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Abstract

This paper employs a new econometric technique to estimate the core
inflation in Turkey measured as the shifting means in levels between 1955
and 2014. Using monthly series, we determine the number of shifts using
the BIC, the hv-block cross-validation, the Lin-Terasvirta parameter con-
stancy test, and the neural networks test for neglected nonlinearity. We
find that there are at least three shifts in the inflation series. The findings
help detect the exact dates of the shifts between different inflation regimes
and the duration of each shift, which should be important information in
evaluating the success of past economic policies in fighting inflation.
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1 Introduction

For the large part of 1980s and throughout the 1990s, Turkey experienced very
high and volatile inflation rates', which have been subject of many empirical
studies. These studies mostly focused on explaining the reasons behind the
high inflation. For instance, Metin (1995) notes that the main reason is exces-
sive growth of the money supply, which is caused by fiscal expansion such as
to cover the budgetary deficits of public enterprises. Us (2004) attributes the
high inflation to the increases in public sector prices and the depreciation of the
Turkish lira. She also concludes that inflation has not been a result of an ex-
pansionary monetary policy. Dibooglu & Kibritcioglu (2004) employs a vector
autoregressive framework and finds that terms of trade shocks affects inflation
in the short-run whereas monetary and balance of payments shocks dominate
in the long-run. They also point out to inflationary expectations. Other studies
focused on the relation between inflation levels and inflation uncertainty mea-
sured by volatility. For instance, Nas & Perry (2000) finds strong statistical
evidence that inflation affects inflation uncertainty but their evidence on the
opposite relation is not clear-cut. Similarly, Ozdemir & Fisunoglu (2008) finds

1See Metin (1995), Kibritcioglu et al. (2002), and Nas (2008).



that there is empirical support that higher inflation causes more inflation un-
certainty but not the vica versa. Berument et al. (2011) also finds positive and
significant relation between inflation and inflation volatility.

Even though there is no shortage of empirical studies providing explanations
behind the high inflation in Turkey, research on the core inflation is suprisingly
scant. Among the few ones are Berkmen (2002), which employs a trimmed
mean approach and Atuk & Ozmen (2009), which employs the same approach
taking into account the seasonal adjustment. This paper uses a new econometric
method, namely the shifting-mean autoregressive model (SM-AR), developed
by Gonzalez & Terdsvirta (2008) to estimate the core inflation in Turkey. In
this method, the core inflation is measured as a series of shifts in the mean
level. However, the method is perfectly capable of taking into account the
autoregressive structure in the inflation levels.

The paper is organized as follows. Section 2 presents the SM-AR model
and several methods to determine the number of shifts in the inflation mean.
Section 3 discusses the data. Section 4 presents the results. Section 5 concludes
the paper.

2 The SM-AR Model

The stationary autoregressive model with a shifting mean of order p, SM-
AR(p, q), is proposed by Gonzalez & Terdsvirta (2008) and applied to inflation
forecasting by Gonzalez et al. (2011). The model is represented as follows

P
Y =0 (1) +Z¢jyt—j + &t (1)

j=1

where y; is the series, ¢, ~ IID (0,02) and § (¢) is a deterministic nonlinear
shift function, which is defined as

§(t) =00+ Y dig(vi,cit/T) (2)

i=1

The function g (- ) is the logistic transition function

9 (i, t)T) = (L+exp (—y (/T — ;)" (3)

where it is assumed that 0 < ¢; < --- < ¢4 < 1. The equations 1, 2, and
3 together constitute the SM-AR model. The parameters to be estimated are
®j, 00, 04, vi > 0, and ¢; where j = 1,...,pand ¢ = 1,...,¢. ~; is called the
smoothness parameter and ¢; is the location parameter. Together with §;, ;
and ¢; control the movement of the shifting mean. ; controls the sharpness of
the shift. If it is large, the shift is abrupt. On the other hand, if it is small, the
shift is smooth. ¢; controls the location of the shift. Since ¢/T" is between 0 and
1, ¢; is also in the same range. §; controls the direction of the change in the
shifting mean. Put differently, each J; represents a break and the model contains



g+ 1 regimes. If it is negative (positive), the mean decreases (increases). ¢ > 1
adds flexibility to the model in such a way that several shifts can be modeled.

Notice that the SM-AR model is a nonlinear deterministic trend stationary
model. Tt is similar to the “single hidden-layer” artificial neural network (ANN)
model. Gonzalez & Terésvirta (2008) proposed an algorithm called QuickShift,
which not only estimates the model parameters but also estimates p and ¢ as
part of the estimation process. QuickShift consists of the following steps

1. Estimate the model in equation 1 assuming 0 (t) = §p with the ordinary
least squares (OLS) and obtain the residuals &; ¢ and the Bayesian Infor-
mation Criterion (BIC).

2. Create a grid for v; and ¢;. Notice that the model is a linear one when -;
and ¢; are known. Estimate the model for ¢ = 1 using each (v;, ¢;) pair.
Select the pair for which the square of the sample correlation

Corr (g (787 Cs, t/T) s ét,O)Q
is maximum. Once again, save the residuals é; ; and the BIC.

3. Continue in this fashion increasing g by one at each step, selecting the
(74, ¢;) pair for which the square of the sample correlation between the
values of the transition function and the residuals from the previous step
is maximum, and saving the residuals and the BIC.

4. Stop when ¢ exceeds a pre-determined maximum value, say 5, and select
the model for which the BIC is minimum.

BIC is only one of the measures used to select the number of transitions gq.
Gonzalez & Terisvirta (2008) also use the hv-block cross-validation, the param-
eter constancy test, and the neural network test for neglected nonlinearity. We
discuss them next.

6 shows the degree of change in the mean inflation. - shows how fast the
shift happens.

2.1 The hv-block Cross-Validation

The hv-block cross-validation is proposed as a consistent procedure for model
selection for stationary dependent data by Racine (2000). In this procedure,
the data is split into two distinct sets: training set and validation set. The
training set is used to estimate the model whereas the validation set is used
to validate it. The procedure is implemented as follows. Let Z = (y,X)
represent the N x (K + 1) matrix of observations where y is the N x 1 vec-
tor of observations on the response variable and X is the N x K matrix of
observations on the explanatory variables. We remove observation ¢ from Z
along with first v and then h observations on either side of ¢ and obtain the
(N —2h —2v — 1) x (K + 1) matrix Z(_;., ., which will be used for estimating
the model. The (2h + 2v + 1) x (K + 1) matrix of removed observations and its



(2v 4 1) x (K + 1) submatrix will be denoted by Z;.;, .,y and Z;.,, respectively.
Z;., will be used in the validation step. In other words, the model is estimated
using Z(_;.p,») and validated using Z ;... The cross-validation function is given
by

1 N—v

x 2
(N _ 21)) (21} 4 1) Z H y(Z’U) - y(i:v)(fi:h,v) ||
1=

CVhy

where || a [|= va’a and ¥ (;.,)(—i:n,v) IS the predicted response variable. Models
are compared with respect to their C'V},,, scores and the model with the smallest
score is selected.

2.2 The Parameter Constancy Test

Following Gonzalez & Terésvirta (2008), we also apply the parameter constancy
test proposed by Lin & Terésvirta (1994) to determine the number of transition
functions. The test is basically a test for the time-varying intercept term 0 (¢).
Consider the following model

yr = 0o + 019 (1, c1,t/T) + 0'wy + &

where w; = (y4—1,. .. 7yt_p)/. The null hypothesis of the test is v; = 0, which
can also be expressed as d (t) = . Under the null hypothesis, ¢; is unidentified.
This is the well-known nuisance parameter problem. Lin & Terésvirta (1994)
solves the problem by replacing g (y1,¢1,t/T) with its Taylor series expansion
around ; = 0. The auxiliary regression is

m ¢ 7
y=0+> ¢ <T> + 0w, +e
=1

The null hypothesis becomes ¢; = 0 fori = 1,...,m. Under the null hypothesis,
the LM test has an asymptotic y2distribution with m degrees of freedom. The
F version of the test has m and T'— p — m — 1 degrees of freedom. Lin &
Terdsvirta (1994) recommends m = 3 but Gonzalez & Terdsvirta (2008) states
that m > 3 can be considered in the present context. We use both m = 3
and m = 6. Since it is possible that the order of the autoregressive lag is
misspecified in the search for ¢, Gonzalez & Terdsvirta (2008) advices to use the
heteroskedasticity and autocorrelation consistent (HAC) covariance matrix to
compute the test statistic. We use the Bartlett kernel with automatic Andrews
bandwidth selection. The test can be used to determine ¢ sequentially. Assume
it has been decided that ¢ = 1 and we want to test for ¢ = 2. Then the extended
model is

Yr = 60+ 019 (71,1, t/T) + 029 (2, c2,t/T) + 6wy + &4

In that case, the null hypothesis is Hy : 79 = 0. The auxiliary regression is
extended as follows

\ - £\ )
Yy = 0 + 619 (M1, c1,t/T) + E $2,i <T> + 0w +
im1



The null hypothesis becomes ¢2; = 0 for ¢ = 1,...,m and the test can be
conducted as explained above. Continuing in this fashion, one can decide the
number of transition functions suggested by the data.

2.3 The Neural Network Test

The neural network test for neglected nonlinearity is a portmanteau test pro-
posed by Lee et al. (1993). The exposition here follows Franses & van Dijk
(2000). Consider the following artificial neural network ANN(p, ¢) model

q
v =X+ Y BG (xiv;) + e (4)

j=1

In this model, p and g represent the number of lags and hidden units, respec-
tively. x'v = (1, %¢—1,...,Yi—p), X;¢ is the linear component, Z?Zl B;G (x;'yj)
is the nonlinear component, which is also called the hidden layer, and

-1

G (xiv;) = (14 exp (=x7;))

is the logistic function. If y; is a linear process, then the nonlinear component
should be zero or at least a constant. The neural network test is a test for the
constancy of this nonlinear component. The nul hypothesis is Hy : g1 = -+ =
Bq = 0. The test is implemented in the following steps:

1. Estimate the linear component in equation 4 and obtain the residuals ;.

2. Generate 7, ; randomly from a uniform distribution with support [-2,2]
for i = 0,1,...,p and j = 1,...,q, compute the activation functions
G (xh/;?), and use them as regressors in the auxiliary regression

iy = xjo0+ 01G (X)) + -+ + 6,G (x4v5) + e

3. Test for 6; = --- = §, = 0. The test statistic nR? is asymptotically
distributed x? (¢) where n is the number of observations used in the esti-
mation.

In order to implement the test, the number of hidden units ¢ must be deter-
mined. Lee et al. (1993) suggest a high value such as 10 or 20 in order to capture
the potential nonlinearity. However, the generated regressors are likely to be
highly correlated when ¢ is set that high. Their remedy for this issue is to use
the first 2 or 3 princial components of the generated regressors in the auxiliary
regression instead. They also suggest skipping the first component to ensure
the orthogonality of the components to the inputs x;. Another issue with the
test is its random nature. The test might be rejected for one set of ~; ; whereas
it might not be rejected for another set. In order to solve this issue, the authors
suggest R different draws. The null hypothesis is then rejected at the a* level
if there exists an r value for which p(r) < a*/(R—7r+1) where r =1,..., R.



Figure 1: Turkish Inflation, 1955-2014
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3 Data

The inflation series in this study comes from the OECD Main Economic Indi-
cators. The series is monthly, covering the period between February 1955 and
April 2014, and represents percentage changes from previous period. Figure 1
shows the series. As can be seen from the figure, 1960s were a relatively low
inflation period. The main reason for that could be the favorable economic en-
vironment created by the large-scale labor migration to West Germany. Unlike
1960s, 1970s were turbulent years. As well known, this period saw two oil crises,
which affected the Turkish economy deeply and drove up the price levels consid-
erably. In late 1970s and early 1980s, Turkey experienced severe economic and
political crises. This period ended abruptly in 1980 when the Turkish armed
forces conducted a coup d’état. Turkey returned to democracy in 1984. How-
ever, ill-advised economic policies of the new and the subsequent governments
caused high inflation?, which lasted through late 1980s and throughout 1990s.
The worst monthly inflation recorded in the history of Turkey was 23.4 in April
1994, which can be seen as the single spike in the figure. The financial crisis of
2001 created another high-inflation phase in the economy®. Turkey has expe-
rienced relatively low inflation since 2002 even though its inflation rate is still
one of the highest among the OECD countries.

2See Chapter 5, Turkish Inflation, in Nas (2008).
3See Akyuz & Boratav (2003), Onis & Rubin (2003), and Chapter 6 in Nas (2008).



Table 1: Number of transitions using QuickShift
AR Order BIC CV LT3 LT6 LWG

p=0 3 4 3 3 3
p=1 3 5 3 3 3

Table 2: SM-AR Models with 3, 4, and 5 transition functions

AR Order p=20 p=20 p=1 p=1
do 0.7776 1.2007 0.4914 0.8429
(6.7477) (4.2572) (4.4536) (3.116)
Yt—1 0.3762 0.3711
(10.7841) (10.602)
01 2.5025 —0.5375 1.5658 —0.6619
(13.1454) (—1.6433) (7.948) (—1.6875)
02 1.7168 2.626 1.0543 0.3678
(7.7525) (12.8446) (4.9204) (1.2091)
03 —4.3668 1.7071 —2.724 1.5212
(—19.3115) (7.7151) (—10.5009) (6.3847)
04 —4.3661 1.0678
(—19.3312) (4.9773)
05 —2.747
(—10.5817)

Note: ¢ values are ordered with respect to time for each model.

4 Results

In this section, we present the results*. The inflation series seems to contain
several breaks though it is hard to pinpoint their exact dates by visual inspec-
tion. In order to figure out the exact dates of the breaks and their duration, we
estimate the SM-AR model setting the maximum number of transitions to five.
We use the Bayesian information criteria (BIC), the hv-block cross validation
(CV), the Lin-Terasvirta parameter constancy test (LT), and the Lee-White-
Granger (LWG) neural network test for neglected nonlinearity to determine the
number of transitions. The setup of QuickShift is as follows. For the grid, we
set v € [0.5,20] and ¢ € [0,1] and use 30 different values for each grid, making
900 overall grid pairs. The smoothness parameter is divided by the sample stan-
dard deviation of ¢/T to make it scale-independent. We search for the number
of transitions for p = 0 and p = 1. When computing the test statistics, we use
the Andrews HAC estimator for the covariance matrix. The results are shown
in Table 1.

As can be seen from the table, QuickShift selects mostly three shifts in the
mean. LT3 and LT6 represent the Lin-Terasvirta tests with the third and sixth
power of the scaled time trend used in the auxiliary regression. The results

4All the results in this paper are obtained using the code written by the author in the Ox
object-oriented programming language, Doornik (2001).



do not change much if one takes into account the autoregressive order. We
experimented with two lags but the coefficient of the second lag turned out to
be insignificant. Based on these results, we conclude that the core inflation can
be modelled as an SM-AR(1,3) process. In other words, its autoregressive order
is one and it contains three breaks (four regimes) in the mean. However, we still
estimate the SM-AR models with three, four, and five shifts in order to compare
the results, which are shown in Table 2. The values inside the parentheses are
the Andrews HAC t-ratios.

The preferred model is the one in column three. We are going to comment
on this model only. Interpretation of the results for the other models are similar.
The coeflicient of the first shift is 1.5658. Its sign shows that this is an increase
in the mean value. The location parameter corresponding to this shift is 0.3458°,
which indicates that the shift happened around the 35th percent of the sample.
The coefficient of the second shift is 1.0543, which is also positive. This shift
took place around the 59th percent of the sample. The final shift is a decrease
in the core inflation. The coefficient is —2.724 and the location parameter is
0.7934. Notice that the autoregressive coefficient does not change much when
the number of transitions is increased from three to five. The fitted inflation
series can be seen in Figure 2. The figure on the top is the fit of the model with
three transition functions and no lags. The shifts in the mean inflation can be
easily seen. The bottom figure shows the fit of the model with three transitions
and one lag. The shifts in the mean lag are less obvious because of the zig-zags
created by the autoregressive part.

The SM-AR model also helps us detect the exact dates and the duration of
the shifts, which are shown for the preferred model along with the parameters
of the three transition functions in Table 3. Before the first shift, the monthly
core inflation was around a little bit less than 1%. The first shift was an increase
in the mean inflation, which started around October 1972 and ended in June
1978 with the center date June 1975. Notice that these dates coincide with
the two OPEC oil crises. At the end of this shift, the monthly core inflation
stabled between 3 and 4 percent. The second shift was a further increase in
the mean inflation, which started around May 1987 and ended in May 1992
with the center date September 1989. At the end of this period, the monthly
core inflation was about 5 percent. The main culprits for this second shift were
fiscal expansion and non-sterilized purchases of foreign reserves by the Central
Bank®. The third and the last shift was an unprecedented decrease in the core
inflation. It started in August 1999 and ended in August 2004 with the center
date December 2001. At the end of this last shift, the core inflation stabled
around 1 percent once again. Notice that the SM-AR model does not pick the
short-lived hike around 2001.

5See Table 3.
6Nas (2008), page 73.




Figure 2: Inflation and its SM-AR(0,3) and SM-AR(1,3) Fits
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Table 3: Transitions and break dates
0 c Start Center End

17.6111 0.3458 1972(10) 1975(6)  1978(6)

(6
20 0.5868 1987(5)  1989(9)  1992(5)
20 07934 1999(8)  2001(12) 2004(8)
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5 Conclusion

In this study, we used the SM-AR model to estimate the core inflation in Turkey
measured as shifting means in the inflation level. The SM-AR model is suitable
for describing characteristic features of the core inflation. The findings suggest
that there are at least three shifts in the mean inflation, two increases and one
decrease. The SM-AR model also allowed us to detect the exact dates and the
duration of the shifts. We believe this information should be useful in evaluating
the success of the past economic policies in fighting inflation in Turkey.
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