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Abstract

Textual analysis is performed in a total of 13145 high frequency (intraday) news: 6536 news from
the Dow Jones Newswires and 6609 news from the Thomson Reuters Newswires. Selected news are
Euro-periphery (Portugal, Ireland, Italy, Greece, Spain) crisis-related news which contain a number
of keywords in their content and their title. News pessimism as a product of textual analysis senti-
ment significantly and negatively affects stock returns (an increase in news pessimism is associated
with lower stock prices). Media pessimism does not only affect the crisis-hit Euro-periphery coun-
tries but also European (Germany, France, Austria, Belgium, Finland, UK, Switzerland, Norway)
and overseas (Brazil, Canada, US Dow Jones, US S&P, Japan, China) stock markets. Stock markets
can be very fast when ”absorbing” the shocks of media pessimism. Even small time frames such as
30-minutes can be enough for stock prices to be negatively affected by a higher media pessimism.
The results are significant in the sense that they provide quantitative evidence that individual
countries in crisis can indeed affect not only their own stock markets, not only markets close to
them, but also overseas markets from both sides of the globe. The media (and especially newswires
which release news with extreme speeds and coverage) provide a channel through which ”bad” news
are instantaneously circulated and provide worldwide ”shocks” to stock prices in extremely small
time windows (even 30 minutes). If one takes into account the number of news examined (13145),
small shocks can ultimately add up to pretty significant losses for all parties involved (individual
investors, funds, corporations, nations). Stock market shocks from Athens, Lisbon, Madrid, Dublin
and Rome are ”felt” quite fast not only in Berlin, Paris, Vienna, London and Zurich, but also in
New York, Toronto, Tokyo and Hong Kong.
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1. Introduction

The Euro-crisis has been at the center of attention for the financial press since the Euro-crisis

started, around the end of 2009. Thousands of news articles were written about the Euro-periphery

countries (Portugal, Ireland, Italy, Greece, Spain), whose vulnerabilities led to bailout packages, either

at the sovereign or the banking level. There has been fierce debate on whether these countries could

make it or not, how bad their finances and how uncompetitive they were, whether they should part

ways with the common currency area (Eurozone), and whether bad news about them might propagate

and affect the rest of the European countries, causing a domino effect.

Previous research regarding news and events concerning the Euro-crisis (e.g. Arezki, Candelon,

and Sy (2011), Beetsma, Giuliodori, de Jong, and Widijanto (2013), Mink and De Haan (2013))

mainly dealt with the impact of official news announcements such as sovereign debt rating changes,

using dummy variables to denote the occurrence of events, or arbitrarily defining events and news

as ”good” or ”bad”. Nevertheless, such specific announcements give at best a partial and at worst

a biased view of the impact of information on market prices since they do not reflect all available

news and in many cases they are anticipated by market participants. Classifying events arbitrarily

is problematic because it depends entirely on the perceptions and beliefs of the researcher(s) who

classify the news, while it also neglects the degree of negative (or positive, or uncertain) information,

dealing only with the extreme parts of the sentiment spectrum, and completely ignoring all values in

between. We attempt to shed light on the impact of the News Flow imbedded in newswires articles.

Chouliaras and Grammatikos (2013) study the effect of news sentiment on the probability of extreme

stock market returns on a daily basis. But a more high-frequency analysis is also of interest, especially

nowadays that the advance of technology allows market participants to conduct decision making in a

much speedier manner. Is a whole trading day necessary for markets to ”absorb” the negative media

content (pessimism), or are smaller time frames enough? To our knowledge, this is the first paper to

study the high-frequency effects of the Euro-crisis using data with are timestamped up to milliseconds;

second, we incorporate the two biggest international newswires (Thomson Reuters Newswire and Dow

Jones Newswire) and we use a rather elaborate method to select news items relevant for the topic of the

Euro-crisis under investigation; third, we develop and test different metrics of news relevance; fourth,

we specifically examine the impact of News Flow about the peripheral countries on international

intraday stock returns. This way we answer the question of whether afterall the Euro-periphery

financial sentiment does indeed significantly affect the other countries financial assets returns, which

is the main concern of financial discussions and policy making since the advent of the Euro-crisis.

We find that the News Flow about the financial crisis significantly affect not only the Euro-

periphery but also international stock markets. The effect is not only limited in European Union

countries, but also overseas financila markets are affected (USA, Japan, China). A higher negative

(and pessimistic) content regarding the Euro-crisis is associated with lower stock returns even when

considering a very small time frame (30 minutes after the news were released).

The rest of this paper is organized as follows. Section 2 presents the related textual-analysis

literature. Section 3 presents the data. Section 4 presents the model specification and we explain how

we study the effect of News Sentiment in a cross-country setting. Section 5 provides the empirical

results. Section 6 concludes.
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2. Related Literature

The study of News Flow has attracted the researchers’ interest rather recently with the advent of

Data Mining and Sentiment Analysis techniques. The strong interest in this area has been demon-

strated by the recent creation of companies and commercial products specialized in the production

of financial sentiment (see e.g., RavenPack1 and Thomson Reuters News Analytics2). As far as the

finance literature is concerned, the pioneering work of Tetlock (2007) uses textual analysis (based

on the Harvard psychosocial dictionary) of a Wall Street Journal column, and associates the content

of the news with the Dow Jones returns, using vector autoregressions (VARs). He finds that media

pessimism has predictive power on market returns, while reversion effects occur and extreme absolute

values of pessimism predict higher trading volumes. Loughran and McDonald (2011) develop finance-

oriented word lists by fine-tuning the Harvard dictionary, and correlate textual analysis variables with

10-Ks filing returns, trading volume, volatility and other characteristics. Other studies report evidence

of predictive power of stock message boards and major financial columns on volatility, returns and

volume (Antweiler and Frank (2004), Chen, De, Hu, and Hwang (2013)). The related literature also

studies the effect of returns on media content Garcıa (2012), the effect of media content on returns

during recessions and expansions Garcia (2013)), while a high level of similarity in firm-specific news

is found to provoke higher trading aggressiveness of individual investors (Tetlock (2011)). Boudoukh,

Feldman, Kogan, and Richardson (2013) find that news that can be identified and classified in certain

categories have a higher impact on stock markets than unidentified news. Another area of research has

been the field of corporate earnings, where Tetlock, Saar-Tsechansky, and Macskassy (2008) find that

a higher percentage of negative words in news about specific firms predicts lower quarterly earnings.

Furthermore, textual analysis has been used for the study of initial public offerings (IPOs). Loughran

and McDonald (2013) find that higher uncertainty in filings affect first-day returns and ex post volatil-

ity, Jegadeesh and Wu (2013) give different weights on words based on the market reactions that they

caused and Li (2010) studies the effect of forward-looking statements in corporate filings on future

earnings and liquidity. Finally, Ahern and Sosyura (2014) show evidence of firms manipulating media

coverage to achieve better stock prices during mergers and acquisitions negotiations.

Our study is related to Tetlock (2007), Garcia (2013), Garcıa (2012) and Chouliaras and Gram-

matikos (2013) as far as the analysis of News Flow is concerned. The main contributions to the

previous literature are: first and foremost, we employ a database of 13145 news articles from the two

biggest international newswires (Dow Jones and Thomson Reuters).

Since it is well accepted that the most vulnerable eurozone countries -the Euro-periphery group- were

the most badly hit by the Euro-crisis, our main interest is to study for the effect of Euro-periphery

news sentiment to international stock markets.

3. The Data

The financial data we employ come from Thomson Reuters Tick History (TRTH) 3. We use data on

stock indices for various European countries (Portugal, Ireland, Italy, Greece, Spain, Austria, Belgium,

Finland, Germany, United Kingdom, Switzerland, Norway) but also overseas stock markets (US S&P,

US Dow Jones, China, Japan, Brazil, Canada).

1http://www.ravenpack.com/
2http://www.machinereadablenews.com/
3Thomson Reuters Tick History can be found at: http://thomsonreuters.com/tick-history/
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4. The Methodology

4.1. Preprocessing the financial data

As far as the processing of the financial data is concerned, we create MySQL databases in order

to be able to handle the huge amount of data. Furthermore, we process the data so as to keep one

entry per minute. Specifically, we keep the first entry for every minute. Then, since we are working in

30-minute intervals, we keep one entry per five (30) minutes. Since our news data are time-stamped in

a minute basis, we first of all make sure both news data and financial data are in the same time zone.

We bring all data in the Greenwich Mean Time (GMT) timezone. The news data were downloaded

in a time zone of GMT+1, thus we subtract one hour from every news item. Some financial data

are in GMT+2 (or for some countries from GMT-9 to GMT+9), and we subtract 2 hours from this

news, so that every time series is finally in a GMT timezone. Moreover, we make sure we have an

aggregate news metric for every financial data point. Thus, if in the interval between two news we

have more than one news item, we calculate the average percentages of these news items, so that for

every financial price we have one value for the respective news that fall in this time interval between

the release of two consecutive prices. The table with the performed ”time alignments” follows:

Insert Table 2 here

After this time alignment is performed, every time series is brought to a common time zone (GMT).

Thus, we are able to proceed studying the 30-minute effect of media content on high frequency stock

returns. After we perform this ”time zone alignment” between news and stock markets (and bring

every time series in a GMT time zone), we are able to start combining the news with the financial

data. For a trader/investor, to read a news item, process it, place an order, and for this order to be

executed and affect stock prices, a reasonable time frame is required. Thus, we keep prices every 30

minutes (half an hour). If between the 30-minutes time intervals more than one news are released, we

calculate the average positive, negative and pessimism factors for all these news. If news items were

released during non-operating hours, we ”attach” these news to the next price available (i.e. the first

price of the next trading day)

4.2. News Flow

One can conjecture that changes in relevant information flows is one of the significant factors that

affect stock prices. Obtaining usable indicators of information flows and their sentiment and relating

them directly to the (extreme) market returns is the focus of this paper. This approach should provide

interesting contributions to the relatively new strand in the finance literature that examines directly

how information is assimilated by and affects market prices.

In this context we analyze the content of news stories in the newswires. As far as the news stories

are concerned, we extract and analyze from Dow Jones Factiva4 news articles covering the time period

from December 1st, 2009 till November 28nd, 2012. We collect news articles from two sources: the Dow

Jones Newswires and the Thomson Reuters Newswire. We use these two newswires because because

they are undoubtedly among the most popular providers of real-time news worldwide. Dow Jones

Newswires and Thomson Reuters give news items in newswires form, capturing news in real time. For

4Dow Jones Factiva can be found in http://www.dowjones.com/factiva/index.asp
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each country the relevant stories are obtained by a query searching for news that include the name of

the Euro-periphery country plus one of the following terms each time: crisis, debt, economy, deficit,

default. For example, for Greece the news were retrieved by searching for news stories containing any

of the terms:

• “greek crisis”

• “greek debt”

• “greek economy”

• “greek deficit”

• “greek default”

The same applies to all five Euro-periphery countries. The importance of these search terms is straight-

forward: A news item that contains the term Greek crisis is certainly related to the crisis in Greece.

“Greek debt” is relevant since the european crisis is also a debt crisis. The search term “greek econ-

omy” is included in order to capture the stories about the nation economy. The “greek deficit”

component is included since a lot of discussion is made around the deficits of the countries and the

deficit is obviously one of the main factors to assess the financial performance of a nation. Finally,

the “greek default” component captures the sovereign default risk debate, since the fear of countries

defaulting elevated at various time points during the crisis.

4.3. Preprocessing the news data

As a first step we exclude duplicate articles that can reach very high numbers. Especially in

newswires (Dow Jones Newswires and Thomson Reuters), it is very common that the same (or highly

similar) pieces of information are redistributed, even up to ten times or more. This can cause problems

since there is the possibility that a small number of news dominates the news sample, simply because

it is being delivered multiple times, with none (or insignificant) changes. Many times the same

information is published in these editions, even with different dates, since the time zone differences

can be quite significant. Thus, since we want to study the unique impact of information at the day it

was first released, we keep the news item published first and discard all duplicates after the distribution

of the first news item.

4.4. Keywords in titles as a determinant of news items relevance

Another issue of concern has to do with the fact that news items that contain a set of keywords,

do not necessarily concern only this topic. This is true especially for newswires. Very often multiple

pieces of information are released through newswires in the same news item, covering multiple topics,

each one of them occupying no more than a few lines of the overall news item. To deal with this

problem, we select only items that contain one or more of a set of keywords in their title. The title

is signalling the content of the article. Thus, we expect articles that contain one or more of these

keywords in the title, to be of higher relevance to our topic, than selecting all articles that contain

one or more keywords in the text, but may refer to many other topics as well. The title keywords

for Greece are the following: “greece”, “greece’s”, “greek”, “greeks”, “hellas”, “hellenic”. Similar

keywords are used for the other four Euro-periphery countries. After these preprocessing steps are

applied, the news sources and the total number of news items appear in Table 3, having a total of

13145 news items:
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Insert Table 3 here

We notice that most of the news concern Greece: Out of 13145, a total of 8128 concern the greek

crisis. This is well understood since Greece is the country that was most badly hurt, and naturally

the financial press took a great interest in covering news concerning the greek financial troubles as

they evolved through time. After Greece, the most news were about Spain (1822), followed by Ireland

(1319), Italy (1268) and finally, Portugal (608). Surprisingly, the overall number of articles released

from Reuters and Dow Jones are very close to each other (6609 and 6536 respectively). This is an

indicator that more or less these two newswires covered in a similar fashion (in terms of news volume)

the Euro-crisis, and are also an indicator that our keyword filters and not biased in terms of selecting

news from the one versus the other newswire.

The graphical plot of the number of news during each time period is shown in Figure 1:

Fig. 1.

Naturally, the number of news is not constant through times, as the Euro-crisis escalates and

”calms down” throughout various points in time. We see ”spikes” in terms of the number of news.

At least four or five points in time are visible where a much higher number of news are released: the

biggest is on May 2010 (when the Greek bailout was announced) with a maximum of 140 news articles

released in one single day. This number of news is very high given the fact that we already performed

two series of filtering for the news (both for the content and the titles of the news – only the title

filtering removes more than half of the news, while the duplicate filter also removes around half of

news, thus in this day actually more than 500 crisis-related news were released, a factor indicating

the extremely high interest the Euro-crisis drew in the financial press). Another spike occurs around

July 2011, an important period given the Euro-summit which took place in 22 July 2011 to guarantee

a new bailout plan for Greece5. Another spike occurs around March 2012, when the new bailout of

5For example, an article covering the event from Guardian: http://www.theguardian.com/business/2011/jul/21/

european-debt-crisis-summit-euro
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Greece was finally granted6. Finally, another spike occurs at November 2012, when Eurozone ministers

agreed to cut the Greek debt by another 40 billion euros and to release 44 billions in bailout money

and aid7.

4.5. Textual Analysis

As a next step, using textual analysis, based on the Loughran and McDonald (2011) dictionary8,

we measure the positive media content as in Garcıa (2012) and Garcia (2013): Gi =
∑
i

gi
wi
, calculated

as the percentage of positive words over the total number of words of every news article. The symbol

gi stands for the number of positive words in the article, and wi stands for the total number of

words in the article. We do the same for the negative words, obtaining the negative media content

as Bt =
∑
i

bt
wt
, with bi denoting the negative words in the article. Thus, we obtain the Pessimism of

article i:

Pessimismi = Bi −Gi (1)

The Pessimism is calculated for every article. If more than one news are released between two finan-

cial prices (30 minute intervals), we also calculate the Average Pessimism from all the articles that

fall in this interval. Another metric we use is the News Count (Nt): This is the total number of

articles released between two financial prices (30 minute intervals) regarding any of the queries we are

interested in.

The summary statistics for the media content (positive, negative, pessimism) and the stock markets

appear in Table 4:

Insert Table 4 here

We see that stock markets have mean returns of 0 (normal since we are talking about 30-minute

returns), while the media have positive means (3.2% for the negative, 0.7% for the positive and 2.4%

for the pessimism media content).

5. Empirical Findings

The model we employ the study the effect of news in high frequency stock returns is the following:

Rt = a1 + b1Mt +

5∑

i=1

ciRt−i (2)

where Mt takes the value of:

• the positive (Gt)

• the negative (Bt)

• the pessimism (Pt) and

• the news count (Nt)

6An article by BBC covering the event: http://www.bbc.com/news/business-17338100
7Another article by BBC covering the event: http://www.bbc.com/news/business-13798000
8The dictionary can be found at http://www3.nd.edu/~mcdonald/Word_Lists.html
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of the previous 30-minute interval respectively. we are primarily interested in the sign, the coeffi-

cient and the statistical significance of the b1 coefficient. We control for five lags of returns (i.e. five

30-minute lagged returns for every stock market) to deal with autocorrelation in the returns. The

regressions we perform are robust (using the Huber-White sandwich estimators) to deal with autocor-

relation, heteroskedasticity, heterogeneity and lack of normality.

The results of the robust regressions appear in Tables 5 to 23:

Insert Tables from 5 until 23 here

Tables from 5 until 23 contain the results for the robust regressions which study the 30-minutes

effect of news in international stock markets. Tables 5 to 9 concern the effect on all five Euro-periphery

countries, which are the most badly hit European countries during the Euro-crisis. The negative and

the pessimism content is significant for all five Euro-periphery countries, and has a negative sign. This

means that a higher negative content and a higher pessimism is associated with lower stock prices 30

minutes later. The effect is stronger for Portugal and Greece, followed by Ireland, Italy and Spain. An

increase of 1 percent in the news pessimism decreases stock prices for Greece by 0.0194%. This drop

can be quite significant given the fact that the average pessimism is 2.4% while the maximum is 13.6%.

Also, given the fact that we are talking about 30-minutes returns, and about thousands of news, the

effect can be quite significant when many news are released between price intervals. Furthermore,

given the fact that these market capitalisations are hundres of billions of Dollars (and even trillions

for some countries), these coefficients can become very significant in terms of the magnitude of losses

for investors. Most of the positive content coefficients are insignificant, which is a finding consistent

with the previous literature (Tetlock (2007), Garcıa (2012), Loughran and McDonald (2011)), because

investors tend to discount positive content. In the cases that the coefficient is significant, the coefficient

has a positive sign, which means that a higher positive content increases stock returns.

Tables 10 until 17 present the results for European stock indices. We see that the effect is not

only for the five Euro-periphery countries, but also for these eight (8) European countries (Germany,

France, Austria, Belgium, Finland, United Kingdom, Switzerland, Norway). The effect is stronger for

France and Austria, then for Belgium, Finland and the United Kingdom, while it is less significant

for Germany, and Switzerland. Nevertheless, the effect is statistically significant (at least at the 90%

significance level for all these European stock markets), with the coefficients once more being negative,

indicating that a higher media pessimism is associated with lower stock prices at maximum 30 minutes

after the news were released.

Tables 18 to 23 report the results for overseas stock markets (Brazil, Canada, US Dow Jones, US

S&P, Japan, China). Once more we find statistically significant coefficients for the negative and the

pessimistic media content, with the effect being most significant for US (both S%P and Dow Jones)

and Japan, while it is not as strong (but is still significant) for Brazil, Canada, and China. Once

more, the coefficient of pessimism is negative, in other words a higher media pessimism is associated

with lower stock prices 30 minutes later. Some markets do not operate at the same time zones, but

news still get published throughout the day. For those countries that the market was not operating

while the news was released, the news is attached in the next price available. This means that when

the market operates again, the news still affects prices in this market.
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6. Conclusion

Textual analysis is performed in a total of 13145 news in total: 6536 news from the Dow Jones

Newswires and 6609 news from Thomson Reuters. Selected news are crisis-related news which contain

a number of keywords in their content and their title. News pessimism significantly affects stock

returns (an increase in news pessimism is associated with lower stock prices). Media pessimism does

not only affect the crisis-hit Euro-periphery countries (Portugal, Ireland, Italy, Greece and Spain)

but also European (Germany, France, Austria, Finland, Belgium, UK, Switzerland) and overseas

(US, China, Japan) stock markets. Stock markets can be very fast when “absorbing” the shocks of

media pessimism. Even small time frames such as 30-minutes can be enough for stock prices to be

negatively affected by a higher media pessimism. Especially the findings for overseas markets are

rather surprising: Euro-crisis related news do not only affect the Euro-periphery countries, not only

the European equity markets, but also markets which are very far away, such as markets on the West

of Europe - the United States (both S&P and Dow Jones), Canada, Brazil, but also markets at the

East - Japan and China. This provides that indeed the significance of the Euro-crisis spans far across

the ”narrow” borders of the Euro-periphery countries, and even the borders of Europe, since markets

all over the globe are affected on ”real time” by high frequency news released through international

newswires. Stock market ”shocks” are not only ”felt” to Athens, Lisbon, Rome, Dublin, Madrid, but

also to Berlin, Paris, London, Vienna, New York, Toronto, Hong Kong and Tokyo, among others.
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Table 1: Stock index used for every country

Country Stock Index used

Portugal PSI 20
Ireland ISEQ
Italy FTSE MIB
Greece ASE
Spain IBEX 35
Germany XETRA DAX
France CAC 40
Austria ATX
Finland OMX
Belgium BEL 20
UK FTSE 100
Switzerland SMI
Norway OBX
Brazil BOVESPA
Canada S&P TSX 60
USA Dow Jones
USA S&P 500
Japan Nikkei 225
China Hong Kong Hang Seng
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Table 2: Timezones for intraday news and financial data

Source Original Timezone Add/Subtract Timezone after processing

News from Dow Jones Factiva GMT+1 Subtract one hour (-1) GMT
Portugal GMT+1 Subtract one hour (-1) GMT
Ireland GMT GMT
Italy GMT GMT
Greece GMT+2 Subtract two hours (-2) GMT
Spain GMT+1 Subtract one hour (-1) GMT
Germany GMT+1 Subtract one hour (-1) GMT
France GMT+1 Subtract one hour (-1) GMT
Austria GMT+1 Subtract one hour (-1) GMT
Finland GMT+2 Subtract two hours (-2) GMT
Belgium GMT+1 Subtract one hour (-1) GMT
UK GMT GMT
Switzerland GMT+1 Subtract one hour (-1) GMT
Norway GMT+1 Subtract one hour (-1) GMT
Brazil GMT-2 Add two hours (+2) GMT
Canada GMT-5 Add five hours (+5) GMT
USA (S&P) GMT-6 Add six hours (+6) GMT
USA (Dow Jones) GMT-5 Add five hours (+5) GMT
Japan GMT+9 Subtract nine hours (-9) GMT
China GMT+8 Subtract eight hours (-8) GMT

Note: Stock markets and news are in different time zones. To be able to examine the effect of news on an intraday setting, we need to bring every time
series on a common time zone, making the necessary adjustments (adding or subtracting hours respectively).
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Table 3: Number of news per country/source.

Source Portugal Ireland Italy Greece Spain Total

Dow Jones Newswires 310 658 497 4342 729 6536
Thomson Reuters 298 661 771 3786 1093 6609
Total 608 1319 1268 8128 1822 13145

Note: Selected news are news that pass two filters: first, for each country the news item must

include the name of the country plus any of the following keywords: crisis, debt, economy, deficit,

default. For example, for Greece the first filter selects the news stories containing any of the terms:

“greek crisis”, “greek debt”, “greek economy”, “greek deficit”, “greek default”; second, for each coun-

try, the news item must contain in it’s title a country keyword. For example, for Greece the second

filter selects the news that passed the first filter and that furthermore contain any of the following

terms in the title: “greece”, “greek”, “greeks”, “greece’s”, “hellas”, “hellenic”. The same applies to

all five Euro-periphery countries.
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Table 4: Summary statistics for news and stock markets

Variable Mean Std. Dev. Min. Max.

Negative 0.032 0.016 0 0.136
Positive 0.007 0.007 0 0.062
Pessimism 0.024 0.018 -0.046 0.136
Portugal Return 0 0.003 -0.049 0.068
Ireland Return 0 0.003 -0.031 0.04
Italy Return 0 0.004 -0.061 0.046
Greece Return 0 0.006 -0.079 0.072
Spain Return 0 0.004 -0.041 0.098
Germany Return 0 0.003 -0.043 0.039
France Return 0 0.003 -0.039 0.037
Austria Return 0 0.003 -0.056 0.062
Finland Return 0 0.003 -0.05 0.04
Belgium Return 0 0.003 -0.033 0.064
UK Return 0 0.003 -0.034 0.029
Switzerland Return 0 0.002 -0.03 0.04
Norway Return 0 0.003 -0.034 0.048
Brazil Return 0 0.003 -0.039 0.049
Canada Return 0 0.002 -0.031 0.027
US S&P Return 0 0.003 -0.091 0.091
US Dow Jones Return 0 0.003 -0.035 0.037
Japan Return 0 0.004 -0.075 0.052
China Return 0 0.004 -0.072 0.05
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Table 5: Portugal Stock Market - 30 minutes

(1) (2) (3) (4) (5)
Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.0532* 0.0523* 0.0527* 0.0526* 0.0523*
(1.85) (1.82) (1.83) (1.83) (1.85)

Returnt−2 0.0148 0.0154 0.0146 0.0153 0.0160
(0.56) (0.59) (0.56) (0.58) (0.61)

Returnt−3 0.0157 0.0152 0.0156 0.0153 0.0149
(0.48) (0.47) (0.48) (0.47) (0.46)

Returnt−4 0.00767 0.00708 0.00660 0.00750 0.00854
(0.26) (0.24) (0.22) (0.25) (0.29)

Returnt−5 0.0138 0.0140 0.0136 0.0136 0.0143
(0.53) (0.54) (0.53) (0.53) (0.56)

Positive 0.0131*
(1.71)

Negative -0.00768***
(-2.61)

Pessimism -0.00812***
(-2.99)

Average Pessimism -0.00531**
(-2.09)

News Count -0.0000111
(-0.17)

Constant -0.0000719 0.000269*** 0.000223*** 0.000153** 0.0000500
(-1.01) (2.64) (2.74) (2.05) (0.38)

Observations 5255 5255 5255 5255 5255
Adjusted R2 0.003 0.004 0.004 0.003 0.003

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 6: Ireland stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.0580** 0.0580** 0.0575** 0.0576** 0.0585**
(1.99) (1.99) (1.98) (1.98) (2.01)

Returnt−2 0.0348 0.0349 0.0346 0.0350 0.0351
(1.18) (1.19) (1.18) (1.19) (1.20)

Returnt−3 -0.0420 -0.0415 -0.0419 -0.0417 -0.0415
(-1.47) (-1.46) (-1.47) (-1.46) (-1.46)

Returnt−4 0.0179 0.0172 0.0176 0.0171 0.0175
(0.75) (0.72) (0.74) (0.72) (0.73)

Returnt−5 0.0224 0.0212 0.0213 0.0217 0.0224
(1.02) (0.97) (0.97) (0.99) (1.03)

Positive 0.00681
(0.99)

Negative -0.00664**
(-1.99)

Pessimism -0.00645**
(-2.18)

Average Pessimism -0.00443*
(-1.73)

News Count 0.00000326
(0.12)

Constant 0.0000293 0.000289*** 0.000236*** 0.000186*** 0.0000716
(0.42) (2.61) (2.89) (2.59) (1.10)

Observations 5080 5080 5080 5080 5080
Adjusted R2 0.004 0.005 0.005 0.005 0.004

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 7: Italy stock market - 30 minutes

(1) (2) (3) (4) (5)
Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.0304 0.0298 0.0298 0.0292 0.0302
(0.92) (0.90) (0.90) (0.89) (0.92)

Returnt−2 0.0275 0.0287 0.0282 0.0286 0.0284
(0.82) (0.86) (0.84) (0.86) (0.85)

Returnt−3 -0.00170 -0.00132 -0.00142 -0.00180 -0.00147
(-0.05) (-0.04) (-0.04) (-0.05) (-0.04)

Returnt−4 -0.0410 -0.0416 -0.0420 -0.0421 -0.0406
(-1.44) (-1.46) (-1.47) (-1.48) (-1.43)

Returnt−5 0.0131 0.0120 0.0117 0.0120 0.0132
(0.49) (0.45) (0.44) (0.45) (0.50)

Positive 0.0169
(1.50)

Negative -0.00784*
(-1.72)

Pessimism -0.00886**
(-2.14)

Average Pessimism -0.0106**
(-2.49)

News Count -0.00000382
(-0.10)

Constant -0.0000551 0.000319** 0.000286** 0.000327*** 0.0000801
(-0.49) (1.99) (2.34) (2.69) (0.80)

Observations 4865 4865 4865 4865 4865
Adjusted R2 0.002 0.003 0.003 0.003 0.002

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 8: Greece stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.0706** 0.0695** 0.0690** 0.0698** 0.0725**
(2.24) (2.22) (2.20) (2.22) (2.30)

Returnt−2 -0.0231 -0.0225 -0.0223 -0.0228 -0.0253
(-0.82) (-0.80) (-0.79) (-0.81) (-0.89)

Returnt−3 0.0294 0.0291 0.0290 0.0291 0.0297
(1.15) (1.14) (1.13) (1.13) (1.15)

Returnt−4 -0.00105 -0.00229 -0.00270 -0.00156 0.00194
(-0.04) (-0.09) (-0.10) (-0.06) (0.07)

Returnt−5 0.0193 0.0200 0.0200 0.0193 0.0184
(1.01) (1.04) (1.04) (1.01) (0.96)

Positive 0.0296*
(1.74)

Negative -0.0193***
(-2.73)

Pessimism -0.0194***
(-2.99)

Average Pessimism -0.0139**
(-2.17)

News Count 0.0000579
(1.54)

Constant -0.000160 0.000678*** 0.000536*** 0.000398** -0.000128
(-0.97) (2.72) (2.75) (2.18) (-0.98)

Observations 3653 3653 3653 3653 3653
Adjusted R2 0.002 0.003 0.004 0.002 0.004

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 9: Spain stock market - 30 minutes

(1) (2) (3) (4) (5)
Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.0218 0.0215 0.0216 0.0218 0.0226
(0.68) (0.67) (0.67) (0.68) (0.70)

Returnt−2 -0.0219 -0.0214 -0.0213 -0.0219 -0.0216
(-0.71) (-0.70) (-0.70) (-0.71) (-0.70)

Returnt−3 0.0171 0.0169 0.0165 0.0171 0.0176
(0.58) (0.57) (0.56) (0.58) (0.59)

Returnt−4 0.0517* 0.0518* 0.0520* 0.0517* 0.0517*
(1.86) (1.86) (1.87) (1.85) (1.85)

Returnt−5 -0.000743 -0.00125 -0.00129 -0.000965 -0.00155
(-0.03) (-0.05) (-0.05) (-0.04) (-0.07)

Positive 0.0134
(1.15)

Negative -0.00759*
(-1.66)

Pessimism -0.00799*
(-1.84)

Average Pessimism -0.00359
(-0.77)

News Count -0.0000294
(-0.91)

Constant -0.0000930 0.000250 0.000203 0.0000947 0.0000851
(-0.88) (1.52) (1.51) (0.68) (0.91)

Observations 4357 4357 4357 4357 4357
Adjusted R2 0.002 0.002 0.003 0.002 0.003

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 10: Germany stock market - 30 minutes

(1) (2) (3) (4) (5)
Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.0117 0.0108 0.0105 0.0106 0.0116
(0.35) (0.32) (0.31) (0.32) (0.35)

Returnt−2 0.00141 0.00158 0.00169 0.00194 0.00136
(0.04) (0.05) (0.05) (0.06) (0.04)

Returnt−3 -0.00622 -0.00591 -0.00606 -0.00618 -0.00558
(-0.18) (-0.17) (-0.18) (-0.18) (-0.16)

Returnt−4 -0.0429 -0.0430 -0.0437 -0.0434 -0.0420
(-1.51) (-1.52) (-1.55) (-1.54) (-1.48)

Returnt−5 -0.00817 -0.00739 -0.00741 -0.00740 -0.00847
(-0.33) (-0.30) (-0.30) (-0.30) (-0.34)

Positive 0.0147*
(1.72)

Negative -0.00475
(-1.23)

Pessimism -0.00596*
(-1.70)

Average Pessimism -0.00609*
(-1.82)

News Count 0.0000197
(0.58)

Constant 0.0000151 0.000276** 0.000270*** 0.000272*** 0.0000745
(0.17) (2.17) (2.84) (2.99) (0.92)

Observations 4864 4864 4864 4864 4864
Adjusted R2 0.001 0.001 0.001 0.001 0.001

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 11: France stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.0117 0.00662 0.00552 0.00568 0.0182
(0.15) (0.09) (0.07) (0.08) (0.24)

Returnt−2 -0.0142 -0.0178 -0.0153 -0.0129 -0.0217
(-0.16) (-0.20) (-0.17) (-0.14) (-0.24)

Returnt−3 0.0809 0.0784 0.0777 0.0775 0.0864
(0.74) (0.72) (0.71) (0.71) (0.80)

Returnt−4 -0.0796 -0.0578 -0.0623 -0.0670 -0.0836
(-0.69) (-0.49) (-0.53) (-0.57) (-0.73)

Returnt−5 0.00263 -0.00790 -0.00437 -0.00189 0.00193
(0.02) (-0.07) (-0.04) (-0.02) (0.02)

Positive 0.0264
(1.47)

Negative -0.0260***
(-2.63)

Pessimism -0.0242***
(-2.91)

Average Pessimism -0.0185**
(-2.38)

News Count -0.000166
(-1.38)

Constant -0.0112 -0.0117 -0.0103 -0.0110 -0.0102
(-0.79) (-0.84) (-0.75) (-0.79) (-0.76)

Observations 830 830 830 830 830
Adjusted R2 -0.002 0.005 0.006 0.001 0.007

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 12: Austria stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.103*** 0.102*** 0.102*** 0.102*** 0.103***
(2.83) (2.78) (2.79) (2.80) (2.82)

Returnt−2 0.0229 0.0237 0.0237 0.0230 0.0238
(0.61) (0.63) (0.63) (0.61) (0.64)

Returnt−3 0.0282 0.0268 0.0266 0.0279 0.0279
(0.74) (0.71) (0.70) (0.74) (0.74)

Returnt−4 -0.0104 -0.00969 -0.0106 -0.0103 -0.00899
(-0.28) (-0.26) (-0.29) (-0.28) (-0.24)

Returnt−5 0.0571** 0.0575** 0.0571** 0.0578** 0.0577**
(2.54) (2.55) (2.53) (2.57) (2.57)

Positive 0.0190**
(2.06)

Negative -0.00984***
(-2.82)

Pessimism -0.0106***
(-3.21)

Average Pessimism -0.00593*
(-1.92)

News Count -0.0000252
(-0.63)

Constant -0.0000696 0.000385*** 0.000330*** 0.000216** 0.000139
(-0.80) (3.25) (3.45) (2.42) (1.43)

Observations 4654 4654 4654 4654 4654
Adjusted R2 0.012 0.012 0.013 0.011 0.012

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 13: Belgium stock market - 30 minutes

(1) (2) (3) (4) (5)
Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.00581 0.00402 0.00461 0.00462 0.00468
(0.19) (0.13) (0.15) (0.15) (0.15)

Returnt−2 -0.0349 -0.0348 -0.0351 -0.0347 -0.0345
(-1.22) (-1.22) (-1.23) (-1.22) (-1.22)

Returnt−3 0.0469* 0.0465* 0.0465* 0.0467* 0.0468*
(1.75) (1.73) (1.73) (1.74) (1.75)

Returnt−4 0.0479 0.0488 0.0483 0.0485 0.0489*
(1.59) (1.61) (1.60) (1.60) (1.65)

Returnt−5 -0.0132 -0.0129 -0.0135 -0.0129 -0.0123
(-0.42) (-0.41) (-0.43) (-0.41) (-0.39)

Positive 0.0124*
(1.72)

Negative -0.00664**
(-2.24)

Pessimism -0.00714**
(-2.56)

Average Pessimism -0.00397
(-1.57)

News Count -0.00000134
(-0.03)

Constant -0.0000693 0.000233** 0.000196** 0.000119 0.0000259
(-1.00) (2.29) (2.43) (1.63) (0.31)

Observations 5131 5131 5131 5131 5131
Adjusted R2 0.004 0.005 0.005 0.004 0.004

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 14: Finland stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.0926** 0.0914** 0.0915** 0.0921** 0.0930**
(2.23) (2.20) (2.21) (2.21) (2.26)

Returnt−2 0.0807* 0.0813* 0.0807* 0.0807* 0.0808*
(1.89) (1.91) (1.89) (1.89) (1.92)

Returnt−3 0.0330 0.0325 0.0322 0.0328 0.0333
(1.11) (1.09) (1.08) (1.10) (1.12)

Returnt−4 -0.0363 -0.0360 -0.0361 -0.0359 -0.0361
(-1.24) (-1.23) (-1.23) (-1.23) (-1.23)

Returnt−5 0.00645 0.00627 0.00608 0.00617 0.00640
(0.23) (0.22) (0.21) (0.22) (0.23)

Positive 0.00860
(0.96)

Negative -0.00780**
(-2.09)

Pessimism -0.00755**
(-2.24)

Average Pessimism -0.00527
(-1.61)

News Count -0.00000673
(-0.22)

Constant 0.0000331 0.000346*** 0.000281*** 0.000225** 0.000117
(0.35) (2.65) (2.87) (2.38) (1.47)

Observations 4387 4387 4387 4387 4387
Adjusted R2 0.013 0.014 0.014 0.013 0.013

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 15: UK stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 -0.0313 -0.0317 -0.0318 -0.0322 -0.0309
(-1.02) (-1.04) (-1.04) (-1.05) (-1.00)

Returnt−2 0.0190 0.0191 0.0186 0.0195 0.0196
(0.62) (0.62) (0.61) (0.63) (0.64)

Returnt−3 0.00116 0.000376 0.000434 0.000782 0.00134
(0.04) (0.01) (0.01) (0.02) (0.04)

Returnt−4 0.0225 0.0230 0.0226 0.0223 0.0228
(0.73) (0.74) (0.73) (0.72) (0.74)

Returnt−5 0.0166 0.0162 0.0162 0.0160 0.0169
(0.59) (0.57) (0.57) (0.57) (0.60)

Positive 0.00951
(1.53)

Negative -0.00593**
(-2.17)

Pessimism -0.00618**
(-2.51)

Average Pessimism -0.00455*
(-1.81)

News Count 0.0000130
(0.53)

Constant -0.0000423 0.000216** 0.000179*** 0.000138** -0.00000365
(-0.63) (2.33) (2.58) (2.00) (-0.06)

Observations 5119 5119 5119 5119 5119
Adjusted R2 0.001 0.001 0.001 0.001 0.000

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 16: Switzerland stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.00918 0.00876 0.00906 0.00862 0.00851
(0.22) (0.21) (0.22) (0.21) (0.20)

Returnt−2 -0.0277 -0.0275 -0.0280 -0.0273 -0.0270
(-0.74) (-0.74) (-0.75) (-0.73) (-0.72)

Returnt−3 0.0533 0.0530 0.0528 0.0530 0.0536
(1.48) (1.47) (1.46) (1.47) (1.48)

Returnt−4 -0.0783** -0.0789** -0.0790** -0.0789** -0.0784**
(-2.02) (-2.04) (-2.04) (-2.04) (-2.03)

Returnt−5 0.00853 0.00812 0.00771 0.00872 0.00912
(0.33) (0.32) (0.30) (0.34) (0.35)

Positive 0.00927
(1.32)

Negative -0.00499*
(-1.86)

Pessimism -0.00536**
(-2.15)

Average Pessimism -0.00332
(-1.41)

News Count -0.00000604
(-0.23)

Constant -0.0000396 0.000190** 0.000161** 0.000110* 0.0000462
(-0.58) (2.12) (2.31) (1.70) (0.74)

Observations 4706 4706 4706 4706 4706
Adjusted R2 0.003 0.003 0.003 0.003 0.002

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 17: Norway stock market - 30 minutes

(1) (2) (3) (4) (5)
Returnt Returnt Returnt Returnt Returnt

Returnt−1 0.0292 0.0280 0.0278 0.0279 0.0291
(0.77) (0.74) (0.73) (0.74) (0.76)

Returnt−2 0.0396 0.0415 0.0415 0.0412 0.0402
(1.01) (1.05) (1.05) (1.05) (1.02)

Returnt−3 0.000992 0.000776 0.000404 0.000759 0.00152
(0.03) (0.02) (0.01) (0.02) (0.04)

Returnt−4 -0.0746** -0.0745** -0.0749** -0.0748** -0.0739**
(-2.15) (-2.15) (-2.16) (-2.16) (-2.14)

Returnt−5 0.0182 0.0189 0.0182 0.0191 0.0196
(0.64) (0.67) (0.64) (0.67) (0.69)

Positive 0.0202**
(2.03)

Negative -0.00669
(-1.64)

Pessimism -0.00827**
(-2.16)

Average Pessimism -0.00602*
(-1.69)

News Count 0.00000664
(0.22)

Constant -0.0000528 0.000311** 0.000299*** 0.000243** 0.0000795
(-0.54) (2.27) (2.82) (2.45) (0.97)

Observations 4412 4412 4412 4412 4412
Adjusted R2 0.006 0.005 0.006 0.005 0.005

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 18: Brazil stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 -0.0182 -0.0185 -0.0193 -0.0187 -0.0176
(-0.53) (-0.53) (-0.56) (-0.54) (-0.51)

Returnt−2 -0.00979 -0.00873 -0.00866 -0.00921 -0.00986
(-0.26) (-0.23) (-0.23) (-0.25) (-0.26)

Returnt−3 0.0239 0.0234 0.0228 0.0233 0.0245
(0.80) (0.78) (0.76) (0.78) (0.82)

Returnt−4 -0.0544* -0.0527* -0.0527* -0.0535* -0.0529*
(-1.91) (-1.84) (-1.84) (-1.87) (-1.86)

Returnt−5 -0.00340 -0.00428 -0.00459 -0.00437 -0.00383
(-0.16) (-0.20) (-0.22) (-0.21) (-0.18)

Positive 0.0193
(1.47)

Negative -0.00805
(-1.42)

Pessimism -0.00934*
(-1.84)

Average Pessimism -0.00901*
(-1.88)

News Count 0.0000291
(1.54)

Constant -0.0000280 0.000369* 0.000341** 0.000337** -0.00000343
(-0.21) (1.84) (2.29) (2.44) (-0.04)

Observations 3031 3031 3031 3031 3031
Adjusted R2 0.001 0.001 0.001 0.001 0.002

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 19: Canada stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 -0.0180 -0.0162 -0.0177 -0.0188 -0.0152
(-0.47) (-0.42) (-0.46) (-0.49) (-0.40)

Returnt−2 -0.00375 -0.00453 -0.00391 -0.00325 -0.00518
(-0.12) (-0.14) (-0.12) (-0.10) (-0.16)

Returnt−3 0.0124 0.0116 0.0112 0.0111 0.0131
(0.75) (0.71) (0.68) (0.67) (0.80)

Returnt−4 -0.00568 -0.00473 -0.00488 -0.00621 -0.00536
(-0.31) (-0.26) (-0.27) (-0.34) (-0.29)

Returnt−5 0.0151 0.0146 0.0144 0.0153 0.0153
(0.60) (0.59) (0.58) (0.62) (0.62)

Positive 0.0222**
(2.52)

Negative -0.00591
(-1.64)

Pessimism -0.00785**
(-2.21)

Average Pessimism -0.0137***
(-2.66)

News Count 0.00000249
(0.97)

Constant -0.000207** 0.000148 0.000152 0.000300** -0.0000588
(-2.29) (1.22) (1.54) (2.25) (-0.77)

Observations 1867 1867 1867 1867 1867
Adjusted R2 0.001 -0.001 0.000 0.003 -0.002

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 20: US Dow Jones stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 -0.161* -0.163* -0.163* -0.162* -0.163*
(-1.68) (-1.70) (-1.71) (-1.68) (-1.70)

Returnt−2 0.0391 0.0432 0.0420 0.0394 0.0410
(0.50) (0.55) (0.54) (0.50) (0.52)

Returnt−3 0.0132 0.00836 0.00978 0.0127 0.0127
(0.22) (0.14) (0.16) (0.21) (0.21)

Returnt−4 -0.0254 -0.0236 -0.0240 -0.0253 -0.0271
(-0.46) (-0.43) (-0.44) (-0.46) (-0.49)

Returnt−5 0.0548 0.0536 0.0542 0.0546 0.0567
(1.40) (1.37) (1.39) (1.40) (1.46)

Positive 0.00853
(0.41)

Negative -0.0224***
(-2.60)

Pessimism -0.0190**
(-2.40)

Average Pessimism -0.00587
(-0.82)

News Count -0.0000119
(-0.87)

Constant -0.000101 0.000691** 0.000438* 0.000111 0.0000594
(-0.49) (2.23) (1.83) (0.51) (0.46)

Observations 1529 1529 1529 1529 1529
Adjusted R2 0.007 0.011 0.011 0.007 0.007

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 21: US S&P 500 stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 -0.0605** -0.0590** -0.0596** -0.0594** -0.0600**
(-2.03) (-2.02) (-2.03) (-2.02) (-2.01)

Returnt−2 -0.0142 -0.0132 -0.0127 -0.0151 -0.0151
(-0.51) (-0.47) (-0.45) (-0.54) (-0.54)

Returnt−3 -0.0332 -0.0357 -0.0343 -0.0346 -0.0340
(-0.84) (-0.91) (-0.87) (-0.88) (-0.87)

Returnt−4 -0.0224 -0.0228 -0.0219 -0.0220 -0.0232
(-0.48) (-0.49) (-0.47) (-0.47) (-0.49)

Returnt−5 -0.0353 -0.0353 -0.0371 -0.0355 -0.0341
(-0.79) (-0.80) (-0.84) (-0.80) (-0.76)

Positive 0.0189
(1.03)

Negative -0.0194***
(-2.82)

Pessimism -0.0181***
(-2.75)

Average Pessimism -0.00978
(-1.33)

News Count -0.00000460
(-0.49)

Constant -0.0000793 0.000695*** 0.000517*** 0.000308 0.000105
(-0.47) (2.87) (2.65) (1.46) (0.82)

Observations 1418 1418 1418 1418 1418
Adjusted R2 0.001 0.006 0.007 0.002 0.001

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 22: Japan stock market - 30 minutes

(1) (2) (3) (4) (5)
Returnt Returnt Returnt Returnt Returnt

Returnt−1 -0.340 -0.340 -0.344 -0.337 -0.332
(-1.08) (-1.10) (-1.13) (-1.08) (-1.04)

Returnt−2 0.179 0.205 0.204 0.183 0.185
(0.69) (0.79) (0.79) (0.71) (0.71)

Returnt−3 0.323 0.313 0.315 0.335 0.318
(1.28) (1.25) (1.26) (1.34) (1.27)

Returnt−4 0.0701 0.0772 0.0717 0.0722 0.0807
(0.34) (0.37) (0.35) (0.35) (0.39)

Returnt−5 -0.0982 -0.102 -0.107 -0.101 -0.0932
(-0.49) (-0.50) (-0.52) (-0.50) (-0.47)

Positive 0.132**
(2.16)

Negative -0.0736***
(-2.71)

Pessimism -0.0767***
(-3.17)

Average Pessimism -0.129***
(-2.72)

News Count 0.00000837
(0.31)

Constant -0.000955 0.00245*** 0.00194*** 0.00317*** -0.0000432
(-1.43) (2.80) (3.16) (2.85) (-0.07)

Observations 718 718 718 718 718
Adjusted R2 0.013 0.017 0.022 0.017 0.006

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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Table 23: China stock market - 30 minutes
(1) (2) (3) (4) (5)

Returnt Returnt Returnt Returnt Returnt

Returnt−1 -0.0618 -0.0855 -0.0795 -0.0747 -0.0740
(-0.35) (-0.49) (-0.46) (-0.43) (-0.43)

Returnt−2 -0.204 -0.221 -0.220 -0.214 -0.211
(-0.87) (-0.94) (-0.94) (-0.91) (-0.90)

Returnt−3 -0.126 -0.122 -0.128 -0.115 -0.110
(-0.91) (-0.89) (-0.93) (-0.84) (-0.80)

Returnt−4 0.206 0.182 0.188 0.188 0.193
(0.83) (0.73) (0.76) (0.76) (0.77)

Returnt−5 -0.0670 -0.0696 -0.0725 -0.0743 -0.0622
(-0.32) (-0.33) (-0.34) (-0.35) (-0.30)

Positive 0.0937
(1.54)

Negative -0.0438*
(-1.93)

Pessimism -0.0471**
(-2.31)

Average Pessimism -0.0537
(-1.42)

News Count 0.0000166
(0.78)

Constant -0.000329 0.00181** 0.00155*** 0.00168* 0.000125
(-0.49) (2.35) (2.74) (1.92) (0.26)

Observations 730 730 730 730 730
Adjusted R2 0.001 0.001 0.003 -0.001 -0.002

t statistics in parentheses

* p<.1, ** p<.05, *** p<.01
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