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Abstract

We present a network formation model based on a particularly interesting class of
networks in social settings, where individuals’ positions are determined according
to a topic-based or hierarchical taxonomy. In this game-theoretic model, players
are located in the leaves of a complete b-ary tree as the seed network with the
objective of minimizing their collective distances to others in the network. In the
grid-based model of Even-Dar and Kearns [3], they demonstrate the existence of
small diameter networks with the threshold of α = 2 where the cost of a new link
depends on the distance between the two endpoints to the power of α. We show the
appearance of small diameter equilibrium networks with the threshold of α = 1/4
in the hierarchical or tree-based networks. Moreover, the general set of equilibrium
networks in our model are guaranteed to exist and they are pairwise Nash stable
with transfers [2].
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1 Introduction

The role of network structures in determining the outcome of many social
and economic settings has captured increasing attention in recent years. In

⋆ A revised version is to be appeared in the VIII Latin-American Algorithms, Graphs and
Optimization Symposium (LAGOS’15). Suggested citation:
Atabati, Omid, and Babak Farzad. (2015). A hierarchical network formation model.
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particular, different researches have demonstrated this significant role in the
wide range of problems [4]. As a result, it is crucial to study the formation
process of social and economic networks and to know their characteristics, as
there is a frequent appearance of certain properties such as small diameter
and large clustering coefficient in naturally occurring networks [7]. A growing
body of works in strategic or game-theoretic network formation 3 considers the
underlying network structure as a set of self-interested individuals and their
connections. In a previous effort [3], Even-Dar and Kearns proposed a model
that starts from a

√
n × √

n grid network. Players’ objective is to minimize
their collective distances to all other players. Forming a link is costly at the
fixed price of the initial grid distance between the endpoint players of that link
to the power of α. Also, equilibrium analysis is relaxed from Nash equilibrium
to link stability. Link stability implies that the network is stable under single
link unilateral deviations. 4 They showed the appearance of small diameter
link stable networks within the threshold of α = 2. Further, Atabati and
Farzad [1] expand this result by showing the existence of a small diameter in
the general set of equilibrium networks under the new assumption of dynamic

link-pricing that better represents the dynamic nature of network formation. 5

Hierarchical networks are known as credible social structures based on
observations in social sciences [8]. In particular, previous studies [5,8] have
analyzed the hierarchical networks by applying stochastic models. However,
less is known from the strategic perspective. We aim to fill this gap by pre-
senting our game-theoretic hierarchical network formation model. The rest of
this paper is organized as follows. In Section 2, we explain our model. We
then provide our analysis on the diameter of equilibrium networks in Section 3
and the conclusion in Section 4.

2 The model

Let N = {1, ..., n} be the set of n players being located at the leaves or the
lowest level of a complete b-ary tree, denoted by G0 as the starting or seed
network. Typically in these networks, the distance of each two players is
defined to be the height of their lowest common ancestor in the tree. 6 Note

3 See [4] for a comprehensive survey in this topic.
4 This is as opposed to Nash, which allows for arbitrary link unilateral deviations.
5 Dynamic link-pricing updates the applied distances of each pair of players in the related
link-prices from the current network rather than sticking with the initial grid distances.
6 Considering a total of n players in the network, the upper bound for the distance between
two players is logb n.



that in the beginning, there is no additional link between the players in the
network and distances are defined by the structure of the tree.

Players seek to minimize their collective distances to others in the network.
To follow this goal, player i is able to establish links by announcing a vector of
transfer payments ti ∈ ❘

n(n−1)/2. The entry tijk is i’s offer (to pay) or demand
(to gain) on the link jk. Direct (indirect) transfer payment is implied when
i ∈ jk (i /∈ jk). Typically, individuals can make offers (positive transfers) for
direct and indirect payments, but only can make demands (negative transfers)
for direct transfers. In the equilibrium, there is no excess of payments allowed.
Thus, a link exists in the equilibrium network, if the summation of all transfers
on that link equals zero. Also, G(t) is the resulted network associated with
the strategy vector t. Further, network G + ij is obtained by adding a new
link ij and G− ij is resulted by removing an existing link ij.

As there will be added links between the leaves of the starting tree network
during the game, we need to define the generalized notion of distance between
any two players u and v as follows:
dG(u, v) = min{

(

δ(u, x1) + δ(x1, x2) + · · ·+ δ(xk−1, xk) + δ(xk, v)
)

, the height
of lowest common ancestor of u and v}, where x1, . . . , xk are the intermedi-
ary players in the shortest path between u and v according to the definition
of δ(xi, xi+1).

δ(xi, xi+1) =

{

height of lowest common ancestor if xixi+1 /∈ G(t)

1 otherwise

Finally, the utility function of player i in the network G(t) is defined as follows:

ui(G(t)) = −
∑

j∈N

dG(t)(i, j)−
∑

j∈Ni

cij −
∑

j∈Si

pij −
∑

jk∈G(t)

tijk, (1)

where Ni denotes the set of i’s neighbors, and Si is a subset of i’s neighbors
whose links to i are initiated by i. Also, pij = bαdG(t)(i,j) denotes the link-price
for the link ij. 7 Link-price is charged to the player who initiates the link
formation for each link. Moreover, cij, as it is introduced in [1], illustrates
the fixed maintenance cost of link ij in which both i and j should consider
this charge for maintaining their links at each of point of analysis during the
game. In addition, the process of network formation is defined in terms of
improving paths. 8 Pairwise stability with transfers is used as the equilibrium

7 This price structure is inspired by the Kleinberg’s stochastic model [5], where he provides
a probability function for creating a link ij that grows asymptotically as b−αdG(i,j).
8 It represents a sequence of changes from one network to another. The changes can emerge
when individuals create or sever one link based on the improvement relative to the current



notion in our model. A network G(t) is Pairwise Stable with transfers (PSt),
if (i) ij ∈ G =⇒ ui(G) ≥ ui(G− ij) as well as uj(G) ≥ uj(G− ij), and (ii)
ij /∈ G =⇒ ui(G) ≥ ui(G+ ij) as well as uj(G) ≥ uj(G+ ij).

3 Threshold of α = 1/4

Proposition 3.1 introduces the domain of α that is the main interest in our
model, as it is the necessary condition for the process of network formation to
evolve. The proof of Proposition 3.1 is provided in the Appendix.

Proposition 3.1 If 0 < α < 1, the seed network cannot be in equilibrium.

Theorem 3.2 shows that the hierarchical model generates small diameter
networks with the threshold of α = 1/4.

Theorem 3.2 If α ≤ 1/4, the diameter of any equilibrium network is at

most two.

Proof. Frist, we introduce the two sets S1
u and T d

i,j. The set S1
u contains u

and its neighbors in G(t). The set T d
i,j contains the participant players in the

benefit of establishing a link from i to j with distance d = dG(i, j) when this
choice of linkage is not beneficial. 9 Therefore, |T d

i,j| ≤ bαd + cij + tiij, where
the left hand side is a lower bound for the benefit of this link creation.

Now, we construct an upper bound for the network size n. For each player
such as u′ ∈ S1

u, we allocate |Tu′,Wu′
| number of players such as w to the

player u′ such that w /∈ S1
u and dG(u

′, w) ≥ 2. This allocation must satisfy
Inequality 2.

|S1
u|(1 + |Tu′,Wu′

|) ≥ n (2)

Wu′ = {w | w /∈ S1
u, dG(u

′, w) ≥ 2}, Tu′,Wu′
=

∑

w∈Wu′
Tu′,w

Because of the distance structure in the hierarchical networks, we need to
allocate a set Tu′,w to u′ for several vertices like w such that w ∈ Wu′ in order
to construct an upper bound for n.

Players such as w have different distances in the range of [2,∆] from u′. In
addition, we can point out that by creating a link from u′ to w all players with

distance of at most x =
⌊

dG(u′,w)
2

⌋

− 1 from w participate in the benefit of this

network.
9 The participation of these players implies that creating a link from i to j decreases their
distances to i.



linkage. This is because, dG(u
′, w) ≤ dG(u

′, w′) + x. Also, after creation the
link u′w, by considering the closest possible player w to player u′, it can be
implied that 1+x < dG(u

′, w)−x. According to the structure of the seed tree,

b

⌊

dG(u′,w)

2

⌋

−1
is a lower bound for the number of players whose distances to u′

are decreased by creation of link u′w. Consequently, it can be implied that if
we repeat this enumeration “k” times for every such player u′, we can build
an upper bound for the term |Tu′,Wu′

|. This upper bound is k|T∆
u′,w|. Further,

we can obtain an upper bound of (n− b)/(b⌊∆
2 ⌋) for k. 10

The next step is building an upper bound for |S1
u|. Consider an equilibrium

network G and two players u, v ∈ N such that dG(u, v) = ∆, where ∆ is the
diameter of G. Therefore, without loss of generality, it is not beneficial for v
to establish a link to u. This is noted in Inequality 3, where its left side
represents a lower bound for the benefit of player v in establishing link uv
by considering the reduced distances from players in the set S1

u to player v.
There are two types of players in the set S1

u in terms of having distance ∆
and ∆−1 from v and also these players can have new updated distance 1 or 2
from v after creating a link between u and v. As a result, there are three cases
of ∆ − 1,∆ − 2, and ∆ − 3 for players in S1

u to participate in the benefit of
linkage from u to v.

Note that we consider an upper bound of c for both maintenance costs and
direct transfer payments 11 in the following inequality.

|S1
u|
(

∆− (f1 + 2f2 + 3f3)
)

≤ bα∆ + 2c (3)

where fi is the fraction of players with one the above-mentioned possibilities
in the reduced distances. Also, f1 + f2 + f3 = 1, and 0 < fi < 1. As a result,
we can rewrite the Inequality 2 as follows:

( bα∆ + 2c

∆− (f1 + 2f2 + 3f3)

)(

1 + (
n− b

b⌊∆
2 ⌋

)(
bα∆ + 2c

B
)
)

≥ n (4)

Assuming the maximum possible diameter (∆), the magnitude of left hand
side of Inequality 4 is n2α+1/2. Hence, given a sufficiently large size n and if
α ≤ 1/4, any distance bigger than f1+2f2+3f3 clearly contradicts Inequality 4.

10 For each player u′ ∈ S1
u, there are n− b players outside of this set that must be allocated

in the set T∆
u′,w. As, there are at least b players in the set S1

u, an upper bound for |T∆
u′,w|

can be achieved.
11Direct transfer covers the loss of utility for a player from the maintenance cost of a link.



As a result, the largest value the diameter can take is 2. 12 ✷

4 Conclusion

In this hierarchical network formation model, we show the appearance of small
diameter pairwise stable networks with the threshold of α = 1/4. We can also
go further and show that the set of pairwise stable networks in our model coin-
cides with the broader set of pairwise Nash stable networks with transfers [2].
In addition, the convergence of our model to equilibrium is guaranteed, since
the existence of cycles is ruled out. 13
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A Appendix

Proof of Proposition 3.1: Let u and v be two players in the tree G such
that dG(u, v) = d. By forming the link uv, player u can benefit of reduced
distances not only from those players such as w in the neighborhood of v
(type i), but also player u can obtain a reduction in her distances to some
neighbors of w which formed a link to w during the game (type ii). We can
accurately compute the benefit that comes from the players in type i based
on the structure of the seed tree as follows: 14

d− 1 + (b− 1)(
d−1
∑

i=2

bi−2(d− i)) =
bd−1 − 1

b− 1
(A.1)

The decision for creating a link at the beginning of the game only depends on
the gained benefit from the players in type i. As a result, we can determine
the criteria for the parameter α that allows the game to progress. This criteria
is achieved by satisfying Inequality A.2 that indicates the condition for a link
creation at the beginning of the game.

bd−1 − 1

b− 1
≥ bαd + cuv + tuuv =⇒ 1 ≥ bαd(b− 1)

bd−1 − 1
+

(cuv + tuuv)(b− 1)

bd−1 − 1
(A.2)

Furthermore, at the beginning of the game, it is necessary for establishing any
link such as uv that tuuv ≥ 0 as well as tvuv ≥ 0. Now, we should find the choice
of linkage that provides the largest possible increase in the the utility for the
initiator. In the case of α ≤ 1, with respect to Inequality A.2, the largest
utility can be achieved for the most distant choices, d = logb n. By using this
distance in Inequality A.2, we reach to the Inequality A.3. It can be seen that
for the case of α < 1, Inequality A.3 and consequently Inequality A.2 can be
satisfied for a sufficiently large number of values of n.

1 ≥ bα logb n(b− 1)

blogb n−1 − 1
+

(cuv + tuuv)(b− 1)

blogb n−1 − 1
=⇒

0 ≥ (b2 − b)nα − n+ (cuv + tuuv)(b
2 − b) + b (A.3)

It is also worth noting that regarding the Inequality A.3, there is no possible
link formation in case of α ≥ 1, as the cost of linking become too large. Hence,
the interesting and meaningful domain for α that defines the link-prices in our
model is between zero and one. ✷

14Equation A.1 can be realized, since in the structure of the complete b-ary tree, there
are bk−1(b − 1) players in which their distance to u can be reduced by d − k for k =
1, 2, ..., (d− 1).
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