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Abstract

In 1997, the French government put into effect a law that permanently exempted

young French male citizens born after Jan 1, 1979 from mandatory military service

while still requiring those born before that cutoff date to serve. This paper uses a

regression discontinuity design to identify the effect of peacetime conscription on edu-

cation and labor market outcomes. Results indicate that conscription eligibility induces

a significant increase in years of education, which is consistent with conscription avoid-

ance behavior. However, this increased education does not result in either an increase

in graduation rates, or in employment and wages. Additional evidence shows conscrip-

tion has no direct effect on earnings, suggesting that the returns to education induced

by this policy was zero.
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1 Introduction

There has been considerable interest in analyzing the consequences of compulsory mil-

itary service on a wide array of outcomes. These include earnings (Angrist 1990; Angrist

& Krueger 1994; Angrist & Chen 2011), education (Card & Lemieux 2001), crime (Galiani

et al. 2011; Lindo & Stoecker 2013) and health outcomes (Bedard & Deschenes 2006, Con-

ley & Heerwig 2012). This is in part due to the general policy interest in understanding

shocks that are expected to have large and persistent long run effects on outcomes. Indeed,

conscripted individuals are obliged to serve in a crucial time of their lives, usually character-

ized by critical human capital investments. Moreover, the mechanics underlying these early

adulthood shocks are themselves of considerable interest. For example, the military service

and disruption caused by conscription may directly have long run effects on labor market

outcomes. Alternatively, conscription may instead affect long run outcomes through its ef-

fect on educational attainment, since continuing one’s education can typically allow one to

defer mandatory military service. Finally, understanding the effects of compulsory military

service has direct policy implications for countries that still have such policies in place.1

This paper focuses on the effects of a peacetime conscription shock on the education and

labor market outcomes of young French males. Prior to 1997, all French male citizens had

to undergo a 10 month compulsory military service at the age of 18. A lot of men preferred

to defer their service, and the best way to do so was by staying enrolled in an educational

institution. In 1996, the French government announced that people born after January 1,

1979 were no longer required to enlist, while those born prior to that were still required to

do so. This enables me to use a regression discontinuity design framework that compares

across cohorts that were barely subject to or exempted from mandatory military service.

Since there is no reason to believe the outcomes of these groups would have been different

absent this conscription policy, this research design allows me to overcome the selection bias

1In Europe: Austria, Denmark, Estonia, Finland, Greece, Norway, and Switzerland all still require their
citizens to undergo mandatory military service.
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in who is deemed physically and mentally fit for military service.

Results indicate that males born just before January 1, 1979 acquire on average half

a year of education more than those born just after January 1, 1979, which is consistent

with draft avoidance behavior. Specifically, this result is driven by individuals from high

socioeconomic backgrounds. However, the additional years of education do not translate

to degree completion; I find no discontinuity in percentage of degrees attained at the high

school or college level. Strikingly, I also find no significant effect on employment or future

earnings. The results are robust to different bandwidths and estimation procedures.

I then analyze several competing hypotheses as to why conscription would increase years

of education but not earnings. On the one hand, if conscription has no direct effect on

earnings, then my results imply zero returns to schooling. This could be the case if the

average marginal return to education for those who were on the verge of dropping out of

education is low, or because any positive returns to education in France may be mostly due

to sheepskin effects and signaling, rather than human capital accumulation.2 On the other

hand, if we believe that conscription has a direct negative effect on earnings, reasonable

assumptions regarding the magnitude of that effect from the existing literature, this results

in returns to education estimates of 2.5 to 5 percent. Additional evidence provides support

for the zero returns to education hypothesis.

In addressing the impacts of conscription on education and labor market outcomes, this

paper joins a growing body of research on peacetime conscription. Imbens & Van der Klauw

(1995) focus on the labor market effects brought about by peacetime conscription in the

Netherlands and find a 5 percent negative return to earnings as a result of military service.

They attribute this result to the corresponding loss of labor market experience. Galiani

et. al (2011) uncover a negative earnings effect brought about by serving in the Argen-

tinian military service. They conclude that this helps explain the documented increase in

draftees’ criminal behavior. On the other hand, Card & Cardoso (2012) find evidence of

2Of course, difference in ability to complete a degree may also reflect a difference in human capital
acquisition.
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positive military service effects on earnings. Specifically, they find a 4-5 percent increase

in the wages of men with only primary education in Portugal. Cipollone & Rosolia (2007)

focus on educational effects and find that exemption from service leads to a 3 percentage

point reduction in high school graduation rates in Italy. Di Pietro (2009) also analyzes the

educational effects of conscription in Italy by looking at university enrollment. The paper

finds evidence of heterogeneous enrollment effects based on socioeconomic status. Grenet et

al. (2011) and Bauer et al. (2012) examine the effect of peacetime military service on long

run earnings of post World War II conscripts in England and Germany respectively. Both

papers find no evidence of a long run earnings effect to conscription. Further, Grenet et al.

(2011) uncover no evidence of draft avoidance behavior in terms of increased educational

attainment in England, whereas Bauer et al. (2012) find that this behavior did exist in

Germany.

This paper is most similar to Maurin & Xenogiani (2007) who examine the effect of

conscription policy on both labor market and educational outcomes in France. They find

that this policy leads to an increase in educational attainment, graduation rates and earnings.

This study differs from Maurin & Xenogiani (2007) in several ways. First, I use the official

birth date of January 1, 1979 as the cutoff for military service eligibility, whereas their study

incorporates individuals born in 1978 in addition to 1979 in the treatment group. Second,

I use a RD design which relies on less stringent assumptions as compared to a differences

in difference model that compares across genders, which could be problematic to the extent

that the educational decisions of men may affect those of women in a general equilibrium

framework.3 Third, I look at wages for individuals in their early 30s, which could potentially

be more informative than entry wages examined in that paper. As a result, both papers reach

different conclusions. More specifically, while we both uncover evidence of draft avoidance

in terms of years of schooling, I find no evidence of a conscription effect on either graduation

3See, for example, the literature on gender classroom composition and educational outcomes (Hoxby
(2000); Lavy & Schlosser (2011); Black et al. (2013).
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rates or earnings, which contrasts significantly with their study.4

This paper makes several contributions relative to the existing literature. First, I present

estimates that speak to the impact of conscription policy on both education and labor market

outcomes. Particularly, I do so using a compelling research design that enables me to estimate

the causal impact of conscription policy under assumptions that are less stringent than for

many other research designs. This appears to be important, as this design yields no evidence

of graduation effects or an earnings premium, which contrasts with previous work on the

impact of conscription in France. In addition, because this study examines the impact of

conscription using recent data on a relatively young cohort, it is particularly relevant for

those countries in Western Europe that are considering changing their conscription policies.

This paper also adds to the much broader literature on education. Existing studies on the

returns to education have mostly focused on exogenous variations in the supply of schooling

and have generally found a positive returns to education (See Card (1999) for a survey of the

literature). This paper focuses on a policy that induced variation in educational attainment

through an increase in the demand for education. More specifically, conscription policy gave

students an added incentive to pursue education—independent of the usual incentives to

acquire more education. I find that the marginal student induced into acquiring education,

due to conscription, does not seem to benefit from this added education. Specifically, while

education has positive effects in general, we should still be wary of certain policies that

induce individuals to attain more schooling than they would have had if it were up to them.

This is consistent with recent findings by Pischke & Von Wachter (2008) and Grenet (2013)

who document zero to little returns to education using variation from compulsory schooling

laws in Germany and France respectively.

Section II presents more information on mandatory military service and subsequent re-

4I must acknowledge however that a direct comparison of both papers, specifically with respect to
earnings estimates, could potentially be problematic. Differences in labor market outcome estimates across
both studies may be attributed to conscription having a differential affect on early career wages for males in
their early 20’s versus longer term wages for those in their mid 30’s. This is consistent with Angrist (1990);
Angrist and Chen (2011) who initially finds a negative earnings impact to military service in the short run
with these effects dissipating over time in the long run.
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forms in France. Section III describes the data used in this paper. Section IV reviews the

identification strategy. Section V presents the main empirical results as well as robustness

checks. Section VI relates the findings to the returns to education literature. Section VII

concludes.

2 Mandatory military service in France and subse-

quent reforms

France was the first modern state to introduce military conscription as a condition of

citizenship during the French Revolution. It did so through the decree of the Jourdan Act of

1798 which stated “Any Frenchman is a soldier and owes himself to the defense of the nation.”

Conscription continued in various forms over the next 200 years until finally being phased out

between 1996 and 2002. Individuals were called up for national service at age 18. In theory,

one could postpone his service until the age of 22 without justification, though this was not

usually done in practice. Instead, delaying conscription through acquiring extra education

was the preferred route for several reasons. First, getting a full time job before conscription

would require looking for a job twice. Second, more educated conscripts had access to higher

responsibilities and milder forms of service. Further, staying on in education till the age of

26 allowed you to potentially avoid service all together. Finally, the abundance of low cost

public schools, universities and technical/vocational institutions in France made it relatively

easy to prolong education. In fact, Maurin & Xenogiani (2007) show that approximately

two thirds of individuals enrolled in military service at time t, were still in school at t-1,

whereas about 20% were unemployed and only 8% held permanent employment. They also

show that the proportion of conscripts serving in the military aged 20 or older was 64%,

with 90% of high school graduates serving after age 20.

International criticism over the performance of French deployed soldiers during the Gulf

War caused the government to rethink their military service composition. This prompted
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a national wide debate over whether or not national defense should be left to the hands of

professionals only. On February 22, 1996, President Jacques Chirac dramatically restruc-

tured the French army with the intent of having fully professional armed forces by 2002.

A few months later, the president announced the end of conscription—the 1997 reform law

granted national service exemption to men born after January 1, 1979. During the 1997-2002

transition period, men born before January 1979 were still required to perform 10 months

of service. Compulsory military service was completely eliminated by a resolution adopted

at the Cabinet meeting on June 27, 2001 which finally exempted those born before January

1, 1979 as well. The way these reforms were set up provides for an ideal quasi-experimental

setup to test for the effects of conscription policy on education and future labor market

outcomes.

Table 1 shows male conscription rates by birth cohort—taken from the ‘Generation 1998

à 10 ans’ individual level survey. One limitation of this survey is that it only includes

individuals with specific ties to the year 1998; whether these individuals are representative

of France more broadly is an open question.5 Table 1 indicates that around 50 percent of

all males born between 1974 and 1976 eventually served in the military.6 These numbers

are consistent with those published by the French ministry of defense. They report that

the number of conscripts during the early 1990’s was stable at around 200,000 individuals

per year implying that about 50% of a given birth cohort performed their national service

duties.7 The conscription rate drops to 37 and 27 percent for birth cohorts 1977 and 1978

respectively. This drop is consistent with the way conscription was abolished in France.

5The criteria for being included in Generation 1998 are as follows:
1) Enrollment in an educational institution in France in 1997-1998 or having left the education system in
1998. 2) No interruption in one’s education exceeding a year (except for reasons of health, national service).
3) Having not returned to school during the year following entry into the labor market 4) Being at most 35
years old in the year 1998. 5) Being in France at the time of the survey.

6General exemptions were given to males with mental or health issues. Other possible exemptions include
married men who had children and whose spouses had limited resources, family members of military martyrs,
non-citizens as well as individuals with dual citizenship who had lived abroad for a significant portion of
time.

7After the announcement of the military reform law in 1996 the number of individuals serving in the
military gradually dropped from around 200,000 in 1996 to zero in 2002.
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Individuals born in 1977 and 1978 were more likely to be exempt from service given that the

system of conscription was fully abolished in August 2001.8 Further, Table 1 affirms that

the elimination of conscription induced sharp cross cohort variation in conscription rates

around the January 1, 1979 serving threshold. Individuals born just before the cutoff were

27 percentage points more likely to have served in the military. Additionally, Table 1 also

reveals that males from different socioeconomic backgrounds (S.E.S) were not serving at

disproportionate levels. More specifically, conscription rates—averaged for cohorts 1974 to

1978—were similar with 45.2% of individuals from low S.E.S and 44.2% of individuals from

high S.E.S serving in the military. These numbers drop to zero for individuals from both

subgroups born after 1979. This alleviates concerns attributed to differential selection into

conscription based on socioeconomic background.

3 Data and Sample Construction

The data used in this paper come from the 2011 French Labor Force Survey (LFS)

conducted by the Institut de la Statistique et des Études Économiques (INSEE). I focus on

the 2011 LFS as it offers the most up-to-date earnings data for this study. The LFS covers

private households in metropolitan France. Participation in the survey is compulsory and

has a high response rate of about 81%. As of 2003, a survey sample rotation of 6 quarters

has been adapted. As a result, each household is interviewed for six consecutive quarters

with the first and sixth quarters’ interviews being conducted in person and the others done

over the phone. The weighting factor applied to the survey is the population total (15 years

or older) less the estimated number of people living in communities. The 2011 LFS surveys

about 420,000 individuals with a sampling rate of about 1/150 of the total population. It

provides information on individuals’ month-year of birth, sex, educational level, occupational

status, fathers’ occupation, hours worked and wages.

8If these cohorts stayed on in education till the ages of 23 and 24 respectively, then they would be
permanently exempt from serving. I must note however that people did not know this at the time, as the
decision to permanently exempt all males in 2001 was not announced well beforehand.
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From the original sample of 420,000 observations, I drop all females and non-French

citizens. I further restrict the sample to people born within 48 months on either side of

January 1, 1979. Descriptive statistics for the remaining 8,117 French male citizens born

between 1975 and 1982 are reported in Table 2. Respondents have an average of 14.77 years

of education, which corresponds to the number of years individuals are observed within

educational institutions.9 The average net monthly earnings for individuals in the sample

(as of 2011) is 1681 Euros and the employment rate is 90.7%. Further, the average reported

hourly wage is 12.27 Euros with an average workweek of 41 hours. The graduation rate for

high school is 67%, and for college it is 24%.10 For a detailed illustration of the available

educational routes in the high school and higher education system, refer to Appendix Figures

A7 and A8. Importantly, these figures highlight the fact that there were many different routes

available to students wishing to extend their stay in either traditional or vocational schooling.

Finally, I rely on fathers’ occupation as a proxy for socioeconomic status (S.E.S) and find

that 33% of individuals are classified as being from a high S.E.S. Particularly, occupation

type is stratified into 355 different positions compromised of four digit identifiers in the

LFS. This corresponds to the official French socioeconomic classification as represented by

the Nonmenclature des professions et categories socioprofessionelles (PCS) and is used as

reference in all official collective agreements. The first digit of each occupation makes it

possible to identify the set of occupations that share the same position in the hierarchy of

wages and education. More specifically, the first digit represents the four main skill levels

used in official collective agreements.11 Following Maurin & Thesmar (2004), my definition

of high skilled workers includes the first two groups (a and b), while low skilled workers are

9Children in France usually start schooling at age 6. Further, there are different educational routes for
schooling in France (professional, technical, academic) and this variable does not distinguish between the
types.

10I include both the professional/technical and general baccalaureate in my graduating from high school
variable. College graduation is defined as graduating with a licènse (the equivalent of a four year degree in
the U.S.)

11The four main skill levels are as follows: a) cadres(mostly upper level managers, engineers and profes-
sionals); b) profession intermédiare (lower level managers and professionals, supervisors, and technicians); c)
ouvriers et employés qualifiés (skilled manual and non-manual workers); d) ouvriers et employés non qualifiés
(low skill manual and non-manual workers).
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in the last two (c and d).

4 Identification Strategy

I use a standard regression discontinuity framework (Imbens & Lemieux, 2008; Lee &

Lemieux, 2010) to estimate the effects of the abolishment of conscription on educational

attainment as well as future earnings. The key assumption underlying an RD design is that

the conditional expectation of the outcome variable with respect to birth cohort month-year

(the running variable) is smooth through the January 1, 1979 birth cutoff. Intuitively, this

means that all other determinants of outcomes must be smooth across the cutoff. This is

likely to hold, as precisely manipulating one’s date of birth in such a short time period

is highly unlikely. Moreover, no other policy changes were occurring at the birth cohort

threshold. To support these claims, I show that there is no evidence of bunching around

the threshold, that observed determinants of education and earnings are smooth across

the threshold and that treatment estimates do not significantly change with the addition

of covariates. Accordingly, any discontinuity observed in 1979 can be attributed to the

causal effect of being born before January 1, 1979, and thus being subject to the mandatory

conscription policy. Formally, I estimate the following reduced form equation:

Yi = α + f(Bi) + τDi +ΘDi ∗ f(Bi) + δXi + ǫi

Where the dependent variable Y is the outcome of interest. D is a dummy variable

indicating whether a person belongs to a pre-reform cohort or not (i.e. being born before

January 1, 1979). B is an individual’s month-year birth cohort measured in months relative to

the cutoff date of Jan 1, 1979. The function f(.) captures the underlying relationship between

the running variable and the dependent variable. Further, I allow the slopes of the fitted

lines to differ on either side of the 1979 cutoff by interacting f(.) with the treatment dummy

D. X is a vector of controls that should improve precision by reducing residual variation in

the outcome variable, but should not significantly change the treatment estimate. The term
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ǫ represents unobservable factors affecting outcomes. The parameter of interest is τ which

gives us the treatment effect for each regression.

I use population survey weights in order to estimate the treatment parameter τ for

the various outcomes.12 Further, standard errors are clustered at the month-year level as

suggested in Lee & Card (2008).13 There are two ways to estimate the parameter τ . First,

one can choose a parametric function for f(.) (eg. a quadratic or quartic polynomial in B) and

use all the data available to estimate the equation above via ordinary least squares—typically

referred to as the global polynomial approach. Alternatively, one can specify f(.) to be a

linear function of B and estimate the equation over a narrower range of data, using a local

linear regression. The latter approach can be viewed as generating estimates that are more

local to the threshold and does not impose any strong functional assumptions on the data.

While the preferred specifications in this paper are drawn from local linear regressions using

uniform kernel weights, I still present results for a variety of bandwidths and functional

forms, as has become standard in the RD literature (Lee & Lemieux, 2010).

In what follows, I rely on intent to treat (ITT) estimates and only report reduced form

results. The reason I do so is twofold: First, the discontinuity in conscription rates at

the cutoff does not really affect educational outcomes as it is eligibility for conscription

rather than conscription in itself that drives those results. Second, re-weighing the reduced

form estimates for labor market outcomes by the discontinuity in conscription rates in a

Two Sample Two-Stage Least Squares framework (TS2SLS) relies on a tenuous exclusion

restriction, seeing as conscription eligibility has a dual effect on education and earnings.

12Coefficients vary slightly when running un-weighted regressions, but significance decisions remain un-
changed

13When the treatment determining covariate is discrete, reliance on functional form for estimation becomes
more critical. Clustering at the level of the discrete running variable accounts for uncertainty in the choice
of functional form for RD designs with discrete support.
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5 Results

5.1 Education

I first examine the impact of mandatory conscription on years of education.14 The results

are shown in Panels A and B of Figure 1. These figures take the same form as those after

them in that the open circles represent local averages over a 3 month period.

Panels A and B of Figure 1 depict a clear discontinuity in years of education for French

male citizens around the Jan 1, 1979 threshold date. Panel A uses a population weighted

quadratic fit with standard errors clustered at the month-year level. I use a bandwidth

of 108 months on either side of the cutoff and estimate a significant discontinuity of 0.35

extra years of education attributed to being eligible for conscription. The trends in the

global polynomial figures can be explained by the relative age of individuals in the sample.

Relatively older cohorts to the far left of the cutoff systematically have less education.15

Further, younger cohorts to the far right of the cutoff may still be in school. Panel B fits

the data over a narrower bandwidth of 23 months using a local linear regression. Results

indicate a significant 0.62 increase in years of education.16 The optimal bandwidth for the

local linear regression was selected using a robust data driven procedure (Henceforth CCT).17

I also report local linear estimates over a wide array of bandwidths as to avoid over-reliance

on a specific bandwidth choice, the results of which can be found in Panel C of Figure 1.

Corresponding regression estimates are shown in Table 3. All standard errors are clus-

tered at the month-year level. Panel A depicts discontinuity estimates using different band-

14One may worry that the presence of too many people returning to education after military service
would cause us to overstate any education effects. However, Maurin & Xenogiani (2005) show that only 4%
of people who were in conscription at time t-1 pursued education at time t.

15The Labor force survey indicates that both males and females born during that period had lower
educational attainment as compared to relatively younger generations

16The results from the global polynomial and local linear regressions are not statistically different from
each other.

17As outlined in Calonico, Cattaneo & Titiunik (forthcoming), this bandwidth selector improves upon
previous selectors that yield large bandwidths. Specifically, it accounts for bias-correction stemming from
large initial bandwidth choice, while also correcting for the poor finite sample performance attributed to this
bias correction. For instance, the LS-CV approach as outlined in Imbens & Lemieux (2008) gives an optimal
bandwidth of 29 months.
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widths and functional forms without the addition of controls. These estimates range from

0.41 to 0.62 years of extra education and are all statistically significant at the 5% level. The

addition of controls does not significantly change the estimates, which is consistent with

the identifying assumption. The controls used include birth month fixed effects, a binary

variable indicating whether an individual was ever enrolled in middle school and father’s

occupation. Treatment estimates with controls are shown in Panel B and range from 0.35 to

0.55 years of education and are also statistically significant at the 5% level. In Figures A1

and A2 of the appendix, I account for the addition of these exogenous controls by plotting

the residuals from years of education regressions. I conclude that conscription policy lead

to a 6-month increase in education for young French males. These results are in line with a

draft avoidance hypothesis (i.e. acquiring extra education to avoid military service).

Next, I examine whether this increase in years of education resulted in an increase in

degree attainment, as measured by high school and college graduation rates.18 Figures 2

and 3 show no evidence of a discontinuity in either college (0.0267) or high school (0.0034)

graduation rates using a quartic fit over a bandwidth of 108 months. Table 4 depicts esti-

mates for varying bandwidths and functional forms, with all results remaining statistically

insignificant. In summary, I find that while mandatory conscription significantly increases

years of education, it does not increase the likelihood of receiving a degree at the high school

or college level.

5.2 Labor market outcomes

I now turn to whether this increase in education quantity for those barely subject to

conscription yields positive labor market returns. First, I check to see if this policy gener-

ated any sharp changes in the likelihood of employment. All regressions in Figure 4 use a

population weighted quadratic fit over 108 months of data on either side of the Jan. 1, 1979

18The French education system includes different types of high school degrees ranging from the pro-
fessional/technical to the more traditional education route (The general baccalaureate). All these routes
have been accounted for in the graduating from high school variable. I also check for discontinuities at the
masters/doctorate level and find none.
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cutoff. In Panel A, I find an insignificant 1.9 percentage point change in employment rates

for those who were barely eligible for conscription.19 Corresponding regression estimates

are shown in Panel A of Table 5 with standard errors again clustered at the month-year

level. The treatment estimates for likelihood of employment remain statistically insignifi-

cant over a wide range of bandwidths and functional forms. I conclude that being eligible

for conscription does not seem to have significantly affected the likelihood of employment.

Next, I look at whether there are any significant effects on earnings for those barely

subject to conscription. I begin by looking at monthly wages that include zero earners.

Panel B of Figure 4 depicts an insignificant discontinuity in monthly earnings to the order of

51 Euros per month. Results remain unchanged when using logged earnings as the dependent

variable and consequently dropping all zero earners from the sample. Panel C of Figure 4

depicts an insignificant 1.5 percentage point intensive margin change in monthly earnings.

Finally, one may worry about whether monthly wages are not properly measuring effective

salary dynamics due to behavioral responses in hours worked. I check for this by looking at

any treatment effects on hourly wages. As can be seen from Panel D, I find no such effects

and conclude that there are no significant changes in average earnings brought about by

conscription. Corresponding regression estimates for all labor market outcomes are shown in

Table 5. The results remain statistically insignificant over varying bandwidths and functional

forms. I conclude that the conscription policy had no effect on labor market outcomes,

despite the significant increase in years of education that it caused.

To assess conscription eligibility effects on the distribution of earnings as opposed to just

average earnings, I also run quantile treatment effect regressions on monthly earnings for

the whole population of interest. I estimate treatment effects on the probability of having

earnings in each of 9 exhaustive groups. The quantile treatment effects suggest insignificant

estimates at all deciles of the income distribution, which are consistent with the average

treatment effects. Results are presented in Figure A3 of the appendix.

19I also re-estimate the global polynomial using a cubic and quartic fit and reach the same conclusion.
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5.3 Heterogeneous treatment effects

While the above results show that conscription policy increases years of education on

average, there are reasons to believe that some men should be more affected than others.

For instance, individuals from wealthier backgrounds may find it easier to support themselves

if they choose to prolong education. Thus, in order to complement the initial results, I look

at treatment effects for individuals from high versus low socioeconomic backgrounds to assess

if one was differentially affected by this policy.20 Table 6 depicts results for global polynomial

and local linear estimates. The bandwidth varies with each outcome variable when reporting

the local linear estimates which are again chosen by the CCT bandwidth selector.

Results indicate that there is no significant change in added years of education for low

S.E.S individuals, as can be seen in columns 1 and 3 of Table 6. In contrast, I find that

high S.E.S individuals take on significantly more education. Specifically, in columns 5 and

7, I estimate a significant treatment effect to the order of 0.57 and 0.96 years of education,

depending on the estimation procedure used. These results are consistent with a priori ex-

pectations, seeing as resources play an integral role in prolonging one’s education.21 However,

treatment effects on high school and college graduation rates remain statistically insignif-

icant for both subgroups. This suggests that even though individuals from more affluent

backgrounds were taking on more education, this did not affect the average graduation rate

of this subpopulation. As for labor market outcomes, there are no significant treatment

effects on the likelihood of employment for either group. I also estimate a zero treatment

effect for the two subgroups with respect to monthly, hourly, and logged wages. I conclude

that mandatory military service has no effect on labor market outcomes for individuals from

both spectra of the socioeconomic realm, even though it induced individuals from high S.E.S

to take on more education.

20Differential selection into mandatory conscription by socioeconomic status could potentially bias these
results. However, as shown in Table 1, I find no evidence of this.

21These costs can be direct (tuition, books, transportation, etc...) or indirect (opportunity cost of not
being employed).
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5.4 Robustness Checks

In this section, I test the reliability and validity of the identification strategy used. One

advantage of a RD design is that there are several tests that allow us to indirectly test the

plausibility of the research design. For instance, non-random sorting of individuals to either

side of the January 1, 1979 birth cutoff would cause identification issues. Specifically, if indi-

viduals are strategically sorting to the right of the threshold in order to avoid conscription,

and if this sorting is correlated with future outcomes, then the estimated treatment effects

would be biased. However, manipulation of birth certificates would be an extremely hard

thing to achieve in a developed nation such as France. Moreover, the fact that this policy was

announced in 1996 makes it hard to believe that people would be able to manipulate birth

documents in such a short period of time with such ease. Figure 5 depicts the distribution

of observations in the sample, with no large mass evident to the right of the cutoff.22

Another informative visual test of manipulation involves testing for the smoothness of

predetermined characteristics that are known to affect both earnings and education. The

intuition here is that if we observe any discontinuity in exogenous characteristics, then this

could be the result of strategic sorting by individuals or evidence of another policy occurring

at the threshold. I test for this by examining where there is a documented discontinuity

in fathers’ occupation or in middle school enrollment rates.23 Results depicted in Figures 6

and 7 confirm that there is no significant discontinuity in either of these baseline covariates.

The robustness of these results to varying bandwidths and functional forms are presented in

Table 7.

In addition, I perform several falsification exercises. I start by checking for discontinuities

among females, who did not have to serve in the military. Specifically, I worry about there

22There is slight variation from month to month which is easily explained by the nature of the data (survey)
and by the fact that data was trimmed by removing females, non-citizens, individuals living abroad, etc...

23Middle school enrollment rates should not be affected by the policy since those students are not yet
eligible for conscription. Further, I do not focus on middle school graduation rates as that variable could
potentially be endogenous to treatment in a dynamic choice model, seeing that passing the Brevet exam
(middle school exit exam) or its equivalent is needed to stay enrolled in high school education and potentially
delay one’s service.
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also being any positive treatment effects for females born just before the cutoff date. If

males and females born just before Jan.1, 1979 both experience a significant and positive

shock, then one may be concerned about some other policy driving the results. Panels A

to F in Figure 8 confirm that there is no discontinuity in years of education, graduation

rates, employment or wages for young French females. To investigate the robustness of these

global polynomial estimates, I report all outcomes over varying bandwidths and functional

forms in Table 8. All outcomes remain statistically insignificant except for high school

graduation. High school graduation treatment effects yield a significant discontinuity in

most specifications ranging from -4.8 to -8.2 percentage points. Even though these results

are not robust to various bandwidths, I cannot reject the existence of a significant and

negative treatment effect in the likelihood of graduating from high school for females born

just before the cutoff. The two most plausible explanations for this effect are as follows:

First, there may have been another exogenous shock—specific to the conscription birth date

threshold—that negatively affected the high school graduation rate of both genders. This

would cause us to potentially understate high school graduation effects for young males

subject to conscription. To the best of my knowledge, no such policy relative to that specific

birth cohort exists.24 An alternative, and more likely scenario, is that the increase in female

high school graduation rates for those born after the cutoff date may be the result of peer

effects stemming from gender composition in the classroom. That is, having less males remain

in educational capacities would automatically lead to an increase in the proportion of females

in the classroom. This could ultimately influence the educational performance of females in

the classroom. This is consistent with Black et al. (2013) who find that teenage schooling

outcomes are influenced by the proportion of females in the grade, with effects differing

by gender. These results also highlight a serious pitfall in using a difference-in-difference

strategy, with females as the control group, when analyzing the effects of conscription.

Finally, I check for discontinuities at pseudo cutoff dates around the original threshold.

24I also check for discontinuities in high school graduation for both genders during the cutoff years of
1977, 1978 and 1980 and find no significant effects.
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To do so I estimate treatment effects for 50 fake cutoff months on either side of the real

threshold. This placebo test is implemented using years of education as the dependent

variable since it is the only significant treatment effect found. Results indicate that the real

cutoff date provides for the largest and most significant discontinuity. Figure 9 summarizes

these findings by graphing t-statistics for these various placebo cutoff dates. The zero cutoff

point represents the real threshold with all others being placebo estimates for months relative

to the original being used as simulated treatment.25 All significant estimates are highlighted

in the graph with a large red filled circle. It is comforting to know that the most significant

treatment effect occurs at the real cutoff month-year with a t-statistic of around 3. Further,

I observe another 5 significant estimates out of the remaining 100 fake cutoff months.26

These t-stats decrease the further we are from the real cutoff birth date. This provides

further evidence that the significant treatment effect on years of education is in fact caused

by conscription.

6 What does this mean for returns to education?

So far I have estimated reduced form effects for both education and labor market out-

comes. I find evidence of a discontinuity in years of education, but not in the probability

of getting a high school or college degree. Further, there are no significant effects on labor

market outcomes. However, because conscription can have its own effect on labor market

outcomes, interpreting these results as evidence for the lack of returns to education would

only be true under certain assumptions. Below I present a simple conceptual framework

that allows us to draw the distinction between “traditional” and “conscription confounded”

returns to education estimates.

To simplify, let us assume that birth date (B) is the only factor that determines eligibility

25Each month represents a local linear regression of bandwidth = 24 months using years of education as
the dependent variable.

26This is consistent with a Type-1 error of 5%
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(e) and that e and conscription (C) are continuous variables over the real line.27 Further,

assume that schooling (S = S(e)) is an increasing function of eligibility.28 Finally, assume

that wage (W = W(S(e), C(e)) is a function of schooling and conscription.

By a simple application of the chain rule, the reduced form effect of conscription

eligibility on wages can be decomposed into a schooling effect and a conscription effect:

dW

de
=

∂W

∂S
∗

dS

de
+

∂W

∂C
∗

dC

de
(1)

Rearranging (1):

ReturnstoSchooling =
∂W

∂S
=

(dW
de

−
∂W

∂C
∗

dC

de
)

dS

de

(2)

Consistent with the previous literature on the topic, I focus on two general cases. Con-

scription can either have a zero or negative effect on wages.29

Case1 : ∂W

∂C
= 0

Assuming that serving in the military (C) has no direct effect on wages, equation (2)

reduces to a traditional returns to education interpretation and is just the ratio of reduced

form estimates for wages and years of education. Put differently, this is equivalent to using

date of birth as an instrument for education to estimate a local average treatment effect

(LATE) for the returns to education. From the results section we know that dW

de
= 0

indicating that the results point to no labor market returns for half a year of education. This

result is consistent with findings by Pischke & Von Wachter (2008) and Grenet (2013) who

document zero to minor returns to education using variation from compulsory schooling laws

in Germany and France respectively. The former study concludes that the skills most relevant

27For ease of computation, think of conscription and eligibility as probabilities on a continuous scale from
0 to 1 as opposed to a binary variable.

28The assumption imposes the constraint of conscription in itself having no direct effect on education,
which is a reasonable one to make seeing that only 4 % of students ever return to education after having
served.

29In fact, almost all French individuals interviewed in a recent study agreed that there were no advantages
to be gained from including military service experience on your curriculum vitae (Jorgensen & Breitenbauch
(2009).
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for the labor market are learned early on in Germany. On the other hand, Grenet (2013)

provide an explanation based on academic credentials. Particularly, they document that

countries such as England and Wales witnessed a surge in graduation rates after increasing

the age of compulsory schooling, whereas no such effect was documented in France. They

hypothesize that policies that do not induce an uptake in academic credentials may not

necessarily result in positive returns to education.

One explanation for the lack of educational returns in my study is that the average

marginal return to education for those who were on the verge of dropping out of education

is low. That is, the type of education induced by draft avoidance is of a lower quality than

typical education or the marginal student induced into education exerts less effort. Alter-

natively, since this increase in years of education for the eligible group is not accompanied

by a significant increase in college or high school graduation rates, then perhaps the results

could be attributed to the value of signaling in education. The latter scenario is consistent

with Grenet (2013) and suggests that most of the returns to education for the population of

interest seem to be stemming from sheepskin effects (signaling) as opposed to human capital

acquisition in the form of additional years of education.

Case2 : ∂W

∂C
< 0

Assuming that conscription has a negative effect on wages, then equation (2) no longer

simplifies to a traditional returns to education interpretation. However, a bound for plausible

returns to education estimates can be derived from equation (2). We know that ˆdW
de

= 0

and d̂S

de
= 0.5. The compliance ratio can be estimated at d̂C

de
≈ 50%.30 Further, previous

returns to conscription literature, that have found negative effects to conscription, point to

a ∂W

∂C
≈ 2.5%− 5% negative returns to conscription. Plugging these estimates into equation

(2), I estimate a bound to the order of ∂W

∂S
≈ 2.5% − 5% returns to an additional year of

30Some may question why this number is at odds with the conscription rates for the years 1978 and
1979—reported in Table 1. As mentioned in section 2, one of the criteria for inclusion in the Generation

1998 à 10 ans survey is being in an educational institution in 1998. Thus, people who were not in education
in 1998 or who had not left education by 1998 are excluded from the sample. These individuals likely have
high service rates, which means Table 1 potentially underestimates conscription rates for some cohorts. As
a result, we rely on a less conservative estimate of 50% at the cutoff.
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education for the population of interest.31

In order to shed light on which of these possible interpretations is more likely to be

true, I look at two subgroups whose education decisions are exogenous to treatment. As

highlighted in section 5.4, there is no threshold crossing effect on education for individuals

from low socioeconomic backgrounds. On the other hand, I observe a treatment effect on

years of education for individuals coming from high socioeconomic backgrounds. However,

both these groups experience no significant labor market treatment effects. As a result,

and under the assumption of homogeneous conscription effects, serving does not seem to be

directly affecting labor market outcomes.32

To complement these results, I also look at another subpopulation whose education is

orthogonal to treatment but who are ultimately still eligible for conscription. Specifically, I

restrict the data to people who have only completed primary schooling (i.e up to grade 6).

These individuals’ decision to not remain in school should be independent of conscription

policy. Figure A4 confirms that there is no discontinuity in years of education for this

subgroup. As a result, any discontinuity in earnings must be due to the effect of conscription

itself, rather than to the combination of military service and increased education. Results

are shown in Figure A5, which shows no effect on earnings. While these results are more

suggestive than conclusive given I am focusing on a very specific subgroup of individuals,

they reinforce the conclusion that service has no direct effect on earnings.

Additionally, the main hypothesized channel—in the conscription literature—through

which military service affects earnings is through a loss of early labor market experience

(Angrist, 1990; Imbens and Van Der Klauw, 1995). Figure A6 indicates that conscription

policy does not induce a loss of early job market experience despite it leading to an increase

in years of education. This finding is consistent with the proposed evidence suggesting zero

31This bound is calculated assuming a compliance ratio of 50%. Assuming a more conservative 25%
compliance ratio at the cutoff, the bound becomes 1.25%-2.5% returns to a year of education.

32If individuals from high S.E.S reap some direct economic benefit from conscription relative to low S.E.S
individuals, then this conclusion may not hold. However, the only cases in the literature where conscription
has shown to have a positive impact on earnings were for individuals from less educated and/or disadvantaged
backgrounds (Berger and Hirsch 1983; de Tray 1982).
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returns to military service for my population of interest. Further, this also rules out the

possibility that decreased job market experience is negating any potential positive earnings

stemming from the documented increase in education. Altogether, my results suggest that

the only potential effect conscription policy could have on earnings is through its effect on

education. I conclude that the increased years of education observed in the original sample

do not yield positive labor market returns. As stated earlier, this could be because the

average marginal return of this type of education induced by conscription policy does not

increase human capital, or because the returns to education work primarily through signaling

rather than human capital accumulation.

7 Conclusion

This paper contributes to the returns to conscription literature by exploiting the aboli-

tion of mandatory military service in France in order to identify the effects of conscription

eligibility on education and future earnings. I use a regression discontinuity design to over-

come selection bias attributed to serving in the military. I find that those barely eligible for

conscription obtain approximately 6 additional months of education as a result. Specifically,

I find that this result is mainly driven by individuals from high socioeconomic backgrounds.

However, there are no discontinuities in high school or college graduation rates, which sug-

gests that the individuals do not use the additional time in school to finish degrees. Fur-

thermore, I find no effects on employment rates, monthly, hourly or logged earnings. These

results are robust to varying bandwidths and functional forms.

I also contribute to the returns to education literature by presenting several hypotheses

that could plausibly be driving the above results. If we assume no direct returns to serving

in the military, then the ratio of the two reduced form effects yield a zero estimate for returns

to education. On the other hand, if we were to assume negative returns to conscription, then

the reduced form results do not simplify to a traditional returns to education interpretation.
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Back of the envelope calculations result in a bound of 2.5%- 5% returns to one year of

education. Under the assumption of homogeneous returns to conscription, I provide evidence

to the lack of any direct returns to conscription. This leans support to the zero returns to

education hypothesis. No returns to schooling could be interpreted in several ways. First, the

education induced by draft avoidance could be of lower quality than more typical education.

Alternatively, since there is no increase in high school or college graduation rates, then the

results could be driven by signaling and sheepskin effects.

These results have important implications. First, while it remains an open question as

to the extent to which these results would apply in other contexts, these findings could

provide some evidence on the potential effects of mandatory military service in European

countries that have yet to abolish such policies. Finally, we should be wary about the

possible consequences of certain policies that induce individuals to attain more schooling

than they would have had if it were up to them. In fact, a good portion of these individuals

could probably be better served acquiring early labor market experience. More specifically,

while the returns to education for non draft related reasons may still be positive, policies

that aim to increase educational attainment without targeting the necessary complements

of education need to be looked at closer.
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(b) Local Linear Graph
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Figure 1: Years of education estimates based on birth month relative to Jan 1, 1979 cutoff.

• Notes: All regression estimates are weighted by population. Standard errors are clustered at the birth-

month year and reported in parentheses. Uniform Kernel weights used for local linear regressions.

For figure 1C: solid and dashed lines represents the point estimates and 95% confidence intervals

respectively.
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Figure 2: College graduation rates based on birth month relative to Jan 1, 1979 cutoff
(Global Quartic graph).
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Figure 3: High school graduation rates based on birth month relative to Jan 1, 1979 cutoff
(Global Quartic graph).

• Notes: High school graduation includes all forms of baccalaureate degrees (technical, professional, general).

Sample includes French male citizens. All regression estimates are weighted by population. Standard

errors are clustered at the birth-month year and reported in parentheses.
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(b) Monthly Wages
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(d) Hourly Wages

Figure 4: Labor market outcomes based on birth month relative to Jan 1, 1979 cutoff (Global
Quadratic graphs).

Notes: Sample includes employed and unemployed French male citizens with at least 10 hours of weekly

work (conditional on employment). All regression estimates are weighted by population. Standard errors

are clustered at the birth-month year and reported in parentheses.
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Figure 5: Distribution of birth month-year (running variable) near Jan 1, 1979 birth cutoff.

Notes: Monthly bins depict number of individuals born in each month-year. Sample includes French male

citizens (employed +unemployed).
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Figure 6: Testing for the smoothness of predetermined characteristics (Middle school enroll-
ment) around cutoff using a global quartic graph.
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Figure 7: Testing for the smoothness of predetermined characteristics (Father’s occupation)
around cutoff using a global linear graph.

Notes: Sample includes French male citizens. All regression estimates are weighted by population. Stan-

dard errors are clustered at the birth-month year and reported in parentheses.
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(a) Female years of educ.
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(b) Female college grad.
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(c) Female high school grad.
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(d) Female employment rates
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(e) Female monthly earnings
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Estimated discontinuity = 0.045(0.035)

(f) Female logged earnings

Figure 8: Female outcomes based on birth-year month relative to Jan 1, 1979 cutoff (Global
Quadratic graphs).

Notes: Sample includes employed and unemployed French female citizens with at least 10 hours of weekly

work (conditional on employment). Sample weighted by population. Clustered Standard errors reported

in parentheses.
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Figure 9: Placebo test - T-statistics for reduced form effects on years of education using
various fake cutoff dates.

Notes: Sample includes French male citizens. Each open circle represents the t-statistic from a local linear

regression of bandwidth = 24 months using years of education as the dependent variable. Month Zero is

the ’real’ cutoff date, and I simulate 50 fake cutoff months to the right and left of that point. Clustered

standard errors used to compute all t-stats.
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B Tables

Table 1: Male conscription rates based on birth year

Birth cohort year All Males Low S.E.S High S.E.S Number of Observations

1974 0.531 0.545 0.528 452

1975 0.485 0.525 0.454 538

1976 0.556 0.559 0.567 652

1977 0.376 0.397 0.361 789

1978 0.271 0.268 0.300 849

1979 0 0 0 711

1980 0 0 0 572

Source: Generation 1998 à 10 ans

Socioeconomic Status (S.E.S) determined by father’s occupation and based on official French classifi-
cation of jobs.

35



Table 2: Summary statistics for French male citizens of birth cohorts 1975 to 1982 as of 2011

Variable Mean

Years of Education 14.77
(3.036)

Monthly Earnings (in Euros) 1682.1
(1057.9)

Log Monthly Earnings 7.481
(0.427)

Hourly Wage (in Euros) 12.27
(4.891)

Employment rate 0.907
(0.290)

Hours Worked per week 40.88
(10.10)

High S.E.S 0.331
(0.46)

Middle school enrollment 0.993
(0.0819)

High School graduation rate 0.668
(0.471)

University graduation rate 0.240
(0.427)

Observations 8117

Mean outcomes reported; Standard deviation in parentheses

*Data is taken from the French Labor Force Survey 2011 for male birth cohorts 1975 to 1982.

-Since the dataset is not balanced, the number of observations used to compute each variable does not necessarily

match with the number of observations reported.

*Father’s occupation is recoded as a dummy variable where 1 denotes higher skilled jobs and 0 denotes manual

labor/ lower skilled jobs.
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Table 3: Regression discontinuity estimates for years of education using different bandwidths and specifications.

Bandwidth 8 months 20 months 23 months 30 months 40 months 40 months 60 months 80 months Global
1 2 3 4 5 6 7 8 9

Panel A: no controls
Discontinuity .505*** .516** .624*** .477*** .414*** .575** .539*** .593*** .581***

(.16) (.19) (.20) (.17) (.14) (.22) (.17) (.20) (.22)
Panel B: Controls .461** .450** .548*** .362** .357** .488** .397** .497** .478**

(.16) (.17) (.17) (.14) (.15) (.21) (.17) (.21) (.23)
Observations (No Controls) 1340 3341 3822 4999 6622 6622 10051 13446 18975
Observations (+Controls) 1047 2556 2931 3836 5067 5067 7700 10300 14486
Month Polynomial Zero One One One One Two Two Three Four

Notes: Sample includes French male citizens.
Each cell represents a separate regression with years of education as the dependent variable and the treatment variable ’born before January 1, 1979’.
All specifications control for a flexible polynomial of age in which the slope is allowed to vary on either side of the cutoff.
Standard errors are clustered at the month-year level and reported in parentheses. All regressions have been weighted by population.
Our preferred specification is the one using bandwidth of 23 months which has been computed using the method proposed in Calonico et. al (2013).
Controls include: 1) Birth month fixed effects 2) A binary variable for middle school enrollment 3) father’s occupation.
*** p <0.01 ** p <0.05 * p <0.1
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Table 4: Regression discontinuity estimates for college/high school graduation rates using different bandwidths and specifica-
tions.

Bandwidth 4 months 8 months 12 months 20 months 30 months 40 months 50 months 60 months Global
1 2 3 4 5 6 7 8 9

Panel A: Discontinuity
in college grad. .008 –.005 .014 .007 .028 .021 .001 .010 .027

(.04) (.03) (.02) (.04) (.03) (.04) (.05) (.04) (.04)
Panel B: Discontinuity
in high school grad. –.016 .008 .013 .006 .012 .012 .007 .005 .003

(.03) (.03) (.02) (.03) (.03) (.03) (.04) (.04) (.03)
Month Polynomial Zero Zero Zero One One Two Three Three four
Observations 633 1332 1991 3334 4992 6616 8254 10036 18985

Notes: Sample includes French male citizens.
High school graduation defined as finishing any Baccalaureate type (Professional, technical, general)
Each cell represents a separate regression with graduation rates as the dependent variables and the treatment variable being ’born before
January 1, 1979’.
All specifications control for a flexible polynomial of age in which the slope is allowed to vary on either side of the cutoff.
Standard errors are clustered at the month-year level and reported in parentheses. All regressions have been weighted by population.
*** p <0.01 ** p <0.05 * p <0.1

38



Table 5: Regression discontinuity estimates for labor market outcomes using different bandwidths and specifications.

Bandwidth 6 months 14 months 20 months 30 months 40 months 50 months 60 months Global
1 2 3 4 5 6 7 8

Panel A: Discontinuity
in employment. .024 .033 .012 .016 .026 .019 .027 .019

(.014) (.021) (.021) (.017) (.021) (.019) (.019) (.014)
Panel B: Discontinuity
in monthly earnings. 66.240 124.720 63.256 68.971 111.583 66.293 70.013 51.143

(84.070) (119.271) (89.762) (74.086) (95.246) (83.977) (80.078) (63.066)
Panel C: Discontinuity
in log wages. –.032 –.014 .004 .016 .010 –.001 .000 .015

(.027) (.043) (.033) (.029) (.036) (.032) (.030) (.024)
Panel D: Discontinuity
in hourly earnings. .053 .381 .245 .106 .244 .208 .091 –.132

(.479) (.637) (.481) (.396) (.493) (.444) (.415) (.335)
Month Polynomial Zero One One One Two Two Two Two
Observations 700 1649 2386 3601 4755 5956 7231 13779

Notes: Sample includes French male citizens.
Wages include zero earners, but logged wages drops those unemployed. Hourly wages are conditional on at least 10 weekly hours.
Each cell represents a separate regression with different labor market outcome dependent variables and the treatment variable being ’born
before January 1, 1979’.
All specifications control for a flexible polynomial of age in which the slope is allowed to vary on either side of the cutoff.
Standard errors are clustered at the month-year level and reported in parentheses. All regressions have been weighted by population.
*** p <0.01 ** p <0.05 * p <0.1
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Table 6: Regression discontinuity estimates for individuals from low versus high Socioeconomic backgrounds.

Socioecon. Char. Low S.E.S Low S.E.S Low S.E.S Low S.E.S High S.E.S High S.E.S High S.E.S High S.E.S

Global Global degree. Local Linear L.L BW* Global Global degree. Local Linear L.L. BW*
Panel A: Discont.
in years of educ. .23 2 .23 23 .57** 2 .96*** 19

(.19) (.3) (.25) (.35)
Panel B: Discont.
in high school grad. –.025 4 –.017 33 .03 4 .034 37

(.045) (.035) (0.04) (.032)
Panel C: Discont.
in college grad. –.029 4 –.028 19 .10 4 .08 24

(.04) (.037) (.084) (.075)
Panel D: Discont.
in employment .016 2 .022 28 –.007 2 –.015 25

(.02) (.027) (.02) (.032)
Panel E: Discont.
in monthly wages –11.75 2 –5.17 29 –8.9 2 54.6 29

(71) (93.13) (150.59) (184.25)
Panel F: Discont.
in logged wages –.025 2 –.046 21 .051 2 .059 30

(.03) (.041) (.052) (.063)
Panel G: Discont.
in hourly wages –.35 2 –.47 26 .012 2 .31 36

(.33) (.43) (.87) (.99)

Observations 9520 1858 4966 933

* L.L. BW = Local linear bandwidth estimated using the CCT method.
* Number of observations for local linear regressions corresponds to observations from lowest bandwidth chosen (i.e 19 for both groups) Each
cell represents a separate regression with a different dependent variable in each row and with the treatment variable being ’born before January
1, 1979’.
Low S.E.S coded as 0 for fathers’ who are/were employed in less skilled/manual jobs. High S.E.S coded as 1 represents fathers who are employed
in medium/high skilled specialized jobs.
All specifications control for a flexible polynomial of age in which the slope is allowed to vary on either side of the cutoff.
Sample includes French male citizens. Standard errors are clustered at the month-year level and reported in parentheses. All regressions have
been weighted by population.
*** p <0.01 ** p <0.05 * p <0.1
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Table 7: Regression discontinuity estimates for controls using different bandwidths and specifications.

Bandwidth 8 months 12 months 23 months 30 months 40 months 50 months 60 months 80 months Global
1 2 3 4 5 6 7 8 9

Panel A: Middle
school enrollment
discontinuity .001 .002 .000 .002 .000 .004 .003 .003 .000

(.002) (.003) (.003) (.003) (.003) (.004) (.004) (.004) (.004)
Panel B: Father’s
occupation disc. .020 .004 .010 .015 .009 .010 .023 .016 .034

(.04) (.03) (.04) (.04) (.03) (.04) (.04) (.04) (.04)
Month Polynomial Zero Zero One One One Two Two Three Four
Observations 1340 1998 3813 4987 6608 8244 10029 13426 18973

Notes: Sample includes French male citizens.
Each cell represents a separate regression with years of education as the dependent variable and the treatment variable ’born before
January 1, 1979’.
All specifications control for a flexible polynomial of age in which the slope is allowed to vary on either side of the cutoff.
Standard errors are clustered at the month-year level and reported in parentheses. All regressions have been weighted by population
weights.
*** p <0.01 ** p <0.05 * p <0.1
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Table 8: Placebo regression discontinuity estimates for females using different bandwidths
and specifications.

Bandwidth 10 months 20 months 30 months 40 months 50 months Global
1 2 3 4 5 6

Panel A: Female discont.
in years of educ. –.187 –.230 –.255 –.297 –.365 –.065

(.17) (.26) (.20) (.26) (.24) (.16)
Panel B: Female discont.
in high school grad. –.048** –.074** –.061** –.071** –.082*** –.035

(.02) (.03) (.03) (.03) (.03) (.02)
Panel C: Female discont.
in college grad. –.043 –.068* –.021 –.063 –.059 .003

(.03) (.04) (.03) (.04) (.04) (.03)
Panel D: Female discont.
in employment rates .009 .005 –.017 –.005 –.014 –.016

(.02) (.02) (.02) (.02) (.02) (.01)
Panel E: Female discont.
in monthly earnings 29.703 41.614 –4.805 28.358 28.910 –13.847

(68.86) (110.23) (81.36) (118.39) (101.00) (58.24)
Panel F: Female discont.
in logged earnings .024 .064 .042 .070 .075 .046

(.04) (.06) (.04) (.06) (.05) (.04)
Panel G: Female discont.
in hourly earnings .267 .364 .460 .550 .524 .239

(.37) (.59) (.47) (.65) (.57) (.34)
Month Polynomial Zero One One Two Two Two
Observations 1073 2290 3433 4556 5773 13463

Notes: Sample includes only female French citizens.
Each cell represents a separate regression with the treatment variable ’born before January 1, 1979’.
All specifications control for a flexible polynomial of age in which the slope is allowed to vary on
either side of the cutoff.
Standard errors are clustered by birth month-year and reported in parentheses. All regressions are
weighted by population.
Due to the unbalanced nature of the data, the number of observations using different dependent
variables does not necessarily correspond with the last row.
**** p <0.01 ** p <0.05 * p <0.1
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1

Figure A1: Years of education residuals based on birth month relative to Jan 1, 1979 cutoff
(Global quadratic graph).
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 Estimated discontinuity = 0.55 (0.17)

Figure A2: Years of education residuals based on birth month relative to Jan 1, 1979 cutoff
(Local Linear graph).

• Notes: Sample includes French male citizens. All regression estimates are weighted by population.

Standard errors are clustered at the birth-month year and reported in parentheses. Controls used

include month of birth fixed effects, a dummy for middle school enrollment as well as father’s occu-

pation. 43



(a) Local linear regressions of h=30 months
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(b) Global quadratic regressions
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Figure A3: Distributional treatment effects on monthly earnings.

Notes: Solid and dashed lines represents the point estimates and 95% confidence intervals respectively.

Sample includes French male citizens. All regression estimates are weighted by population. Standard

errors are clustered at the birth-month year and reported in parentheses.
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Estimated discontinuity = −61.55(216.06)

Figure A4: Years of education for individuals with only primary schooling completed (Global
Linear graph).
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Estimated discontinuity = 0.405(0.45)

Figure A5: Earnings for individuals with only primary schooling completed (Global Linear
graph.)

• Notes: Sample includes French male citizens who have completed only primary schooling. All regres-

sion estimates are weighted by population. Standard errors are clustered at the birth-month year and

reported in parentheses.
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Figure A6: Years of job market experience (Global Quadratic graph).

• Notes: Sample includes French male citizens eligible for conscription. All regression estimates are

weighted by population. Standard errors are clustered at the birth-month year and reported in

parentheses.
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