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1 Introduction

Problems in which supply network formation is involved have been widely

studied in the literature from two different points of view. On one hand,

the design of efficient algorithms and the computational complexity. On the

other hand, the cost sharing of the network.

In situations where the supply can be done either directly or though

other nodes, the optimal network is a tree. Examples include water supply,

electricity, cable television, Internet, and so on.

In order to study these situations, two steps should be considered: in the

first one, agents will construct a minimal cost tree, mt for short. There exist

several algorithms for building a mt. Two of them are provided by Kruskal

(1956) and Prim (1957), respectively. Once we have constructed a mt, the

second step consists of dividing its cost between the nodes that benefit from

it. In order to do that, a rule will be used.

In this paper, we focus on the cost sharing aspect. In particular, we study

minimum cost spanning tree (mcst) situations. A group of agents, located

at different geographical points, want some particular service or good which

can only be provided by a common supplier, called the source. Agents can

be served through connections which entail some cost and they do not care

about whether they are connected directly or indirectly to the source.

There is a large literature on the cost-sharing related problem. Bird

(1976) uses Prim’s algorithm and proposes a cost allocation rule, the so-called

Bird rule. He also associates a cooperative game with each mcst problem.

Granot and Huberman (1981, 1984) study the core and the nucleolus of this

cooperative game. Feltkamp et al. (1994) use Kruskal’s algorithm in order

to define a rule, the folk rule, which has been redefined and characterized

in Bergantiños and Vidal-Puga (2007a,b). The definition of the folk rule in

Bergantiños and Vidal-Puga (2007b) is as the Shapley value of a particular

game associated to the problem. Other authors also use the Shapley value in

order to define rules. Kar (2002) studies the Shapley value of the cooperative

game defined by Bird (1976). Trudeau (2012) defines the cycle-complete rule
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as the Shapley value of a another particular game. Dutta and Kar (2004)

propose another different rule.

A relevant approach is to study which desirable properties are satisfied

by the different rules. Properties should help a planner to compare different

rules and to decide which rule is preferred in a particular case.

In this paper, we focus on three important classes of properties. The first

class is based on the property of core selection. This property states that

no group of agents should subsidize the other agents, paying more than the

cost of connecting themselves to the source. This is a very relevant property

in the economic literature. A typical drawback is that, in general, the core

may be empty. However, it happens to be always non-empty in the game

associated to a mcst problem. In fact, most of the rules proposed in the

literature satisfy core-selection, with the remarkable exception of the one

derived from the Shapley value of the associated game (see Kar (2002)). A

stronger version of core selection is population monotonicity, which requires

that the cost allocated to any agent will not decrease if new agents join

the society. Population monotonicity in mcst problems has been studied by

Bergantiños and Gómez-Rúa (2010), Bergantiños and Vidal-Puga (2007a,

2009), Bogomolnaia and Moulin (2010), Lorenzo and Lorenzo-Freire (2009),

and Norde et al. (2004).

The second class is based on the property of cost monotonicity. This

property implies that the cost allocated to some node will not increase if

the cost of a link involving this node goes down, nothing else changing.

Hence, a violation of this appealing property could disincentive the agents

to reduce the costs of constructing links (see Dutta and Kar (2004)). A

stronger version of cost monotonicity requires that the cost allocated to any

agent will not increase if the cost of any link (involving this player or not) goes

down, nothing else changing. Hence, this strong version would also prelude

the agents to sabotage the construction of any link. This stronger version

of cost monotonicity in mcst problems has been studied, among others, in

Bergantiños and Gómez-Rúa (2010), Bergantiños and Vidal-Puga (2007a,
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2009), Bogomolnaia and Moulin (2010), and Trudeau (2012).

There have been studied several rules that satisfy both population mono-

tonicity and cost monotonicity. In particular, the folk rule is the only of these

rules that satisfies both properties (see Bergantiños and Vidal-Puga (2008)).

For a characterization of rules satisfying both properties, see Bergantiños

and Vidal-Puga (2015).

The third class is based on the properties of split and merge-proofness.

The split-proofness property implies that one node should not have incentives

to split into two or more different nodes. The merge-proofness property

implies that two or more nodes should not have incentives to merge into a

single node. These properties are relevant in situations where the identity of

the nodes is ambiguous. For example, different departments on a University

campus can be already connected by an internal network. In case they want

to be connected to a wider supply network, should they be considered as

a single node (the campus) or as several different nodes (the departments)

connected at zero cost? Other examples are the different shops at the mall,

apartments on a building, or houses in a residential area.

Merge-proofness preludes the agents to build an inefficient network, as

next example shows:

Example 1.1 Consider three agents located respectively at nodes 1, 2 and

3. The connection costs are depicted in Figure 1 (left). Figure 1 (right)

represents the same situation after agents 2 and 3 merge, paying cost 8.

This merging is inefficient, because the three agents end up paying no less

than 8 + 28 = 36, whereas the initial problem has an optimal tree with cost

34. Assume a rule assigns Φ = (Φ1,Φ2,Φ3) in the initial problem, and

Φ′ = (Φ′
1,Φ

′
2) in the second one. Then, a merge-proof rule should satisfy

Φ2 + Φ3 ≤ 8 + Φ′
2. Inefficiency due to a previous merge of nodes 2 and 3 is

then avoided.

The properties of split and merge-proofness have been studied in many

contexts related to cost sharing problems. In a context where the agents
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Figure 1: Merging of nodes 2 and 3.

consume arbitrary quantities of possibly different goods, Sprumont (2005)

characterizes the Aumann-Shapley cost sharing method, used to distribute

the total generated cost that ensures that agents never find it profitable to

split or to merge their consumptions. O’Neill (1982), Chun (1988), De Fru-

tos (1999), Moulin (2002), Ju (2003), and Ju et al. (2007) study split and

merge-proofness in claim and bankruptcy problems. Moulin (2007, 2008) also

studies split and merge-proofness in the context of job scheduling. Merging in

exchange economies has been studied for several solution concepts by Hart

(1974), Postlewaite and Rosenthal (1974), Maschler (1976), Legros (1987)

and Rosenmüller and Sudhölter (2004). Merging and splitting in cooper-

ative games have also been studied by Knudsen and Østerdal (2012) and

references herein.

In the context of mcst problems, the folk rule satisfies split-proofness

and, moreover, it is not difficult to derive a split-proof rule from a cost-

monotonic one. However, this is not the case with merge-proofness. Un-

der domain restrictions1, the Bird rule satisfies merge-proofness (see Özsoy

(2006), Athanassoglou and Sethuraman (2008), and Gómez-Rúa and Vidal-

Puga (2011)). The Bird rule is, moreover, the only relevant rule defined in

the literature that satisfies it (see Gómez-Rúa and Vidal-Puga (2011)).

1For example, assuming all the costs are different.
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However, in the most general setting, no rule satisfies merge-proofness,

as the next example shows:

Example 1.2 (Özsoy (2006)) Assume we have three agents located, re-

spectively, at nodes 1, 2 and 3. The connection cost between each agent and

the source is 1, and the connection cost between any pair of agents is 0. The

minimal cost is 1 and hence any rule Φ should satisfy Φ1 + Φ2 + Φ3 = 1.

Assume w.l.o.g. Φ3 ≥ max {Φ1,Φ2}. Now, if players 1 and 3 join and

appear as agent 1 alone, the planner would face the same problem as if play-

ers 2 and 3 join and appear as agent 2 alone. Then, a merge-proof rule

should assign to player 1 (say Φ′
1) at least as much as to players 1 and 3

in the original problem, whereas it should assign to player 2 (say Φ′
2) at

least as much as to players 2 and 3 in the original problem. This means

Φ1 + Φ3 ≤ Φ′
1 and Φ2 + Φ3 ≤ Φ′

2, which implies Φ1 + Φ2 + 2Φ3 ≤ Φ′
1 + Φ′

2.

Since Φ1 + Φ2 + Φ3 = 1 and Φ′
1 + Φ′

2 = 1, we deduce Φ3 ≤ 0, which is

impossible because Φ3 ≥ max {Φ1,Φ2} and Φ1 + Φ2 + Φ3 = 1.

The key issue in the previous example is that the planner has no way

to know whether agent 3 has merged with agent 1 or with agent 2. This

assumption is necessary in situations where the agents may use multiple

replicas without being detected, as for example the case of users of a web

page. However, this may not be a reasonable assumption in many other

situations. In the mcst model, one may think in the case of departments

in a campus or apartments in a building. In case the planner knows which

mergers may have taken place, it is not difficult to derive a merge-proof

rule2. On the other hand, it is not clear whether a merge-proof rule could

also satisfy core selection and cost monotonicity3.

In this paper, we model the mcst situation in such a way that the planner

knows which mergers take place. If some agents merge and present them-

selves to the planner in this way, she should solve a situation where the nodes

2For example, charging all the cost to the merging agents.
3Charging all the cost to the merging agents will clearly not satisfy core selection.
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are formed by the union of several agents. We refer to this new problem as

a (mcst) situation. A mcst situation generalizes the classical mcst problem.

Under this model, all the rules presented in the literature fail at least

one of the properties. However, we propose a new rule that satisfies all of

them, even the stronger versions. This rule is the weighted Shapley value of

a particular cooperative game4. We also propose a characterization result of

this rule with these and other properties. The other properties used in the

characterization are efficient merging, piece-wise additivity, symmetry and

positivity.

Positivity says that each node should pay at least zero. It has been used,

in the context of minimum cost spanning tree problems, by Bergantiños and

Vidal-Puga (2009). Piece-wise additivity is a weaker version of additivity.

Additivity and symmetry are standard properties. They are used in the

classical characterization of the Shapley value (Shapley (1953)). Different

versions of piece-wise additivity property have also been used in the con-

text of minimum cost spanning tree problems by Branzei et al. (2004), Tijs

et al. (2006), Bergantiños and Vidal-Puga (2009), Bergantiños et al. (2010),

and Hougaard et al. (2010). Piece-wise additivity says that when the same

network is optimal for two different cost matrices, then the cost-sharing is

additive in the cost function.

Efficient merging, on the other hand, is related to the properties of split

and merge-proofness. Even though merge-proofness precludes agents to build

an inefficient network (as in Example 1.1), this concern is no longer relevant

when the nodes that merge are already the closest ones (as in Example 1.2).

Efficient Merging says that these nodes should not find harmful to join in

advance in these cases.

The paper is organized as follows: In Section 2 we present the model.

In Section 3 we describe some desirable properties of the rules. In Section

4In the context of pricing traffic demand in a spanning network, Moulin (2014) also

finds the weighted Shapley value of a cooperative game to satisfy the so-called routing-

proofness. This property is related to split-proofness, since it precludes the agents to get

advantage by reporting to be several different users along a path.
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4 we define a new rule, prove that it satisfies all these properties and char-

acterize it with some of them. In Section 5 we prove that this rule is the

weighted Shapley value of a particular transferable-utility game. In Section

6 we present some conclusions.

2 The model

Let N = {1, . . . , n} be a finite set of potential agents, n > 2, and let 0 be a

special point called the source. Let N0 = N ∪{0}. A minimum cost spanning

tree problem is determined by a cost function c : N0×N0 → R+ that assigns

a non-negative cost to each pair (i, j) ∈ N0 ×N0. We assume c(i, i) = 0 for

all i ∈ N0 and c(i, j) = c(j, i) for all i, j ∈ N0.

We assume that some agents in N want to be connected to the source,

and they are indifferent between connecting directly or through other agents.

The cost of direct connection between any pair of agents, or between any

agent and the source, is given by c. Moreover, some groups of agents can be

connected in advance, so that they behave as a single nodes. Hence, these

nodes are groups of agents.

A minimum cost spanning tree situation, or simply a situation, of a cost

function c, is a pair
(

P, cP
)

where P = {P0, P1, ..., Pm} is a subset of mutually

exclusive subsets of N0 (i.e. Pr ∩ Ps = ∅ when r 6= s) with 0 ∈ P0, and

cP : P×P → R+ is a function that assigns to each pair of (unsorted) subsets

in P the minimum cost of connecting any pair of agents of their respective

group, that is, cP (Pr, Ps) = mini∈Pr,j∈Ps
c (i, j) for all Pr, Ps ∈ P. Each

Pr ∈ P is a node.

For simplicity, we write (P, c) instead of
(

P, cP
)

. Moreover, and when

there is no possible confusion, we write r, s instead of Pr, Ps, and so on.

Notice that we write 0 instead of P0, since it plays the role of the source in

a given situation.

We denote as EP = {{r, s} : r, s ∈ P, r 6= s} the set of edges in P. A
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graph g in P is a subset of EP . The cost of a graph g in (P, c) is defined as

c (g) =
∑

{r,s}∈g

cP (r, s) .

We denote as GP the set of graphs in (P, c).

A path in (P, c) is a sequence (r0, ..., rk) of different nodes in P. In

particular, we say that (r0, ..., rk) is a path between r0 and rk. We say that a

path (r0, . . . , rk) is in a graph g in P if {rl−1, rl} ∈ g for all l = 1, ..., k.

A spanning graph in P is a graph g in P such that for all r, s ∈ P, there

exists a path in
(

P, cP
)

between r and s. We denote as SGP the set of

spanning graphs in P.

A rule Φ is a function that assigns to each (P, c) a vector Φ (P, c) ∈ R
P\{0}

satisfying
∑

r∈P\{0}

Φr (P, c) = min
g∈SGP

c (g) .

A spanning tree in P is a graph t in P such that for all r, s ∈ P, there

exists a unique path in P between r and s. If t is a spanning tree, we usually

write t = {(r, r0)}r∈P\{0}, where r0 represents the first node in the unique

path in t from r to the source. We denote as STP the set of spanning trees

in (P, c).

Since c (r, s) ≥ 0 for all (r, s) ∈ EP , it is clear that we can replace SGP

with STP in the definition of rule. Such aminimal cost spanning tree is called

a minimal tree, mt for short. A minimal tree always exists, even though it is

not necessarily unique. We denote as MT (P, c), MTP for short, the set of

minimal trees in (P, c). We denote the cost associated with any mt on (P, c)

as m (P, c).

For any (P, c), a connected component is a maximal subset of P where

all the nodes can be connected at zero cost, that is, for any two nodes r, s

in the same connected component, there exists a path (r0, . . . , rk) between

r and s such that c (rl−1, rl) = 0 for all l = 1, . . . , k. Clearly, the connected

components determine a partition P of P which includes exactly one set S0

of nodes that are connected to the source at zero cost. We assume 0 ∈ S0 so

that S0 6= ∅.
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3 Properties of the rules

In this section we describe the properties that we consider a cost sharing rule

should satisfy. Most of them are well-known in the classical model of mcst

problems and we adapt them to the new context. We also propose a new

one. Now we present them in a formal way. Let Φ be a generic rule.

Core Selection: For each Q ⊂ P \ {0}, we have

∑

r∈Q

Φr (P, c) ≤ min
t∈STQ∪{0}

c (t) .

This property says that no subset of coalitions can find it cheaper to

create their own network without the others.

Population Monotonicity: For each r, s ∈ P \ {0}, we have

Φr (P, c) ≤ Φr (P \ {s} , c) .

This property says that if the population of agents decreases, nobody is

better off. Equivalently, if the population of agents increases, nobody

is worse off.

It is straightforward to check that Population Monotonicity implies Core

Selection.

Cost Monotonicity: For each i ∈ Pr ∈ P, Φr(P, c) is non-decreasing on

c(i, j) for all j ∈ N0 \ {i}.

This property says that if a connection cost increases for coalition r

and the rest of the connection costs remain the same, then coalition r

is not better off.

The following property is a stronger version of Cost Monotonicity.

Solidarity: Φ(P, c) is non-decreasing on c(i, j) for all i, j ∈ N0.

This property says that if a connection cost increases and the rest of

connection costs remain the same, then no coalition is better off.
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It is clear that Solidarity implies Cost Monotonicity.

Positivity: Φ(P, c) only takes non-negative values.

This property says that no agent can be compensated by connecting to

the source.

Merge-Proofness: For each Q ⊂ P \ {0} and g ∈ SGQ, we have

∑

r∈Q

Φr (P, c) ≤ Φq ((P \ Q) ∪ {q} , c) + c (g)

where q =
⋃

r∈Q r (or Pq =
⋃

Pr∈Q
Pr).

This property says that no group of coalitions have incentives to join

a priori, assuming the cost (given by c(g)), to be treated as a single

node.

Strong Merge-Proofness: For each Q ⊂ P \ {0}, and s ∈ (P \ Q) \ {0},

we have

Φs ((P \ Q) ∪ {q}, c) ≤ Φs (P, c)

where q =
⋃

r∈Q r (or Pq =
⋃

Pr∈Q
Pr).

This property says that if a group of coalitions (Q) join in advance in

order to be treated as a single node (q), no other coalition (s) will be

worse off in the reduced problem.

Strong Merge-Proofness implies Merge-Proofness (see Gómez-Rúa and

Vidal-Puga (2011)).

The following property considers the case in which one particular node

splits into several nodes, producing a new situation with additional nodes.

Split-Proofness: For each Q ⊂ P \ {0}, we have

Φq ((P \ Q) ∪ {q}, c) ≤
∑

r∈Q

Φr

(

P, c0q
)

where q =
⋃

r∈Q r (or Pq =
⋃

Pr∈Q
Pr) and c0q is the cost function

defined by c0q(i, j) = 0 for all i, j ∈ Pq, and c0q(i, j) = c(i, j) otherwise.
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This property says that no node (q) has incentives to split into several

nodes (Q).

Efficient Merging: If there exist two nodes r, s ∈ P\{0} such that c (r, s) =

minr′,s′∈P c (r′, s′), then

Φr∪s (P
rs, c) + c (r, s) ≤ Φr (P, c) + Φs (P, c)

where Prs = (P \ {r, s}) ∪ {r ∪ s}.

This property says that if the closest nodes (r and s) are formed by

agents, then they should find it optimal to merge. Hence, it avoids

disincentives to construct an optimal network.

There exist some relations among these four last properties. Strong

Merge-Proofness implies Merge-Proofness (see Gómez-Rúa and Vidal-Puga

(2011)). Next Proposition shows that Strong Merge-Proofness and Efficient

Merging imply Split-Proofness.

Proposition 3.1 If a rule satisfies Strong Merge-Proofness and Efficient

Merging, then it also satisfies Split-Proofness.

Proof. Let Q ⊂ P \ {0}. We need to prove, under Strong Merge-Proofness

and Efficient Merging, that Φq((P \ Q) ∪ {q}, c) ≤
∑

r∈QΦr(P, c0q). We

proceed by induction on |Q|, the cardinality of Q. For Q = {q}, it is clear

that (P \ Q) ∪ {q} = P and, moreover, c = c0q. Hence the result. Suppose

now the result holds for |Q| < α with α > 1, and assume |Q| = α. Fix

r ∈ Q and let Q′ = Q \ {r}. Let P ′ = (P \ Q′) ∪ {q′}, where q′ = q \

r (or Pq′ = Pq \ Pr). It is clear that (P \ Q) ∪ {q} = (P ′)q
′r. Hence,

Φq ((P \ Q) ∪ {q}, c) = Φq

(

(P ′)q
′r, c
)

= Φq

(

(P ′)q
′r, c0q

)

. Under Efficient

Merging, this is less of equal than Φq′ (P
′, c0q) + Φr (P

′, c0q). Under the

induction hypothesis, Φq′ (P
′, c0q) ≤

∑

s∈Q′ Φs (P, c0q). Under Strong Merge-

Proofness, Φr (P
′, c0q) ≤ Φr (P, c0q), and hence the result.

For the next property, given an order σ : {1, . . . , |EP |} −→ EP , we define

Cσ =
{

x ∈ R
EP

+ : 0 ≤ xσ(1) ≤ · · · ≤ xσ(|EP |)

}

as the cone in R
EP

such that
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the ordering of the coordinates is given by σ. A real valued function F with

domain R
EP

+ is piece-wise additive if for any σ its restriction to Cσ is additive,

i.e. F (x+ y) = F (x) + F (y) for all x, y ∈ Cσ.

Piece-wise Additivity: Φ is piece-wise additive as a function with domain

R
EP

+ . Namely,

Φ(P, c + c′) = Φ(P, c) + Φ(P, c′)

for all c, c′ ∈ Cσ.

This property provides a vector structure to Φ(P, c). The main ad-

vantage of a piece-wise additive cost sharing rule is that it is entirely

determined by its value over the |EP |-coordinate vectors whose coordi-

nates take exactly two values, one of them positive and the other zero

(compare page 302 in Hougaard et al. (2010)).

For the last property, we define symmetric coalitions. Two coalitions

r, s ∈ P \{0} are symmetric in (P, c) if they have the same number of agents

and, moreover, c (r, u) = c (s, u) for all u ∈ P \ {r, s}.

Symmetry: Symmetric coalitions pay the same.

4 A monotonic and merge-proof rule

Definition of the rule

In order to define our rule, we need some additional notation. Given any

t ∈ MTP and r, s ∈ P, let c (r, s) denote the maximum cost in the (unique)

path between r and s in t. Formally, given {r0, . . . , rk} be the (unique) path

between r = r0 and s = rk in t, we define

c (r, s) = max
l=1,...,k

{c (rl−1, rl)} .

This cost function c determines the irreducible matrix first defined by Bird

(1976) in the context of minimum cost spanning tree problems. Even though
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the path depends on t, it is possible to show that c (r, s) is independent of

the chosen t (see Aarts and Driessen (1993)).

Let P =
⋃

Pr∈P
Pr. Given any i ∈ P , let P i ∈ P such that i ∈ P i.

Given any t ∈ MTP and i, j ∈ P, let c (i, j) denote the maximum cost in

the (unique) path between P i and P j in t. Formally, given {r0, ..., rk} be the

(unique) path between P i = r0 and P j = rk in t, we define c (i, j) = c (r0, rk).

Notice that this definition implies c (i, j) = 0 when P i = P j.

Again, c (i, j) is independent of the chosen t.

Let ΠP
0 denote the set of orderings of agents in P with 0 as first element.

Namely,

ΠP
0 =

{

π :
{

1, . . . ,
∣

∣P
∣

∣

}

−→ P : π biyective and π(1) = 0
}

.

Given π ∈ ΠP
0 , we define Ψ

π
(P, c) ∈ R

P\{0} inductively as follows:

Ψ
π

π(l) (P, c) = min
l′=1,...,l−1

c (π (l′) , π (l))

for all l = 2, . . . , |P|.

We define Ψ(P, c) as follows. Given r ∈ P \ {0},

Ψr (P, c) =
1
∣

∣

∣
ΠP

0

∣

∣

∣

∑

π∈ΠP
0

∑

j∈Pr

Ψ
π

j (P, c) .

We now derive a simplified formula for Ψ. Let rπ denote the first agent

in Pr for the order π. Then, Ψ
π

i (P, c) = 0 for all i ∈ Pr \ {r
π}. Analogously,

Ψ
π

i (P, c) = 0 for all i ∈ P0 \ {0}. Hence,
∑

j∈Pr
Ψ

π

j (P, c) = Ψ
π

rπ(P, c). Let

Ψπ(P, c) ∈ R
P\{0} be defined as

Ψπ
r (P, c) = Ψ

π

rπ(P, c)

for all r ∈ P. From this, the definition of Ψ reduces to:

Ψ (P, c) =
1
∣

∣

∣
ΠP

0

∣

∣

∣

∑

π∈ΠP
0

Ψπ (P, c) .
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Example 4.1 Let P = {0, r, s} with P0 = {0}, Pr = {1, 2} and Ps = {3},

and let c(r, 0) = 15, c(s, 0) = 17, and c(r, s) = 3. This situation is depicted

in Figure 2.

0

r s{1, 2} {3}

{0}

15 17

3

Figure 2: Situation in which agents 1 and 2 act as a single node.

In this situation there exists a unique mt, t = {(0, r), (r, s)}. Table 4.1

presents each possible Ψπ(P, c) as well as its average, Ψ(P, c) = (11, 7).

π Ψπ
r Ψπ

s

[0123] 15 3

[0132] 15 3

[0213] 15 3

[0231] 15 3

[0312] 3 15

[0321] 3 15

Average 11 7

Table 1: Ψ as an average over orders of the agents.

Main characterization

We next prove that Ψ satisfies all the relevant properties (Theorem 4.1 and

Corollary 4.2) and it is characterized by them (Theorem 4.2).

Theorem 4.1 Ψ satisfies Population Monotonicity, Solidarity, Strong Merge-

Proofness, Efficient Merging, Piece-wise Additivity, and Symmetry.
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Proof. We check first that Ψ satisfies Population Monotonicity. Fix r, s ∈

P \ {0}. For each π ∈ ΠP
0 , let π−s be the order in P \ Ps induced by π by

removing the agents in coalition s. Moreover, P \ {s} = P \ Ps. Now, for

each ̟ ∈ Π
P\Ps

0 , we have

∣

∣

∣

{

π ∈ ΠP
0 : π−s = ̟

}∣

∣

∣
=

(∣

∣P
∣

∣− 1
)

!
(∣

∣P
∣

∣− |Ps| − 1
)

!
=

∣

∣

∣
ΠP

0

∣

∣

∣

∣

∣

∣
Π

P\{s}
0

∣

∣

∣

.

Let αs denote this cardinal. Notice that αs does not depend on the

particular ̟. Moreover, the maximum cost of a path between r and any

other node cannot increase in we add new nodes. Hence, for each π ∈ ΠP
0 ,

we have Ψπ
r (P, c) ≤ Ψπ−s

r (P \ {s}, c) and thus

Ψr(P, c) ≤
1
∣

∣

∣
ΠP

0

∣

∣

∣

∑

π∈ΠP
0

Ψπ−s

r (P \ {s}, c)

=
1
∣

∣

∣
ΠP

0

∣

∣

∣

∑

̟∈Π
P\{s}
0





∑

π∈ΠP
0
:π−s=̟

Ψ̟
r (P \ {s}, c)





=
αc
∣

∣

∣
ΠP

0

∣

∣

∣

∑

̟∈Π
P\{s}
0

Ψ̟
r (P \ {s}, c) = Ψr(P \ {s}, c).

We check now that Ψ satisfies Solidarity. Notice first that the maximum

cost of a path between any pair of nodes cannot decrease when we increase

the cost of some link, leaving the rest unaffected. Hence, for each π ∈ ΠP
0 , Ψ

π

satisfies solidarity. Since Ψ is the average of these Ψπ, and the orders remain

unaffected when a cost increases, we deduce that Ψ also satisfies Solidarity.

We check now that Ψ satisfies Strong Merge-Proofness. Notice that the

maximum cost of a path between any pair of nodes cannot increase when

some other nodes merge. Hence, for each π ∈ ΠP
0 , Ψ

π satisfies Strong Merge-

Proofness. Since Ψ is the average of these Ψπ, and the orders remain unaf-

fected when two or more coalitions merge, we deduce that Ψ also satisfies

Strong Merge-Proofness.

We check now that Ψ satisfies Efficient Merging. Let r, s ∈ P be one of

the closest pairs of coalitions. Let Prs = (P \ {r, s}) ∪ {r ∪ s}. Then, for

16



any π ∈ ΠP
0 satisfying that there exists some i ∈ Pr with π(i) < π(j) for all

j ∈ Ps, we have

Ψπ
r (P, c) = Ψπ

r∪s (P
rs, c)

Ψπ
s (P, c) = c (r, s) .

Let Πr the subset of these orderings. Analogously, let Πs be the subset

of orders π ∈ ΠP
0 satisfying that there exists some i ∈ Ps with π(i) < π(j)

for all j ∈ Pr. It is clear that Π
r ∩ Πs = ∅ and ΠP̄

0 = Πr ∪Πs. Hence,

Ψr (P, c) =
1
∣

∣

∣
ΠP

0

∣

∣

∣

∑

π∈ΠP
0

Ψπ
r (P, c)

=
1
∣

∣

∣
ΠP

0

∣

∣

∣

(

∑

π∈Πr

Ψπ
r (P, c) +

∑

π∈Πs

Ψπ
r (P, c)

)

=
1
∣

∣

∣
ΠP

0

∣

∣

∣

(

∑

π∈Πr

Ψπ
r∪s (P

rs, c) +
∑

π∈Πs

c (r, s)

)

analogously

Ψs (P, c) =
1
∣

∣

∣
ΠP

0

∣

∣

∣

(

∑

π∈Πs

Ψπ
r∪s (P

rs, c) +
∑

π∈Πr

c (r, s)

)

so that, taking into account that P = Prs,

Ψr (P, c) + Ψs (P, c) = Ψr∪s (P
rs, c) + c (r, s) .

The “greater or equal” part of this equality constitutes the proof of Efficient

Merging.

We check now that Ψ satisfies Piece-wise Additivity. Let c, c′ be two cost

functions on the same cone Cσ. Hence, there exists a common mt t in both

(P, c) and (P, c′) and, moreover, t is also a mt in (P, c + c′). From this, it

follows that for any π ∈ ΠP
0 ,

Ψπ
r (P, c+ c′) = Ψπ

r (P, c) + Ψπ
r (P, c′) .
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Since Ψ is the average of these Ψπ, we deduce that Ψ satisfies Piece-wise

Additivity.

Finally, the proof that Ψ satisfies Symmetry follows from its definition.

A relevant implication of this result is that Ψ coincides with the folk

solution in minimum cost spanning tree problems:

Proposition 4.1 Let (P, c) be such that |Pr| = 1 for all r ∈ P. Then,

Ψ(P, c) coincides with the folk rule of the minimum cost spanning tree prob-

lem
(

P , c
)

.

Proof. It follows from Theorem 1 in Bergantiños and Vidal-Puga (2009) that

the folk rule is the only one that satisfies Piece-wise Additivity, Symmetry

and Separability, which is a weaker property than Population Monotonicity.

From Theorem 4.1, Ψ satisfies these properties and hence it coincides with

the folk rule when |Pr| = |Ps| for all r, s ∈ P \ {0}.

From the proof of Proposition 4.1, it is clear that Ψ coincides with the

folk rule when all the nodes contain the same number of agents. The result

does not longer apply when these cardinalities are different, because in that

case the nodes cannot be symmetric.

Notice that Ψ satisfies a stronger version of Piece-wise Additivity. In

particular, Ψ is piece-wise linear as a function with domain R
EP

. This allow

us to characterize Ψ by providing its value for any c with c(i, j) ∈ {0, 1} for

all i, j. We do it now. Let c01 be such a cost function.

For any (P, c01), the total cost is m(P, c01) = |P| − 1, where P is the

partition of P in connected components. For each R ∈ P, let R =
⋃

r∈R Pr

be the set of agents that form R. It is then straightforward to check that Ψ

is characterized by:

Ψr

(

P, c01
)

=







0 if r ∈ S0

|Pr|

|R|
if r ∈ R ∈ P \ {S0}

(1)

for all r ∈ P \ {0}.
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We now provide a necessary condition for Merge-Proofness and Efficient

Merging.

Proposition 4.2 If Φ satisfies Strong Merge-Proofness and Efficient Merg-

ing, then

Φr(P, c) =
∑

i∈Pr

Φ{i} (P
∗, c∗)

for all r ∈ P, where P∗ = {{i}}i∈P and c∗ is defined as c∗ ({i}, {j}) =

c(P i, P j) for all i, j ∈ P.

Proof. Let Φ be a rule that satisfies Strong Merge-Proofness and Efficient

Merging. We proceed by induction on |P|. For |P| = 2, we have P = {r, 0}

and c∗({i}, {j}) = 0 for all i, j ∈ Pr. Thus,

Φr(P, c) = c(r, 0) = m(P∗, c∗) =
∑

i∈Pr

Φ{i}(P
∗, c∗).

Assume now |P| > 2 and the result holds when there are less than |P|

coalitions. The result also holds trivially when |Pr| = 1 for all r ∈ P. Hence,

assume there exists some r ∈ P with |Pr| > 1. Since c∗({i}, {j}) = 0 for

all i, j ∈ Pr, we can apply Efficient Merging sequentially on each i ∈ Pr to

obtain
∑

i∈Pr

Φ{i}(P
∗, c∗) ≥ Φr(P

∗r, c∗) (2)

where P∗r = (P∗ \ {{i}}i∈Pr
) ∪ {r}. Now,

Φr(P
∗r, c∗) = m(P∗r, c∗)−

∑

j∈P\Pr

Φ{j}(P
∗r, c∗)

≥ m(P∗r, c∗)−
∑

j∈P\Pr

Φ{j}(P
∗, c∗)

= m(P∗, c∗)−
∑

j∈P\Pr

Φ{j}(P
∗, c∗) =

∑

i∈Pr

Φ{i}(P
∗, c∗) (3)

where the second inequality comes from Strong Merge-Proofness. Combining

(2) and (3), we see that all weak inequalities are equalities, and in particular:
∑

i∈Pr

Φ{i}(P
∗, c∗) = Φr(P

∗r, c∗).
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Corollary 4.1 Solidarity, Merge-Proofness, Efficient Merging and Symme-

try imply Positivity.

Proof. Let Φ be a rule satisfying these properties. By Proposition 4.2,

Φr(P, c) =
∑

i∈Pr
Φ{i} (P

∗, c∗). Under Solidarity, Φ(P∗, c∗) ≥ Φ(P∗, c0)

where c0(i, j) = 0 for all i, j. Under Symmetry, Φ(P∗, c0) = (0, . . . , 0) and

hence Φ(P, c) ≥ (0, . . . , 0).

Corollary 4.2 Ψ satisfies Core Selection, Cost Monotonicity, Merge-Proofness,

Split-Proofness, and Positivity.

Proof. It follows from Proposition 3.1, Theorem 4.1, Corollary 4.1, and the

fact that Population Monotonicity implies Core Selection, Solidarity implies

Cost Monotonicity, and Strong Merge-Proofness implies Merge-Proofness.

We now present our main result:

Theorem 4.2 Ψ is the only rule that satisfies Population Monotonicity,

Solidarity, Strong Merge-Proofness, Efficient Merging, Piece-wise Additivity,

and Symmetry.

Proof. We already know that Ψ satisfies all these properties. Let Φ be a

rule that satisfies them. Under Corollary 4.1, Φ also satisfies Positivity. We

will prove that Φ is unique for each (P, c). We proceed by induction on the

number coalitions in P. If |P| = 1, the result is trivial. Assume then that

the result is true when there are less than |P| coalitions.

Under Strong Merge-proofness and Efficient Merging, by Proposition 4.2

it is enough to prove the result assuming |Pr| = 1 for all r ∈ P.

Under Piece-wise Additivity, it is enough to prove the result assuming

that c only takes two values: 0 and some x ∈ R+. To see why, notice that

every (P, c) can be expressed as the sum of these situations, all of them in

the same cone Cσ for some σ satisfying c(σ(l)) ≤ c(σ(l′)) iff l ≤ l′.

Under Population Monotonicity and the induction hypothesis, we can

assume that there exists a spanning graph g in P \{P0} such that c (r, s) = 0
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for all (r, s) ∈ g. Suppose, on the contrary, that there exist two groups of

coalitions Q,Q′ ⊂ P such that Q∪Q′ = P and c(r, r′) = x for all r ∈ Q and

r′ ∈ Q′. Then Population Monotonicity implies that Φr(Q, c) ≥ Φr(P, c)

for all r ∈ Q and Φr(Q
′, c) ≥ Φr(P, c) for all r ∈ Q′. Moreover, it is

straightforward to check that m(P, c) = m(Q, c) + m(Q′, c). Hence, given

r ∈ Q (the case r ∈ Q′ is analogous),

Φr(P, c) = m(P, c)−
∑

s∈Q\{r}

Φs(P, c)−
∑

s∈Q′

Φs(P, c)

≥ m(Q, c) +m(Q′, c)−
∑

s∈Q\{r}

Φs(Q, c)−
∑

s∈Q′

Φs(Q
′, c)

= Φr(Q, c) ≥ Φr(P, c)

and so Φr(P, c) = Φr(Q, c), which is unique by induction hypothesis.

Under Positivity, it is enough to prove the result assuming that c(r, 0) = x

for all r ∈ P \ {0}. Suppose, on the contrary, that c(r, 0) = 0 for some

r ∈ P \{0}. Hence, m(P, c) = 0 because g∪{(r, 0)} is a spanning graph with

cost 0. Under Positivity, Φ(P, c) ≥ (0, . . . , 0) but since
∑

s∈P\{0}Φs(P, c) =

m(P, c) = 0, we conclude that Φ(P, c) = (0, . . . , 0).

Clearly, under these assumptions we have m(P, c) = x. Assume w.l.o.g.

P = {0, 1, . . . , p}. In particular, this implies P = {{0}, {1}, . . . , {p}}. Let

c0x be the cost function defined as c0x(r, 0) = x for all r ∈ P \ {0} and

c0x(r, s) = 0 otherwise. For each i ∈ {1, . . . , p}, let Pr ⊂ P be the set of

nodes whose (unique) path to the source in g uses node i (including node i

itself), and let Ps =
(

P \ Pr

)

\ {0}. Both sets Pr and Ps can be connected at

zero cost. Hence, under Efficient Merging and Strong Merge-Proofness, we

have

∑

j∈Pr

Φ{j}(P, c) = Φr({0, r, s}, c) = Φr

(

{0, r, s}, c0x
)

=
∑

j∈Pr

Φ{j}

(

P, c0x
)

.

Under Symmetry, Φ{j} (P, c0x) = x
p
for all j ∈ P. Hence,

∑

j∈Pr
Φ{j}(P, c) =

x|Pr|
p

. We can now proceed by induction on |Pr| in order to prove that

Φ(P, c) =
(

x
p
, . . . , x

p

)

. For |Pr| = 1, we have Pr = {i} and hence Φ{i} (P, c) =
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x
p
. Assume now Φ{i} (P, c) = x

p
when |Pr| < α and suppose |Pr| = α. Then,

Φ{i} (P, c) =
∑

j∈Pr

Φ{j} (P, c)−
∑

j∈Pr\{i}

Φ{j} (P, c) =
x|Pr|

p
−

∑

j∈Pr\{i}

x

p
=

x

p
.

Notice, from the proof of Theorem 4.2, that we can replace Solidarity by

Positivity in the characterization result. In either case, the properties are

independent, as we show in the next subsection.

Independence of the properties

We present six reasonable rules that satisfy the properties used in Theorem

4.2 but one.

Without Piece-wise Additivity: Let F e be defined as

F e
r (P, c) =

∑

i∈Pr



c(i, 0)−
∑

S∋i:0/∈S⊂N,δS>0

(1− ei(c, S)) δS





where δS = mini∈S,j∈N0\S c(i, j)−maxi,j∈S c(i, j) determines the extra-

cost that agents in S should face after they get connected, and e is nor-

malized extra-cost function that assigns to each irreducible cost func-

tion c a vector in the simplex ∆S. See Bergantiños and Vidal-Puga

(2015) for a detailed interpretation of these terms. Let M(c, S) =

{i ∈ S : c(i, j) ≤ c(k, j) for all j, k ∈ S} be the set of agents that are

closer under c within S. When e is defined as

ei(c, S) =

{

1
|S|+1

+ 1
(|S|+1)(|M(c,S)|)

if i ∈ M(c, S)
1

|S|+1
otherwise

then F e is a cost-sharing rule that satisfies all the properties but Piece-

wise Additivity. In Example 4.1, F e(P, c) = (12, 6).

The rest of the rules are piece-wise linear, and hence it is enough to define

them for any c01 with c01(i, j) ∈ {0, 1} for all i, j (as in (1)).
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For any (P, c01) and r ∈ P \ {0}, let Λr ⊂ P be the set of agents that

belong to either r or to some s such that there exists a path between r and

s with zero cost. Let λr = |{s ∈ Λr : c
01(s, 0) = 0}| be the number of nodes

in Λr with zero cost to the source. It is not difficult to check that Pr ⊂ S0 if

and only if λr > 0.

Without Symmetry: Given π ∈ ΠN , we consider Ψπ. In Example 4.1, if

π(i) = i for all i ∈ N , we have Ψπ(P, c) = (15, 3).

Without Population Monotonicity: Given α ∈ (0, 1), let Φα be defined

by

Φα
r

(

P, c01
)

=



























0 if S0 = P
|Pr|α∑

Ps∈R\{0} |Ps|
if R = S0 6= P

|Pr|∑
Ps∈R |Ps|

if R 6= S0 = {0}
|Pr|∑

Ps∈R |Ps|
− |Pr|α∑

Ps∈P\S0
|Ps|

if R 6= S0 6= {0}

for all r ∈ P \ {0}, where R ∈ P is such that Pr ∈ R. This Φα is a

subsidy rule where the cost of connection of the nodes that are far away

from the source in term of costs (those in P\S0) are partially subsidized

by the nodes that are closer. In Example 4.1, Φα(P, c) = (11, 7). Notice

that it coincides with Ψ(P, c). In this example, there are no nodes far

away from the source (with respect to the others). Assume now that

there exists a third node Pu = {4} with c(0, u) = c(r, u) = c(s, u) = 20

for all i ∈ {0, 1, 2, 3}. Then, Φα(P, c) =
(

11 + 10α
3
, 7 + 5α

3
, 20− 5α

)

whereas Ψ(P, c) = (11, 7, 20).

Without Solidarity: Let Φλ be defined by

Φλ
r

(

P, c01
)

=



























|Pr|∑
s∈P:Ps⊂Λr

|Ps|
if λr = 0

|Pr|∑
s∈P:Ps⊂Λr

|Ps|−1
if λr = 1 and c01(r, 0) = 1

|Pr|−1∑
s∈P:Ps⊂Λr

|Ps|−1
− 1 if λr = 1 and c01(r, 0) = 0

0 if λr > 1
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for all r ∈ P\{0}. When there are coalitions that connect to the source

through a unique node, they should pay a compensation to this node.

In Example 4.1, Φλ(P, c) = (10, 8).

Without Efficient Merging: Let Φ2 be defined by

Φ2
r

(

P, c01
)

=

{

0 if Pr ⊂ S0

|Pr|2∑
s∈P:Ps⊂Λr

|Ps|2
if Pr ⊂ R ∈ P \ {S0}

for all r ∈ P \ {0}. In Example 4.1, Φ2(P, c) = (12.6, 5.4).

Without Strong Merge-Proofness: Let Φ̃ be defined by

Φ̃r

(

P, c01
)

=

{

0 if Pr ⊂ S0

1
|{s∈P:Ps⊂R∈P\{S0}}|

if Pr ⊂ R ∈ P \ {S0}

for all r ∈ P \ {0}. This rule is similar to Ψ, but averaging on the

different orders of coalitions, instead of agents. It is equivalent to the

folk rule when the size of the nodes is not taken into account. In

Example 4.1, Φ̃(P, c) = (9, 9).

5 The rule as a weighted Shapley value

Another remarkable implication of the characterization result is that Ψ can

be defined as a the weighted Shapley value of an appropriate transfer utility

(TU) cost game.

For each (P, c), consider the TU cost game (P \ {0}, v+) defined as

v+(R) = m
(

R ∪ {0}, cR
)

for all R ⊂ P \ {0}, where cR(r, s) = c(r, s) for

all r, s ∈ R, and cR(r, 0) = mins∈P\R c(r, s) for all r ∈ R.

This TU cost game was first defined by Bergantiños and Vidal-Puga

(2007b). It follows an “optimistic” interpretation of the worth of a coalition

of players, since it assumes that the rest of the players are already connected

and it is possible to get to the source through them.

Example 5.1 Consider (P, c) defined in Example 4.1. The TU cost game

({r, s}, v+) is given by v+({r}) = v+({s}) = 3 and v+({r, s}) = 18.

24



We now interpret Ψ as a weighted Shapley value of this TU cost game:

Proposition 5.1 For any (P, c), Ψ(P, c) is the weighted Shapley value of

the TU cost game (P \ {0}, v+) where the weights are given by ωr = |Pr| for

each r ∈ P \ {0}.

Proof. Let c01 be a cost function with c(i, j) ∈ {0, 1} for all i, j. Since the

weighted Shapley value is linear in the characteristic function, it is enough

to prove that it coincides with Ψ(P, c01) for each such c01. It is clear that

the TU cost game (P \ {0}, v+) associated with c01 is given by

v+ =
∑

R∈P\{S0}

uR

where uR is the unanimity game with carrier R, i.e. uR (S) = 1 if R ⊂ S and

uR (S) = 0 otherwise. Moreover, by definition of the weighted Shapley value

(as defined by Kalai and Samet (1987)),

Shω
r (P \ {0}, uR) =

{

0 if r /∈ R
ωr∑

s∈R ωs
if r ∈ R

for all r ∈ P \ {0}. Since P is a partition of P, by additivity of Shω,

Shω
r

(

P \ {0}, v+
)

=

{

0 if r /∈
⋃

R∈P\{S0}
R

ωr∑
s∈R ωs

if r ∈ R ∈ P \ {S0}
(4)

for all r ∈ P \ {0}. It is clear that r /∈
⋃

R∈P\{S0}
R iff r ∈ S0 and, by

definition, ωr = |Pr| and
∑

s∈R ωs =
∑

s∈R |Ps| =
∣

∣R
∣

∣. Hence, the right-part

of (1) and (4) coincide, so Ψ(P, c01) = Shω (P \ {0}, v+).

Bergantiños and Vidal-Puga (2007b) proved that the folk rule coincides

with the Shapley value of the optimistic TU cost game. From this, Proposi-

tion 4.1 can also be derived from Proposition 5.1.

6 Conclusions

In the classical model of minimum cost spanning tree problems, it is assumed

that the planner is not able to distinguish who are the agents that belong
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to each node. In many situations, such as those in which the agents are

represented by geographical points, it seems reasonable that the planner can

identify how many agents may belong to the same node. This assumption is

very reasonable in the particular case of minimum cost spanning tree prob-

lems, where it is common knowledge that all the nodes want to be connected

to the source. Given this, we study three classes of properties for a rule to

satisfy. These classes are related to core selection, cost monotonicity and

split and merge-proofness, respectively. While in the classical model there is

no rule satisfying merge-proofness, here we propose one satisfying the three

classes of properties. We also provide a characterization using symmetry,

piece-wise additivity and several variations of core selection, cost monotonic-

ity and split and merge-proofness. Symmetry is an important property from

the point of view of equity. On the other hand, we do not claim that piece-

wise additivity is an essential property, but it provides a linear structure to

the solution and, as such, it allows us to pick up a single reasonable rule.
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