> and p.g.f.
Gy(s)=exp {2 jZ,: é pij(sf—l)} .

But since (Y}, Y3, -, Y,)|(X=n) has the mi(n, p, ps,- - *y Pn), it follows
that Y|(X=n) has the bk(n, S Py ipi,C). ‘
i=1 i=1

Then, by Proposition 8.1, X follows a Poisson distribution with pa-
rameter 2. Hence the result has been established.

PROPOSITION 4.4. Let X, Y, Y;,---,Y, be mon-negative, integer-
valued r.v.’s. Assume that X follows the Poisson distribution with paran-
eter 1>0 and that the distribution of (Y, Yy -, Y,) given that (X=n)
18 independent of 2. Then (Y, Y,,---,Y,)|(X=n) follows the cluster
multinomial distribution with parameters m, p,---, Pn as in (4.1) if
and only if Y,,Y,,---,Y, are independent generalized Poisson r.v.’s with

p.9.f.’s given by (4.3).

ProOF. The résult can be shown by an argument analogous to
that used to prove Proposition 3.2.

By an analogous argument one can show the following result.

PROPOSITION 4.5. Let X~mi(n, py, Py, -, Pu) @8 in (4.1). Then as
n—oo and p,—0, i=1,-.-., m so that wp,— A<+ oo, i=1,2,--.,m, the
MMy Py, P -+ +, Pr) tends to the joint distribution of m independent r.v.’s
Y,Y,---, Y, that follow generalized Pov,sson distributions with pa'rameter
vectors xi_(z“, Agys ooy Ag)y 1=1,2,- :
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