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Abstract

In this paper I present a new single factor stochastic volatility model for asset return

observed in discrete time and its latent volatility. This model unifies the feedback effect

and return skewness using a common factor for return and its volatility. Further, it gen-

eralizes the existing stochastic volatility framework with constant feedback to one with

time varying feedback and as a consequence time varying skewness follows. However,

presence of dynamic feedback effect violates the weak-stationarity assumption usually

considered for the latent volatility process. The concept of bounded stationarity has

been proposed in this paper to address the issue of non-stationarity. A characterization

of the error distributions for returns and volatility is provided on the basis of existence

of conditional moments. Finally, an application of the model has been explained using

∗e-mail:sujay.mukhoti@gmail.com
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S&P100 daily returns under the assumption of Normal error and half Normal common

factor distribution.

1 Introduction

Research in financial econometrics has seen a surge in the area of time-varying volatility mod-

els for asset returns over last three decades. Stochastic volatility (SV) model ((Taylor 1982))

has been one of the key instruments to address this issue. In addition SV model explains some

interesting aspects of asset returns observed empirically and known as “stylized facts”. Some

of the important stylized facts are mean reversion of returns, volatility clustering indicating

periods of similar volatility occurring together and the negative relation between the return

and its volatility divulging their movement in opposite direction. The work of (Taylor 1982)

models the time varying volatility of financial returns as a latent auto-regressive process to

account for the volatility clustering. Since then multitude of SV models have been developed

to explain different stylized facts about asset returns. A comprehensive review of the SV

models can be obtained from the works of (Shephard & Andersen 2009) and (Chib, Omori

& Asai 2009).

Recent works in this context emphasize on two important aspects of return-volatility

relation viz. the correlation between current volatility and future returns (or the feedback

effect) and the negative correlation between current asset return and its future volatility

(or leverage effect). Different types of SV models have been developed to explain the time

varying volatility of asset return in presence of leverage effect. (Renault 2009) provides

a comprehensive account of feedback and leverage effect in SV models. Another related

stylized fact, viz. return skewness, has gained importance due to its role in asset and option

pricing ((Christoffersen, Heston & Jacobs 2006), (Renault 2009)). However, no work has

been done so far to establish the connection between feedback effect, return skewness and

leverage effect in discrete time general SV models to the best of the knowledge of the present

author. In this paper, I develop a parsimonious generalized single factor SV model to explain
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the relation between conditional feedback and return skewness and extend it to an SV model

with time varying feedback and skewness.

Time series data on asset returns provide evidences of its correlation with its volatility

((Nelson 1991)) and skewness in asset returns ((Harvey & Siddique 1999)). The negative

correlation between current volatility and future return (or feedback) may be attributed to

the fact that an anticipated increase in volatility results in immediate price fall ((French,

Schwert & Stambaugh 1987)). (Bollerslev, Litvinova & Tauchen 2006) shows that a stronger

signal of the feedback effect is reflected through the contemporaneous correlation between

asset return and its volatility. They conclude in favor of the contemporaneous correlation as

a measure of volatility feedback effect. On the other hand, the fact that a decline in current

price would lead to increase in future volatility, could be attributed to changes in financial

leverage ((Nelson 1991)) and such a correlation is called the leverage effect. (Renault 2009)

points out the possibility of an alternative explanation to the feedback using the return

skewness. The intuition behind such possibility could be justified by the following argument.

The magnitude of volatility increase due to price fall is much higher than the magnitude by

which volatility decreases in case of price increase. Thus the conditional volatility for negative

returns is more compared to the same for positive returns. This fact leads to the skewness in

the return distribution. (Tsiotas 2012) and (Feunou & Tédongap 2012) provide an account

of SV models developed so far with leverage and skewed return distributions.

In this paper I propose a parsimonious representation of such an interlocked explication

of feedback effect and skewness. Both of them could be looked upon as the resultant of

a common positive stochastic factor acting on both return and volatility shocks which are

symmetric. A financial justification of the presence of such a stochastic factor could be in

assuming the presence of a market sentiment influencing both return and volatility in different

magnitudes. Directions of market sentiment impact could be similar or opposite. I model the

influence of market sentiment on return and volatility as product of a common positive latent

random variable and corresponding weights. This mechanism generates perturbation to

symmetric return shocks by a positive random variable and generates asymmetry in returns
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whereas the shared factor generates the feedback effect.

(Bollerslev, Sizova & Tauchen 2012) provides empirical evidence of the dynamic nature of

the correlation between return and volatility. On the other hand (Harvey & Siddique 1999)

and recently (Boyer, Mitton & Vorkink 2010) provide evidences of time dependent conditional

return skewness. Based on the above findings I assume the weights of the factor on return

and volatility to be time varying so that the feedback effect and conditional skewness are

dynamic. Individual impact of the stochastic factor on return and volatility are measured by

the corresponding time dependent coefficients which will be referred to as impact parameters

here onwards. The underlying reason of different directions and magnitudes of the time

varying conditional skewness and the feedback effect could be then comprehended in terms

of the impact parameters.

The main complexity of the proposed model is that it violates weak-stationarity condition

of the volatility process. Weak stationarity is crucial to a stochastic process as it restricts

the process to increase indefinitely in expectation with time lag. In this paper I introduce

the concept of bounded stationarity in terms of 1st and 2nd order moments of a stochastic

process to relax the existing weak-stationarity condition yet ensure that the process does

not explode. I also provide here a characterization of the auto-regressive volatility process

of order one, which is most commonly used to describe volatility process in SV models, in

the light of bounded stationarity.

The proposed model is developed under general distributions for return, volatility and

the common factor. Many of the existing SV models has been shown to be particular cases of

this generalized SV model. An immediate characterization of the plausible distributions for

return, volatility and the common factor has been given based on the existence of return mo-

ments and the feedback effect. Further, I provide explanation of the skewness and feedback

effect in terms of the influence of market sentiment assuming the usual Gaussian framework.

The affine combination of Normal return shocks and Half-Normal common factor distribution

used in the proposed model results in a variant of a general class of distributions containing

standard Normal known as skew-normal distribution ((Azzalini & Dalla Valle 1996)).
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Parameter estimation in SV model is a challenging task due to non-identically and non-

independently distributed (non-iid) returns with complicated likelihood and high dimension

of the parameter space. (Jacquier, Polson & Rossi 1994) developed a Monte Carlo Markov

Chain (MCMC) method to estimate the SV model parameters. As pointed out by (Eraker,

Johanners & Polson 2003), MCMC method provides an edge over other methods of estima-

tion in different ways. First, MCMC provides estimates of latent volatilities which are as

many in numbers as the number of observed returns. Second, it is computationally efficient

and easily implementable ((Meyer & Yu 2000)). Another major advantage of the MCMC

method is that it allows to incorporate restrictions on the model parameters through selec-

tion of relevant prior distributions. Hence, I use MCMC method in this paper to estimate

the model parameters and latent volatilities.

Two major concerns in MCMC simulation are to measure the convergence and model

adequacy. (Gelman & Rubin 1992) suggested potential scale reduction factor (psrf) as a

measure of convergence which is calculated from more than one parallel MCMC simulations.

In this paper, Gelman-Rubin psrf has been used to measure convergence of MCMC simula-

tions. On the other hand, recent progress in MCMC estimation and its implementation has

become compelling for researchers to fit models with large number of parameters to explore

real life complexities more closely. As a result, measurement of model adequacy and complex-

ity has become increasingly important. (Spiegelhalter, Best, Carlin & Van Der Linde 2002)

proposed the deviance information criteria (DIC) as a measure of model adequacy. DIC is

calculated based on separate measures of model fit and model complexity.s The discrepancy

between data and model could be measured by the posterior mean of log-likelihood in an

MCMC simulation, which is a measure of model fit. Model complexity could be measured

using the log-likelihhod at the posterior means of the model parameters. DIC combines

the two measures to arrive at a measure of model adequacy ((Spiegelhalter et al. 2002)).

Observing that the number of unknown quantities involved in the model (including latent

volatility) it is crucial to measure the complexity in the model. In this paper I report both

DIC and measure of model complexity to gauge the usefulness of the proposed model.
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Rest of the paper is organized as follows. In section 2 the general framework for SV

model with common factor and time dependent impact parameters is described. The concept

of bounded stationarity is introduced in this section to tackle non-stationarity. Section 3

presents an example of generalized SVDFmodel with half-normal and Gaussian distributions.

The expressions for the dynamic feedback, leverage and skewness are presented here. Also

necessary and sufficient conditions for negative feedback has been discussed. In section 4

SV models with constant and time-varying feedback effect have been tested with S&P100

daily returns. Estimation results from the proposed models have been compared with the

same from some comparable models. Section 5 concludes the paper with a discussion on the

proposed model and its applications.

2 Dynamic Feedback SV Model with Common Market

Factor

Let Pt be the daily price of an asset and log Pt

Pt−1
be the log return. The time series of mean-

corrected daily log returns is denoted by yt and the underlying latent volatilities by θt. Let

us start with the SV model proposed by (Jacquier et al. 1994) which is given as follows:

yt = e
θt
2 ǫt, (2.1)

θt = α + φ(θt−1 − α) + ηt, t = 1, ..., T (2.2)

ǫt and ηt being independent sequences of independently and identically distributed (iid) ran-

dom shocks (or innovations) with 0 means and variances 1 and σ2 respectively. φ is the

volatility clustering parameter which reflects the stylized fact that volatility pattern (high

or low) cluster together. Subsequently SV models with contemporaneous correlation (ρ)

between ǫt and ηt has been discussed by, e.g. (Jacquier, Polson & Rossi 2004) among oth-

ers. SV model with the feedback effect ρ relates the changes in volatility to the sign and

magnitude of price changes which helps in pricing the options more accurately.

In this paper, I consider a new SV model with independent symmetric random shocks
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ǫt and ηt and a general positive common factor for market sentiment, say γt, which impacts

the return and its latent volatility at each time point. However, such impact on return and

its volatility may be different in magnitude and direction and may vary over time ((Boyer

et al. 2010)). Let λy,t ∈ R and λθ,t ∈ R be the dynamic impacts of the market factor on the

return and its latent volatility respectively. Thus the new single factor SV model with time

varying feedback (SVDF) is given as

yt = µy,t + e
θt
2 (λy,tγt + ǫt) (2.3)

θt = α + φ(θt−1 − α) + µθ,t + (λθ,tγt + ηt) (2.4)

where yt, θt are same as in equations (2.1)-(2.2) and {γt} is a sequence of iid positive random

variables. µy,t and µθ,t are so selected that E[yt | Ft−1] = 0 and E[θt | Ft−1] = α+φ(θt−α)

preserving mean reversion of the returns and the memory effect in volatility respectively.

Further ǫt and ηt are two sequences of symmetric random variables independent to each

other contemporaneously as well as inter-temporally.

The affine combination of positive factor with symmetric innovation results in a skewed

family of distributions. The impact parameters determine the amount and direction of

conditional skewness in the corresponding process and hence will be interchangeably called

as skewness parameters and impact parameters here onwards. The presence of common

factor in both return and volatility induces the correlation or the feedback effect. The time-

dependent impact parameters cause the feedback to be dynamic. It may be remarked here

that considering λy,t = λy and λθ,t = λθ, constant feedback model (SVCF) can be obtained.

Clearly the volatility asymmetry can now be interpreted in terms of the market sentiment

impacts which has been discussed in detail in subsection 2.3.

The SVDF model postulated in equations (2.3)-(2.4) describes a robust class of paramet-

ric SV models. Different distributions has been used in SV model to capture the leverage,

feedback and skewness in return ((Tsiotas 2012)). Such models can be obtained as special

cases of the proposed SVDF model. Some of important ones are described below:

1. Let λy,t = λθ,t = 0, ǫt ∼ N(0, 1) and ηt ∼ N(0, σ2) be independent processes to obtain
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the usual SV model with Gaussian errors ((Jacquier et al. 1994)).

2. Let λy,t = λθ,t = 0, ǫt ∼ tν , ηt ∼ N(0, σ2) and they are independent which leads to the

SV model with t-errors (SVt) in return ((Harvey, Ruiz & Shephard 1994)).

3. Let λθ,t = 0 and γt be standard half-normal variate. Further, let ǫt ∼ N(0, 1) and

independent of ηt ∼ N(0, σ2) and both ǫt and ηt are independent of γt which results

in the SV model with returns distributed as a variant of Skew-Normal distribution

((Tsiotas 2012)).

4. Set λθ,t = 0, γt as half-tν variate. In addition ǫt ∼ tν and ηt ∼ N(0, σ2) and are

independent of each other as well as γt. This leads to the SV model with Skew-t

returns ((Tsiotas 2012)).

5. Let λθ,t = 0 and γt be distributed as Generalized Inverse Gaussian distribution. Fur-

ther, let ǫt =
√
γtǫ

∗
t , where ǫ∗t are NID(0, 1) variates independent of γt and ηt ∼

N(0, σ2) to obtain the SV model with generalized hyperbolic Skew-t returns ((Aas &

Haff 2006)).

I assume the independence between γt, ǫt and ηt, ∀t = 1, 2, . . . for the rest of this paper.

The assumption of dynamic nature of impact parameters (λy,t and λθ,t) in SVDF model

immediately results in a serious issue of violating the weak stationarity of the auto-regressive

volatility process as stated in (2.4). This in turn may lead the process to explode as its future

variance may increase indefinitely with time lag. To avoid this issue and yet to incorporate

the time varying impact parameters I first introduce the concept of bounded stationarity in

the following subsection and then describe some characteristics of θt with respect to bounded

stationarity.

2.1 Bounded Stationarity For Non-Stationary Process

The bounded stationarity of a discrete time stochastic process is defined as follows.

8



D
R
A
F
T

Bounded Stationarity: Let Xt be a discrete time stochastic process such that its 1st and

2nd moments exist. The process is defined to be bounded stationary if E[Xt] < M and

Cov(Xt, Xt−k) < V ; M and V being finite real numbers and k is any integer.

Taking k = 0 in the above definition we get the condition V (yt) < V on the variance for

bounded stationarity.

Remark: Notice that, if the 1st and 2nd order moments of a bounded stationary time series

are constant, then the series is weak stationary. Further suppose the 1st and 2nd moments

of a locally weak stationary series, viz. yτ1 , yτ2 , . . . , yτT , τ ∈ I(an index set), be given by µτ

and σ2
τ . If µτ and σ2

τ are finite for all τ ∈ I, then setting M = sup
τ∈I

µτ and V = sup
τ∈I

στ we

observe that a locally weak stationary series is bounded stationary.

Based on the above definition, the conditions of bounded stationarity for the volatility

process in (2.4) is derived in the following theorem.

Theorem 2.1 Let us define at = µθt + λθtγt + ηt in the auto-regressive volatility equation

2.4. Also let {γt} be a sequence of iid positive random variables and {ηt} be a sequence of iid

random variables with zero mean and constant variance independent of γt, ∀t. Further the

sequence {at} is assumed to be independent of θt′ , ∀t′ < t. Assuming that the 2nd moment

of γt exists, the following results hold

1. E[θt] is finite ∀ t if | φ |< 1.

2. V (θt) is given by

Υt(0) = V (θt) = σ2(1 + φ2 + φ4 + . . .) + δ2
∞
∑

k=1

φ2kλ2
t−k, (2.5)

where δ = V (γt). Further Υt(0) is non-negative and bounded if | φ |< 1 and | λt |≤
λ, λ > 0 ∀t, in which case

Υt(0) ≤
σ2 + δ2λ2

1− φ2
(2.6)
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3. The auto-covariance function of lag k is given by Υt(k) = Cov(θt+k, θt)

Υt(k) = Cov(θt+k, θ) = φkΥt(0) ≤ φkσ
2 + δ2λ2

1− φ2
∀k. (2.7)

Proof. Let V (ηt) = σ2 and observe that E[at] = 0 and V (at) = σ2 + λ2
t δ

2, ∀t = 1, 2, . . ..

The proof of the results are given as below.

1. Notice that ,

E[θt] = α(1− φ) + φE[θt−1]

= α(1− φ)(1 + φ+ φ2 + φ3 + . . .)

so that E[θt] exists finitely if | φ |< 1.

2.

Υt(0) = φ2V (θt−1) + [σ2 + δ2λ2
t ]

= σ2(1 + φ2 + φ4 + . . .) + δ2[λ2
t + φ2λ2

t−1 + φ4λ4
t−1 . . .]

and if | φ |< 1 then

=
σ2

1− φ2
+ δ2

∞
∑

k=0

φ2kλ2
t−k.

Further if for a finite λ ∈ R, the condition | λt |≤ λ hold for all t, then the bound is

immediate from the expression of Υt(0).

3. The autocovariance function Υt(k) is given by

Υt(k) = E[(θt+k − α)(θt − α)]

= φE[(θt − α)E[(θt+k−1 − α)]]

since at+k is independent of θj ∀j < t+ k. Thus, by repeated substitutions we get

Υt(k) = φkΥt(0).

The bound on the auto-covariance function follows from (2.6).

10



D
R
A
F
T

Remark: 1. The condition for bounded stationarity in this case is given by | λt |≤
λ, λ ∈ R.

2. The auto-correlation function is time invariant and depends only on the lag which is

similar to the weak stationary time series.

3. The upper bound of the auto-covariance function dampens to zero as the lag increases.

Thus, similar to weakly stationary series, the impact of the past realizations decreases

with the time horizon. However, unlike the weak stationary series, the auto-covariance

of a bounded stationary AR process may not reduce to a time invariant constant with

increasing lag.

4. The k-period ahead forecast for such a series is given by θ̂t+k = α+ φk(θt − α) so that

lim
k→∞

θ̂t+k = α. The forecast error is given by

êt(k) =
k−1
∑

j=0

φjat+k−j

.

5. The forecast error variance is given by V (êt(k)) =
∑k−1

j=0 φ
2jV (at+k−j). The bounded

stationarity condition on λ leads to the following upper bound on forecast error vari-

ance.

V (êt(k)) ≤
1− φ2k

(1− φ2)2
(σ2 + δ2λ)

Notice that the bound tends to σ2+δ2λ
(1−φ2)2

, as k → ∞, i.e the bound increases with lag.

Further, if λ → 0, the bound on forecast error reduces to σ2

(1−φ2)2
. The error variance

also increases with the volatility persistence parameter φ.

The above discussion ensures that although the auto-regressive volatility process in the

proposed SV model is not weakly stationary but the first two moments of the process are

bounded and hence the process and its forecast does not explode with increasing lag. In

the following section we discuss on the feedback effect for the proposed SVDF model with

general innovation distribution under the assumption of bounded stationarity.
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2.2 Time Varying Feedback in SVDF Model

The following lemma provides means and variances of the return and volatility under the

model postulated in (2.3) and (2.4).

Lemma 2.2 Let yt and θt be the return and volatility at time t and the stochastic volatility

model describing the evolution of yt and θt be given as in (2.3-2.4). Suppose ǫt is distributed

with mean 0 and variance unity and ηt is distributed independent of ǫt with mean 0 and

variance σ2. Further suppose that the moment generating functions (MGF) of γt (denoted

by Mγt(u), ∀ u ∈ R) and ηt (denoted by Mηt(u), ∀ u ∈ R) exist and the first two derivatives

of the MGFs are denoted as M ′
X(u) and M ′′

X(u) respectively, X ∈ {γt, ηt}, t = 1, 2, . . . T .

Under the above postulates the following results hold given the information set Ft−1 available

up to time t− 1:

µy,t = −At−1λy,tMηt

(

1

2

)

M ′
γt

(

λθt

2

)

, where At−1 = e
α+φ(θt−1−α)+µθ,t

2 (2.8)

V (yt | Ft−1) = A2
t−1

[

Mηt(1)
{

λ2
y,tM

′′
γt
(λθ,t) +Mγt(λθ,t)

}

− λ2
y,tM

2
ηt

(

1

2

)

M ′
γt

2

(

λθ,t

2

)]

(2.9)

µθ,t = −λθ,tE(γt) (2.10)

V (θt | Ft−1) = λ2
θ,tV (γt) + σ2 (2.11)

Proof. To prove (2.8), first define Zy,t = λy,tγt + ǫt and Zθ,t = λθ,tγt + ηt. Notice that the

mean reversibility of yt implies that E[yt | Ft−1] = 0. Denoting e
α+φ(θt−1−α)+µθ,t

2 by At−1, the

expression of µy,t is given as follows

µy,t = −At−1E[e
Zθ,t
2 Zy,t | Ft−1]

= −At−1λy,tMηt

(

1

2

)

M ′
γt

(

λθ,t

2

)

where M ′
γt
(u) = d

du
Mγt (u).

To obtain the return variance, denote e
θt
2 Zy,t in (2.3) by Rt, ∀t = 1, 2, . . . T, and observe
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that

V (yt | Ft−1) = E[y2t | Ft−1]

= E[R2
t | Ft−1]− µ2

y,t

= A2
t−1Mηt(1)[λ

2
y,tM

′′
γt
(λθ,t) +Mγt(λθ,t)]− µ2

y,t

= A2
t−1

[

Mηt(1)
{

λ2
y,tM

′′
γt
(λθ,t) +Mγt(λθ,t)

}

− λ2
y,tM

2
ηt

(

1

2

)

M ′
γt

2

(

λθ,t

2

)]

where M ′′
γt
(u) = d2

du2Mγt(u).

Observing that E[θt | Ft−1] = α+ φ(θt−1 − α) the result (2.10) is immediate. The proof

of (2.11) is trivial.

Corollary 2.3 Observing that Mηt(1) ≥ M2
ηt

(

1
2

)

, the following lower bound can be obtained

from (2.9):

V (yt | Ft−1) ≥ A2
t−1Mηt(1)

[

λ2
y,t

{

M ′′
γt
(λθ,t)−M ′

γt

2

(

λθ,t

2

)}

+Mγt(λθ,t)

]

(2.12)

Further, letting λθ,t → 0 the bound in (2.12) reduces to

eα+φ(θt−1−α)Mηt(1)
[

λ2
y,tV (γt) + 1

]

(2.13)

The above corollary may be helpful in determining the minimum risk premium for options

based on returns yt. Next I provide an expression for the dynamic feedback effect for SVDF

model

Theorem 2.4 Under the model and the assumptions postulated in lemma 2.2, the dynamic

feedback ρt is given by

ρt =
λy,t

[

λθ,tMηt

(

1
2

)

{

M ′′
γt

(

λθ,t

2

)

−M ′
γt

(

λθ,t

2

)

E(γt)
}

+ E
(

ηte
ηt
2

)

M ′
γt

(

λθ,t

2

)]

√

Mηt(1)
{

λ2
y,tM

′′
γt
(λθ,t) +Mγt(λθ,t)

}

− λ2
y,tM

2
ηt

(

1
2

)

M ′
γt

2
(

λθ,t

2

)√

λ2
θ,tδ

2 + σ2

.

(2.14)
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Proof. The conditional covariance between yt and θt given the information set Ft−1 can be

derived as follows:

Covt−1(yt, θt) = Cov(yt, θt | Ft−1)

= E[At−1e
λθ,tγt+ηt

2 (λθ,tγt + ηt)(λy,tγt + ǫt)]− µy,tµθ,t

= λy,tAt−1EγtE
[

e
λθ,tγt+ηt

2 (λθ,tγt
2 + γtηt)

]

− µy,tµθ,t

= λy,tAt−1

{

λθ,tMηt

(

1

2

)

Eγt

[

γt
2e

λθ,tγt

2

]

+ Eγt

[

γte
λθ,tγt

2

]

E
[

ηte
ηt
2

]

}

− µy,tµθ,t

= λy,tAt−1

[

λθ,tMηt

(

1

2

)

M ′′
γt

(

λθ,t

2

)

+ E
(

ηte
ηt
2

)

M ′
γt

(

λθ,t

2

)]

− µy,tµθ,t

= λy,tAt−1

[

λθ,tMηt

(

1

2

){

M ′′
γt

(

λθ,t

2

)

−M ′
γt

(

λθ,t

2

)

E(γt)

}

+ E
(

ηte
ηt
2

)

M ′
γt

(

λθ,t

2

)]

(2.15)

Notice that existence of MGF of ηt ensures existence of E
(

ηte
ηt
2

)

and hence the expression

for feedback in (2.14) is immediate.

As a consequence of the above theorem the distributions of return and volatility shocks

can be characterized as follows.

Corollary 2.5 The class of distributions that can be considered to model the market factor

γt and the volatility shock ηt, ∀t = 1, 2, . . . T, are the ones admitting MGF so that the feedback

effect and hence the conditional or unconditional return moments exist. However, ǫt need

not be restricted by such property.

Remark: Notice that the feedback will not vanish even if there is no impact of market

sentiment on volatility. If the market sentiment has influence only on returns, then the future

marginal distribution of return or volatility does not change whereas the future marginal

distribution of volatility changes in presence of market sentiment impact on volatility. SV

models with only non-zero return impact may be classified as transient feedback SV models

where as the same with non-zero impact on both return and volatility could be classified as

SV model with persistent feedback.
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In the remaining part of this paper I assume that the MGF of γt and ηt exists ∀ t =

1, 2, . . . T . Next I describe the leverage effect under the proposed model.

2.3 Time Varying Leverage in SVDF Model

The presence of conditional leverage effect in the proposed model is reflected through the

impact of current return on future volatility ((Renault 2009)). The following theorem shows

that the conditional expectation of future volatility depends linearly on the current asset

return and the direction of the dependence is determined by the return impact parameter

as well as the volatility clustering parameter (φ).

Theorem 2.6 In the model described by (2.3-2.4) along the assumptions described in lemma

2.2, the conditional expectation of future volatility given current return is given as follows:

E[θt+1 | yt,Ft−1] = Ct +Dtφρtyt (2.16)

where ρt is the dynamic feedback effect, ut = λy,tγt+ǫt, vt = λθ,tγt+ηt, ωx,t =
√

V ar(xt), x ∈
{u, v} and

Ct = α + φ2(θt−1 − α)− ωv,t

ωu,t

φρtE[ut | Ft−1]− At−1
ωv,t

ωu,t

φρtµy,tMγt

(

−λθ,t

2

)

Mηt

(

−1

2

)

Dt = At−1
ωv,t

ωu,t

Mγt

(

−λθ,t

2

)

Mηt

(

−1

2

)

> 0

The sign of the conditional leverage is determined by the same of the volatility clustering

parameter and the direction of the feedback effect.

Proof. Notice that,

E[θt+1 | yt,Ft−1] = Eθt [E(θt+1 | θt) | yt,Ft−1]

= α + φ2(θt−1 − α) + φµθ,t + φE[(vt) | yt,Ft−1],

since γt+1 is independent of yt and its marginal expectation exists. Let v′t =
vt−E(vt)

ωv,t
and

u′
t =

ut−E(ut)
ωu,t

where ωv,t =
√

V ar(vt), ωu,t =
√

V ar(ut). Further, define wt =
v′t−ρtu

′
t√

1−ρ2t
, where
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ρt is the correlation between ut and vt. Notice that wt and u′
t are uncorrelated and E[wt] = 0.

Hence,

E[θt+1 | yt,Ft−1] = αt−1 + φωv,tE [v′t | yt,Ft−1] ,

( where αt−1 = α + φ2(θt−1 − α) and µθ,t = −E[vt | Ft−1])

= αt−1 −
ωv,t

ωu,t

φρtE[ut | Ft−1] +
ωv,t

ωu,t

φρtE [ut | yt,Ft−1]

= αt−1 −
ωv,t

ωu,t

φρtE[ut | Ft−1] + At−1
ωv,t

ωu,t

φρt(yt − µy,t)E
[

e−
vt
2 | Ft−1

]

( where At−1 is defined above )

= Ct + At−1
ωv,t

ωu,t

φρtytMγt

(

−λθ,t

2

)

Mηt

(

−1

2

)

= Ct +Dtφρtyt (2.17)

where Ct = αt−1 − ωv,t

ωu,t
φρtE[ut | Ft−1] − At−1

ωv,t

ωu,t
φρtµy,tMγt

(

−λθ,t

2

)

Mηt

(

−1
2

)

and Dt =

At−1
ωv,t

ωu,t
Mγt

(

−λθ,t

2

)

Mηt

(

−1
2

)

> 0. Hence the sign of the dynamic leverage depends on the

sign of feedback effect and the volatility clustering parameter. In particular if the feedback

effect and the volatility clustering parameter are of opposite sign then the future volatility

is negatively correlated to the current return.

2.4 Time Varying Skewness in SVDF Model

This subsection attempts to explain the conditional return skewness in terms of the impact

parameters. The following theorem provides an expression for the conditional skewness.

Theorem 2.7 In the model described in (2.3-2.4) along the assumptions described in lemma

2.2, the conditional skewness of return is given as follows:

Skt =
Ψ3

t + 3ΛtΨt + 3∆t

Λ
3
2
t

(2.18)

where Ψt =
µy,t

At−1
, Λt =

V (yt|Ft−1)
A2

t−1
and

∆t

A3
t−1

= Mηt

(

3

2

)[

λ3
y,tM

′′′
γt

(

3λθ,t

2

)

+ 3λy,tM
′
γt

(

3λθ,t

2

)]

(2.19)

M ′′′
X (u) = d3

du3MX (u).

16



D
R
A
FT

Proof. Simple algebraic manipulation will show that

E
[

y3t | Ft−1

]

= 3E
[

e
3Zθ,t

2 Z3
y,t | Ft−1

]

+ 3µy,tV (yt | Ft−1) + µ3
y,t

where Zθ,t and Zy,t are defined as in theorem 2.2. Further,

E
[

e
3Zθ,t

2 Z3
y,t | Ft−1

]

= A3
t−1E

[

e
3Zθ,t

2

(

λ3
y,tγ

3
t + 3λy,tγtǫ

2
t

)

| Ft−1

]

= Mηt

(

3

2

)[

λ3
y,tM

′′′
γt

(

3λθ,t

2

)

+ 3λy,tM
′
γt

(

3λθ,t

2

)]

In the above expression we notice that the conditional skewness is not dependent on the

expected volatility or the persistence. Only the impact parameters and the variance of

the volatility distribution contributes to the conditional return skewness. Thus the model

disentangles the effect of past volatility from the return skewness.

It is difficult to gain further insight on the dynamic leverage effect without assuming

particular distributions for γt, ǫt and ηt. In the following section we make specific assumptions

about the distributions of the market factor and return and volatility innovations.

3 SVDF Model with Gaussian Error Distributions

The SVDF model proposed above aims to capture the skewness in returns and the dynamic

nature of the feedback effect together. In this section I first inspect the SVDF model for

skewed returns. In particular, I provide the expression for the feedback effect and condi-

tional skewness and their interpretation in terms of the impact parameters using a Gaussian

framework.

3.1 Gaussian SVDF Model

I assume that γt ∼ HN(0, 1), HN(0, 1) being the standard half-normal distribution and

ǫt ∼ N(0, 1), ηt ∼ N(0, σ2), ∀t = 1, 2, . . . in addition to the assumptions made in the SVDF

model. The expression of feedback effect (ρt) can be derived in a similar manner as in

theorem 2.4. The following useful lemma provides the expression of the moment generating

function of standard half normal distribution.
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Lemma 3.1 Let us consider a standard half normal distribution random variable X and let,

for any u ∈ R, MX(u) be the moment-generating function (MGF) of X. Then,

M ′
X(u) =

d

du
MX(u) = uMX(u) +

√

2

π
(3.20)

M ′′
X(u) =

d2

du2
MX(u) = {1 + t2}MX(u) + t

√

2

π
(3.21)

Proof. The MGF of X, MX(u), u ∈ R is given by

MX(u) = E[euX ] =

√

2

π

∫ ∞

0

euxe−
x2

2 dx

=

√

2

π
e

u2

2

∫ ∞

−u

e−
z2

2 dx,

= e
u2

2

[

1 +
2√
π

∫ u√
2

0

e−w2

dw

]

= e
u2

2

[

1 + erf

(

u√
2

)]

, where erf(u) =
2√
π

∫ u

0

e−w2

dw

= 2e
u2

2 Φ(u), [ since erf(u) + 1 = 2Φ(u
√
2)] (3.22)

and hence,

M ′
X(u) = uMX(u) +

√

2

π
= 2ue

u2

2 Φ(u) +

√

2

π
. (3.23)

Further, differentiating (3.20) with respect to u and substituting the expression for M ′
X(u)

we get

M ′′
X(u) = {1 + u2}MX(u) + u

√

2

π
. (3.24)

In the following theorem the expression for dynamic leverage (ρt) is derived under the

model postulated in (2.3-2.4) and the distributional assumptions stated above and state

some sufficient conditions in terms of impact parameters for negative leverage.

Theorem 3.2 Let yt and θt be the return and volatility at time t and the stochastic volatility

model describing the evolution of yt and θt be given as in (2.3-2.4) where γt follows standard

half normal distribution. Further γt is assumed to be independent of the normal variates
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ǫt and ηt which are independent among themselves with mean 0 and variances 1 and σ2

respectively, ∀t = 1, 2, . . . n. Under this model the dynamic leverage effect ρt is given by

ρt =
λy,t

[

λθ,tMγt

(

λθ,t

2

){

λ2
θ,t

4
+ 1 + σ2

4
− λθ,t√

2π

}

+ 1√
2π

(

σ2 + λ2
θ,t

)

− 2λθ,t

π

]

√

e
σ2

4

{

Mγt(λθ,t)[λ2
y,t(λ

2
θ,t + 1) + 1] +

√

2
π
λθ,tλ

2
y,t

}

− λ2
y,tM

′
γt

2
(

λθ,t

2

)√

λ2
θ,t

(

1− 2
π

)

+ σ2

(3.25)

where M ′
γt
(u) and M ′′

γt
(u) are as defined in (3.20-3.21).

Proof. Notice that, here Mηt

(

1
2

)

= e
σ2

8 and hence from (2.8)

µy,t = −At−1λy,te
σ2

8 M ′
γt

(

λθ,t

2

)

(3.26)

Further, observing that Mηt(1) = e
σ2

2 , expressions in (2.11) and (2.9) leads to

V (θt | Ft−1) = λ2
θ,t

(

1− 2

π

)

+ σ2 and (3.27)

V (yt | Ft−1) = A2
t−1e

σ2

2

{

Mγt(λθ,t)[λ
2
y,t(λ

2
θ,t + 1) + 1] +

√

2

π
λθ,tλ

2
y,t

}

− µ2
y,t

= A2
t−1e

σ2

4

[

e
σ2

4

{

Mγt(λθ,t)[λ
2
y,t(λ

2
θ,t + 1) + 1] +

√

2

π
λθ,tλ

2
y,t

}

−λ2
y,tM

′
γt

2

(

λθ,t

2

)]

. (3.28)

Further, E
[

ηte
ηt
2

]

= σ2

2
e

σ2

8 and hence from (2.15) :

Covt−1(yt, θt) = At−1e
σ2

8

[

λθ,tλy,tM
′′
γt

(

λθ,t

2

)

+ λy,t

σ2

2
M ′

γt

(

λθ,t

2

)]

− µy,tµθ,t

= At−1e
σ2

8

[

λy,tλθ,t

{

(

λ2
θ,t

4
+ 1

)

Mγt

(

λθ,t

2

)

+

√

2

π

λθ,t

2

}

+ λy,t

σ2

2

{

λθ,t

2
Mγt

(

λθ,t

2

)

+

√

2

π

}]

− µy,tµθ,t

= At−1e
σ2

8 λy,t

[

λθ,tMγt

(

λθ,t

2

){

λ2
θ,t

4
+ 1 +

σ2

4
− λθ,t√

2π

}

+
1√
2π

(

σ2 + λ2
θ,t

)

− 2λθ,t

π

]

(3.29)

Hence the expression for leverage in (3.25) is immediate.
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Remark: The correlation coefficient varies with respect the impact parameters as well as

the variance of the volatility. A necessary and sufficient condition for the feedback effect to

be negative is that λy,t and κt = λθ,tMγt

(

λθ,t

2

){

λ2
θ,t

4
+ 1 + σ2

4
− λθ,t√

2π

}

+ 1√
2π

(

σ2 + λ2
θ,t

)

− 2λθ,t

π

are of opposite sign (∀σ > 0). It can be shown that κt has a minimum at λmin
θ,t for each σ > 0

with minimum value κmin
t , ∀t = 1, 2, . . . , T . Figure 3(a) in the Appendix plots κmin

t against

σ for any t.

As evident from figure 3(a), κmin
t exceeds zero and numerical computation shows that the

corresponding σ = 0.74182. Thus κt can take negative values only for σ ∈ (0, 0.7419819){=
Imin}. Thus, to find the range of λθ,t so that κt < 0, we restrict σ within this interval. Further,

numerically it can be verified that there are only two roots to κt = 0, say λ1
θ,t < λ2

θ,t, for

σ ∈ Imin. Figure 3(b) in Appendix A show the plots of λ1
θ,t and λ2

θ,t against σ ∈ Imin.

It is clear from the above figures that the interval within which κt < 0 reduces with

increasing σ. Thus necessary and sufficient condition for feedback to be negative is translates

to either λy,t < 0 and λθ,t lies out side the interval (λ
1
θ,t, λ

2
θ,t) or the other way around where

the limits λi
θ,t, i = 1, 2 depend on the variance of the volatility process.

Remark: Figures (4-5) given in the appendix provide the feedback effect surface corre-

sponding to impact parameters for given volatility variances.

It may be noticed from the above figures that as σ → ∞, the impact surface closes to the

constant plane at zero. Observing that very high volatility variance induces positive proba-

bility for the event that realization of conditional volatility is far away from its conditional

mean. Such a case may happen in times of bubbles and crashes. One possible explanation

for such minuscule feedback effect could be that during such time, market factor impacts are

outperformed by the random shocks and hence feedback appears insignificant. In the partic-

ular case of no impact of market factor on volatility (λθ,t → 0), simple algebraic calculation

will reveal that ρt → λy,tσ
√

2πe
σ2
4 (λ2

y,t+1)−2λ2
y,t

, which tends to 0 with increasing σ.

Remark: Notice that for a standard half-normal random variable X,

M ′′′
X (u) =

d3

du3
MX(u) = u(u2 + 3)MX(u) +

√

2

π
(u+ 1) (3.30)
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Hence, from theorem 2.7, the conditional skewness could be derived.

4 Estimating Stochastic Volatility Feedback and Re-

turn Skewness

In this section, I describe likelihood based MCMC estimation of the parameters of the

proposed SV model. Let Θ indicate the set of model parameters, viz. {λy, λθ, α, φ, σ2}
where θ = (θ1, θ2, . . . θT )

′ and y = (y1, y2, . . . , yT )
′. To ensure bounded stationarity of the

volatility process in SVDF model, the volatility impact parameters needs to be bounded

and the auto-regression parameter φ is restricted within (-1,1) a priori. The same could be

ensured using suitable prior distributions of λθt with a finite support and φ with support

(-1,1). The sample information about Θ and the latent volatility θ is described through

the posterior distribution which combines the likelihood, f(y | θ,Θ) and the prior f(Θ) as

follows :

f(Θ | y,θ) ∝ f(y | θ,Θ)f(θ | Θ)f(Θ)

4.1 Convergence of MCMC

In such iterative simulations one critical issue is to correctly assess the convergence of the

method. As proposed by (Gelman & Rubin 1992) potential scale reduction factor (psrf) based

on multiple independent chains is used in this paper to measure the convergence of iterative

simulation. To obtain psrf first n observations are simulated from m(> 2) independent

sequences after a sufficient burn-in for each parameter. The variance of the target posterior

distribution (V ) is then estimated by

V̂ =
n− 1

n
W +

B

n

where W is the average within sequence variance of the m independent chains and B is

the variance of the means between chains . Notice that expectation of W asymptotically
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approaches V . Gelman and Rubin’s psrf is defined as
√

R̂ =
√

n−1
n

+ B
nW

m+1
m

ν̂(W,B,m, n)

where ν̂(W,B,m, n) is an adjustment factor tending to unity as n → ∞ (see Eq. 4 in

(Gelman & Rubin 1992)). Since
√

R̂ declines to 1 asymptotically, psrf closer to 1 would

indicate convergence of the MCMC simulation of the corresponding parameter.

4.2 Model Adequacy and Complexity

To measure how good a model fits to the data, the proposed one could be compared with

a saturated model. In a saturated model a perfect fit to data is obtained by using as many

parameters as the number of observations. Rooting from this concept, a frequentist measure

of a model fit is defined as the departure of the model from saturated model which is known

as deviance. For the SV model proposed in this paper the deviance would be given by

D(Θ) = −2 log{f(y | Θ)}+ 2 log{h(y)}.

Here f(y | Θ) is the conditional likelihood function of the data given the set of parameters

Θ and h(y) is a fully specified standardizing term depending only on the observations. On

the other hand, model complexity depends on the number of parameters in the model along

with the data and priors. Thus large number of parameters add to the complexity of a model

as well. (Spiegelhalter et al. 2002) proposed a measure of model adequacy, called deviance

information criteria (DIC), based on posterior mean deviance along with a penalty for model

complexity. DIC for the model proposed in this paper is given by

DIC = D(Θ) + pD,

where D(Θ) is the posterior mean of deviance and pD is the penalty for model complexity.

pD is also interpreted as the effective number of parameters which is measured with deviance

at posterior mean (D(Θ)) as follows:

pD = D(Θ)−D(Θ).

DIC and pD can be easily computed from the MCMC output.
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The number of unknowns (parameters and volatilities) in a typical SV model are more

than the number of observations. Thus pD and DIC separately play important roles in

selecting most appropriate SV model from a set of candidate models ((Berg, Meyer & Yu

2004), (Abanto-Valle, Bandyopadhyay, Lachos & Enriquez 2010), (Tsiotas 2012)). In this

paper, I report both DIC and pD, the former to measure model adequacy and and the latter

for model complexity.

4.3 Empirical Results

The proposed SV models have been tested with S&P100 daily returns. S&P100 data has

been used earlier by (Blair, Poon & Taylor 2001), (Harvey et al. 1994) and (Berg et al. 2004)

to examine its heteroskedastic volatility. The data considered here is the same as that in

(Berg et al. 2004). The data contains 1516 mean corrected daily log-returns on S&P100

observed during the period January, 1993 to December, 1998. Figure 1 presents the time

plot of the data and the summary statistics are given in table 1 (see Appendix A).

4.3.1 Estimation in Constant Feedback Models

In this sub-section I test the proposed SVCF model and compare it with two more similar

SV models. The SVCF model (M1) is as described in (2.3-2.4) with the impact parameters

being constant over time. Other two similar models which include the return skewness as

well as the leverage effect are as follows:

M2 (SVF-BVSN): An SV model with feedback and skew-normal returns and volatility:

yt = µy + e
θt
2 [λ1γ1,t + ǫt], (4.31)

θt = µθ + α + φ(θt−1 − α) + λ2γ2,t + ηt, t = 1, ..., T (4.32)

where γi,t are Half standard Normal variates (i=1,2) so that both return and its volatil-

ity follow a bivariate skew-normal distribution ((Azzalini & Dalla Valle 1996)) with

feedback effect ρ = cor(ǫt, ηt).

23



D
R
A
F
T

M3 (SVF-SN-N): An SV model with feedback and skew-normal returns:

yt = µy + e
θt
2 [λ1γt + ǫt], (4.33)

θt = α + φ(θt−1 − α) + ηt, t = 1, ..., T (4.34)

where (ǫt, ηt)
′ bivariate normal distribution with 0 mean and dispersion matrix Σ =





1 ρσ

ρσ σ2



.

To complete the model specification for MCMC estimation the prior distributions are de-

scribed next. In this paper I mostly follow (Kim, Shephard & Chib 1998) and (Berg

et al. 2004) to assign priors to the model parameters. I define β = 2β∗ − 1 and assume

an informative prior with B(20, 1.5) for φ∗. Since the 5th and 95th percentiles of the prior

distribution are P5 = 0.65 and P95 = 0.98, it incorporates strong volatility clustering a pri-

ori. I assume a flat prior N(-10,25) for α. Further, I assume the conjugate hierarchical prior

Gamma(ν
2
, ν
2
) for σ2 with ν ∼ U(2, 128) ((Chib, Nardari & Shephard 2002)). The priors

for the impact parameters are assumed to be non-informative U(-2,2). The corresponding

skewness interval is (-38.3,38.3) which covers the skewness intervals reported in the existing

literature (e.g see (Boyer et al. 2010)). I also assume a non-informative U(-1,1) prior for

ρ. Posterior distribution of the model parameters are obtained from 3 chains of MCMC

samples. Gelman-Rubin psrf for each parameter is computed using the 3 chains of MCMC

samples to check convergence on these parameters.

4.3.2 Estimation Result for SVCF

Table 2 in Appendix A reports the posterior medians of the important parameters in each

of the models M1-M3. The figures in the brackets indicate respectively standard deviation

and psrf of the parameter. The Gelman-Rubin psrf values indicate stronger convergence for

all the parameters in M1 and M2 with psrf less than 1.05 whereas some parameters in M3

have psrf higher than 1.05. The table also contains the triplet - total number of samples

generated, number of observations dropped between two consecutive sampled values in each
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chain (thin) and the time taken to complete under the row label “MCMC samples” for the

three models. The values of the triplets show that the proposed SVCF model had a faster

convergence with sample size 30000 and thin =1 compared to M2 and M3 which required

sample sizes 30000 and 90000 with respective thins 40 and 20 for convergence.

The model adequacy measure (DIC) reported in the table shows that the proposed SVCF

model provides the best fit among the three models considered here. Also the effective

number of parameters (pD) is lowest for the proposed model among the three. This indicates

that the proposed SVCF model fits to the S&P100 data with maximum parsimony.

From the figures given in table 2 it can be seen that the posterior medians of all the

parameters are comparable to the same in existing literature. In particular, all models

depict high volatility persistence. The feedback effect in the SVCF model is calculated using

posterior medians of λ1 and λ2. The estimated value is is -0.1041 whereas the same (ρ) in

M2 and M3 indicates negligible feedback effect.

Posterior median of the return impact parameter (λ1) is less in the proposed SVCF

model compared to M2 and M3. Further, posterior median of return and volatility impact

parameters are of opposite signs in the proposed SVCF model where as M2 indicates both

the impacts in the same direction.

Next I compare the model based estimates of S&P100 volatility with the implied volatili-

ties of the same obtained from Chicago board of options exchange (CBOE). CBOE provides

annualized implied volatility percentage using S&P100 options (VXO) (CBOE 2009). I trans-

form VXO to daily implied volatility by dividing it with 100*
√
12. On the other hand model

based volatilities are estimated using the posterior median of log-volatilities. The model

based volatility estimates have been plotted along with VXO in figure 2 after making suit-

able linear transformations so that they can be visually compared. Since linear transforms

are monotone, the pattern (shape) of the plot remains unchanged. The figure shows that

VXO has an over all increasing trend starting with a moderately volatile period especially

during 1994-1995. The volatility started increasing since 1996 and after 1998 sharp rise in

volatility has been observed. It could observed from the graph that estimated volatility from
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the proposed model (SVCF) replicates similar pattern whereas estimates obtained from M2

and M3 does not indicate any major change after 1998.

4.4 Estimation Result for SVDF

In this section I consider the dynamic feedback models and apply different extensions of the

models described in the previous section incorporating dynamic feedback and skewness pa-

rameters. The proposed common factor model is easily obtained from 2.3-2.4 by making the

impact parameters time dependent. Model M4 describes time dependent feedback through

time varying return impact parameters (λ1,t) while the volatility impact parameter is con-

sidered to be constant. Model M5, on the other hand, describes the time varying feedback

effect setting both the impact parameters time dependent. Model M6 is obtained from M3

considering the feedback to be time varying (ρt) where as model M7 considers both the re-

turn impact parameter and feedback parameter as time varying ones. We have excluded the

extensions of M2 as the convergence was too slow in the constant feedback model. Prior dis-

tributions remain same as in the SVCF models. Posterior medians of important parameters

in all the four models and their respective sd and psrf are shown in table 3.

The psrf figures in the table indicate that simulation has converged for M4 and M5

whereas M6 and M7 could not achieve the same level of convergence. Notice that M4

provides best fit to S&P100 daily returns with lowest DIC and pD among the four variants

considered here. However, model adequacy reduces in dynamic feedback models compared

to the constant feedback counterparts and at the same time complexity increases in terms

of effective number of parameters (pD). Observing the fact that convergence may not have

been achieved in models M6 and M7, the results should be interpreted with caution.

Similar to the constant feedback model, posterior medians are considered to be the point

estimates of the unknown parameters. Table 3 shows the posterior medians along with sd and

psrf in brackets. It may be noticed that the posterior median of the persistence parameter

and impact parameters are smaller in dynamic feedback models compared to their constant

feedback counterparts.
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The four plot in figure 6 describes the estimated return (or market) and volatility im-

pact plots corresponding to M4, M5 and M7. Notice that the estimates of all the impact

parameters vary around 0 but the amount of variation is different in different time-window.

Among the return impact parameters, the estimates obtained from M5 vary more compared

to M4. The volatility impact parameter plot obtained from M5 describes large positive im-

pacts on volatility after 1997 which could be interpreted as an indication of riskier time for

investment.

For the models M4 and M5, I compute the feedback effect from (3.25) using the posterior

median of the impact parameters and the variance of the volatility. It may be remarked here

that out of 1516 trading days, MCMC simulation for ρt did not converge for 251 days in M6

and 434 days in M7 with a sample of size 15000 for each day. Figures 7 in the appendix

presents the time-varying feedback effects only on the time points where convergence has

occurred. It could be observed from the graphs that feedback effect fluctuates about 0 but

amount of variation in different time-window are different. Large movements in estimated

feedbacks form all the models are found to be frequent after 1997. Further, the plot cor-

responding to M5 shows higher range of feedback effects compared to the other three. A

similar pattern is found for the time varying skewness which are computed from (2.7) for

M4 and M5 using the posterior medians of the impact parameters and variance of the log-

volatility distribution. In terms of magnitude of skewness, estimates based on M5 are larger

compared to the other two models.

5 Discussion

This paper presents a parsimonious single factor SV model that leads to four major insights

related to return skewness and feedback.

1. The inter connection between feedback effect and return skewness has been established.

Precisely, the skewness of returns has been shown as a perturbation of symmetric return

error with a positive “market sentiment” factor common to both return and volatility
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and the feedback is generated as a result of the shared factor.

2. The model accommodates the dynamic nature of the skewness and feedback effect

as mentioned in (Boyer et al. 2010). In particular, the concept of bounded station-

arity has been introduced as a generalization of weakly stationary process and the

non-stationarity arising out of dynamic skewness has been tackled with the bounded

stationarity which enables finite forecasts of risk.

3. The proposed model leads to a simple characterization of the admissible distributions

for return and volatility shocks. The findings establish the fact that the common factor

and the volatility shocks can’t be characterized by a heavy-tail distribution for which

the MGF does not exist.

4. The reaction of the feedback effect to the variance of the volatility process elicits

from this single factor model. The interesting fact that could be noticed from the

feedback surface plot is that if the volatility process itself has very high variance then

the feedback effect is infinitesimal. In particular, large variance of the volatility shock

leads to a non-informative distribution. As per the plot, market sensitivity looses

its importance on the risk or volatility in such a condition and in turn generates an

infinitesimal effect on future price.

Application of the proposed single factor SV models on S&P100 daily returns shows some

additional advantages. Results from MCMC estimation method shows that the single factor

model is computationally more efficient compared to some comparable models discussed in

this paper in terms of time to convergence and degree of convergence as measured by psrf.

Further, the single factor models provide better fit and the complexity measure pD is lower

compared to the comparable models. In-sample volatility estimates seem to replicate the

implied volatility pattern over time.

The single factor model gives rise to an interesting problem. Construction of a portfolio

involves understanding the risk or volatility of multiple assets and an experienced portfolio

manager may have prior knowledge available about the correlation between asset returns and
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their volatilities within and between different industry sectors. Such expertise may help in

eliciting priors for individual feedback in a Bayesian multivariate SV framework. However,

assigning priors on individual elements of the correlation matrix does not ensure that at

an intermediate stage of simulation the resulting correlation matrix would remain positive

definite. On the other hand, if sector specific factors are shared between within-industry

assets and the priors for the impact parameters are elicited from the expert knowledge the

positive definiteness still may be achieved while incorporating the individual priors.
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Table 1: Summary Statistics for S&P100 returns

Series Mean Median Min Max Skewness Kurtosis

S&P100 0.0003191 0.0003041 -0.03264 0.02435 -0.5878 11.90426

1993 1994 1995 1996 1997 1998 1999
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Figure 1: Time plot of S&P100 returns over 1993-1998

33



D
R
A
F
T

Table 2: Parameter Estimates for S&P100 Returns

Parameter M1 M2 M3

α -11.716 -9.6294 -11.8

(0.1058, 1.0003) (2.848,1.001) (0.1667, 1.0521)

φ 0.8277 0.94193 0.8148

(0.0306, 1.0008) (0.0087,1.0008) (0.0377, 1.0638)

σ 0.4998 0.53443 0.5582

(0.062, 1.0016) (0.05402,1.01) (0.074, 1.1326)

λ1 -0.4072 -0.6925 -0.5866

(0.1911, 1.0018) (0.291,1.0149) (0.3378, 1.0149)

λ2 0.098 -0.0148 -

(0.1585, 1.008) (0.1053, 1.0015) (-)

ρ - -0.0054 0.0002

(-,-) (0.00047, 1.0043) (0.0004, 1.043)

pD 522.2921 1759.247 778.2841

DIC -12883.86 -8941.212 -12754.21

Iterations 30000 30000 90000

(1,2.8 Hrs) (40,1.7 days) (20,1.7 days)
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Figure 2: Implied volatility (VXO) and model based estimated volatility of of S&P100
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Figure 3: Minimum value of κt for different values of σ

36



D
R
A
F
T

Figure 4: Feedback surface plots for σ =0.001(blue), 0.1(yellow), 1(red), 2(green)

Figure 5: Feedback surface plots for σ =3 (blue), 5 (yellow), 10 (red), 20 (green)
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Table 3: Parameter Estimates for S&P100 Returns with dynamic Feedback

Parameter M4 M5 M6 M7

α -12.004 -12.22 -10.99 -12.28

(0.0955, 1.0) (0.0767,1.0006) (0.4294,1.333) (0.5881,1.37)

φ 0.8174 0.5865 0.5723 0.6704

(0.0339, 1.0034) (0.04399,1.0008) (0.08335, 1.7118) (0.0351,1.60)

σ 0.5161 0.4981 0.9783 0.6019

(0.0631,1.0026) (0.09288,1.001) (0.13138, 1.0758) (0.11934, 1.15)

λ1 - - -0.00305 -

(-, -) (-,-) (0.1317, 1.001) -

λ2 -0.152 - - -

(0.1584, 1.0008) (-,-) (-,-) (-,-)

pD 1012.442 3244.661 2348.584 2835.136

DIC -12832.39 -11075.3 -10379.52 -11783.02

Sample Size 30000 10000 100000 300000

(20,10.6 Hrs) (5, 4.3 hrs) (1,6.5 hours) (1,16 hours)
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Figure 6: Plot of time-varying impact parameters in M4-M7.
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Figure 7: Plot of ρt in M4-M7.
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Figure 8: Plot of time-varying skewness in M4, M5 and M7.
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