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Abstract

The relationship between product market performance of a firm and its

capital structure has drawn considerable amount of attention recently amongst

corporate finance researchers. The same was established to be non-monotonic

in the context of a developed market. The non-monotonicity in the functional

form could be expressed by pieces of straight lines joined at different values of

debt (or knots). In this paper we address the issue of estimating the slopes of

different line segments along with the positions of the knots from a panel of

firms using an adaptive hierarchical Bayesian semi-parametric regression model.

Further,keeping in mind that such a relationship is less investigated in emerging

economies where the debt market dynamics may be different we investigate

the same for an emerging economy. In the process we provide the economic

rationale for varying sign and magnitude of the slopes of the line segments

discussed above.
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1 Introduction

The fact that financing decisions are not just affected by the conflict within agents

inside the firm but may also be influenced by the dynamic interaction of the firm with

outsiders like competitors and consumers was theoretically established by [2]. With

infusion of debt in a firm’s capital structure there is incentive for the shareholders to

take more risk and pursue aggressive investment policies. Brander and Lewis showed

that in an oligopoly this behavior translates into aggressive policy in the output mar-

ket. Consequently, the leveraged firm would produce more than the equity-financed

firm resulting in a non-decreasing monotonic relationship between leverage and out-

put. [1],however, used a Stackelberg like oligopoly framework and introduced a profit

function of lenders to show that the relationship between capital structure and out-

put market performance of firms is non-monotonic in nature. Empirical analysis of

Campello considers sales growth as a measure of firm’s output market performance

and ratio of debt to total assets of the firm as a measure of its leverage. The rela-

tionship between these two variables is modeled using a piecewise linear function or

spline with fixed and known knot points through a panel regression after controlling

for other economic factors or co-variates. The influence of debt on output growth of

firms are determined from the slopes of the line segments. Similar relationship be-

tween output market performance and leverage has also been reported by [3]. Recent

studies having shown the importance of country specific factors in determining capital

structures of firms [4], [5], it may reasonably be expected that output growth-debt

relationships will be different in different economies reflected through different knots

and slopes for the piecewise line segments. The challenge is therefore, to estimate the

positions of knots which partition the range of debt and the functional relationship

therein.

In this paper we adopt a hierarchical Bayesian semi-parametric regression with
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adaptive splines to model the output growth in terms of normalized leverage variable

. The adaptive spline function assumes the positions of knots to be unknown and

estimates of the same are obtained using Monte Carlo Markov Chain (MCMC) simula-

tions. Recently, Bayesian framework has been effectively used to address address some

important financial issues [6]. The hierarchical Bayesian framework helps to address

two additional important issues, viz. endogeniety caused by lack of comprehensive

list of co-variates (see [7] and references therein) and firm specific error variance or

heteroscedasticity [1]. While existing literature suggests the use of instrument vari-

able to tackle endogeneity, it is very difficult to find an instrument of leverage that is

orthogonal to the error (e.g see [1], [8], [9]. An alternative approach to correct the

endogeneity bias is through penalized Ridge regression [10]. In Ridge regression set

up, a quadratic penalty function of the parameters of endogenous co-variates (to be

called endogenous parameters henceforth) is added to the squared error loss which

is subsequently minimized to obtain estimators of the regression parameters. Here

we adopt a hierarchical Bayesian framework where squared error loss minimization

is posited as maximum likelihood estimation problem for a normal random sample

and the quadratic penalty function for endogeneity bias is included through Gaus-

sian priors on the endogeneous parameters. The weights of the penalty function are

assumed to be prior variances of the endogenous parameters. The non-negativity of

penalty parameters ensures that the penalized Ridge estimators could be obtained

from posterior means of the corresponding parameters. A similar prior specification

for other regression parameters would address the issue of multi-colinearity among the

covariates as Ridge regression is a standard technique to tackle the same. The other

important issue is heteroscedasticity which induces a large number of parameters. To

address the estimation problem in a high-dimensional parameter space we assume

identical prior distributions for the error variances with a common hyper-parameter

[11].
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Empirical investigation of the interaction between capital structure and product

market performance has mainly focused on developed markets (e.g. see [11], [12].

Starting with [13], recently there has been a few efforts to understand the systemic

issues specific to emerging markets in capital structure product market intervention

( [14], [3]. Although as a part of BRIC1, India represents a unique opportunity for

global investors, there has been only couple of studies conducted on Indian market to

the best of the knowledge of the present authors [15], [16]. However,that work focused

on only one sector, viz., the manufacturing sector. In this paper we consider a panel

of 208 Indian firms without any restriction on the industry sector over 25 years to

understand the interaction between their corporate financial strategies and product

market through the lens of the hierarchical Bayesian model described above.

2 Hiearchical Bayesian panel regression model

Let yi,t be the measurement on output market performance of the ith firm in the

tth year and Xi,t be the corresponding vector (row) of observations on p co-variates

including control variables and leverage, i = 1, 2 . . . n, t = 1, 2 . . . T . Pooled panel

regression model could be then represented as:

yi,t = Xi,tβ + ϵi,t (1)

Denoting the T−vector of errors corresponding to the ith firm by ϵi, we assume

E[ϵi] = 0, V (ϵi) = σ2
i IT , and E[ϵiϵ

′

j] = 0T×T ∀(i, j) such that i ̸= j, where IT is the

identity matrix of order T . Least square estimator of β is obtained from the squared

1BRIC is an acronym for the nations Brazil, Russia, India and China used by the investment

bank J P Morgan and is an internationally accepted acronym to describe the four fastest growing

economies
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error loss function as follows

argmin

β (y −Xβ)′(y −Xβ) (2)

where y = (y1,y2 . . .yN)
′ is the TN vector of observations on the dependent variable

with yT
i being the observations on the same corresponding to ith firm. XTN×p is the

design matrix containing data on co-variates including the leverage variable. In the

following subsection we describe how hierarchical Bayesian set up can be efficiently

used to tackle the issues of endogeneity, heteroscedasticity and multicollinearity si-

multaneously .

2.1 Hierarchical Bayesian model for Endogneity, Heteroscedas-

ticity and Multi-collinearity

We partition β = (β1,β2) where β
p−k×1
1 and βk×1

2 corresponds to the set of exogenous

and endogenous co-variates respectively. Corresponding partition of the design matrix

is denoted by X[1] and X[2]. The problem of estimating β consistently in presence of

endogeneity bias could then be reformulated as minimization of the following squared

error loss function [9]

ψ(β,Λ) = (y −Xβ)′(y −Xβ) + (X′

[2]M1X[2])β
′

2Λβ2 (3)

Λ = diag(λ1, λ2, . . . λk) being the matrix of non-negative penalty parameters. The

non-negativity constraint on the penalty parameters ensures that ψ(β,Λ) satisfies the

standard properties of loss function. Notice that the expression in 3 is equivalent to

the squared error loss related to penalized Ridge estimation upto a scaling factor. The

loss minimization problem can be restated as maximization of the following function

argmax

β e−
(y−Xβ)′(y−Xβ)

2 e−
β′

2Λβ2
2 (4)
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where β | Λ is assumed to follow the natural conjugate prior distribution, viz.

Nk(0,Λ
−1). This formulation leads to Bayesian framework for regression. The non-

negativity of the penalty parameters is ensured through the assumption of indepen-

dent and identical Gamma priors on the penalty parameters with common hyper-

parameter which leads to a hierarchical Bayesian model. To complete the Bayesian

set up, we assume similar natural conjugate priors for β1 and iid inverse Gamma priors

for firm specific variances (σ2
i , i = 1, 2 . . . N). Such a choice of priors for the vari-

ances as well as the penalty parameters reduces the complexity in estimation arising

out of high-dimensionality of the parameter space caused by both heteroscedasticity

and inclusion of penalty in the squared error loss. Thus in this hierarchical Bayesian

formulation ψ(β,Λ) is minimized at the posterior mean of β conditional to (y,X,Λ)

(see pp-117, [17]. Further, Ridge regression being devised to estimate regression

parameters in presence of multi-collinearity [18], the Gaussian prior on β suffices to

tackle the same.

In what follows, we describe the hierarchical Bayesian semi-parametric model to

explain non-monotonicity of output-debt relation.

2.2 Hierarchial Bayesian semi-parametric model with adap-

tive splines

The non-linearity exhibited through the non-monotonic relation between output per-

formance and debt of a firm is difficult to model parametrically. A flexible technique

of doing so is to express the output performance as piecewise polynomial function (or

polynomial splines) over low, moderate and high ranges of debt variable (say Xp in

model (1)). In particular, we illustrate the same with linear splines over the parti-

tion of Xp defined by two knots, say ξ1 < ξ2. Thus the basis of the linear spline is

X[2] = [1, Xp, (Xp − ξ1)+, (Xp − ξ2)+], where u+ denotes max(u, o). The non-linear
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relation of debt with output performance can then be expressed as a linear function of

the basis which is also known as linear B-spline in the literature [19]. The complete

semi-parametric panel regression model is given as follows

yi,t = Xp−1×1
[1]i,t

β1 + f(Xpi,t) + ϵi,t

f(Xpi,t) = βp,I + βp,IIXpi,t + βp,III(Xpi,t − ξ1)+ + βp,IV (Xpi,t − ξ2)+ (5)

where all the assumptions of model (1) are assumed to hold. Notice that in the above

semi parametric model the slope of the line segment below ξ1 is βp,II , between ξ1

and ξ2 is βp,II + βp,III and beyond ξ2 the same is βp,II + βp,III + βp,IV . Similarly the

intercepts also change but the amount of change depends on the position of the knots.

Typically values of the knots are unknown in reality and more likely to depend on

how developed the debt market is in a particular country along with other country

specific influences. A robust way to determine the positions of the knots is to estimate

them from data. In the current hierarchical Bayesian set up we put a non-informative

prior on ξ1 and ξ2 with the range of the debt variable as support. Such a spline model

is also known as Bayesian adaptive spline (see [20]. The condition ξ1 < ξ2 is ensured

by assuming that ξ1 is drawn from the distribution of the smallest order statistic of

a sample of size two drawn from the parent distribution and similarly distribution of

largest order statistic is assumed for ξ2.

2.3 Markov Chain Monte Carlo (MCMC) estimation

The hierarchical Bayesian model proposed above requires calculation of mean and

other summary statistics of the posterior distribution of the model parameters. We

use MCMC technique to simulate from the posterior distribution of the parameters

and compute the sample mean which converges to the posterior mean asymptotically.

However, if the posterior distribution is non-standard then generating iid samples
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from it becomes difficult. In such a case, we use the well known Metropolis-Hastings

algorithm to generate an ergodic Markov chain which asymptotically converge to the

target posterior distribution. We refer to [21] and [22] for a comprehensive review

of Bayesian computational techniques.

Let us denote the set of firm specific variances {σ1, σ2 . . . σN} by ϑ. The prior

distribution of σ2
i is assumed to be Inverse−Gamma(ν

2
, ν
2
), ∀i = 1, 2 . . . N . Further

we assume λ1 = λ2 = . . . = λk = λ and the prior for λ is Gamma(νλ
2
, νλ

2
), ∀i =

1, 2 . . . k. Denoting (βpI , . . . βpIV ) by β2, we assume the prior of the spline parameters

as N4(0, λI4). The non-informative prior of the knot points could be elicited from

the fact that ξ1 and ξ2 are the smallest and largest order statistics from a sample

of size two drawn from uniform distribution over (0,1). The prior density of ξi is

fi(ξi) = i
(

n

i

)

F i−1(ξi)f(ξi)(1 − F (ξi))
n−i where F (·) is the cumulative distribution

function of U(0, 1) distribution, i = 1, 2. Priors of β is same as stated in section

(2.1).

The posterior distribution of the model parameters are given as follows:

• f(β | y,X, λ, ϑ, ξ) ∝ e
−

∑
i

∑
t(yi,t−X[1]i,t

β1−f(Xpi,t
))2

2σ2
i × e

−
β′

1β1

2σ2
β e−

λβ′

2β2
2 , where ξ =

(ξ1, ξ2)
′

• f(λ | y,X,β, ϑ, ξ) ∝ e−
λ
2
(β′

2β2+νλ)λ
νλ
2
−1

• f(σi | y,X, λ,β, ξ) ∝ e
−

∑
t(yi,t−X[1]i,t

β1−f(Xpi,t
))2+ν

2σ2
i ×

(

1
σ2
i

)
ν
2

• f(ξi | y,X, λ,β, ϑ) ∝ e
−

∑
i

∑
t(yi,t−X[1]i,t

β1−f(Xpi,t
))2

2σ2
i × (ξi)

i−1(1− ξi)
2−i, i=1,2

To generate from the posterior distribution we use Metropolis-Hastings algorithm and

the sampling scheme to generate M iid samples is as follows.

Step I: Initialize the parameters ξ, λ,β, ϑ at ξ0, λ0,β0, ϑ0; Set iteration =i

Step II: Generate βi
from f(β | y,X, λi−1, ϑi−1, ξi−1)
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Step III: Generate ϑi from f(λ | y,X,βi, λi, ξi−1)

Step IV: Generate λi from f(λ | y,X,βi, ϑi, ξi−1)

Step V: Generate ξi from f(ξ | y,X,βi, ϑi, λi); Set iteration = i+1;

Step VI: Repeat from Step II until iteration=M.

First few observations are dropped to ensure no auto-correlation (also called burn-in

sample) and from the rest sample statistics are computed. In the following section

we present the data analysis results and their interpretations based on the model and

posterior sample generation scheme given in this section.

3 Data and results

This study uses a panel data of 208 Indian firms listed on the Bombay Stock Exchange

Ltd from 1988 to 2013, available in the CMIE database Prowess. The sample selection

was based on data availability . Only firms with complete set of observations for the

entire period were considered.

3.1 Variables and Model

Product market performance has been represented by various proxies like pricing

policies [23], Profitability [3], or Growth in annual sales [1]. As explained in section

1, the infusion of debt in capital structure is likely to influence a firm’s policy towards

increased level of output. The variable which best proxies the change in level of

output of a firm is its annual growth in sales. Hence as a proxy for output market

performance of firms we chose Sales growth , which is given by,

SalesGrowthi,t = ln
Salesi,t

Salesi,t−1

(6)

where SalesGrowthi,t is the growth in annual sales andSalesi,t is the annual sales of

firm ’́ı’for the year’t’. The reason for taking log difference as a measure of change in
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sales is to ensure that the dependent variable can assume any value between −∞ and

∞.

The proxy for capital structure isLeverage, given by Borrowings divided by Total

Assets.Since borrowings represent the total debt of the firm, the relationship between

debt and output market is suitably captured through this variable.

The sales growth of a firm can be affected by the investment decisions of the firm.

Other factors which may impact the growth in annual sales of a firm are firm size,

profitability and a firm’s expenditure towards promotion and advertisement. Keeping

this mind, and taking cue from previous literature we have considered the usual

control variables which include Size, Investment, Sales Expenditure and Profitability

variables. As a proxy of Size we have taken natural log of Total Assets. For Investment

we considered Capital Work in Progress as a proportion of Total Assets. Profitability

is represented by the sum of Profit After taxes and Depreciation divided by Total

Assets.

To facilitate estimation of knots we transform the Leverage variable within the

interval [0,1] by

Leveragei =
Leveragei − Leveragemin

Leveragemax − Leveragemin

(7)

3.2 Model Description

The hierarchical Bayesian semi-parametric model with adaptive splines as given by

equation(5) may be stated in terms of the panel data described in previous section

as:

SalesGrowthi,t = β0 + β1 log(Sizei,t−1) + β2Investmenti,t−1 + β3SalesExpenditurei,t−1

+ β4Profitabilityi,t−1 + f(Leveragei,t−1) + ϵi,t (8)
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3.3 Results and interpretations

Table(1) reports the results from estimation of the parameters in Eq(9). The parame-

ters of importance are the knot points and the slopes of the piecewise line segments of

the spline. The distribution of the location of the knot points are given by the values

of ξ1 and ξ2. From that we find that the expected value of ξ1 is 0.3669 which means

that the first break point occurs at a point where the standardised Leverage value is

about 0.37. The posterior density plot of the first knot point(Figure ) reveals that the

values are heavily skewed towards left of mean value, indicating a very low probabil-

ity of having a value higher than the mean value. Similarly from the expected value

of ξ2, we can estimate that the second break point is at the standardised Leverage

value of about 0.70. The posterior density plot here shows that the distribution is

heavily right skewed, which effectively means that the probability of having values

lower than mean is very low. This shows that the degree of responsiveness of the

sales growth of Indian firms to the respective leverage of the firms changes at these

two points. That means product market performance of Indian firms with leverage

below the standardized value of 0.37 react to the capital structure decision of firms in

a different manner than that of the firms with leverage above the break point. There

is a further shift in behaviour for firms with levels of leverage above the standardised

value of 0.70. The findings confirm that the relationship between the two variables

for firms with moderate levels of debt is different from that of firms with low and

high levels of debt. The exact nature of the relationship is given by the posterior

distribution of the intercept and slopes βp,I , βp,II ,βp,III and βp,IV . While βp,I (Table

1)represents the intercept and βp,II the slope of the regression curve of SalesGrowth

on Leverage with the usual control variables till the first break point, the sum of βp,II

and βp,III gives the slope of the curve from the first break point to the second one.

The sum of βp,II , βp,III and βp,IV is the estimate of the slope of the curve beyond the
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Parameter Mean SD 95% Credible Interval

βp,I 0.0041773 0.38798 (-0.75856,0.76678)

βp,II 0.0080681 0.53473 (-1.0654,1.1079)

βp,III -0.00070032 0.78008 (-1.5633,1.542)

βp,IV -0.00085372 0.91059 (-1.8178,1.8182)

β1 0.010362 0.038581 (-0.06571,0.085644)

β2 0.013788 0.70669 (-1.3775,1.4148)

β3 0.15731 0.82382 (-1.4801,1.7897)

β4 -0.052532 0.80869 (-1.6522,1.5546)

deviance 344.18 7.1483 (330.27,358.31)

ξ1 0.3669 0.2495 (7.4992e-06,0.81108)

ξ1 0.69773 0.22894 (0.24226,1)

Table 1: Table displaying the posterior distribution estimates for all the regression

parameters

second break point. The expected values of βp,II ,βp,III and βp,IV from Table 1 shows

that the slope of the regression curve is 0.008 up to the first break point, .007 between

first and second break point and 0.006 beyond the second break point. The density

plots for the parameters βp,I , βp,II ,βp,III and βp,IV show that the values are symmetric

across mean. The intercepts may be computed from the values of knot points and

slope. The non-monotonic relationship between SalesGrowth and Leverage may be

represented by the graph depicted in Figure 8. This effectively means that the cap-

ital structure decision of firms have a low degree of increasing effect on the product

market performance of the Indian firms.

The close to zero slope suggests a much weaker influence of capital structure deci-

sion of firms on their product market performance in Indian market as compared to

12



−1 0 1 2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Posterior density of b0

b0

D
e

n
s
it
y

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

Posterior density of b1

b1

D
e

n
s
it
y

Figure 1: Posterior density plot for βp,I (top),βp,II(bottom)
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Figure 2: Posterior density plot for βp,III (top),βp,IV (bottom)
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Figure 3: Posterior density plot forβ1(top), β2(bottom)
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Figure 8: Spline showing the functional relationship between Sales Growth and Lever-

age
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the United States of America market [1]and some other markets like South Africa [3].

The economic intuition could be the presence of a more conservative debt market

and stricter regulatory intervention in the Indian market. The limited liability effect

which induces firms with higher external borrowings to adopt more aggressive product

market policies resulting in enhanced product market performance will not be very

pronounced in a conservative debt market and banking environment. The stronger

covenants associated with debt finance in such a market will discourage firms to adopt

aggressive product market policies. In absence of any comparative study of Indian

and other debt market policies, one can only conjecture at this point. However, our

findings open up a new area of research in this direction.

4 Conclusions

Looking at previous literature on empirical relationship between firms’capital struc-

ture and product market it was observed that there exists a non-monotonic rela-

tionship between output market performance of firms and their leverage in that the

output market performance had different responsiveness to leverage at different levels

of leverage.The different levels of leverage at which the relationship changed, or the

knot points, were estimated using heuristics. All these empirical studies had issues of

endogeneity and heteroscedasticity biases. It had also been established that capital

structure decisions were influenced by country specific factors which indicated that

the exact nature of the relationship including the location of the break points must

be data specific . Thus it was necessary to evolve a statistically robust data driven

method which will address all these issues. In this study we have constructed a hier-

archical semi-parametric Bayesian regression model with adaptive splines to address

all these issues. We thus addressed all the issues associated with the empirical inves-

tigation of capital structure and product market performance of firms with innovative
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use of Bayesian framework using a single regression model.

Our contribution to the empirical literature was important from two perspectives.

To the best of our knowledge this is the first time a study on the non-monotonic

relationship between debt and output of firms has been conducted on Indian data.

India being of utmost strategic importance to the global investors, our study brings

some fresh perspectives on the corporate finance dynamics of Indian market. Our

studies establish that the relationship between product market performance of firms

and their capital structure in India is distinctly different from that in some other

countries. This has great significance for policy makers as well as global investors.

On the research front this also opens up a need for further investigation into com-

parative studies of debt market environments of different countries. The country

specific findings further establishes the utility of our methodology which may now be

employed to study and compare the capital structure dynamics of several countries.
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