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ABSTRACT

e

A stock replenishing model is considered whereby not only the demand
for the item, but also the stock in hand and the lead time period are
considered to be random variables. The interrelations of these three item
characteristics are then studied in the framework of a scheme for deciding
: when to place an order for additional material. The effect of a Pareto/Yule
type distributed demand in determining the stock level at which to reorder
is then examined and the results are subsequently looked upon in terms of

the lead time distribution.

Keywords and Phrases: -reorder point system; inventory model; stock reple-

nishment; Pareto distribution; Yule distribution; demand distribution.



1. INTRODUCTION

In the context of inventory decision models the question of when to
replenish the on hand stock is of dominant importance. Naturally, the
time-to-order very much depends on the fluctuations of demand as the former
is very often specified by the stock level. In other words, in many
inventory situations an order is placed when stock reaches a specified
position and various decision rules have been considered in the literature.

Such replenising schemes are known as reorder point systems.

Prichard and Eagle (1965) established a decision rule based on a
function associated with the fraction of lead time during which the on hand
stock will fall short of demand: Let X be a non-negative integer valued
random variable representing the demand for an item in units ordered and
let A be a fixed constant representing the lead time period. Assume that
the fraction of A out of stock is ‘represented by the fluctuations of a
random variable T. Then, according to Prichard and Eagle’s decision rule an
order for a quantity is placed when stock reaches a level y for which E(T),
the expected fraction of lead time out of stock, does not exceed a given

length A,
By inspecting figure 1.1, one can easily deduce the similarity of the

A

A
triangles AoX and AXy and hence conclude that
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Figure 1.1
which implies that
. 0 :
. . X-y - ‘ .
E(T) =2 ) — P(X=x) (12)
x=y+17% ~

Hence, an inventory manager who wishes to ensure that the item will
not be out of stock longer than a specified length of time A in each lead
time will have to choose the reorder point y so that

]

CXy
Ay — P(X=x) s} (1.3)
x=y+1 % ‘ ‘ :
or, ecjuivalently SO that’ ,
| | ®  P(X=x)
P(X>y) -y ) - =N /A (14
x=y+1

" Note that in this set upr"bnly the demand for an item has been
cof;sidered random. All the” other item characteristics, ie. the lead time
and the stock level have been assumed fixed. Indeed this is the case with
most inventory problems of this nature.

In this paper a more realistic view is taken. By contract to usual

assumptions, the on hand inventory is assumed to be a random variable



instead of a continually reviewed constant. Further, the assumption is made
that the lead time is of a random length. Under these assumptions, it is
shown in section 2 that the distribution of the proportion of the
replenishment lead time out of stock is uniquely determined by the
conditional stock given the length of the entire lead time regardless of
the distribution of the latter. The effect of this result on the
interrelationship of the item characteristics is then examined (section 2).
Such inventory situations are subsequently studied in the context of
certain probability distributions considered to model the demand and
Prichard and Eagle’s decision rule is shown to lead to an almost exact
determination of the reorder point. Specifically, starting from Xekalaki’s
(1983) result demonstrating the potential use of the Yule distribution as a
demand distribution, a model is suggested that gives rise to a Yule
distribution of demand (section 3). The effect of this distribution on the
determination of the reorder point is then studied. Results of similar
nature are derived in the case where demand is regarded to be a continuous
random variable (section | 4). As demonstrated, the Yule distribution can be
regarded as the discrete analogue of the Pareto distribution and as shown
by Xekalaki and Panaretos (1988) there exists a duality between these two
distributions analogous to that existing between the geometric and the
exponential distributions. It would therefore be interesting to examine the
problem of determining when to place the order in the context of this
duality. Indeed this is done in .section 5 where the reorder point decision

rule is looked upon in terms of the distribution of lead time.



2. ON THE INTERRELATIONSHIP BETWEEN THE DEMAND AND
THE, ON HAND STOCK WHEN THE LEAD TIME IS VARIABLE

Let us consider that the demand for an item is described by the
fluctuations of a non-negative random variable X with a  distribution
function Fx(x) defined on [k, +«), k>0 (Demands less than k are regarded as
negligible, i.e., practically non-existent). The variable X can be discrete
or continuous. In the first case k will be considered as a non-negative
integer and X will be assumed to take values in {k, k+1, ..}, while in the
second case, k will be assumed to have a non-negative real value and X wi]l
be assumed to take values in (k, +w).

Let Y, L and T be non-negative random variables representing the on
hand stock of the warehouse, the replenishment lead time and the fraction
of replenishment lead time during which demand exceeds the stock in hand
respectively. L is assumed to be independent of X and Y and such that

E(L)< +w. It is obvious from figure 2.1 that that

X-Y X
_— = — 2.1)
T L
time T
L
TF-—-— == - =~ A
— demand
0 Y X

Figure 2.1



By the definition of the variables X and Y, the e§ent {X-Yzk} can be
regarded  as describing shortage as it is indicative of the situation where
the fraction of demand that cannot be met is not negligible. It is obvious
on the other hand, that (2.1) is meaningful only in cases of shortage

(X=zY+k) whence T>0. Then, for y=0.

X-Y
E(T|Y=y) = E(L) E T | Y=y | =
X-Y
=EL)E| — | Y=y, X2Y+k | =
X )
(-] X-y
= E(L) Iy+k —’—(—- dFX] (X2y+k)(x) .
But, : . : N . . ; :
FX](X>Y)(X) =‘FX(X)/P(X>Y), x>y .
Then, ) ,
o0 1
E(T|Y=y)= E(L) { 1 - ————— J‘ —d FX(x) } =
P(X>y+k) Jy+k x
‘ y 0 1
= E(L) { 1-— 'l’ —_ de(x) } , 22)
‘ Fx(y"-k) y+k x

where Fx(x) = P(X>x) = 1-Fy(x). |

Therefore, to ensure that the expected fraction of replenishment lead time
during which stock falls short of demand will not exceed an administrati-
vely set constant A, an order -should be placed when the stock in hand

reaches a level Yo such that

Yo [ 1

1 — dFy(x) = A /A,
& y.+k x X 0
Fy(7,+k) ~ 70

where A = E(L).



Theorem 2.1: Let L be a positive random variable with an arbitrary
distribution  function FL(t), t>0 belonging to a complete family of
distributions and let T be another non-negative random variable. Then, the
distribution of the random variable Z=T/L is uniquely determined by the
form of the conditional distribution of T given that L=t whenever T is a

scale parameter of the latter.

Proof: From the definition of Z it follows that

-]

F,(2) = J . Fp|(=g@ FL(: 220D, (24)

On the other hand, by the assumptions of the theorem, the distribution

funcion FTI(L=t)(t) must be of the form |
FT|(L=t)(t) = g(t/7), te(0,7), (25) 3

where g(+) is an arbitrary function. Therefore, if g(+) is given, it
follows from (2.4) that FZ(z)=g(z), zé(O,l). To prove the converse, assume
that the form of FZ(z) is given.k Then, because of (2.5), FZ(t/t), te(0,7)
is one solution to (2.4). But this is unique by the completeness of FL(t).
Hence the theorem has beo‘:n\ established.

Using the above result one can show the following theorem.

Theorem 2.2. Let LT and Z be defined as in theorem 2.1. Then T|(L=t) has

the power function distribution with distribution function

F’TI(L=1:)(t) = (t/v)°, >0, te(0,)

if and only if Z has the power function distribution with distribution

function

F,(2) = €, >0, te(0,1) .



Corollary 2.1. Let L, T and Z be defined as in theorem 2.1. Then T/L is
uniformly distributed in (0,1) if and only if T|(L=t) is uniformly
distributed in (0,7).

Put in the context of the inventory model considered the result of
corollary 2.1 becomes of great practical value. It implies that if the
fraction T of a lead time L during which the item will be out stock for a
given length t of L is uniformly distributed in (0,%), then Y/X is uniform-
ly distributed in (0,1). This, taking into account the fact that a uniform
distribution for T|(L=t) is a rather natural assumption, implies in turn
that (X-Y)/X is a uniform random variable  taking values in (0,1). As a
result, Y/X is also uniformly distributed in (0,1). Therefore, whenever the
on hand stock Y falls short of the demand X during a lead time it would not

be unreasonable to assume that

Y =

RX if Xand Y aré continuous
{ (2.6)

[RX] if X and Y are discrete

where R is a uniform random variable distributed independently of X in
(0,1). Here [a] represents the integral part of a. Hence, in the continuous

case we have for the distribution function of Y|(X=x) that

Fy|(x=n® = PYsy|X=x) = P(RX=y | X=x)

n

P(R=y/x|X=x) = P(R=y/x)

Fp/®) = y/x, ye(0x).

Hence the distribution of Y |(X=x) is the uniform in (0,x).

On the other hand, we have for the discrete case that



FY' (X._:X)V(Y)‘: P([RX]sy | X=x)

y
=) P(RX] = 1|X=x)
r=0

y
=} P(rsRX<r+1|X=x)
r=0
o+l
: [—-— =R < — | X=X‘]
0 »X X

wo
i<

P|— =R < -—-—)
X X

1
>

So, in this case too, the distribution of Y|(X=x) is the (discrete) uniform
in {0,1,2,..x-1}. This is turn implies that during a replenishment lead
time whence P(X>Y)=1, ‘

o foo -1
—_— c?FX(x), y>k.

Fy®) = Fyjy<x)® = L Fy|x=x® 9Fx® =¥ L -

Therefore, the integral "in the right hand sidé of (22) represents the

~ probability function (or probaﬁﬁity density function)  of Y ' that describes
r

fluctuations of the on hand stock beyond the value k and (23) may be

rewritten as | k

1 .”yo‘fY('y'o+k)f,/FX(yO+k) s;x(‘)/x, ‘ 7
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d
in the continuous case [fY(y) = — FY(y)] and
dy

1-y, P(Y=y,+k) / PX>y +K) = A/A (2.8)

in the discrete case.

3 DETERMINING THE REORDER POINT ON THE ASSUMPTION
OF A YULE DISTRIBUTED DEMAND

It is obvious that any algorithm for the determination of the critical
level Yo through (22) or either of (27) or (28) can be very tedious
depending on the form of the distributions of X and Y. The theorems that
follow however show that a subétanti‘al simplification can be achieved if
the demand distribution is discrete and of the Yule type with probability

function
o = g(k"+l)(x'k)
X (o+k+1)

. (3.1)

(x-k+1)

x =k, k+1,..., a(r) = [(a+r)/T'(@), a>0, reR

or if it is continuous and of the Pareto type with probability density
function : ‘
f®) = ok @D k>0, 0>0 (32)
Xekalaki - (1983)  showed “that the fluctuations of demand can be

described by the Yule distribution with probability function

px! :
P(X=x) = ———, x=0,12,.; ¢>0 33)
@+ 1) x41
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Note that this is the untruncated version of (3.1) as (3.3) follows from
(3.1) for k=0. The derivation of (3.3) was based upon the following

hypotheses.

Model A (Xekalaki, 1983):
Let Z, the number of orders arriving at a warehouse, be Poisson
distributed with parameter  characteristic of the buyer’s behaviour and

let Xl,X ‘the numbers of item units' ordered by the various customers,

2""’
be independent and identically distributed indepently of Z according to a
logarithmic distribution with probability function

T
)

1
PX.=r) = — , r=12,. .
! 2] r

Then X=X1+X2+...+XZ, the demand for the item in terms of the total number
of item units ordered follows for a given buyer (fixed 6) a distribution

with probability generating function

‘ __-9
. [__Lf___’_]_]

-0

GX]O (s)

1

[ee-(ee-l)s] )

In other words, for -a given buyer whose behaviour is reflected by the
parameter 8 the distribution of demand is the geometric distribution with
parameter e If now diffe;;ances in the buying behaviour from buyer to
buyer are effected through an exponential distribution for 6 with parameter

>0 the resulting distribution of X has probability generating function.
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Gy(s) € do

G =
X(S) e JO

® 1
ey s'J 8° (1-6)'d®
r=0 0

® r!

0y ———

r=0 ©@*Dyy)

ie the distribution of demand is the Yule with parameter p. This
obviously leads to (3.1) which is the (k-1) truncated version of the
obtained distribution which arises if one considers that demands less than
k are negligible.

In the sequel, an alternative model giving rise to a Yule demand

distribution is suggested.

Model B:

Assume that during a lead time of given length t orders for am item
occur according to a homogenous Poisson process {N(t), t>0} with parameter
A=1. Then for thé given length of time the distribution of orders has
probability generating function

GN(t)(s) = 4D

Assume that t follows a distribution that is a scale mixture of the

exponential distribution t.e. a distribution defined by

o 1
dF (1) = { J — €'/* dF(a) } dt, a>0 (3.49)
0 «a

where F(a), a>0 is a proper distribution function. Then, the distribution
of the demand X for the item will coincide with the distribution of N(L).

Therefore, the probability generating function GX(s) of X will be given by
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o) = Sxy® = B [On)

Ep
- L} Gn® 4 FL ®

© (=] 1 | ‘
L) L) GN(t)(S) —;— et/ g F(a) dt

i.e.

0 o 1
Gy((s) = [ J — firal9l/e gpeg) dt (3.5)
0J0 a

If now o follows a Pareto distribution with parameter @ (Pearson type

VI), ie. if
dF(a) = o (1+a)®*D da (3.6)

we obtain from (3.5)

[l

Gx(s)

0 r r L gvatie (1+ay@*D da dt
0J0 a

=0 °° ._1._ Jw e-t[1+a(1~s)]/a dt (1+a);(9+1) da
Jo o JO

o

=p [l+<1(1-s)]'1 (1+a)-(g+l) da
Jo

- ® +2
o] z s’ J ar(1+a)'(9“ ) da
r=0 0.

rI'(r+1)F(4Q+1)

s
r=0

]
(=]

C(p+r+2)

® r!

ey sf

r=p (@ 1)(p+2)...(p+r+1)
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But this is the probability generating function of the Yule distribu-
tion as defined by (3.3) and leading to (3.1) by truncation below the value
k. Let us now examine the effect of the assumption of a Yule distributed
demand on the determination of y, through (2.8).

Xekalaki (1983, 1984)  obtained some results connecting the distribu-

tions the demand X and the stock Y.

Theorem 3.1. (Xekalaki, 1983): Let X,Y be non-negative integer valued r.v’s
1

such that P(Y=r|X=x) = —, r=0,1,.x-1. Then X and Y are identically
X

distributed if and only if X has a Yule distribution with probability

function given by (3.3).

Theorem 3.2. (Xekalaki, 1984): Let X be a non-negative, integer-valued
random variable. Then X is Yule distributed with probability function given
by (3.1) if and only if

1

P(X>r) - — (r+1) P(X=r), r = kk+1,. 3.7
e

Consider now an inventory situation where the Yule distribution with
probability function as given by (3.3) may be appropriate for modeling the
demand fluctuations and shortage can be regarded to be effected through
(2.6). Then theorems 3.1 and 3.2 imply that the decision rule will select

the reorder point y, so that

(yoto+1)

p, SC, Y, = kk+1,..
e(e+1) Yo

or equivalently so that
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T(y,to+1) ,
—_—=c ., Y, = kk+1,.. 38)
Fy,+1)

where ¢y = I(k+p+1)/[c(o+ DI (k+1)].

4. THE CASE OF A CONTINUOUS DEMAND DISTRIBUTION

The role of discrete distributions in the description and interpreta-
tion of practical situations has in general been very basic in the sense
that discrete distributions can be used to find all continuous solutions of
a particular problem: Most continuous distributions used to describe
practical situations are merely approximations of appropriate discrete

. . Auin
models. These approximations can be very useful as often the available data
are in a grouped form especially for large values of the random variable
whose fluctuations describe the particu]ar situation.

Our inventory model deserves, therefore a 'tréatment in terms of an
appropriate approximation of the Yule distribution as defined by (3.1).

Indeed, the probability function in (3.1) can be alternatively written as

e Doy

o e(k+1)
X p+k+1 (x+1)

@y EFD e

o .k . " p k k+1 k+p

x = kk+1,.

So, if we consider a change of scale by multiplying the numerator and

denominator by c®*! and then let c—0, the above equation is written
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f() 4] k o+1
b0 - )
o X k “x+1

ie. fo(x) = o K1+ @D | xk (a.1)
X

But this is the probability density function of the Pareto distribution as
given by (3.2). Therefore, the Pareto distribution can be regarded as the
continuous analogue of the Yule distribution. The latter fact can provide a
theoretical justification as to why the Pareto distribution might be
thought of a representing the mechanism that generates the demand through
the models that give rise to the Yule distribution considered in section 3.

As mentioned in the introduction there exists a duality of properties
between the Yule distribution as given by (3.1) and its continuous analogue
as given by (3.2). Hence, it would be interesting to examine our inventory
model in the context of this duality.

So, let us assume that the demand is described by the fluctuations of
a continuous random variable with probability density functioxi given by
(3.2). Then, as shown by the theorems that follow there hold results that
bear a striking analogy to those obtained for the case of a discrete demand

of the Yule type.

Theorem 4.1. Let X be a random variable on' [k, +w), k>0. Then the

condition
P(X>x) = o fy(x), c<l, x>k (42)

uniquely determines the distribution of X as Pareto with parameters k and

(1-c)/c.

Proof: The necessity part is obvious. For sufficiency, assume that (4.2) is

valid. Then
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FX(x) = l-cx fX(x)

or equivalently
dfx(x)

dx

cX

= 'fx(x)

; o
whose unique solution under the initial condition J fx(x)dx=1 is given by
k

(4.1) for a=(1-c)/c.

Theorem 4.2. (Krishnaji, 1970): Let X be a random variable with probability

density function fy(x), xzk>0. Then

w £y (X)
dx = ¢ fX(y), y>k, c<1
y X ' ‘

if and only if X has a Pareto distribution with parameters k and (1-c)/c.

Put in the context of the inventory model of section 2 the results of

these two theorems lead to the following simplified expression of (2.7).
1y, / (5, +k) = A/
or equivalently

y, < k (/A1) -

In other words, under the assumption of a Pareto distributed demand
Prichard and Eagle’s (1965) rule will indicate the need for the placement
of an ordér when the on hand stock first falls at or below the level

k(A1)
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5. DECIDING IN TERMS OF THE LEAD TIME DISTRIBUTION

In this section, we will look at the problem of determining when to
place an order in terms of the probability distribution of the lead time
starting with a discretized demand distributed according to a Yule
distribution in the context of model B. For simplicity we treat the case
k=0.

It can be shown that in the case k=0 (2.8) can take the form
P(X>y,) - ¥, (1P(X=0)) + P(Y=y,) = C (51

where C=)»0/E(L) and A and L are defined as in section 2.

Note, further, that the derivation of the  Yule distribution on the
assumptions of model B establishes an association between the distribution
of lead time and that of demand. Specifically, it implies that if the
distribution of lead time L is a Pareto mixture of the exponential distri-
bution, the distribution of demand X is the Yule distribution. The converse
is also true, ie, if X is Yule distributed, the distribution of L is a
Pareto scale mixture of the exponential distribution.  This follows vfrom a
more general result shown by Xekalaki and Panaretos (1988). In fact, this
result goes even further as it leads to a one-to-one correspondence between
the mixing distribution F(a) in (3.4) and the distribution of the demand X
whenever X can be regarded as the image N(L) of the lead time L through a
homogeneous Poisson precess {N(t), t>0} with parameter A=1 as indicated by

the theorem that follows.

Theorem 5.1. (Xekalaki and Panaretos, 1988): Let {N(t), t>0} be a homogene-
ous Poisson process with parameter A=1. Let Z,Z, be two independent non-

negative random variables that are distributed independently of {N(t), t>0}
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with probability density functions satisfying

(. a? ‘B'l az .
h,(@ = | ——2" e' dF(a) zp>0, i=12.

A )

1

where Fi(-) is a proper distribution function, i=12. Then F1=F2 if and
only if N(ZI) and N(Z,) are identically distributed.

The implication of this result in the context of the model considered
will become obvious if one observes that the distribution F(a), a>0 in
(34) represents the distribution of the mean of an exponential lead time.
Indeed, we have from (3.4) that conditional on a the mean lead time is

given by

w0 1 ‘t/a
E(L|a=a)=J t—e /" dt =a.
0 a

Hence the result of theorem 5.1 Broughf within the framework of the
model considered leads to the following conclusion.

The distribution of démand X is the Yule distribution with parameter p
if and only if the distribution of the lead time L is exponential with a

mean E(L|a) that has a Pareto distribution with the same parameter p.

Theorem 5.2. (Xekalaki and Panaretos, 1988): Let X be a random variable
having the Yule distribution with parameter @ as defined by (3.3). Let U be
‘another random variable distributed according to the Pareto distribution
with parameter p as defined by (32) for k=1 and consider U, U2,... to be
a sequence of mutually indepeﬁdent Pareto(1) random variables independent

of U. Then

P(X=k) = P(U>U,U,+..+U), k

12,.. (52)
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Theorem 5.3. (Xekalaki and Panaretos, 1988). Let U’U1’Uz"" be independent
positive random variables such that U 1,U2,... have the Pareto distribution
with parameter 1. Then U has the Pareto distribution with parameter >0 if

and only if either of the following conditions is satisfied

k+1
i) P[ U> U +..+U +U  |U>U +..+U ] = ,
1 k' k+l 1 k k+o+1
(53)
k = 0,12,..
@ ) P(U1+...+Ur<U<U1+...+Ur+1)
r=k+1 r
1
= ;—I P(U1+...+Uk<U<U1+...+UkH) (54)

From the definition of the random variable X and the derivation of its
distribution it is obvious that the random variable E(L|a) plays the role
of the random variable U in (5.2). So, if we let

U = E(L|a)

and define
Ui = E(Lila), i=12,..

with L being a continuous random variable representing the lead time for
the i-th ordered unit (a unit is ordered at the time the previous ordered
unit is delivered) then (5.2) states that the events {at least k item units
are ordered} and {the mean lead time exceeds the aggregate of the mean lead
times for the k units if qrdeéed individually-each at the time of delivery
of the previous item} are equiprobable. Then, the decision rule for
determining the stock position at which an order should be placed can be
expressed in terms of the distribution of the mean lead ’time.

Consider now the results of the theorems that follow:
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Theorem 5.4. (Xekalaki, 1983): Let X,Y be non-negative integer valued r.v’s
1

such that P(Y=r|X=x) = —, r=0,1,..x-1. Then X and Y are identically
X ,

distributed if and only if X has a Yule distribution with probability
function given by
ox!

P(X=x) = , x=01.., p>0 (5.5)
| (gf‘l)’(g+2)...(g+x+1)

Theorem 5.5. (Xekalaki, 1984): Let X be a non-negative, integer-valued
random variable. Then X is Yule distributed with probability function given

by (3.2) if and only if

1
P(X>r) = —- (r+1) P(X=T), r=0,12,.. (5.6)

It becomes evident therefore that theorems 52, 53 and 5.4 imply that
if X, Y and U represent the demand for an item, the stock on hand and the

mean lead time respectively, then
P(X=r) = P(Y=r) = P(U1+'"+UrSUsU1+‘"+Ur+1) .
. Therefore the inequality in (5.1) becomes

Yo P[U1+...+Uy

, =Us U1+...+Uy0+1] z c(p+1) P{U>U1+...+Uy0+1]

or, equivalently

A P(U > Upt.+U

0] : [yo + c(9+1)) P[U > Ul+...+Uy0+1] =0

Dividing both sides of the inequality by P(U>U l+...-1-Uy ) yields
0

Yo - [y0+c(g+1)] P[U>U1+...+Uyo+1|U>U1+...+Uy0] 20 .
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* By condition (5.3). of theorem 5.3 this inequality implies that
Y, Ggte+l) - (y0+‘1)'(yo+c(g+1))‘ 0.

This lé;éds to _
ylocle+1) = c(e+1) -
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