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Value-at-Risk in turbulence time

Abstract

Value-at-Risk (VaR) has been adopted as the cornerstone and common language of
risk management by virtually all major financial institutions and regulators. However,
this risk measure has failed to warn the market participants during the financial crisis.
In this paper, we show this failure may come from the methodology that we use to
calculate VaR and not necessarily for VaR measure itself. we compare two different
methods for VaR calculation, 1. by assuming the normal distribution of portfolio
return, 2. by using a bootstrap method in a nonparametric framework. The Empirical
exercise is implemented on CAC40 index, and the results show us that the first method
will underestimate the market risk - the failure of VaR measure occurs. Yet, the second
method overcomes the shortcomings of the first method and provides results that pass
the tests of VaR evaluation.

Keywords: Keywords: Value-at-risk, GARCH model, Bootstrap, hit function, VaR
evaluation.
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1 Introduction

Many risk management tools and their calculations implemented by most finan-
cial institutions and regulators have been designed for “normal times”. They
typically assume that financial markets behave smoothly and follow certain dis-
tributions to depict the financial environment during this period. However, the
problem discovered recently is that we are living in more and more “turbulence
times”: large risks happened without any warnings and come along with huge
impacts in both time and cross-sectional dimensions.

The late 2000’s financial crisis, which started in August 2007 (Subprime Cri-
sis) and followed in May 2010 (European Sovereign Crisis), is a good explanation
for why we should be involved in this point. It must be viewed as an historical
event of major importance, with worldwide and durable consequences on the
economic behavior and on the organization of financial and banking activities
in many countries over the world. It has completely shattered public confidence
into the Risk Management methods that were used by banks and financial in-
termediaries. These Risk Management methods must be adapted to “turbulent
times”. The Value at Risk (VaR) is a very important concept in Risk Manage-
ment and it is one of the most widely used statistics that measures the potential
of economic loss. It has been adopted as the cornerstone and common language
of risk management by virtually all major financial institutions and regulators.
The main objective of this paper is to dissect VaR methods, to explain why it
has failed, and propose amendments for the future. Of course there are some
other useful risk measures in the literature, however, these are not in the scope
the research in this paper.

Conceptually speaking, we are not simply saying that VaR is bad and we
should ban this measure for any use. However, we will take the more reasonable
view that VaR is potentially useful but have to be used with a lot of caution. we
focus on two VaR calculation methods:! 1) GARCH with normal distribution
assumption method, 2) Nonparametric bootstrap method. Here, VaR is imple-
mented on stressing the riskiness of portfolio. Portfolios are exposed to many
classes of risk. These five categories represent an overview of the risk factors
which may affect a portfolio.

e Market risk - the risk of losses in positions arising from movements in
market prices.

¢ Liquidity risk - in addition to market risk by measuring the extra loss involved
if a position must be rapidly changed.

¢ Credit risk - also known as default risk, covers cases where counterparties
are unable to pay back previously agreed terms.

¢ Model risk - A type of risk that occurs when a financial model used to
measure a firm’s market risks or value transactions does not perform the
tasks or capture the risks it was designed to.

Twe won’t focus on the three standard methods - 1.historical VaR, 2. Parametric VaR, 3.
Monte Carlo method - in this paper.
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¢ Estimation risk - captures an aspect of risk that is present whenever econo-
metric models are used to manage risk since all model contain estimated
parameters. Moreover, estimation risk is distincted from model risk since
it is present even if a model is correctly specified.

In this paper, we focus on the three categories of risk, 1) market risk, 2) Model
risk and 3) Estimation risk. The market risk is illustrated by implementing our
analysis on CAC40 index, which can be viewed as virtual portfolio. The time
horizon is from January 2002 to October 2013 that captures at least one business
cycle and allows us to differentiate “normal period” and “turbulence period”. we
will also provide in sample and out of sample check to justify if the GARCH
model is well specified, this procedure is in the purpose of dealing with model
risk. Finally, on top of the advantage of nonparametric estimation, bootstrap
methodology also cope with estimation risk of the model, since it takes the average
of estimations as the final result to establish the VaR calculation.

The rest of the paper proceeds as follows. Section 2 describes the different
methodology of VaR calculating in the literature. Section 3 describes two differ-
ent test for VaR evaluation. This section is the core of the paper, since it shows
us why in some circumstance VaR won'’t correctly measure the market risk. Section
4 provides the empirical results on CAC40 index. Section 5 concludes.

2 Value-at-Risk

The most common reported measure of risk is Value-at-Risk (VaR). The VaR of
a portfolio is the amount risked over some period of time with a fixed probability.
VaR provides a more sensible measure of the risk of the portfolio than variance
since it focuses on losses, although VaR is not without its own issues. One
of the most critical points for VaR is that this measure is not a coherent risk
measure, since, in some circumstances, VaR is not endowed with the so called
subadditivity property. There exists a rather large literature interested in these
suitable properties of a risk measure, however, this interesting point is not in
the scope of research in this paper.

The VaR of a portfolio measures the value (in $, £, €, etc) which an investor
would lose with some small probability, usually between 1 and 10%, over a
selected period of time. Because the VaR represents a hypothetical loss. Recall
that VaR is defined as the solution to

P(ri< VaRy) =g, (1)
VaR? is the g-quantile of the return r. Note that with this definition, V aR? is
t t

typically a negative number.

2.1 VaR calculation

There are three common methodologies for calculating V aR: Historical simu-
lation, Parametric Modeling and Monte Carlo Simulation. In addition, we will
present some more advanced methodologies to calculate V aR.
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2.1.1 Historical simulation

The historical method simply re-organizes actual historical returns, putting them
in order from worst to best. Then the VaR is obtained according to the
confidence level g set by the investors. This method assumes that history will
repeat itself, from a risk perspective. An advantage of this method is that we
don’t make any distribution assumption on portfolio returns, meanwhile, it is
simple to compute. However, when computing Historical VaR, sampling history
requires care in selection. Also, high confidence levels (e.g. 99%) are coarse for
a short historical horizon.

2.1.2 Parametric method

The Parametric Model estimates V aR directly from the Standard Deviation of
portfolio return. It assumes that returns are normally distributed. In other words,
it requires that we estimate only two factors - an expected (or average) return
and a standard deviation - which allow us to plot a normal distribution curve.

The idea behind the parametric method is similar to the ideas behind the
historical method - except that we use the familiar curve instead of actual data.
The advantage of the normal curve is that we automatically know where the
confidence level g (worst 5% and 1%) lies on the curve.

2.1.3 Monte Carlo simulation

A Monte Carlo simulation refers to any method that randomly generates trials,
but by itself does not tell us anything about the underlying methodology. This
method involves developing a model for future returns and running multiple
hypothetical trials through the model. For example, we can consider the stock
prices movements follow some diffusion processes and then run different trials
for the processes to obtain the results.

2.1.4 Quantile regression method

In this method, we first consider that the portfolio returns have the following
relationship with a set of state variable M

re=a+ pMi-1+ E,

we then denote the cumulative distribution function (cdf) of r:by F;, %rt), and
its inverse cdf by F ;}(q) for percentile g. It follows that the inverse cdf of ris
F-1 .
re (@I1Mi-1) = aq + BgMi-1, (2

where a4 and ﬁAq are the coefficients for quantile regression with g € (0,1).

F71q|M¢-1) is called the conditional quantile function. From the definition of
V aR, we obtain

VaRg = Vin’fq {P(rt< VaRi|Mi-1) 2 q} = F7{q|M-1).
ahg
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The conditional quantile function F7!'(q|M;_1) is the VaRq conditional on

M;_1.

A possible set of state variable is mentioned in Adrian and Brunnermeier
(2011). In AB11, they have proposed 7 state variables to estimate time-varying
V aR: Those are:

i) VIX, which captures the implied volatility in the stock market.

ii) A short term liquidity spread, defined as the difference between the three-
month repo rate and the three-month bill rate, which measures short- term
liquidity risk. The three-month general collateral repo rate is available on
Bloomberg, and The three-month Treasury rate is obtained from the Federal
Reserve Bank of New York.

iii) The change in the three-month Treasury bill rate from the Federal Re-
serve Boards H.15. By using the change in the three-month Treasury bill rate,
not the level, since the change is most significant in explaining the tails of fi-
nancial sector market-valued asset returns.

iv) The change in the slope of the yield curve, measured by the yield spread
between the ten-year Treasury rate and the three-month bill rate obtained from
the Federal Reserve Boards H.15 release.

v) The change in the credit spread between BAA-rated bonds and the Trea-
sury rate (with the same maturity of ten years) from the Federal Reserve Boards
H.15 release.

Note that iv) and v) are two fixed-income factors that capture the time
variation in the tails of asset returns.

Then introduce two variables to control for the following equity market re-
turns:

vi) The weekly equity market return.

vii) The one-year cumulative real estate sector return is the value weighted
average of real estate companies (SIC code 65-66) from CRSP.

These state variables are well specified to capture time variation in condi-
tional moments of asset returns, and are liquid and easily traded. However, a
big shortcoming by using these variables is that it makes the results less robust.
Imagine, if we add or delete one variable that will affect the final results of quantile
regression, therefore the results of measure. Meanwhile, in financial
data, the state variables at time t — 1 have little predictive power. If we use

M; as explanatory variable, one may introduce the endogeneity problem in the
regression, since E(ME;) /= 0, hence the estimated coefficients will be biased.
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2.1.5 Conditional Value-at-Risk with normal assumption

This method is similar to the parametric method, the crucial point is to estimate
the standard deviation of returns. In parametric model, the standard deviation
is calculated from the whole sample; however, in the conditional VaR model,
the standard deviation is computed from a GARCH process which provides us
the conditional volatility of portfolio return.

We need to compute portfolio returns’ conditional volatility o;at first place.
To do so, in wide world of GARCH specifications, TGARCH is picked to model
volatility to capture so called “leverage effect”, which has the fact that a negative
return increases variance by more than a positive return of the same magnitude.
We also do a diagnosis of this GARCH model to show that the model is well
specified in the Appendix. The evolution of the conditional variance dynamics
in this model is given by:

ry = Eoy
o2 2 2 - 2
¢ = wgtagrii+vyer—1li—1+Pco1,

with It__ , =1t < 0. The model is estimated by Quasi-MLE which guarantees

the consistency of the estimator. We have:
T(OMLE — §°) ~ N(0,J  LIoJ 1),

. A n 0 0
I =1 S(0)S(6) and J = ! ———is  the Hessian of total log-
with
I 9 loglL
T e6dle

-
likelihood function. Where 8 = (ag, yg, fg). Therefore the VaR is derived
from the g-quantile of a normal distribution,

VaR;: = 0[®_1(q),

where ®~1(+) is the inverse normal CDF.

As we will see later on, the normal distribution assumption is appropriate
only in the calm period of financial market. In turbulence time, this assumption
will be violated and if the VaR is calculated based on normal distribution, the
portfolio risk is probably going to be underestimated.

2.1.6 Bootstrap method

Instead of using a distribution based approach to calculate V aR, here, we loosen
the distribution assumption and use non-parametric bootstrap methodology to
determine portfolio V aR. The nonparametric bootstrap allows us to estimate
the sampling distribution of a statistic empirically without making assumptions
about the form of population, and without deriving the sampling distribution
explicitly. The key bootstrap concept is that the population is to the sample as
the sample is to the bootstrap sample. Then, we proceed the bootstrap technique
in the following way.

For a given series of returns {ri,...,r7}, consider a TGARCH model as in
the previous case, whose parameters have been estimated by Quasi-MLE. Then
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we can obtain the standardized residuals, & = "t, where 6t2 =@+ agr?: +
Ot t—1

yer? I~ +fB 02 ,and 62 is long-run variance of the sample.
=1 t-1 G t-1 1

To implement the bootstrap methodology, it is necessary to obtain bootstra
replicates R*T =4 r*l, ey r*T} that mimic the structure of original series of size T.
*

7 are obtained from following recursion ( ( )

A

6_*2 *D *2 * *2

t %%;-,(%6Fti_ﬂ=-ﬁ:,?,€rleIt—l +ﬁGat—1,

t

r

where 6*2 = 62 and E* are random draws with replacement from the empirical
1 1

t
distribution of standardized residuals > This bootstrap method incorporate
uncertainty in the dynamics of conditional variance in order to make useful
to estimate VaR. Given the bootstrap series R*, we can obtain estimated
bootstrap parameters, { wa , abG , y‘é , ﬁ‘é , The bootgtrap of historical values are
obtained from following recursions
&*2 b b 2 b2 - "b bx2

Ep g ',';*aGrr—1 +Vari-1li-1+Pc0i-1,
¢ = Ei6; fort=1,..,T,
where 6°* is the long-run variance of the bootstrap sample R’*, note that the
1 T

historical values is based the original series of return and on the bootstrap
parameters. we repeat the above procedure B times, and estimated WR*i(q) is
kt"-order of series 7?*, for b = 1,..., B, where k = B X q.

1

3 Evaluation of VaR

Over the past two decades, banks have increased their quantitative models to
manage their market risk exposure for a significant increase in trading activity.
As the fast growth of trading activity, financial regulators have also begun to
focus their attention on the use of such models by regulated institutions. There-
fore, the Value-at-Risk has been used to determine banks’ regulatory capital
requirements for financial market exposure in Basel Accord since 1996. Given
the importance of VaR estimates to banks and to the regulators, evaluating the
accuracy of the model underlying them is a necessary exercise.

To formulate the evaluation of accuracy of VaR, suppose that we observe a
time series of past ex-ante VaR forecasts and past ex-post returns, we can define
the “HIT function (sequence)” of VaR violations as

1, ifri<VaR?
H t= t .
0 ifrr=>VaRy

If the model is correctly specified, H; should be a Bernoulli(g) and indepen-
dent identical distributed (i.i.d.). In this subsection, we focus on two tests: 1)

It is necessary to sample with replacement, because one would otherwise simply reproduce
the original sample.
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the unconditional distribution of H; is Bernoulli(g); 2) the H; are i.i.d. and
Bernoulli(g).

First test: the unconditional of H;is Bernoulli(q). VaR forecast evaluation
can be implemented by that HIT at time t, Hy, is a Bernoulli random variable,
and a powerful test can be constructed using a likelihood ratio test. Under the
null that model is correctly specified, the likelihood of hit sequence is

L(Hy,...,Hr)

M4 (1 = 2t

(1 _ _71')7-_), H’.?T)’ H;

(1—mxm,

where To and Ti are the numbers of zeros and ones in the sample. The uncon-
l(1itional MLE estimator of 7 is 7 = T% The log-likelihood ratio test is given
y
LRue = 2[log(L(7)) = log(L(g))] ~ x*(1),
under the null (Ho : 7 = q).

Second test: H;are i.i.d. and Bernoulli(g). The likelihood based test for
unconditionally correct VaR can be extended to conditionally correct VaR by
examining the sequential dependence of HITs. We need to define what type of
serial correlation we want to test against. A simple alternative is a homoge-
nous Markov chain. A simple first order binary valued Markov chain produces
Bernoulli random variables which are not necessarily independent. It is char-
acterized by a transition matrix which contains the probability that the state
stays the same. The tr?nsition matiix i? given by |

Joo  TTo1 JT00 1 — o0

Q= -
10 11 1-m1 11

where P[H;= 1|Ht1 = 1] = m11, P[Hi= 1|Ht-1 = 0] = mo1. In a correct
specified model, the probability of a HIT in the current period should not de-
pend on whether the previous period was a HIT or not. In other words, the

HIT sequence, {H} is ii.d., and so that mpo = 1 — ¢ and w11 = q when the
model is conditionally correct. The likelihood of Markov chain (ignoring the
unconditional distribution of the first observation) is

LQ)=(01- _7T01)To1_7.[7'o1(1 _ 7T11)T107TT11,
01 11

where T is the number of observations with a j following an i. The MLE
estimator of 7101 and ;711 are

Tox Ty

~ ~

o1 = M1 = .
Too +To1’ T11 +Tio

Under independence, one has

JIo1 = JI11 = 7,
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and 1 |
l-n xn

Qo= 1)
l-7n xn

while the MLE of « is again 71 = T1/T. Hence, the Likelihood ratio test of the
independence assumption is given by
LRing = 2[log(L(R)) ~ log(L(Q0))] ~ x2(1),

Under the null, where |
1 I 1

A 1 —_ '7}01 f[()l s 1 - .7"\[ .7}
Q= . n and Qo = A A
1-mq1 Jmt l-n 7

However, one may want to test independence and Bernoulli(q) (conditional cov-
erage test), i.e. 701 = ;111 = q. The test is

LRge = 2[log(L(RQ)) — 10g(L(q))] = LRuc + LRing ~ X*(2).

4 Empirical analysis with CAC 40

In this section we will implement two different methods to calculate VaR on CAC
40, they are conditional VaR with normal assumption and Bootstrap VaR. The
purpose of using these two methods is to give a direct and clear example to
explain why we should consider VaR calculation in a “turbulent framework” to
incorporate tail events on the financial market. The reason to chose CAC 40
index is that it is considered as the most diversified portfolio in French stock
market, therefore to make useful for our VaR calculation and evaluation. The
time horizon is from 1 January 2002 to 10 October 2013 with daily data that
fully captures a business cycle as shown in the first part of Figure 1. The subprime
crisis started from mid-2007, since then, CAC40 decreased. The crisis has been
amplified by the bankruptcy of Lehman Brother in September 2008, then CAC40
tumbled to its lowest level in early 2009. After the publication of Supervisory
Capital Assessment Program (SCAP) in May 2009, CAC4o0 restored until the first
phase of Sovereign crisis. It was followed by the second phase of Sovereign crisis
in the Summer of 2011. The second part of Figure 1 is the Log

return of CAC4o0, it is derived as rt = log P;—log Pi-1. The graph clearly shows
that a “Normal Period” from early 2004 to the end 2005. However, the whole
sample period depicts several turbulence periods, especially after the subprime
crisis. Therefore, by simply assuming the returns follow a normal distribution
would be inappropriate for further modeling process. As showed in Figure 2,
the QQ-plot of the whole sample does depict a fat tail distribution rather than
normal distribution. Both One-sample Kolmogorov-Smirnov test and Shapiro-
Wilk normality test show that the normality assumption will be violated in whole
sample period.
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Normal Period Whole Sample
D Statistics P-Value W Statistics  P-Value
KS test 0.0344 0.6847 0.0805 < 2.2e-16
SW test 0.995 0.1768 0.9336 < 2.2e-16

Tab. 1: Normality Test

5000
I

CAC40 Index
3000
I I

T T T T
2002 2004 2006 2008 2010 2012 2014

Log-retun

-0.10

2002 2004 2006 2008 2010 2012 2014

Fig. 1: CAC 40 Index

The second Ipart of Fi%ure 1isthe Loglreturn of CAC40, log return is derived
as rt = log Pt —log P:-1. The graph clearly shows that a “Normal Period” from

early 2004 to the end 2005. However, the whole sample period depicts several
turbulence periods, especially after the subprime crisis. Therefore, by simply
assuming the returns follow a normal distribution would be inappropriate for
further modeling process. As showed in Figure 2, the QQ-plot of the whole
sample does depict a fat tail distribution rather than normal distribution. Both
One-sample Kolmogorov-Smirnov test and Shapiro-Wilk normality test show that
the normality assumption will be violated in whole sample period as showed in
Table 1.

4.1 Evaluation of VaR for CAC40
4.1.1 Results for TGARCH model

In this section, we will provide the empirical results of VaR for CAC40. Before
showing the results of VaR, we present the results of conditional volatility. No
matter for calculating conditional VaR with normal assumption or Bootstrap VaR,
we need to run the TGARCH process at first place to determine the con- ditional
volatility of CAC40 return. In this TGARCH model, ag measures the extent to
which a volatility shock today feeds through into next period’s volatil-
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Normal period Whole period
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Fig. 2: QQ-plot
aG YG Ba

Estimator | 0.103 | 0.091 | 0.801
Std. Error | 0.224 | 0.191 | 0.111
t stat 0.460 | 0.476 | 7.215

P value 0.645 | 0.633 | 0.000

Tab. 2: TGARCH estimation results

ity, yc measures the extent to which an volatility shock today feeds through into
next period’s additional volatility if today’s return is negative (leverage effect) and
Pcmeasures the persistency of volatility. The estimation results are presented in
Table 2. We provide the dynamics of volatility in figure 3. During the calm period,
volatility stayed at a low level, however,it has sharply increased since the
beginning of financial crisis.

We also provide a diagnosis of the TGARCH model to take into account the
model risk to see whether this model is well specified for both in sample and
out of sample check. The objective of variance modeling is to construct a
Vimapce measure, which has the property that standardized squared returns,

t/o, have no systematic autocorrelation. We can see from figure 4 that the
standardized squared returns have no autocorrelation as the sticks of different
lags are all in their standard error banks, however the squared returns have strong
autocorrelation. Model is well specified in terms of in sample check.

Out of sample check is done by using a simple regression where squared
returns in the forecast period, t+1, is regressed on the forecast from the variance

model, as in 5 5

+1 = bo + b16'[+1|[ + et+1.
In this regression, the squared return is used as a proxy for the true but unob-
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Conditional Volatility
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Fig. 4: Diagnostic of TGARCH model (In sample check)
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Coefficients Estimate Std.Error t-Stat P-value
bo 2.495e-05 1.397e-05  1.786 0.0741 .
b1 0.584e-01  3.531e-02 27.145 <2e-16 ***

F-Stat 736.8

Adj.R? 0.1962

Tab. 3: Diagnostic of TGARCH model (Out of sample check)

Min 1Q  Median Mean 3Q Max

Conditional VaR | -0.166 -0.037 -0.027 -0.032 -0.021 -0.016
Boot VaR (1000) | -0.166 -0.039 -0.030 -0.035 -0.025 -0.017

Tab. 4: Result of VaR

served variance in period t + 1. What needs to be done is to test bp = 0 and
b1 = 1. The results show usbo is not statistically significant and b1 is very close
to 1, with an acceptable adjusted Rzequals to 0.19. Therefore, we can conclude
that our variance model is well specified.

4.1.2 Results for VaR

Table 5 shows us the results for two different methods of VaR calculation. The
mean of Conditional VaR is -3.2%, which is lower (in absolute value) than the
mean of Boot VaR, -3.5%. Moreover, for each quartile, the VaR of bootstrap
method is lower than the VaR of conditional GARCH method as well as for
minimum value and maximum value. This is because the bootstrap methodology
doesn’t assume any distribution assumption on CAC 40 return, therefore it does
consider fatter tail events than conditional GARCH method. The dynamics of
VaR is presented in Figure 5. The green line represents the VaR of GARCH
with normal assumption method and red line represents the VaR of Bootstrap
method. In general, green line exhibits a lower market risk than blue line, which
is in line in Table 5. Therefore, it will be useful to check the hit function in order
to evaluate the VaR results to determine a robust method for VaR computation.

In line with section 3, Figures shows the results of evaluation of VaR for
CAC40. For TGARCH VaR method, both first test and second test passed the
critical value 6.635 and 9.21 respectively,?> which means that the hit function
generated by TGARCH VaR method does not follow the Bernoulli (99%). This
is because, by assuming the normal distribution of CAC40 return, one would
underestimate the tail risk during the crisis (turbulence) period, therefore the
hit function will be violated more frequently implicitly. However, the Bootstrap
VaR method does have first and second tests below the critical values. As
mentioned above this method is a nonparametric method, therefore it does
not assume any distribution to depict CAC40’s return and can fully capture
the return movement in both calm and turbulence period. The inconvenience

SThe confidence level is 99%.
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VaR for CAC40
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Fig. 5: Time varying VaR

TGARCH VaR | Bootstrap VaR
First Test 26.017 5.619
Second Test 28.642 5.805

Tab. 5: Evaluation results of VaR for CAC40
Notes: The numbers in this table refer to the results of Likelihood Ratio Test
and the confidence level in this paper is 99%. The critical level for the first test
is 6.635 and for the second test 9.21. We did the bootstrap for 1000 times.

for this method is the computational burden, usually it takes more time than
previous method. Fortunately, we have shown in this paper, bootstrap for 1000
times is enough for CAC40 VaR calculation.

5 Conclusion

Different methods used to calculate VaR will imply significant different results
as showed in the main body of the paper. This gives the insights to the risk
managers and other market participants, we should be prudential in implement-
ing the methods to calculate VaR. In addition, it would be interesting to see
others risk measures in a “turbulence time”, such as stressed VaR and expected
shortfall, and it opens the door for the future research.
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