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1. Introduction

A vast number of problems in areas as diverse as biology, economics, accident theory, linguistics,
reliability and bibliographical analysis have been linked with the generalized Waring distribution defined
by the probability function (p.f.) :

¢ a, . \m
P(X=x)= () LI C —1-—, x=0,1,2,..., a,m,c>0, (1.1)
: (a+¢)m (@a+m+c)s x! ‘

where a5, stands for I'(a+ B)/I(a), >0, BER. (See e.g. Xekalaki (1981, 1983a), Xekalaki and
Panaretos (1983), Schubert and Glinzel (1984).) The nature of (1.1) reveals the possibility of obtaining this
distribution in the context of sampling from an urn. In fact, Xekalaki (1981) has provided an inverse
sampling scheme with additional replacements. This urn’ representdtion of the generalized Waring
distribution can of course be associated with a variety of games of chance. There are, however, several such
games that one can define associated with the generalized Waring distribution in an indirect and rather
general sort of way. Motivated by a game of this nature the present authors were led to an extension of the
generalized Waring distribution, the stuttering generalized Waring distribution, with properties closely
related to those of the generalized Waring distribution. The derivation of this distribution resembles the
derivation of Panaretos and Xekalaki’s (1986) generalized binomial distribution.

So, in Section 2 a description of the model that gives rise to the stuttering generaﬁzcd Waring
distribution is given. In Section 3 the probability generating function of the distcibution is derived in terms
of Lauricella’s hypergeometric series of type D and the mean and variance of the distribution are obtained.

* Now at the Athens School of Economics and Business Studies, Athens, Greece.
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The case of higher order moments is also discussed. Section 4 considers an alternative derivation of the
stuttering generalized Waring distribution. Finally, in Section 5 some potential applications are discussed
in areas such as bibliographic research, linguistics, ecology and inventory control.

2. The model
Consider an urn that contains ¢ white.and a black balls. Let k, m,, m,,..., m, be positive integers and
define M, =Y]_,m,, r=1,2,..., k. The player draws a ball at random, observes its colour and returns it

to the urn along with one additional ball of the same colour before he draws the next ball. Drawings are
continued in this fashion until M, black balls have been drawn. Let X, be the number of white balls
sampled after the (M,_,)-th black ball has been drawn and before the (;)-th black ball is drawn, i=1,
2,...,k,(M,=0) and let X=X*_,iX,. The player’s gain is defined to be the difference X — h where 4 is a
fee paid before the player enters the game.

Theorem 2.1, For any value x, x=0, 1, 2,..., the P(X = x) is given by
€Em,) Asx) ko (m)ix,
(”+c)(EM.) £k (a'+c+2mi)(2x,) =1 X!
ke

P(X=x)= , x=0,1,2,.... (2.1)

1x;=x
Proof. From the definition of X it follows that P(X = x) =Tsin,~x POV 1{ X, = x}). Xekalaki (1984b)
showed that the urn scheme considered leads to a multivariate version of (1.1), the multivariate generalized
Waring distribution, representing the distribution of (X, X,,..., X;). Le.

k Cem)) a(Zx,)n:;l(mi)(x,) 1
P n { ‘Xz = xi} = k 4
i=1 (a+c)emy (@a+Em;+ ), TTEx,!
x=0,1,2,..., i=1,2,...,k. (2.2)

The result follows then as an immediate consequence. Hence the theorem has been established.

Theorem 2.2. Let X be defined as in Theorem 2.1. Then (2.1) defines a proper probability distribution on
{0,1,2,...}.

Proof. It suffices to show that ¥ P(X=x)=1.
From(2.1) we have

Cmy & =y k(M)

i P(X=x)=

x=0

Set x,=r, x=r+ Y (i-1r, i=1,2,..., k Then

(a+c)emy J=o s (a+c+Im)gn imi X!

f‘, P(X=x) Cemy & Ary k (m)e,)
=xX)=————
x=0 (a+c)():’”,-) r=0Xr=r (a+zmi+c)(2’i) i=1 rj'
CEm;) ad had ) k (’"j)(r,)

r

- (a+c)y(2m,) n=0 =0 (a+zmi+c)(2r,.) =i !

CEmy d a(l)(mi)(l) 1

- ¢ =1
(a+)emy jop (a+Zm;+ )y 1!
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Theorems 2.1 and 2.2 lead to the definition of a new probability distribution which arises from an
intermingling of generalized Waring streams.

Definition 2.1. Let k be a fixed positive integer. A r.v. X whose probability distribution is given by (2.1)
will be said to have the stuttering generalized Waring distribution with positive parameters k, a, m;,
m,,...,m; and c.

3. The probability generating function and the moments of the distribution

Let X be a r.v. having the stuttering generalized Waring distribution with p.f. given by (2.1) and let
G(s) be its probability generating function (p.g.f.). Then

4zx) ko (m)y

o]
G(s) =Cxm,) Z s Z

=0 Ijx;=x (a + c)()::x,-+2m,») i=1 xi!

If the transformation x,=r,, x =r+ X¥ (i — 1)r; is applied, the above relationship becomes

6(s) = CEmy & i i 4z k (mj)(r,»sjr”
(a+S)emy iZonm0 oo (@+Imi+)g,yj=i 7!
ie.
G(s)= ——m—FD(a; my, My,...,my; a+ yom+c; s, sz,...,s") 3.1
(a+c)(;m,)

-where F,, denotes Lauricella’s hypergeometric series of type D defined by

FD(a; Bi Bysers B @t ZB;‘""Y; S1» 32,---’sk)

§ i a(Zr,)(Bl)(r,) (Bk)(rk) sy Sk <1
= . Ak s <.
g’ =0 (a+ZB:+ YY)z r! rt’ =

The moments of the stuttering generalized Waring distribution can therefore be obtained from (3.1) by
differentiation. But, differentiating the p.g.f. leads to involved algebraic expressions that make even the
derivation of low order moments tedious. However, obtaining the moments of the distribution in (2.1)
becomes easier, if one observes that they can be associated with the moments of the random vector

(X;, X,,..., X,). From the definition of the r.v. X it follows that its mean and variance will be dependent
upon the mean and covariances of the r.v.’s X;, X,,..., X;. In particular,
k Kk k
E(X)= Y iE(X) and V(X)=Y¥ X i Cov(X, X)).
i=1 i=1j=1

As mentioned earlier, Xekalaki (1984b) showed that the random vector (X,..., X;) follows the
‘k-variate generalized Waring distribution with p.f. given by (2.3). As a result,

am; am,(c+m;—1)(c+a—1) mm;a(a+c—1)

. V(X)=

. cov(X, X)) =

E(X:)= Py P s
(c—1)(c-2) (e=1)(c-2)

c—1

i,
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Hence
E(X)=— sz (3.2)

and

(e=1)(c-2)

Since E(X;) and V(X;), Cov(X,, X;) exist only when ¢ >1 and ¢ > 2 respectively it follows that E(X)
and V(X) become infinite if c <1 and ¢ < 2 respectively.

Moments of higher order can be obtained through the usual transformation formulae from the factorial
moments of the distribution. The latter can be obtained by the formula

V(X)—L(H—a-———{ZIm-F——-(Ezm )2} (3.3)

u[,]=E(X(’))=E%=I(ID k) {15[ é( ) "")X(")}, 1=0,1,2,.... ‘(3.4)

Obviously, p; is an expression of the first / factorial moments of the k-variate generalized Waring
distribution given by

k
a(El,)Hi=1(mi)(l,) il ) s
- - |
Pt ™ (e )(e=2) - (e=B8) " [ (3.5)

(Xekalaki, 1984b). Then, since p  ,; does not exist unless ¢>Xk i1, it follows that p;; becomes
infinite for /> c. Hence the factorial moment generating function of the stuttering generalized Waring
distribution does not exist.

For k=1, formulae (3.1), (3.2) and (3.3) reduce to those of the p.g.f., mean and variance of the
generalized Waring distribution respectively.

4. An alternative urn scheme

Consider an urn that contains ¢+ X¥_;m; chips, ¢ blank and m; marked with the number i, i=
1,2,..., k (k> 1). The player draws a chip at random, records its number and returns it to the urn along
with an identical chip before he draws the next chip. Draws are continued in this manner until a blank
chips are drawn. The player’s gain or loss is defined to be the difference X — d where d is a fee payed by
the player before the enters the game and X is the sum of the recorded numbers of the drawn chips.

Theorem 4.1. For any value x, x=0, 1, 2,... the P(X=x) is given by (2.1) and hence it defines the
stuttering generalized Waring distribution with parameters (k, -a, my,..., my, c).

This model is pertinent to Steyn’s (1956) urn scheme which led to a distribution of a more general form
than that of (2.1). However, there is a flaw in the argument used to derive the moments as this presupposes
the existence of the factorial moment generating function (which in fact does not exist).
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5. Applications

The representation of a stuttering generalized Waring variable X by the sum X¥_,iX; where
(X,, X,,..., X,) is a k-variate generalized Waring vector, suggests the possibility of utilizing the stuttering
generalized Waring distribution in practical situations where single events, pairs of events, triplets of
events,..., k-tuples of events can be assumed to be jointly distributed according to the k-variate
generalized Waring distribution.

The stuttering generalized Waring distribution, for example could be applied in bibliographic research
which is an area where the generalized Waring distribution with parameters @, m =1 and ¢ has found
applications (see e.g. Schubert and Glanzel (1984) and the references therein). In this context X; may
represent the number of authors who authored i articles in a given time period whence X will represent the
total number of articles written by the X, + ... + X, authors. An alternative type of problem in the same
area may arise in situations where scientific articles are counted by the name of the author. In such cases
articles by i authors will be counted i times. Hence if X, is thought of as representing the number of
articles authored by i authors, X will represent the observed total number of articles which is greater than
or equal to X; + X, + ... + X, the actual total number of articles. So, suppose that in such a situation it is
reasonable to assume that (Xj,... X,) follows the k-variate generalized Waring distribution with parame-
ters @, m; =m, = ...m, =1 and c. Then if the stuttering generalized Waring distribution with parameters
k,a, m;=m,= ... =m, =1 and c is found to describe satisfactorily the observed distribution of X one
can use the estimates of the parameters a and c to infer about the distribution of X, + X, + ... + X, the
unobserved actual number of articles (generalized Waring with parameters a, k, and c¢ (Xekalaki
(1984b))).

The generalized Waring distribution has also been applied to problems in the area of linguistics (see e.g.
Herdan (1964)). Therefore, the stuttering generalized Warring distribution can possibly be used to describe
the distribution of the total number X of sounds occurring in a spoken utterance when the numbers X,
X,,..., X, of groups of 1, 2,..., k distinctive sounds have the k-variate generalized Waring distribution.
Alternatively, the stuttering generalized Waring distribution can be used as a potential model for the
description of the distribution of the number X of morphemes in a text with X; representing the number of
groups of i morphemes, i=1,2,..., k.

The stuttering generalized Waring distribution may also be used as a stochastic abundance model in the
ecological context where the generalized Waring distribution arises in connection with the description of
features of an animal or plant population (see, e.g. Engen (1978)). Suppose that the structure of a
population of organisms allows stratification into species according to some taxonomic classification. Then
X can be thought of as representing the total number of individual organisms of a taxonomic group living
in a particular area and the r.v. X; may denote the number of species represented by i organisms in the
population under consideration. So inferences can be drawn about the distribution of the size of the
taxonomic group from information concerning the distribution of the vector (X, X,,..., X;), the species
structure of the group. (Problems of similar nature have been examined by Panaretos (1983).)

Finally, inventory control problems may provide an interesting case for the application of the stuttering
generalized Waring distribution since the ordinary generalized Waring distribution arises as a demand
distribution (Xekalaki (1983b)). In this context X; may represent the number of orders for i units of a
particular product and X the total number of ordered units.
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