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© ABSTRACT

Measurements aré fbéquéﬁfly’fecorded without their'éigebraicsign.
Aé a éonééquendé the ﬁﬁderiying:d}stfibufion of meaéufemehts is
rebiaoed byA)a‘ aistrisﬁt{bn éf absolﬁté meésuféménts; When  the
underlying distribution is t the' resulting distribution is called
the ”folded—t distr;butioﬁ". ﬁeﬁe WQIStudQ/thié'diéiriﬁution, we
find the relétionship ‘between "the folded—t distribution‘ and a
sbecial (case of ’the folded normal distributién‘ éﬂd we “derive

héiéﬁibnshibs of the folded-t distribution to other distributions
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2718 , e PSARAKIS AND PANARETOS

pertaining ‘to ' computer generation. Also “tables are’ presented

which give areas of the folded-t'distribution.

1. INTRODUCTION

Very often, the process of recordlng 2 measurement represented by
a random variable X can be thought of as resembllng a dlstortlon
mechanism that leads tp the‘randomryariable Y=|X|. In other words,
the algebraic ‘sign  of the measurement  is disregarded by the
recording mechanism and as a result the observed distribution of
measufements is thg Aistribution of abéolute measurements. This
distortion procesé is known in the 1iterature as folding as it can
be regarded as 1eading to a’distribution that‘would result by
folding the probability masé associated with the original random
'lvariable around the origin. The foldea. normal distribution of
Leone et al (1981) constitutes one such exanmple of folded
distribution thch arises in ‘industrial practice in connection
with measurlng the flatness or straightness of objects. 5o,
instead of the actual N (u,o ) dlstr1but10n of measurements one
observes what. is  termed the folded mnormal distribution with
parameters
2 20
He = va2/n o e_”‘/zo\ + p(1-28(-p/o))
and : -
2 2 2 2

Op T KO "My

where ®(x) denotes the dlStrlbUthn funct1on of the standard
normal distribution.
A natural question wouid be to investigate situations that

would imply folding of the t distribution, another distribution

that is widely used in statistics:



THE FOLDED T-DISTRIBUTION 2719

In this paper a praétical problem in the ‘area of validating
forecasting models is given that motivates the definition‘of the
folded 't distribution which ‘is subsequently studied. In
particular, the neXt'sections\deSCribe the practical situation in
which a folded t distribution may be observed {section 2}, provide
its probability density function, mean and variance (section ‘3)
and demonstrate the relationship between the folded t distribution
and the folded standard normal distribution (section 4)and the
folded " t ‘distribution. with -other distributionsl‘(section‘ 5).
Finally, an algorithm is used for the determination of the values
of the distribution function of the folded t distribution and
extracts of the obtained tables are given for certain values of

the parameters.

2. SCORING ‘MODEL BEHAVIOUR AND THE FOLDED t‘DISTRIBUTION
Let
Yy= X Bre,
be a linear model where Yt is an ltxl vector of values of the

dependent random variable, Xt is an 1txm matrix of known

coefficients with ltzm and |thtl¢0, B is an mx1 vector of

regressibﬁ coefficients and et is an ltxl vector of normal error
random variables with mean E(e,)=0 and ;

. Here It is an ltXIt indenfity matrix. Using this
model the value of the dependent random variable can be predicted

A

where. for t=0,1,2,... Bt

_2
V(et)-o I

A A

‘ ) o
for _the (t+1)-th year by Y£+1 = t+18t
is the least square estimator of 8 at time t+1 as given by
A

’
_ -1
By = {xtxt,_] XYy
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and X2+1 is a 1xm vector of. values of the regressors for the
(t+1)-th year. Xekalaki and Katti (1984) introduced a sequential
scheme to evaluate the forecasting potential of such models which
amounted to scoring the "forecasting performance" of the model at
each of a number of points in time and obtaining a final rating

based on them. The “forecasting performance" is a term used in the

present paper to refer to the closeness. of the predicted value
A

Y§+1 to the actually observed value Y2+1 as reflected by the
various scores that can . be used. So, a set of n predicted values
along with the corresponding actual values lead to a sequence of n
scores that cén be used in any meaniﬁgful manner to produce a
final rating of the forecasting potential of the model.Motivated
by Xekalaki and Katti’s (1984) scheme one may naturally consider
using a score that will reflect how far from the actual value Y2+1
the predicted value $g+l is relative to the observed standard
deviation of the values of the dependent random variable. This is
equivalent to using

A

IYg+1 - Yg+1|

, t=0,1,2,... 2.1)

Pt+1=‘ 0 ‘ -1 0
S¢ r1+xt+1(xt X)Xy

as a score of the forecasting performance of the model at time t

where S2 is the usuidl estimator of vf given by

2 A , A
st.= [Yt-XtBt] [Yt'XtBt] { (It—m). R
L¢]

Obviously, (2.1) disregards the direction in which Yt+1 differs

from Y:+ This can occasionally ‘be of some importance to the

1
decision maker since a. consistently unbalanced proportion of

overestimated (or underestimated) y values may Iindicate an

inherent inadequacy of the used model. Hence one may - look upon
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(2.1) as a distorted reflection of the forecasting performance of
the model at time t and consider the resulting distributions of
the scores as folded versions  of the- distributions of the
standardized differences v2+1—§:+1, t=0,1,2,.... These
standardized differences are, by the assumptions of the model,
independently t distributed with lt—m degrees of freedom as
pointed out by Psarakis and Panaretos - (1890). Therefore,
studying the distribution of the random variable [T] when T has a
t distributioﬁ with v degrees of freedom is in order and in the

sequel we will refer to it as the folded t distribution with v

degrees of freedom.

3. FOLDING A t DISTRIBUTION WITH v DEGREES OF FREEDOM.
Let T be a random variable having the t distribution with v

degrees of freedom as defined by the density function\

v+l v+l
'z x3) T2 '
fT(x) = [1+—;—] , veN, xeR (3.1)
r [_E_J {vn

and let FT(x) denote its distribution function. Folding (3.1) will
result in the distribution of the random variable W=|T| and it is
evident that the distributions of Wand T will relate thus

Fw(x) = FT(x)-FT(—x), x>0.

Due to the symmetricity of (3.1) around the origin _this
relationship reduces to

Fw(x) = ZFT(x)-i, x>0 (3.2)

which, in terms of probability density functions is equivalent to



i
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f‘w(x) = ZfT(x)',f ‘ ®>0,

This leads to the following-definition .

Definition 3.1 A non—negattve'realfValued random variable X will
be said to have the -folded t dxstributlon with v degrees. of

freedom if its probability density function is. given by

Ay
[1+;§_} x>0, peNs o (303)

fx(x) =

r [»%»] {vn
Figure -1 provides a- graph of the probability density function -of

the folded t*distribution‘fbr,éo@ekvalues«of the parameter v.

Theorem 3.1 Let X be & non-negative real valued randomvar1ab1e

having the fhlded t distributlon with v degrees of freedom Then

{ vl } ,
2! 5 ~, v
{2 ](M) v

(3.4)

(1) E(X) =
[ ,v=l
o [ r w1} 2
voooap PN TR :
vz n(v-1)° ““r[ v ],‘ 'v>2
' 2
{i1) V(X) = ¢ ~ . s . : e C e (3.8)
© , vs2
Proof

(i) We have
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Probability dénsﬁy function
of the folded—t distribution
v+l ®
2r |—«— J - —5—(v+1)
2 2
= X dx.
v
F[‘z‘]‘"" 1

Then E(X) does not exist for v=1 while for v>1 E(X) is given by

(3.4).

(i1} Since X=|T|, where T is some t random variable we have for

the variance that

2 2
V(X) = E(X%)- [E(X)] = E(T°) - [Em] . (3.8)
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But

v
v-2

This combined with (3.6) leads to (3.5) Hence the theorem has been

E(T?) = V(T) = v>2.

established.

4. THE RELATIONSHIP OF THE FOLDED t DISTRIBUTION TO THE FOLDED
NORMAL DISTRIBUTION.

The relationship of the ordinary t distribution to the
ordinary standard normal distribution is well known. From a
practical point of viéw, checking whether their folded versions
exhibit relationships of similar nature would be interesting. In

the sequel, it is demonstrated that this is indeed the case.

Let X be a non negative real valued random variable having the

folded normal distribution with probability density function given

by
1 2,,.2 2,,2
fX(X) - e (x-p)"720" (x+p)~ /20  x50. (4.1)
{2n ¢
(For the ' definition, properties, estimation problenms and

applications of the folded normal distribution see Leone et.al
(1961), Elandt (1961), Johnson (1962), Gilbert and Mosteller
(1966), Risvi (1971), Sundberg (1974), Nelson (1980), and Sinha
(1983)).

Letting p=0 and 02=1, (4.1) leads to the folded version of the
standard normal distribution which in the sequel we refer to as

the folded standard normal distribution.
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Denote by 0f(x) and ¢f(x) the distribution function and the
probability density function of this distribution:
Then

9. (x)= ge"‘z/z . %0 (4.2)

with mean pu=v2/m and variance 02=1—V§/n.

Theorem 4.1 Let - Z and X be two non-negative real-valued random
variables ‘with distributions defined by the probability density
functions given by (4.1) and (3.3) respectively. Let ¢f(z) be

defined as above and denote the distribution function of X by

Fv(x). Then
lim Fv(x) = Qf(x) , x>0. (4.3)
V-0

Proof: Let ®(x) and Ft (x) denote the distribution functions of

) v
the ordinary standard normal distribution and__the ordinary t

distribution with v degrees of freedom. Then, (4.1) suggests that
Qf(x) =2 d(x)-1 . (4.7)
Then, using (3.2)

lim Fv(x) =2 lim Ft (x)-1
Y0 Vo v

20(x)-1

Hence the theorem has been established.

It has therefore been shown that the folded standard normal
distribution is a limiting form of the folded t distribution when
the number of degrees of freedom becomes very large, just like
the ordinary standard normal is a limiting form of the ordinary t

distribution.
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5. SOME RELATIONSHIPS ‘OF THE FOLDED t DISTRIBUTIONS WITH OTHER

DISTRIBUTIONS PERTAINING TO. COMPUTER. GENERATION..

In this section the interrelationships of ;the folded t
distribution to various existing-distributions will be indicated
with emphasis on those which may potentially'be utilized in the
generation of random numbers. It turns out ‘that the: folded it
distribution relates to well -known distributions - such as the
F-distribution, the xz— distribution, the:beta distribu£ion«of the
second - type, and the folded: normal distribution as well:.as the
standard and  half-Cauchy distributions as may be shown by the

following theorems.

Theorem 5.1. Let Z be a non-negatlve real valued random variable
having the folded standard normal distr1but10n Let X be another
non—negatlve real valued random varlable distributed independently
of 2 according to a x2 distribution with v degrees of freedom.
Then the random variable T=Z/{X/v has the folded t distribution.‘

Proof: It is well known that i’ Z, is an ordinary standard normal

0
random variable independent ¢f X then the random variable TO=
Z0 §X7v is an ordihary t random variable with v degrees of
freedom. Then

T2 /T = |2| T = |7,

Hence the result.

Theorem 5.2. Let X, Y be independent non-negative, real valued

random variables having the chi-distribution with parameters 1 and
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v, respectively; and probability dengity functions giVen;by

172 2
R a2 /2 ~ .
fx(x) =F12) T 310 : (5.2)
and
1 v-1 -y%/2
Fly) s — "ty eV’ y>o (5.3)
Y vy : :
22 Fwr2)

respectively. Then, the random variable

z=v'""? v
has the’fglded t distribution with v degreés 6f freedom.
Proof; It‘is:k50wn’thaf thé‘standard folded normal distribution
coincides with the chi—distribu£ion with 1 degree of freédom.
Further  if W has, the chi-square distributioﬁ with v degrees of

a : .
freedom then Y=‘V.w; Hence the result follows from theorem 5.1.

Tﬁeorém 5.3 Let ’21;22 bé 'pr indepenaént :nén—negativé,
real-valued random ‘variables haviﬁgﬂ théV'fOIAed’ éténdard ﬁormél
distribution. Then : ‘

Y=2 /7,

has the folded t'distributipn with 1 degree of freedom.

As mentioped above,thp,folded syandard,ngrmal distr;bution is
a special case of the chi-distribution.. .Therefore, theorem 5.3

leads to the following theéremg,

Theorem 5.4 Let 21,22 be independent chi—variablés with parameter
1 and probability density function as given by (5.2). Then
Y=2 /Z: "
1" %2

has the folded t distribution with: 1.degree of freedom.
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Theorem 5.5 Let X be a folded t variable with probability density
function given by (3.3). Let y be another random variable having
the standard half-Cauchy distribution with probability density
function given by

£(y) = —2—, x>0

Then

i.e. the folded t distribution with v=1 degrees freedom coincides

with the half- Cauchy distribution.

Theorem 5.6 Let X be defined as in théorem 5.5. Then

Y = ¥X°

has the F distribution with 1 and v degrees of freedom and
probability density function given by
: X 1+p

2

1 vv/2 x-1/2 (v+x)

f(x) = B(l v,
2' 2
Theorem 5.7 Let X be defined as theorem 5.5. ' Then
Y = X
has the beta distribution of the second type (beta prime or
Pearson type VI distribution) with parameters 1/2 and v/2 and

probability density function given by

-1 vt
2

F(x) = —~ — x % (+x) 2, x >0.

Theorem 5.8 Let X be an F variable with v and v degrees of

freedom and probability density function given by
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£(x) = b P2 gV, k0.
X B, Y
513
Then o
1/2 2 -1/2
Y»= V—~2~lxl/ _X' !

has the folded t distribution with v degrees of freedom.

Theorem 5.9 . Let X1,X2 be i.i.d. random variables each having the
xz—distribution with v degrees of freedom and probability density

function given by

-v/2 .
_ v/2-1 - -x/2
f(x) = Fwzy X e , x >0.
Then

1/2 |X -X |
v 172

Y= 2 1/2

(X1X2)

has the folded-t distribution with v: degrees of freedom.

Theorem 5.10 Let X be a random variable having the generalized
Cauchy distribution with parameters «, B=1, =2 and 3=(v+1)/2 and

probability density function given by

_ 1 2 -(ve1) /2
fx(X)—m [1+(‘X )] N X, aeR.

Then

Y = v1/2|x-a|

has the folded-t distribution with 251 degrees of freedom.

8. AREAS OF THE FOLDED t DISTRIBUTION
In connection with practical problems one may need to determine

the probabilities associated with the folded t distribution.



2730 PSARAKIS AND PANARETOS

Obviously, for small v one can always appeal ‘to the existing
tables of the ordinary t distribution aﬁd convert the tabulated
areas using (3.2).0n the other hand, for large v Leone et al’s
(1961) tables of the folded standard‘hormal distribution can be
utilized to provide ‘limiting values of ‘the areas wished to be
determined as implied?by‘theorem 4.1.

The evaluation of integrals of the folded t distribution

of the type
ftor Z%l <21 v;l ‘ .
F (t) = [1+——— ] dx t>0.
v 0 v v
r [T] ’J R

can be achieved by a slight modification of Cooper’s (1968)
algorithm for the areas of the ordinary t distribution (see also
Griffiths and Hill (1985)). Extracts of the tables generated are

provided in Appendices I and IT.
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APPENDIX 1
Areas of the Folded-t Distribution

te
Fef ot = | fflodx
0

tf \/ 1 2 3 4 5 10 20

0.0 0.0000 0.0000 0,0000 0.0000. ..  0.0000 0.0000 0.0000
0.1 0.0634 0.0705. . . 0.0733 0.0748 0.0758 0.0777 0.0786
0.2 0.1256 0.1400 0.1457, 0.1487 0.1506 0.1545 0.1565
0.3 0.1855 0.2075 0.2162 0.2209 0.2237 0.2296 0.2327
0.4 0.2422. 0.2721 0.2840 0.2904 0.2943 0.3024 0.3066
0.5 0.2951 0.3333 0.3485 0.3566 0.3617 0.3721 0.3774
0.6 0.3440 0.3905 0.4092 0.4191 0.4253 0.4381 0.4447
0.7 0.3888 0.4436 0.4656 0.4775 0.4848 0.5001 0.5080
0.8 0.4295 0.4923  ~ 0.5178 0.5314 0.5399 0.5376 0.5669
0.9 0.4665 0.5369 . 0.5655 0.5810 0.5306 0.6107 0.6211
1.0 0.5000 0.5773 0.5090 0.6261 0.6367 0.5581° 0.6707
1.1 0.5303 0.6139 0.6483 0.6669 0.6785 0.7028 0.7156
1.2 0.5577 0.6470 0.5837 0.7036 0.7181 0.7422 0.7558
1,3 0.5825 0.6767 0.7155 0.7365 0.7497 0.7772 0.7916
1.47 0.6051 0.7035' 0.7440 0.7659 0.7796 0.8082 0.8231
1.5 0.6256 _ 0.7276 0.7694 0.7920 0.8061 0.8355° 0.8507
1.6 0.6443 0.7492 " 0.7921 0.8151 0.8295 0.8593 0.8747
1.7 0.6615 0.7687 0.8123 0.8356 0.8501 0.8800 0.8953
1.8 0.6771° 0.7863" 0.8303 0.8537 0.8682 0.8979 0.9130
1.9 0.6915 0.8021 0.8463 0.8697 0.8841 0.9133 0.9280
2.0 0.7048 0.8165 0.8607 0.8838 0.8980 0.9266 0.9407
2.1 0.7170 0.8294 ' 0.8734 " 0.8963 0.9102 0.9379 0.9513
2.2 0.7284 0.8412 0.8848 0.9073 0.9209 0.9475 - 0.9602
2.3 0.7390 0.8518 0.8550 0.9170 0.9302 0.9557 0.9676
2.4 0.7486 0.8615 0.9041 0.9256 0.9383 0.9626 0.9737
2.5 6.7577 0.8704 0.9123 0.9332 0.9455 0.9685 0.9786
2.6 0.7662 -0.8784 0.9196 -0.9399 0.9517 0.9735 0.9828
2.7 0.7742 0.8858 0.9262 0.9459 0.9572 0.9776 0.9862
2.8 0.7816 0.8926 0.9321 0.9511 0.9620 0.9812 ~ ° 0.9889
2.9 0.7886 0.8988 0.9374 0.9558 0.9662 '0.9841 0.9911
3.0 0.7951 0.9045 0.9423 0.9600 0.9699 0.9866 0.9929
3.1 0.8013 0.9098 0.9467 0.9637 0.9731 0.9887 - 0.9943
3.2 0.8071 0.9146 0.95086 0.9671 0.9760 0.9905 0.9955
3.3 0.8127 0.9191 0.9542 0.9700 0.9785 0.9919 0.9964
3.4 0.8180 0.9233 0.9575 0.8727 0.9807 0.9332 0.9971
3.5 0.8228 0.9271 0.9605 0.9751 0.9827 0.9942 0.9977

{continued)
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tf v 1 2 3 4 5 10 20

3.6 0.8275 0.9307 0.9632 0.9772 0.9844 0.9951 0.9982
3.7 0.8319 0.9341 0.9657 0.9791 0.9860 0.9959 0.9985
3.8 0.8362 0.9372 0.9680 " 0.9801 0.9873 0.9965 0.9988
3.9 0.8402 0.9401 0.9700 0.9824 0.9885 0.9970 0.9991
4.0 0.8440 0.9428 0.9720 0.9838 0.9896 0.9974 0.9993
4.1 0.8477 0.9453 0.9737 0.9851 0.9906 0.9978 0.9994
4.2 0.8512 0.9477 0.9753 0.9863 0.9915 0.9981 0.9995
4.3 0.8545 0.9489 0.9768 0.9873° 0.9922 0.9984 0.9996
4.4 0.8577 0.9520 0.9782 0.9883 0.9929 0.9986 0.9997
4.5 0.8608 0.9539 0.9795 0.9891 0.9936 0.9988 0.9998
4.6 0.8637 0.9558 0.9806 0.9899 0.9941 0.9990 0.9998
4.7 0.8665 0.9575 0.9817 0.9907 0.9946 0.9991 0.9998
4.8 0.8692 0.9592 0.9828 0.9913 0.9951 0.9992 0.9998
4.9 0.8718 0.9608 0.9837 0.9919 0.9955 0.9993 0.9999
5.0 0.8743 0.9622 0.9846 0.9925 0.9958 0.9994 0.9999
5.1 0.8767 0.9636 0.9854 0.9930 0.9962 0.9995 0.9999
5.2 0.8790 0.9649 0.9861 0.9934 0.9965 0.9996 0.9999
5.3 0.8812 0.9662 0.9867 0.9939 0.9968 0.9996 0.9999
5.4 0.8834 0.9673 0.9875 0.9943 0.9970 0.9997 0.9999
5.5 0.8855 0.9685 0.9881 0.9946 0.9972 0.9997 0.9999
5.6 0.8875 0.9695 0.9887 0.9950 0.9974 0.9997 0.9999
5.7 0.8894 0.9705 0.9893 0.9953 0.9976 0.9998 0.9999
5.8 0.8913 0.9715 0.9898 0.9956 0.9978 0.9998 0.9999
5.9 0.8931 0.9724 0.9902 0.9958 0.9980 0.9998 0.999¢
8.0 0.8948 0.9733 0.9907 0.9961 0.9981 0,9998 0.9999
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of the Folded-t Distribution

v a=0.55 0=0.60 0=0.70 0=0.75 a=0.80 a=0.90 a=0.95 a=0.975 a=0.99 0=0.995

1 1i.1708 1.3764 1.9626 2.4142 3.0777 6.3137 12.7062 25.4517 63.6567 127.3215
2 0.9313 1.0606 1.3862 1.6036 1.8856 2.9199 4.3026 6.2053 9.9248 14.0895
3 0.8661 0.9782 1.2498 1.4227 1.6380 2.3534 3.1824 4.1765 5.8409 7.4533
4 0.835} 0.9407 1.1895 1.3445 1.5770 2.1325 2.7774 3.4954 4.6041 5.5976
5 0.8188 0.9193 1.1557 1.3010 1.4761 2.0156 2.5714 3.1644 4.0321 4.7733
6 0.8076 0.9055 1.1341 1.2734 1.4400 1.9437 2.4476 2.9696 3.7084 4.3178
7 0.7997 0.8958 1.1191 1.2544 1.4151 1.8951 2.3653 2.8420 3.5003 4.0302
8 0.7939 0.8887 1.1081 1.2404 1.3970 1.8600 2.3066 2.7522 3.3562 3.8333
g 0.7894 0.8832 1.0997 1.2297 1.3832 1.8336 2.2630 2.6857 3.2506 3.6904
10 0.7859 0.8788 1.0930 1.2213 1.3724 1.8129 2.2287 2.6344 3.1700 3.5821
11 0.7830 0.8753 1.0876 1.2145 1.3636 1.7963 2.2015 2.5937 3.1065 , 3.4972
12 0.7806 0.8724 1.0832 1.2089 1.3564 1.7827 2.1794 2.5606 3.0552 3.4290
13 0.7786 0.8699 1.0795 1.2042 1.3504 1.7713 2.1609 2.5332 3.0130 3.3730
14 0.7763 0.8678 1.0763 1.2002 1.3452 1.7617 2.1453 2.5101 2.9774 3.3262
15 0.7754 0.8660 1.0735 1.1968 1.3408 1.7535 2.1320 2.4904 2.9473 3.2866
16 0.7741 0.8645 1.0711 1.1938 1.3369 1.7463 2.1204 2.4734 2.9213 3.2525
17 0.7730 0.8631 1.0690 1.1911 1.3334 1.7400 2.1103 2.4586 2.8988 3.2230
18 0.7720 0.8618 1.0672 1.1888 1.3306 1.7345 2.1014  2.4455 2.8790 3.1971
19 0.7711 0.8608 1,0655 1.1867 1.3279 1.7295 2.0935 2.4340 2.8815 3.1742
20 0.7702 0.8598 1.0640 1.1848 1.3255 1.7251 2.0865 2.4236 2.8459 3.1539
21 0.7895 0.8589 1.0627 1.1832 1.3234 1.7211 2.0801 2.4144 2.8319 3.1357
22 0.7689 0.8581 1.0614  1.1816 1.3214 1.7175 2.0744 2.4065 2.8193 3.1193
23 0.7682 0.8573 1.0603 1.1802 1.3196 1.7143 2.0691 2.3845 2.8078 3.1045
24 0.7677 0.8567 1.0593 1.1790 1.3180 1.7113 2.0644 2.3915 2.7974 3.0910
25 0.7672 0.8560 1.0584 1.1778 1.3165 1.7085 2.0600 2.3851 2.7875 3.0786
26 0.7667 0.8555 1.0575 1.1787 1.3151 1.7060  2.0560 2.3793 2.7792 3.0674
27 0.7663 0.8550 1.0567 1.1757 1.3139 1.7037 2.0523 2.3739 2.7712 3.0570
28 0.7659 0.8545 1.0560 1.1748 1.3127 1.7015 2.0490 2.3690 2.7635 3.0474
29 0.7655 0.8540 1.0553 1.1739 1.3116 1.6995 2.0457 2.3643 2.7568 3.0385
30 0.7652 0.8536 1.0546 1.1731 1.3106 1.6976 2.0427 2.3600 2.7504 3.0302
40 0.7626 0.8505 1.0500 1.1674 1.3032 1.6842 2.0215 2.3294 2.7049 2.9716
60 0.7601 0.8447 1.0454 1.1817 1.296 1.6710 2.0007 2.2995 2.6607 2.9149
120 0.7576 0.8444 1.0408 1.1560 1.2888 1.6580 1.9804 2.2703 2.6178 2.8602
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