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Abstract 
 

Stock market data tends to display distinct characteristics commonly known as “stylized facts”.  These 

include non-stationarity of price levels, as well as peak-shaped, fat-tailed and heteroskedastic log returns.  

This paper presents empirical evidence of these characteristics for emerging market indices, spanning over 

different geographic regions.  The results do not disclose asymmetry in the tails of log return distributions 

in any particular direction.  In addition, it is not confirmed that high volatility tends to follow large 

negative returns.   
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An Analysis of Stock Index Distributions of  
Selected Emerging Markets 

 

1.  Introduction 
 

The analysis of the return distributions of financial assets is a vital topic in the finance discipline, not only 

on account of the academic research undertaken in this area, but also due to its relevance for practitioners 

when making portfolio choices and in risk management processes.  When examining stock market price 

series, the data is typically non-stationary and deviates from the normal distribution.  Indeed, stock market 

data often displays distinct characteristics which are commonly referred to as “stylized facts”.   

 

The aim of this paper is to glean empirical evidence of such characteristics, in respect of various emerging 

market stock indices.  Basic principles of stock market data and relevant literature are reviewed in Section 

2.  Section 3 includes a description of the methodology, whilst a data description and the limitations of the 

study are included in Section 4.  The empirical results are shown in the subsequent section.  Section 6 

concludes the analysis.   

 

 

2.  Statistical Principles and Brief Literature Review 
 

Most econometric tools assume stationary characteristics of the data set being analysed.  A time series may 

be defined as stationary if its properties such as the mean and variance are basically unchanged over 

different sub-samples of the data set.  Financial time series tend to deviate from stationarity and they often 

exhibit a time-changing mean and variance, as outlined by Mills (1999; pp. 37).  Researchers usually avoid 

the application of econometric techniques to non-stationary data given that this could lead to flawed 

conclusions such as spurious regression results as shown by Granger and Newbold (1974).  Therefore non-

stationary series are transformed to stationary ones; for example a researcher may difference the series or 

she may analyse the logarithms of the observed time series.  Working with logarithms presents distinct 

advantages as outlined below: 

 

a)  Using logarithms one may model a non-linear relationship, through a linear one.  For example the 

relationship
aXY = , may be transformed to a linear relationship as y = ax, where y ≡ log Y and x ≡ log X;  

 

b)  When using linear regression on the logarithmic transformation of the series, the estimated coefficients 

have an immediate interpretation as elasticities; and  

 

c)  When applying a log transformation to the data, the series is “compressed”.  For example, a series 

ranging from 1 to 10,000 will approximately range from 0 to 10 when taking the natural logarithms.  This 

often results in a constant variance for the transformed series – although whether this occurs varies in 

between cases.   

 

Thus, one approach to modelling a time series of stock prices is to use the continuously compounded 

return or log return rt, which in the case of a non-dividend paying asset is equal to: 
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where Pt is the price level, Rt is the (simple) return level, and pt ≡ log Pt.   
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The distribution of log returns often deviates from the normal distribution.  Various authors such as Fama 

(1965) presented empirical evidence which exposed the drawbacks of using a normal distribution to model 

logarithmic returns.  Financial log return distributions tend to be peak-shaped and fat tailed – leptokurtic in 

statistical terminology.  This characteristic of financial log returns has been explained by patterns in the 

arrival of information, as well as patterns in traders’ reactions to news, as discussed in Peters (1991).  

Dacorogna et. al. (2001; pp 133), in an empirical investigation of USD exchange rate returns, showed that 

as the frequency of the data increases (say from weekly to hourly) the tails of the distribution become 

fatter.   

 

Stock markets tend to be characterised by periods of substantial volatility interspersed with other periods 

of lower volatility.  This implies a time-changing variance of returns as reviewed in Bollerslev, Chou, and 

Kroner (1992).  Jacobsen and Dannenburg (2003) used stock market data from various developed 

countries and showed that this characteristic is not only present in high frequency data, but also in time 

series of lower frequencies such as monthly data.   

 

Thus, security prices are more likely to follow a martingale process rather than a random walk process.  A 

martingale is a stochastic process which is weaker than a random walk.  The random walk model requires 

uncorrelated price changes, yet a martingale process allows for possible serial dependence in the price 

movements.  The main requirement of a martingale process is that the expected future value of an asset 

given all available information is the current value.  This is summarised as follows: 

 

E(Pt+1│Φt) = Pt         (2) 

 

where E(Pt+1) is the expected price in period t+1 and Φt is the information in period t which contains at 

least the past history of Pt.  This results in, at least, semi-strong efficiency, where market prices reflect all 

publicly available information.  A martingale process allows for dependency in higher conditional 

moments of the price changes, such as the conditional variance.  The latter is an empirical feature of 

financial markets as discussed above.   
 

Franses and van Dijk (2000; pp. 13-19) used stock index data to present empirical evidence of two further 

characteristics of log returns: 

 

a)  Large negative returns are more common than large positive returns.  This feature was not confirmed 

by Longin (1996) in an empirical analysis of US stock market data, and by Jondeau and Rockinger (2003) 

who studied different stock market indices.  The latter authors suggested that the common “perception” 

that left tails are thicker than the right ones might have been cultivated by the presence of data outliers.   

 

b)  Franses and van Dijk (2000) also noted that high volatility often follows large negative returns.  The 

authors also showed that the above two features are not as clearly evident in exchange rate returns data.  

Further empirical evidence of asymmetric volatility responses in relation to positive and negative returns is 

found in Koutmos (1999), who used stock price indices from G-7 countries.  Yet, DeGennaro and Zhao 

(1998) found mixed evidence on the relationship between returns and volatility for US stock market data 

and concluded that this relationship is either “weak or variable”.   

 

The aim of this paper is to investigate the degree to which the above characteristics are evident in the 

index data of selected emerging stock markets.   

 

 

3.  Methodology, Data and Limitations  
 



 

 

 

 

 5

This study focuses on the degree to which the properties listed below are evident in selected indices.  The 

hypotheses are as follows: 

 

3.1  Original price series are non-stationary, however transforming the series to logarithmic returns 

induces stationarity; 

3.2  Logarithmic returns are not normally distributed – they are peak-shaped and fat tailed; 

3.3  Logarithmic returns exhibit a time-changing variance;  

3.4  The left tail of the distribution is fatter than the right tail which implies that large negative returns are 

more common than large positive returns; and   

3.5  High volatility often follows large negative returns. 

 

 

3.1  Stationarity of the Original Series and Logarithmic Returns 
 
One preliminary method through which stationarity of a data set may be inferred is to inquire whether the 

plot of the data discloses a changing mean and variance for different sub-samples of the series.   

 

The autocorrelation function (ACF) is also related to the stationarity properties of the data, given that a 

persistently high level of serial correlation is an indication of non-stationarity.  The ACF shows the 

autocorrelations of a data series as a function of a time shift k.  Thus it measures the extent to which one 

value of the process is correlated with the previous values.  The sample autocorrelation function of the 

time series xt, at lag k is defined in Mills (1990; pp. 65) as follows: 
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The standard errors of the autocorrelation coefficients may be computed using the Bartlett (1946) formula, 

as quoted in Mills (1990; pp. 65-66): 
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where n is the number of observations.   

 
One should note that the above procedures do not constitute formal tests.  The standard procedure which is 

used to infer whether a data set is stationary was discussed by Dickey and Fuller (1979) and is known as 

the augmented Dickey-Fuller (ADF) test.  The first differenced time series is expressed as a function of a 

constant, (an optional) trend, a lag of the levels, as well as n lags of the first difference.  Thus: 

 

∆xt = f (constant, trend, xt-1, ∆xt-1, … , ∆xt-n).       (5) 

 

A test for a unit root may by formulated by comparing the coefficient of xt-1 with its standard error.  The 

null hypothesis is that the series contains a unit root and is therefore non-stationary; whilst the alternative 

hypothesis is that the series does not have a unit root.  The critical values which are used in this hypothesis 

test are those of the augmented Dickey-Fuller statistic.   

 

 

3.2  Distribution of Logarithmic Returns  
 
The asymmetry of a distribution is measured through the skewness, which is defined as: 
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where n is the number of observations, rt is the log return at time t, µ is the mean, and σ is the standard 

deviation.   

 

The kurtosis of the distribution indicates whether the data is more peak-shaped or flatter than the normal 

distribution.  The kurtosis is defined as: 
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where n is the number of observations, rt is the log return at time t, µ is the mean, and σ is the standard 

deviation.   

 

The kurtosis of a normal distribution is equal to 3, and a higher kurtosis value indicates a peak-shaped 

distribution.  Another way in which one may inquire whether a data set is peak-shaped or otherwise, is to 

look at the location of the central percentile, say, the mid 20% observations starting from the end of the 0.4 

percentile to the beginning of 0.6 percentile of the standardised returns.  If the mid 20% observations of 

the data set lie in a narrower range of standardised values as compared to the normal distribution, then the 

distribution is likely to be peak-shaped.   

 

The final test of normality considered in this analysis is the Jarque-Bera (1980) test.  This test jointly 

considers the skewness and kurtosis of the distribution as follows:   
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where yKS ˆ  and yK̂  are the skewness and kurtosis of the distribution respectively, whilst n is the sample 

size.  The statistic is used to test the null hypothesis of a normal distribution, and is χ2 distributed with two 

degrees of freedom.   
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3.3  Heteroskedasticity of Logarithmic returns  
 
The plot of the data might reveal whether the variance tends to change over different sub-samples in the 

set.  Yet, a more formal Lagrange Multiplier (LM) test may also be applied.  The data set is regressed on a 

constant, a lag and an error term as follows: 

 

rt = β0 + β1 rt-1 + ut.         (9) 

 

The LM statistic is then used to test whether there are autoregressive conditional heteroskedasticity 

(ARCH) effects in the above error term ut, as proposed by Engle (1982).  The squared error term u2
t is auto 

regressed on q lags as follows: 

 

u2
t = α0 + ρ1u

2
t-1 + ρ2u

2
t-2 +…+ ρqu

2
t-q.        (10) 

 

The null hypothesis of no ARCH effects, i.e. ρ1 = ρ2 = … = ρq = 0, is tested against the alternative 

hypothesis that ρ1 ≠  0, ρ2 ≠  0, … ρq ≠  0.   

 

 

3.4  Symmetry of the Tails of the Logarithmic Distribution  
 

The empirical investigation in the next section also inquires whether there is any general trend for a fatter 

right or left tail as compared to the other one.  This is done by comparing the location of the extreme 

percentiles of the distributions.  If these percentiles, say the left 1% and the right 1% of the data lie within 

approximately the same area, the tails are likely to be symmetric.  Yet if one of the percentiles is 

“squeezed” into a narrower range of standardized values as compared to the other one, then the former tail 

is likely to be fatter.   

 

 

3.5  High Volatility often follows Large Negative Returns 
 

The methodology used by Franses and van Dijk (2000) for proving that high volatility tends to follow 

large negative returns, was to work out the correlation between the squared return at day t and the return at 

day t-1.  A negative correlation coefficient indicates that the larger returns were preceded by a negative 

return.1   

 

 

4.  Data and Limitations 
 
The data set shows daily closing values of nine emerging markets indices: BOLSA (Argentina), CASE 30 

(Egypt), BSE 500 (India), JSE Index (Jamaica), LITIN (Lithuania), SBI 20 (Slovenia), MSE Index 

(Malta), SEMDEX (Mauritius), and TSEC 50 (Total Return) (Taiwan).  The average number of 

observations for these indices is 1725.  The actual number of observations and the starting date for each 

time series are shown in Table 4. 

 

                                                 
1
  An alternative methodology to infer the level of asymmetry in volatility was proposed by Engle and Ng (1993).  The squared 

error term of the first order autoregressive process [AR(1)] for log returns series is regressed over a constant and a dummy 

variable of the lagged sign of the AR(1) error term.  The dummy variable takes a value of 1 when the lagged error term of the 

AR(1) process is negative, whilst it takes a value of zero otherwise.  A significantly positive coefficient for the dummy variable 

is an indicator that high volatility follows negative returns.  The results obtained from this methodology were broadly in line with 

those following the method proposed by Franses and van Dijk (2000). 
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The data was obtained from the respective exchanges i.e. Buenos Aires Stock Exchange, Cairo and 

Alexandria Stock Exchange, Bombay Stock Exchange, Jamaica Stock Exchange, National Stock 

Exchange of Lithuania, Ljubljana Stock Exchange, Malta Stock Exchange, Mauritius Stock Exchange, and 

Taiwan Stock Exchange Corporation.  The indices were compiled by the exchanges, with the exception of 

TSEC 50 (Total Return) Index which was compiled by FTSE International Limited.   

 

The particular indices were selected in order to achieve a comprehensive cross section of emerging 

markets within different geographic regions: Africa, Asia, Europe and Latin America.  The selection of the 

actual time span of the data was done in order to minimize non-trading periods and/or missing 

observations which exceeded five calendar days.  In those cases where missing observations or non-

trading periods exceeding five calendar days remained in the sample, the index did not show any major 

fluctuation during the particular period.  Preliminary plots of the time series did not reveal any outlier 

observations.   

 

 
This study is subject to the limitations inherent in analysing security price data including:   

 

a)  Stock prices are discrete prices; for example price changes have to be in one-sixteenth of a dollar, or 

multiples thereof.  Possible effects of price discreteness include price clustering.  Such effects might still 

be present to some degree in price series where trading is decimalised, given that in such cases prices still 

have to be quoted in cents and therefore they are still not continuous.  According to Campbell, Lo and 

MacKinlay (1997; pp. 110-112), the impacts of price discreteness become more evident as the sampling 

period shortens. 

 

b)  When analysing stock market data which spans over long periods of time, one should be aware that the 

conditions which underlie the pricing process are likely to change.  For example, a long sample period is 

likely to include changes in the composition of stock indices and changes in company structure due to 

merger and takeover activity.  At times changes in the trading procedures and changes in the trading hours 

might also be present.  Dacorogna et. al. (2001; pp.5) referred to these effects as the “breakdown of the 

permanence hypothesis” and the authors also questioned whether a researcher can actually claim that he is 

analysing the same market when working with a long time-series.  Such effects have to be kept in mind 

when interpreting the empirical results of market microstructure research.   

 

 

5.  Empirical Results 
 
In this section, the above methodology is used to inquire whether the statistical properties described in 

Section 2 are present in the data set.   
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5.1  Stationarity of the Original and Logarithmic Series 
 

The plots of the original price series give a preliminary indication that the series are not stationary due to a 

time changing mean and / or variance.  The time series plots for CASE 30 and JSE index are shown in 

Figures 1 and 2 as examples – the other index plots are not being reproduced for the sake of brevity.   

 

 

Figure 1: CASE 30 Index   

  

 CASE  

Observations

400

600

800

1000

1200

1400

1 116 231 346 461 576 691 806 921 1036 1151 1266 1381

 
 

Figure 2: JSE Index 

 

  

 JSE  

Observations

0

20000

40000

60000

80000

1 211 421 631 841 1051 1261 1471 1681 1891 2101 2311 2521

 
 

 

Another indication of non-stationarity is the slowly declining autocorrelation coefficients.  Table 1 shows 

the autocorrelation coefficients and standard errors for the five lags, lag 20 and lag 30 of each index.  In all 

cases, the coefficients remain significant (at the 5% level) till lag 30, indicating that it is not advisable to 

analyse the original price levels due to non-stationarity.   

 

As noted in Section 2, log return characteristics are often more suitable for the application of econometric 

techniques given that they tend to be closer to stationarity.  The plots of the log returns of BOLSA and 

TSEC 50 are shown in Figures 3 and 4 – the other plots are not being shown for the sake of conciseness.  

The plots visually demonstrate that log returns have a mean of approximately zero, or perhaps slightly 

positive.  In addition, most of the plots such as BOLSA disclose a time changing variance, where periods 

of a relatively low variance alternated with others of higher variance.  The time series plot which was 

visually closest to a constant variance is TSEC 50, yet, even in this case a time-changing variance is 

plausible.   
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The autocorrelation coefficients and standard errors for various lags of the log returns of the indices are 

shown in Table 2.  Taking log returns of the time series reduced the level of the serial correlation, even if 

some of the coefficients remained significant.  Indeed, when inspecting the autocorrelation coefficients for 

the first 30 lags, JSE, MSE, and SEMDEX had at least 10 coefficients which were significant at the 5% 

level.   

 
Table 1: Autocorrelation Coefficients and Standard Errors of the Original Levels 

       

Order 

 

Autocorrelation 

Coefficient 

 

Standard 

Error 

 

Autocorrelation 

Coefficient 

 

Standard 

Error 

 

Autocorrelation 

Coefficient 

 

Standard 

Error 

 

 BOLSA  CASE 30  BSE 500  
1 0.994 0.019 0.996 0.026 0.994 0.029 

2 0.988 0.033 0.991 0.045 0.988 0.050 

3 0.982 0.042 0.986 0.058 0.981 0.064 

4 0.975 0.049 0.981 0.069 0.974 0.075 

5 0.969 0.056 0.976 0.078 0.967 0.085 

20 0.859 0.110 0.906 0.156 0.844 0.167 

30 0.787 0.130 0.860 0.187 0.763 0.197 
       

 JSE Index  LITIN  SBI 20  
1 0.997 0.019 0.994 0.045 0.998 0.019 

2 0.994 0.033 0.988 0.078 0.995 0.033 

3 0.991 0.043 0.982 0.101 0.992 0.043 

4 0.989 0.051 0.975 0.119 0.990 0.051 

5 0.986 0.057 0.968 0.134 0.987 0.058 

20 0.943 0.117 0.854 0.264 0.945 0.117 

30 0.913 0.141 0.769 0.312 0.918 0.142 
       

 MSE Index  SEMDEX  TSEC 50  
1 0.999 0.029 0.996 0.026 0.995 0.026 

2 0.997 0.051 0.991 0.045 0.990 0.045 

3 0.995 0.065 0.985 0.057 0.985 0.057 

4 0.993 0.077 0.980 0.068 0.980 0.068 

5 0.991 0.087 0.974 0.077 0.975 0.077 

20 0.955 0.179 0.879 0.153 0.896 0.153 

30 0.924 0.217 0.812 0.181 0.841 0.183 
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Figure 3: BOLSA Log Returns 

  

 BOLSA LR  
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Figure 4: TSEC 50 Log Returns 

 

  

 TSCTR LR  

Observations
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116 346 576 806 1036 1266 1496

1499

 
 

Therefore, the autocorrelation test confirms that log returns are better candidates for analysis purposes than 

the original series.  Yet, given that as discussed above, these procedures are not formal tests, Augmented 

Dickey-Fuller tests were used as an indication of the stationarity (or otherwise) of the log returns.   

 

In applying this testing procedure to the data, specifications without a trend were selected, given that the 

plots of the log returns suggest that it is unlikely that these series include a trend.  The ADF results are 

shown in Table 3.  The values of the test statistic as compared to the 95% critical value of the augmented 

Dickey-Fuller statistic permit rejection of the null hypothesis of a unit root for all the nine indices.  This 

indicates that the log returns series are difference stationary.  Overall, the above tests indicate that it is 

reasonable to analyse the log returns series.   
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Table 2: Autocorrelation Coefficients and Standard Errors of Log Returns 

       

Order 

 

Autocorrelation 

Coefficient 

 

Standard 

Error 

 

Autocorrelation 

Coefficient 

 

Standard 

Error 

 

Autocorrelation 

Coefficient 

 

Standard 

Error 

 
       

 BOLSA  CASE 30  BSE 500  
1 0.173 * 0.018 0.214 * 0.026 0.109 * 0.028 

2 -0.019 0.019 -0.020 0.027 0.028 0.029 

3 0.029 0.019 0.009 0.027 0.015 0.029 

8 0.020 0.019 -0.013 0.027 0.024 0.029 

9 0.038 0.019 -0.011 0.027 0.099 * 0.029 

10 0.065 * 0.019 0.015 0.027 0.069 * 0.029 

15 0.019 0.019 -0.006 0.027 0.000 0.029 

20 0.030 0.019 -0.016 0.027 -0.064 0.029 

30 -0.003 0.019 0.070 * 0.028 -0.020 0.030 
       

 JSE Index  LITIN  SBI 20  
1 0.475 * 0.019 0.039 0.045 0.170 * 0.019 

2 0.200 * 0.023 0.121 * 0.045 0.054 * 0.019 

3 0.057 * 0.023 0.023 0.046 0.010 0.019 

8 0.043 0.023 0.039 0.046 0.053 * 0.020 

9 0.064 * 0.023 0.001 0.046 0.026 0.020 

10 0.054 * 0.023 -0.021 0.046 0.070 * 0.020 

15 0.033 0.024 0.032 0.046 0.027 0.020 

20 0.085 * 0.024 -0.016 0.047 0.025 0.020 

30 0.015 0.024 0.001 0.048 -0.007 0.020 
       

 MSE Index  SEMDEX  TSEC 50  
1 0.399 * 0.029 0.358 * 0.025 0.029 0.025 

2 0.146 * 0.033 0.184 * 0.028 0.058 * 0.025 

3 0.009 0.034 0.126 * 0.029 0.031 0.025 

8 0.085 * 0.034 0.061 * 0.030 0.008 0.026 

9 0.073 * 0.034 0.055 0.030 0.004 0.026 

10 0.125 * 0.034 0.044 0.030 0.026 0.026 

15 0.061 0.036 0.076 * 0.030 0.056 * 0.026 

20 0.084 * 0.036 0.021 0.031 0.025 0.026 

30 0.074 0.037 -0.018 0.031 0.015 0.026 
       

(*) indicates significance at the 5% level. 

 
Table 3: Augmented Dickey-Fuller Test Results 

        

Index (Log Returns) Order Selection (AICC) Test Statistic 95% Critical Value 

BOLSA 2 -28.345 -2.863 

CASE 30 1 -25.603 -2.864 

BSE 500 0 -31.012 -2.864 

JSE Index 2 -25.164 -2.863 

LITIN 2 -11.237 -2.868 

SBI 20 5 -18.063 -2.863 

MSE Index 0 -22.281 -2.865 

SEMDEX 3 -16.568 -2.864 

TSEC 50 4 -17.065 -2.864 
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5.2  Distribution of Logarithmic Returns  
 

The histograms of the log returns of the indices indicate that the data is peak-shaped and perhaps fat-tailed.  

Only those two histograms which most prominently displayed these characteristics are being reproduced 

for the sake of conciseness.  These are shown in Figures 5 and 6.  Normal distributions are superimposed 

on the histograms for ease of comparison.   

 

Figure 5: 

 Histogram and Normal curve for variable
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Figure 6: 

 Histogram and Normal curve for variable
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Table 4 shows the basic characteristics of the log return distributions of all nine indices.   
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Table 4: Basic Characteristics of Log Returns 

Country Argentina Egypt India Jamaica Lithuania Slovenia Malta Mauritius Taiwan 

Index BOLSA CASE 30 BSE 500 

JSE 

Index LITIN SBI 20 

MSE 

Index SEMDEX 

TSEC 

50 
  

              

Initial  

Observation 

2-Jan-91 

 

1-Jan-98 

 

1-Feb-99 

 

2-Jan-91 

 

2-Jan-02 

 

7-Jan-93 

 

18-May-

98 

25-Nov-

97 

1-Apr-

97 

No. of Observations 2807 1460 1207 2712 485 2686 1166 1501 1498 

Mean 0.0008 0.0001 0.0005 0.0012 0.0007 0.0006 0.0005 0.0002 -0.0002 

Standard Deviation 0.0231 0.0168 0.0171 0.0137 0.0119 0.0141 0.0098 0.0046 0.0197 

Skewness 0.9669 0.8811 -0.4209 0.9422 -0.1715 0.4201 2.6681 0.7222 0.0697 

Excess Kurtosis 9.8529 13.4197 2.0853 12.9245 5.1688 21.3521 20.2589 10.6578 1.4655 

Jarque-Bera Statistic 11791.68 11144.28 254.32 19277.08 542.28 51103.24 21323.17 7234.54 135.26 

Minimum -0.1367 -0.1098 -0.0735 -0.1245 -0.0738 -0.1161 -0.0419 -0.0282 -0.1037 

Maximum 0.2321 0.1837 0.0693 0.1085 0.0585 0.1893 0.0957 0.0382 0.0846 

Coeff. Of Variation 28.4726 302.9185 32.2536 11.4520 16.0366 22.1661 19.9678 20.3734 95.3220 

0.01Percentile (of 

standardised 

returns) -2.5069 -2.2938 -2.8627 -2.5989 -2.5461 -2.6888 -2.3255 -2.7730 -2.4954 

0.1 Percentile -1.0356 -1.0433 -1.1746 -0.8620 -1.0046 -0.8872 -0.8547 -0.9787 -1.1508 

0.4 Percentile -0.1780 -0.2101 -0.1246 -0.1750 -0.1879 -0.1371 -0.1519 -0.1788 -0.2136 

0.6 Percentile 0.1381 0.1215 0.2441 0.0296 0.1167 0.1176 0.0416 0.1022 0.1180 

0.9 Percentile 0.9740 1.1324 1.1220 0.9643 1.0741 0.9067 0.7699 0.9670 1.2478 

0.99 Percentile 3.0915 

 

2.4371 

 

2.6199 

 

3.4539 

 

2.5713 

 

2.9567 

 

3.5933 

 

3.0423 

 

2.6342 

 

LM(1)  Test for 

Heteroskedasticity  

212.8591 291.2590 126.0123 161.9786 11.9594 314.7868 71.8324 119.5308 25.8294 

Correlation (r2
t, rt-1)  0.1174 0.2003 -0.2101 0.1657 -0.0049 -0.1216 0.2313 0.1076 -0.0434 

 

The excess kurtosis values show that in all cases, log return distributions are peak-shaped.  An alternative 

way in which one may infer whether a distribution is peak-shaped is by looking at the location of the 

standardised values of the mid-observations.  The mid-20% observations in a normal distribution lie 

between the standardised values of +/- 0.251.  In comparison, the mid-20% (standardised) observations for 

all indices lie within a narrower range of standardised values, as shown in Table 4.  This is an alternative 

indication that these distributions are somewhat peak-shaped.   

 

In inquiring whether the distributions of the index log returns are fat-tailed, the location of the “extreme 

percentiles” may be compared to that of the normal distribution.  The 0.01 and 0.99 percentiles in a normal 

distribution occur at -/+ 2.326.  With the exception of the CASE 30 index, the 0.01 percentile occurs 

“earlier” than expected, indicating fat left tails for eight of the indices being analysed.  The location of the 

0.99 percentile for the distributions of all indices indicates that the right tail is fatter than the normal one, 

given that we enter this percentile “later” than expected.  This confirms that the tails of the log returns are 

fatter than normal.  Yet, the distributions become narrower than the normal distribution as we move 

further towards the centre, say when the location of the 0.1 and 0.9 percentiles is considered.  The 

distributions then become “fat” again in the centre, given that they are peak-shaped as discussed above.   

 

Seven of the indices are positively skewed, whilst BSE 500 and LITIN have a negative skewness.  Finally, 

the Jarque-Bera statistics are large enough to enable the rejection of the null hypothesis of normality for all 

the distributions, at the 99% level of confidence.   
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5.3  Heteroskedasticity of Logarithmic Returns  
 

As noted above, the plots of logarithmic returns for the indices show that it is quite plausible that both 

series feature a time-changing variance.   

 

The LM statistics for the indices are shown in Table 4 through an order 1 test.   These statistics are 

compared to the 95% critical value of the χ2 distribution at the respective degrees of freedom.  The values 

of the LM statistics are high enough to permit rejection of the null hypothesis of no ARCH effects.  This is 

a sign of heteroskedastic time series where large returns tend to occur in clusters.  

 

 

5.4  Symmetry of the Tails of the Logarithmic Distribution  
 

The histograms of the indices did not visually indicate that the left tail is fatter than the right one, as 

suggested by Franses and van Dijk (2000).  Indeed, comparing the location of the 0.01 percentile with that 

of the 0.99 percentile (which should be equidistant from zero in a symmetric distribution) indicates a fatter 

right tail for all indices except BSE 500.  When comparing the location of the 0.1 and the 0.9 percentiles, 

the evidence in favour of fatter right tails declines, given that BOLSA, BSE, MSE and SEMDEX indicate 

a fatter left tail.  Therefore, the empirical results for these indices are in line with the suggestions of 

Longin (1996) and Jondeau and Rockinger (2003), that asymmetry in the tails in some particular direction 

is not a general characteristic of stock market returns.   

 

 

5.5  High Volatility tends to follow Large Negative Returns 
 

Table 4 also reports the correlation coefficients for the squared return r2
t with the lagged return rt-1.  The 

correlation is negative only in case of four of the nine indices being analysed, and overall this does not 

confirm the observations of Koutmos (1999) and Franses and van Dijk (2000) that high volatility often 

follows large negative returns2.  This is however in line with the conclusion of DeGennaro and Zhao 

(1998).   

 

Thus, the result that high volatility does not seem to follow large negative returns in emerging markets 

may be due to no relationship between these variables in the first place, or because high volatility tends to 

be a more common feature in emerging stock markets, and therefore it tends to follow both negative and 

positive large returns.  The latter hypothesis may be explained by the notion that stock market volatility 

tends to be interconnected with macroeconomic volatility3.   

 

Another particular feature of the results obtained with respect to this characteristic is that if the countries 

are grouped by geographic regions, some patterns emerge.  For instance African countries (Egypt and 

Mauritius) show a positive correlation between volatility and lagged returns.  The same applies for 

Argentina and Jamaica.  Asian countries (India and Taiwan) reveal a negative correlation between 

volatility and lagged returns.  The results are somewhat mixed in case of European countries where this 

relationship is positive in case of Malta, negative for Slovenia and (slightly) negative for Lithuania.  

Factors which contribute to these differences may include the shorter sample period for Lithuania, and the 

relatively low market activity on the Malta Stock Exchange as compared to the other exchanges.  Overall, 

sub-dividing the countries in geographic regions reveals similar trends, which may be taken as an 

indication of the interdependence of proximate markets, although this entails a more rigorous investigation 

                                                 
2
 The correlation r2

t, rt-3 was also estimated and the signs of the coefficients were unchanged.  When the correlation r2
t, rt-5 

was considered, the signs of the coefficients were confirmed again, with the exception of SBI 20 and SEMDEX. 
3
 For instance Morelli (2002) used UK data to present empirical evidence of the interrelationship between the conditional 

volatility of the stock market and that for various macroeconomic variables.   
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given that the sample periods at hand differ across the indices. 

 

 

6.  Conclusion 
 

This paper has presented empirical evidence of the “stylized facts” of stock market data, by using selected 

emerging market indices.  A brief exposition of the characteristics and the relevant literature relating to 

stock market time series was presented in Section 2.  The methodology, data set and limitations were 

subsequently discussed.  The empirical results confirmed that stock price levels are often non-stationary 

and that it is more reasonable to apply econometric tools to the log returns.   It was also confirmed that the 

latter tend to be peak-shaped, fat-tailed and heteroskedastic.  The empirical results, did not confirm the 

observations of other authors regarding the asymmetry of the distribution tails in some particular direction 

and that high volatility tends to follow large negative returns.  Yet similar patterns for the latter 

characteristic were found over different geographic regions.   

 

In interpreting the above results, one should keep in mind that they might be sensitive to differing 

sampling intervals, as found for instance by Balaban, Ouenniche and Politou (2005).  The use of higher 

frequency data rather than daily price series might result in even more pronounced deviations from 

normality.   

 

The deviations of stock return distributions from normality are relevant for portfolio selection and risk 

management decisions.  In modelling the price risk of financial assets, particular attention should be 

devoted to the tails of the distributions since these constitute the largest price fluctuations and are thus 

highly relevant for the risk management function.  The modelling of these extreme fluctuations may 

require more focused econometric models, and this issue provides an interesting avenue for further 

research.   
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