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GERD WEINRICH

NONDEGENERATE INTERVALS OF NO-TRADE PRICES
FOR RISK AVERSE TRADERS

ABSTRACT. According to the local risk-neutrality theorem an agent who has
the opportunity to invest in an uncertain asset does not buy it or sell it short iff its
expected value is equal to its price, independently of the agent’s attitude towards
risk. Contrary to that it is shown that, in the context of expected utility theory
with differentiable vNM utility function, but without the assumption of stochastic
constant returns to scale, nondegenerate intervals of no-trade prices may exist.
With a quasiconcave expected utility function they do if, and only if, the agent is
risk averse of order one.

KEY WORDS: Portfolio choice, Risk aversion of order one, No-trade prices

1. INTRODUCTION

This paper is concerned with the existence of nondegenerate inter-
vals of no-trade prices. This is a problem because, according to the
well-known local risk-neutrality theorem (Arrow 1965), an agent
who starts from a position of certain wealth will not trade in a given
risky asset if, and only if, the expected (present) value of the asset
coincides with its price. For any price less than the expected value
the agent will buy some amount of the asset whereas for any higher
price he will wish to sell it short. This holds in the absence of trans-
actions costs whenever it is possible to buy small quantities of the
asset, independently of the agent’s attitude towards risk.! Observed
investment behavior, on the other hand, suggests that there is typi-
cally an interval of prices within which the agent neither buys nor
sells the asset short.

This fact has recently aroused increasing interest as is docu-
mented by a number of works seeking to explain inertia in investor’s
behavior in terms of their preferences and/or perceptions of risk and
uncertainty. One possibility is to assume that the agent’s behavior is
representable by uncertainty aversion and nonadditive (subjective)
probabilities.” This has been shown by Dow and da Costa Werlang
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(1992) building on an axiomatic approach of nonadditive probability
measures due to Schmeidler (1982, 1989), Gilboa (1987) and Gilboa
and Schmeidler (1989). Dow and da Costa Werlang’s work can be
seen as a generalization of the local risk-neutrality theorem.

Another possibility, as shown in this paper, is obtained by means
of risk aversion of order one. This concept, introduced indepen-
dently and in an essentially equivalent fashion by Montesano (1988)
and by Segal and Spivak (1990), is defined by the condition that
the risk premium 7 (s) that the agent is willing to pay to avoid the
lottery s X, where X is a given random variable and s a real num-
ber, is a kinked function at s = 0. As the above authors show, in
the context of expected utility theory or nonexpected utility theory
with a Fréchet differentiable functional and local utility functions
(see Machina 1982), this cannot be obtained with differentiable von
Neumann-Morgenstern utility functions; however, anticipated util-
ity theory (i.e. expected utility with rank dependent probabilities),
first presented by Quiggin (1982), is also compatible with first order
risk aversion if the utility function is differentiable.

That risk aversion of order one yields intervals of no-trade prices
will follow in a natural way from the formalization presented here.
In fact it will be shown that, in the context of expected utility theory,
first-order risk aversion occurs if, and only if, the expected utility
function is kinked at the no-trade point. If it is also quasiconcave,
this in turn is equivalent to the existence of nongenerate intervals of
no-trade prices.

More precisely, in the present paper’s model I have retained
the assumptions of additive probability as well as expected utility
(with rank independent probabilities and) with a differentiable von
Neumann—Morgenstern utility function. To have this be compatible
with first order risk aversion I give up what Arrow (1965) calls sto-
chastic constant returns to scale (and which Montesano (1988) and
Segal and Spivak (1990) have implicitly adopted), by which is meant
that the distribution of the asset’s rate of return is independent of the
amount invested. Doing this permits the function which associates
with each amount invested the variance of the agent’s subjective
probability distribution over the asset’s random return to have a kink
at zero. For a risk neutral agent this is of no importance but if he is
risk averse, the kink in the variance function is equivalent to a kink
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in his expected utility function and consequently to inertia in his
investment behavior. Finally, it turns out that being risk averse and
having a kinked variance function is the same thing as being risk
averse of order one.

The remainder of the paper is organized as follows. In Section
2, I introduce the model for the case in which the probability distri-
butions have finite supports and present the fundamental technical
results. Section 3 contains their application to the existence of non-
degenerate intervals of no-trade prices. How this is linked to risk
aversion of order one is shown in Section 4. Section 5 discusses the
relation between the existence of intervals of no-trade prices and
convergence concepts of probability measures. In Section 6 I extend
the analysis to the case in which the distributions are given by means
of density functions. Section 7 contains concluding remarks.

2. THE MODEL AND TECHNICAL RESULTS

Assume that an agent can trade an asset the uncertain return of
which depends on the quantity s he buys (s > 0) or sells short
(s < 0). Thus for each s the asset can be seen as a lottery X (s). Its
‘objective’ distribution is unknown to the agent but he has some
beliefs about it, captured by a subjective probability distribution
n(s) € A(R), where A(R) is the set of probability measures
over R. The distributions w1 (s) are assumed to satisfy the following
conditions.

(Al) There is a number n € N such that for all s € R the
distribution gt (s) is of the form

sy =21 (), q1()); .-Gy gaGVT;

with x;(-) continuously differentiable and ¢; (-) nonnegative,
continuous, d1fferentlable for s # 0, and such that there exist

limg_, g+ g;(s) = ql and lim,_, - g; = > tor all 'r =
I,... .7 mereover, ) @ g;(s) = 1 Tor ai's.

(A2) n(0) = 8(0), where 6(x) € A(R) is the degenerate distribu-
tion concentrated in x € R.

(A3) The expected value function s — x(s) = f xd[u(s)](x) is
continuously differentiable.
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(A1) means that the support of p(s) is finite. This is assumed
here for transparency of the argument only; the extension to the
continuum case is dealt with in Section 6. g;(s) is the probability
the agent attaches to the outcome x;(s). Of course, since » is fixed,
not all g; (s) need to be positive at every s.

(A2) expresses that the agent always has the option not to trade,
in which case he is sure that his wealth is not influenced by the asset
under consideration. (A3) is a regularity assumption on the agent’s
expectations.

Example 1. Assume pu(s) is such that, for any s € R, x;(s) =
sxj(1) and g;(s) = g;(1) foralli =1, ..., n. Itis trivial that (A1)—
(A3) are fulfilled. Moreover, this is the case of stochastic constant
returns to scale invoked by Arrow (1965). Examples that satisfy the
above axioms but where constant returns do not hold will be given
at the end of this section.

From (A1) it is immediate that the function & : R — A(R) is
weakly continuous.? In spite of this, and of the fact that x(0) is con-
centrated in 0, x; (0) may differ from 0. However, in that event (A2)
implies that it must have probability zero: in fact, assume x; (0) # 0.
If g; (0) #£ 0, then w(0) # 8(0), in contradiction to (A2).

For ifutare, reference defing .. = {1 ..} andydod= slEilc
11x;(0) = 0}. Then by the above argument ) ;_, g;(0) = 1.

Denote by W the initial (certain) wealth of the agent and as-
sume that the price of one unit of the asset, X (1), is p. Then, for
each s, X (s) implies a lottery (the agent’s final wealth) Z(s|p) =
W — ps + X (s). If the agent sells short s units of the asset, s 1s
signed negatively and X (s) indicates the random amount of money
the agent will have to pay to the buyer of the lottery. Thus, from the
agent’s point of view, for s < 0, X (s) will have negative outcomes.

Regarding the agent’s preferences, I assume

(A4) The agent’s preferences over lotteries Z(s|p) can be repre-
sented by an expected utility function

UGs|lp) = ju(W — ps +x)d[p(s)](x)

where u is a von Neumann-Morgenstern utility function
which is strictly increasing and real analytic.
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Assumptions (A1) and (A4) imply

Ulslp) =) u(W — ps + xi(s))qi (s)

iel
which is what the agent aims to maximize. By (Al) U(s|p) is
differentiable in s for s # 0. Its derivative (with respect to s) is

U'slp) =Y _{#/ (W — ps + xi(s)(x](s) — P)gi(s)

I
+ u(W — ps + xi(s))g;(s)} (D
I now consider U *(p) :=lim,_, o+ U’(s|p) and U~ (p):=lim,_,¢-

U'(s|p). The following lemma presents the key technical insight for
all the results to follow.

LEMMA 1.
, d
B tp) = 3 [(W = ps +5()))s=0 + AT and

; d
U~ (p) = T [u(W — ps +x(s)]s=0 + A7,

where
N e () B
A+:i§ Z_; u® (W) = g, and
A=Y i Ly GO (x;(0))" | -
n 1
igJ Ln=2 )

Proof. Differentiating % (s) = _; x; (s)g;(s) yields

S xi(9)ai(s) = ¥'(s) — Y _x(s)g/(s) forall s #0.

Taking limits as s — 07,
3 x(0)gi(0) = F'0) — Y x(0)g;" )
iel iel

by the definition of J and (A1).
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From (1) and the fact that g; (0) = 0 for x;(0) # 0 it follows that
U™ (p) =Y u'(W+x0)x](©0) — p)gi (0) +

ieJ
N > (W +xi(0)g*
el
=u' (W) > (x/(0) — p)gi(0) + > u(W + x;(0)g; "
ied iel
=—u'(W)p +u' (W) Z:xf(o)%' 0
+ Y u(W +x; (0));1?i
iel

which, using (2), becomes
U™ (p) = —u' (W)p +u' (W)X (0) +
+ ) (W + x:(0) — ' (W)x; (0)]g; "

iel

d
=—[u(W — ps +x(s)]s=0 + AT
ds

with AT := Y, [u(W + x:(0)) — &/ (W)x;(0)lg,". AT can be
written, using the fact that u is analytic,

A+ Z I:M(W) +Z (H)(W) (Xz (0)) ] q;Jr

iel n=2
=u(W) D a"+) [Z u™ (W) %?i] 4"+
iel ieJ Ln=2 ’
. Z I:Z u @y O (xa(())) :| at.
i¢J Ln

The first term in this sum is zero because } ; ; ¢i(s) = 1 for all s
implies ) ., q£+ = 0, the second because fori € J x;(0) = 0. This
proves the claim for U *(p). The proof for U ~(p) is analogous. []

In the above lemma u(W — ps 4 x(s)) is the agent’s utility from
choosing quantity s in case the outcome of the lottery happens to be
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Figure 1.

equal to its expected value. It is also equal to the agent’s expected
utility in case he is risk neutral. Lemma 1 asserts that the derivative
of that function at s = 0 differs from the right-hand-side derivative
of the expected utility function under risk aversionat s = 0, U *(p),
if and only if A™ differs from zero. Regarding the sign of AT, we
infer from g; (0) = Ofori ¢ J and g;(s) = Oforalli € I that q£+ =
0 for all i ¢ J. On the other hand Y2, u™ (W)(x;(0))"/n! < 0
iff u is concave and q? > 0 for at least one i ¢ J. A symmetric
reasoning applies to A~ . Thus we have proved:

PROPOSITION 1. U'*(p) < (d/ds)[u(W — ps + %(s))]s=0 <
U'~(p). The inequalities are strict if and only if u is strictly concave
and q;+ > 0 and q;_ < 0 for at least one i ¢ J and one j & J,
respectively. O

For an interpretation of these results consider Figure 1, which
shows the functions s +— V(s|p) := u(W — ps 4+ x(s)) and
s — U(s|p). Since there is no uncertainty at s = 0, both functions
coincide at that point. Due to (A3) and (A4) V (-| p) is differentiable
everywhere, but if the conditions for strict inequalities in Proposi-
tion 1 are fulfilled, U(:|p) has a kink at s = 0. This fact will be
decisive for obtaining a non-degenerate interval of prices p within
which the agent will not want to trade. Observe that if the agent is



86 GERD WEINRICH

risk neutral, AT = A~ = 0, and thus no kink can occur. Therefore
the mere switch from risk neutrality to risk aversion can imply a
kink in the expected utility function. The next step is to clarify what
it means that q;+ > () and/or qg' < 0.

Example 1. [cqntinued} It is immediate that / = [ and thus by
Proposition 1 U T (p) = (d/ds)[u(W — ps + x(s))]s—0 = U ~(p).
Hence no kinks occur.

Example 2. Assume x1(s) = a + 5, x2(s) = 0, x3(s) = —a + s,
a > 0, and

)0 ifs <0
N=Vs/a+s) ifs>0
;)0 ifs <0
o = a/(a+s)? ifs>0
1—[s/(—a+3s)] ifs<0
o= 11 ifs=0 =
1 —[s/(a+s)] ifs >0
, Ja/(—a+5)? ifs <0
LTV La/@+s)P ifts>0
_)s/(=a+s) ifs <0
“=10 ifs >0
,_J-a/(—=a+s)? ifs<0
B 1|0 ifs >0
One can easily verify that the functions x; and g; satisfy (A1)—(A3).
In particular x(s) = s for all s. If a = 0, X (s) = s with probability
one, so assume a > 0. Then J = {2}, q1+ = /2 q3+ =0,q,7 =0
and q;_ = —1/a. Thus

i 1 {Z u(”)(W)i—!:| (1/a) <0

n=2
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e [gum)(mt’j—)n} (—1/a) > 0.

AT < 0and A~ > Qiff u is strictly concave.

Example 3. x;(s),i = 1,2, 3, as in Example 2, but in addition there
is xa(s) = x(s) = s. I use script letters #;, AT and A~ to distin-
guish the current variables from the corresponding ones of Example
2. Assuming g4 = ¢ € [0, 1] one obtains #;(s) = q;(s)(1 —q),i =
1,2,3. Consequently £i(s) = g/(s)(1 —¢q) fori = 1,2,3 and
#, = 0. This implies AT = AT(1 —¢) and A~ = A™(l —g),
and therefore it is again the case that risk aversion leads to a kink in
the expected utility function at s = 0 provided the firm is risk averse
(and g < 1).

Example 4. The only modification relative to Example 3 is that I
now allow #4 = ¢ to be a function of s, g (s). If ¢ (-) is differentiable,
then

oo {[a/(a 521 —q()] = [s/(@+)lg'(s)  ifs>0
ey
0

s S0
y . 40 if 5= 0
i [—a/(a+ )21 —g)] —[s/(—a+5)]g'(s) ifs <0

Therefore £, = (1/a)[1 — g(0)] and 5 = (—1/a)[1 — g(0)]. In
order that these numbers be zero if is necessary and sufficient that
g(0) = 1. It is only in that case that the expected utility function
does not have a kink.

3. EXISTENCE OF NONDEGENERATE INTERVALS OF NO-TRADE
PRICES

I now discuss the relevance of the above results for the existence of
nondegenerate intervals of no-trade prices. From Lemma 1,

Ut(p) =0 u/(W)FO)—p)+AT =0
S p=AT/WW)+70)=p
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and U*(p) < Oforall p > p' since A does not depend on p.
Equally,

U=(p) =06 p=A"/u'(W)+5(0) = j

and U= (p) > Oforall p < p'. Since AT <0< A™, p' < j'. The
interval [p’, p'] is nondegenerate if and only if AT < A~. For a risk
averse agent this occurs if and only if there is at least one i € I \J
such that ¢,* > 0 or g <O.

For every p between p’ and p’, s = 0 is a local maximizer of
U(s|p). If it is also a global maximizer, then the agent does not
want to trade. A sufficient condition to ensure this is that the ex-
pected utility function U (s|p) be quasiconcave in s.* If this is true
for all p in a neighborhood N of p = i’(0), then there exists a
nondegenerate interval [p, p] < [p’, p'] N N of no-trade prices. We
have thus proved: B N

THEOREM 1. Assume (A1)-(A4) and that the expected utility
function U (s|p) is quasiconcave in s for all p in a neighborhood
of p = x'(0). Then there exists a nondegenerate interval of prices
[p, pl for which the agent does not trade if and only if the agent is

risk averse and there is at least one i € I\J such that qi+ > 0or

I

g, <0. O

Note that assumptions (A1)—(A4) of Theorem 1 are satisfied in
the above Examples 2 to 4 (in Example 4 if g(0) < 1). The exis-
tence of nondegenerate intervals of no-trade prices thus hinges on
the behavior of U (s|p) ‘far away’ from s = 0. In Example 6 I shall
provide a complete example where U (s|p) is quasiconcave and thus
no-trade prices exist.

Before coming to this point it is worth while to shed further light
on the intuitive significance of assumptions (A1)—(A4). I do this by
looking at the variance of the lottery X (s) implied by the subjective
distribution 1(s).

Using (A1),

varX (s) = xi(s)’i(s) — %(s)%.

)
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The derivative of varX (s) for s # 01is

d var

‘"‘af(S) B ;w (5)x/(5)gi () +xi ()2} ()] = 2% ()% (5).
(3)

Consider the limits as s — 07 and s — 07, that is lim; ,q+
d varX(s)/ds =: p* and lim,_,o- d varX(s)/ds =: p~, respec-
tively. Since varX (0) = 0, it is clear that p* > O and p~ < 0. What
is not trivial is the following:

LEMMA 2. p* > 0if and only ij“q£+ > 0 for at least one i & J;
o~ < 0ifand only ifq;" < 0 forat least one i & J.

Proof. From (A2) and the fact that ¢;(0) = 0 for x;(0) # 0
follows x(0) = 0. Then (3) implies

pt = [26(0)x/(0)g: (0) + x:(0)q;"]

iel
=Y 502 = x(0)g".
iel ig€J

Since fori & J x;(0) # 0, this proves the claim for p™. The proof
for p~ is symmetric. [

As to the interpretation of this result, note that p* > Oor p~ <0
mean that the variance function s — varX (s) is kinked at s = 0. By
Proposition 1 and Lemma 2 , this kink is transferred to the expected
utility function U (s|p), but only if the agent is risk averse. To un-
derstand this intuitively consider the special case in which the vNM
utility function u and/or the distributions s (s) are such that expected
utility depends on the expected value of X (s) and its variance only,
ie. U(s|p) = T(x(s), varX(s)). If T is differentiable in its two
arguments X and var, then it is clear that U(:|p) can have a kink
only if varX (-) has, since x(-) is by assumption differentiable.

The above discussion is summarized in the following restatement
of Theorem 1:

THEOREM 2. Assume (Al)-(A4) and that the expected utility
function U (s|p) is quasiconcave in s for all p in a neighborhood of
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p = x'(0). There exists a nondegenerate interval of prices [ D, plfor
which the agent does not trade if and only if the agent is risk averse
and the variance function s +— varX (s) is kinked at s = 0. E

Example 5. We take the functions x;(-) and g;(-),i = 1, ..., 4, as
specified in Examples 2—4. For s > 0 one obtains

varX (s) = (a + s)s(1 — gq) —|—52q —s?

=as(l — q).
Allowing for g = g (s), this yields
d varX (s)
g " all—ql- asq'(s)

and therefore

pT =all —q(0)].

This expression is positive iff ¢(0) < 1. Comparison with the con-
clusions in Example 4 reveals that the variance function has a kink
iff the expected utility function with risk aversion has a kink, as in
fact predicted earlier.

4. RISK AVERSION OF ORDER ONE

As asserted in the Introduction, risk aversion of order one in the
sense of Montesano (1988) or Segal and Spivak (1990) gives rise
to intervals of no-trade prices. To see this, consider the certainty
equivalent of the lottery W — ps + X (s), I'(s| p), defined by

u('(s|p)) = f u(W — ps +x)d[u(s)l(x) = U(s|p).
Then the corresponding risk premium 7 (s|p) is given by
n(s|p) = E[W — ps + X (s)] — ['(s|p)
=W — ps + x(s) — ['(s|p).

Note that 7 (0|p) = 0 since x(0) = 0 and I'(0|p) = W. Adapting
Segal and Spivak’s definition (p. 113) to the present framework one
obtains:
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DEFINITION 1. The agent is risk averse at W of order 1 iflim,_, o+
7'(s|p) > 0 orlim_,o- '(s|p) < 0. He is risk averse of order 2 if
7'(0|p) = 0, but lim,_, ¢+ 827/3s2(s|p) > 0 or lim_,o- 3%7/3s>
(s|p) > 0.

Since u is differentiable by assumption, having a kinked U (-|p)
is equivalent to having a kinked I'(-|p) which in turn is equivalent
to having a kinked 7 (-|p), since x(-) is differentiable. Applying
Proposition 1 and Theorem 1, the claim follows. Note that, since
I have not assumed stochastic constant returns to scale, first order
risk aversion is possible although u is differentiable, in distinction
to what Montesano (1988) and Segal and Spivak (1990) have es-
tablished for the case in which stochastic constant returns to scale
hold.

5. INTERVALS OF NO-TRADE PRICES AND CONVERGENCE
CONCEPTS OF PROBABILITY MEASURES

It has already been observed above that weak continuity of the sub-
jective distributions u(s) is compatible with kinked expected utility
functions. In decision theory under uncertainty, weak convergence is
the standard assumption, and so on conventional decision theoretic
grounds one cannot rule out the existence of intervals of no-trade
prices. In order to do so, one needs a stronger concept of conver-
gence. Gale (1979) has shown that such concept can be obtained by
adding to weak convergence the concept of closed convergence. The
latter results from the topology of closed convergence (see Hilden-
brnad, 1974). Intuitively it means that, in order that a sequence of
measures converge, their supports must converge (which is not re-
quired by weak convergence). In our context, this translates into the
additional assumption (AS5):

(AS) Let supp[u] denote the support of the probability measure
w. Then, as s — 0, supp[p(s)] — {0} with respect to the
topology of closed convergence.

In terms of assumption (Al), (A5) implies that x; oy =
limg_, x;(s) = O for all i € I. In other words, J = I. But then
there is no i & J, and therefore the conditions in Proposition 1 for
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the emergence of a kink in the expected utility function can never be
fulfilled. Thus:

PROPOSITION 2. Under the additional assumption of closed con-
vergence (AS5), nondegenerate intervals of no-trade prices do not
exist. O

Thus closed convergence is sufficient to eliminate kinks but it is
not necessary. This is clear from Example 4 in which, for g(-) such
that ¢ (0) = 1, kinks do not occur although lim,_, o+ supp[u(s)] =
{0, @}, lim;_, g-supp[p(s)] = {—a, 0} and supp[1(0)] = {0}.

Example 1. [continued] It is immediate that lim,_, gsupp[u(s)] =
{0} and thus, by Proposition 2, nondegenerate intervals of no-trade
prices do not exist.

6. THE CASE OF DISTRIBUTIONS GIVEN BY DENSITY
FUNCTIONS

I now consider the case in which the decision maker believes that the
lottery X (s) has a distribution given by means of a density function
x = f(x,s). The following result obtains.

THEOREM 3. Assume that for s # 0 the subjective distribution
u(s) of X(s) can be represented by means of a density function
f(x,s) continuous in x and differentiable in s. Assume moreover
that (A2)—(A4) hold, that ju(s) — w(0) weakly for s — 0 and that
the expected utility function

UGl = [uW = ps 01,5 d
is quasiconcave in s for all p in a neighborhood of p = x'(0).
Then there exists a nondegenerate interval of no-trade prices | p, pl

if, and only if, the decision maker is risk averse and the function
S > varX(s) is kinked at s = (.

Proof. Since the variance of X (s) is

varX (s) = fxzf(X,S) dx — X (s)?,
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its derivative, for s #£ 0, is

W) _ fx2 %(x, s)dx — 2x(s)x'(s).
ds os
For s — 0, Xx(s)x’(s) — 0 by (A3) and since u(s) — 6(0) weakly,
SO
+ —_—
ot — o~ =/x2 [i (x,O)—i(x,O)} dx 4)
os as
where
Y 2 484, 0f
o 0= IR a ™
—Ei(x, 0) = lim g(x, s).
as s—0— 08

Since w(s) — &6(0) weakly and f is continuous in x, f(x,s) — 0
for s — 0 whenever x # 0. Therefore, and since f(x,s) = 0 for
all x and s, (3f7/9s)(x,0) = 0and (3f/3s)(x,0) <Oforx #0
which obviously implies
+ -
i(J\C,O)— i(x,()) >0 forall x #0.
as as

Next consider the expected utility function

U(slp) = f u(W — ps +x)f (x, s) dx.

Its derivative, for s # 0, is
U'slp) = f W (W = ps +x)(=p) f (x, 5) dx

+fu(W—ps+x)%(x,s)dx.

Since wu(s) — w(0) weakly, for s — 0 the first integral tends to
—pu' (W). Therefore

I 8 -
U~ (p) =—pu' (W) + f u(W +x) ({J;—S(x, 0) dx,

U"-i-( R ’ 8f+
p)=—pu (W)+ | u(W+x) K(x, 0)dx.



94 GERD WEINRICH
The function V (s|p) = u(W — ps + x(s)) gives rise to
V'0lp) = u'(W)[x'(0) — p]

__u(W)li]x—(x 0)dx — p]

= —pu' (W) +fu’(W)x %(x,ﬂ)dx
+

= —pu' (W) + f ' (W)x %(x, 0) dx

where the last equality holds because V(-|P) is by assumption
continuously differentiable. From this it follows that:

[U~(p) — V'(0Ip)] — [UF(p) — V'(0|p)]
/[u(W +x)—u (W)x] —I;(x 0)dx

f+
f[u(W +x) —u' (W)x] ———(x 0) dx

:f|:u(W)+Zu(”)(W) %}
of +

which yields

U~(p)—U™(p) = f [Z u™ (W) Z—,} (%)

n=2
- +
x [af w0- T, 0)]
since [ f(x,s)dx = 1 for all s implies

u(W)f—(x 0)dx = Owu(W)f—(x 0) dx.

Comparing (4) and (5) one sees that, for a risk averse agent,
the integral both in (4) and in (5) is nil iff [(3fT/ds)(x,0) —
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(0f —/ds)(x, 0)] is zero for almost all x # 0. Therefore the ex-
pected utility function U (s|p) is kinked at s = O iff the same
holds for the variance function varX (s). Since a kinked and, for
all p in a neighborhood of x'(0), quasiconcave U (-|p) implies a
nondegenerate interval of no-trade prices, the assertion follows. [

Example 6. Assume X (0) = 0 with probability one and X (s),
s # 0, is believed to be normally distributed with expectation
%(s) and variance o%(s). Then f(x,s) = g(x; x(s), o2(s)), with
g(x: %,0%) = [2]’[0‘2]71/287(}7'{)2/2(#. u(s) — u(0) weakly for
s — 0 whereas supp[ie(s)] = R # {0} = supp[(0)] for all s # 0.

Assume moreover u(z) = —e *. Then, using the well-known
result that [ e'*g(x; v, 0%)dx = etv+170%/25 expected utility be-
comes

Us|p) = —e~W=p9 f e g(x; X(s), 02 (s)) dx

= 2
piall _e—(W—ps) e—x(s)+a (£)/2 _ _efr(s|p)

where
t(slp) = W — ps + x(s) — 0%(s)/2
=W — ps + EX(s) — fvarX (s)
= EZ(s|p) — varX (s).

On the other hand, from the definition of the certainty equivalent
I"(s|p) it follows that U (s|p) = —e T6IP) Thus ' =  and, since
varZ(s|p) = varX (s),

['(s|p) = EZ(s|p) — yvarZ(s|p).
Moreover, the risk premium 7 (s|p) is given by
7 (s|p) = EZ(s|p) — T'(s|p) = 3varX(s)

from which it is evident that the agent is risk averse of order one iff
varX (-) is kinked at s = 0.

To be still more specific, assume ¥(s) = s and o2(s) = |s|?
e2=Y)s| where y is a parameter in [0,1]. Then

|d varX (s)/ds| = 2|s[* ' PBIy 4 (1 = y)ls]]
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tends to zero for s — 0iff y > % For y < %, therefore, according
to Theorem 3, there exist nondegenerate intervals of no-trade prices,
provided U (s|p) is quasiconcave in s in a neighborhood of p =
¥ @)=t

To see this, note that, since U(s|p) is strictly increasing in
I'(s|p), to maximize U is equivalent to maximizing I" which is now

F(Slp) =W i+ (1 T3 p)s — |S|2yez(1*]/)‘.ﬂ/2.
From this follows
M(slp) =1 — p — s 1205 4 (1 —y)s], whens > 0,

I(s|p) =1 — p — (=) e 208 [~y 4 (1 — y)s],
when s < 0.

In particular I''(s|1) is always strictly negative when s > 0 and
strictly positive when s < 0, whatever is the value of y. By
continuity of I'/(s|p) in p this fact extends to a neighborhood of
p = 1. Thus T is quasiconcave in s for all p in a neighborhood
of 1 and, since quasiconcavity persists under positive monotone
transformations, the same holds for U.

Let us now consider three cases in detail: y = 1, y = % and
y = 0. For y = 1 the above formulae yield I'(s|p) =1 — p — .
Defining s* by I''(s*|p) = 0, one obtains s* = 0 iff p = 1. Thus
the only no-trade price is p = 1. (An analogous reasoning holds for
any y > %).

Next consider the case y = % Then, for s > 0

['slp)=1-p-— es(s +1)/2

and therefore I’ (0|p) = 5—p <0forp > 5 Fors < 0one
calculates

I(slp)=1-p—e (5‘ —1)/2
which yields I'~(0|p) = 5—p = 0forp < 3. Since I'"(s|p) is

negative for any s 75 0 and any p, '(-|p) is concave. Thus any price
in the interval [2, 2] is a no-trade price.

Finally, for y — 0 follows T'T(0) = —p < Ofor p > 0 and
I'=(0) =2 — p = 0for p < 2. Since I'(:| p) is concave for all p,
the corresponding interval of no-trade prices is [0,2].
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Note that in the present example there are stochastic constant
returns to scale iff y = 1, since only then varX(s) = o2(s) =
52 = s?varX (1) = var[sX (1)]. The agent is risk averse of order
one for y € [0, %] and risk averse of order two for y € (%, 1.
In particular, this confirms the fact that, with a differentiable VNM
utility function, first order risk aversion cannot occur when returns
to scale are constant.

The example illustrates that a continuous variation in a single
parameter can imply a qualitative change in the way the agent be-
haves. This is not exactly what intuition might have suggested, and
it indicates that the origins of inertia in investment behavior may be
quite intricate.

7. CONCLUDING REMARKS

In this paper it has been shown how abandoning the assumption
of stochastic constant returns to scale can result in an invalidation
of the local risk-neutrality theorem and, as a consequence, in the
emergence of intervals of no-trade prices. The fact that observed
behavior often does not conform with the theorem’s prediction in-
dicates that stochastic constant returns to scale are not necessarily
taken as granted by economic agents. This may be due, for exam-
ple, to the fact that fees vary with the amount of assets subscribed,
to the presence of a big trader whose actions influence the stock
price, or simply to particular subjective beliefs, in line with the view
expressed in Arrow (1965, p. 13): “... choice is subjective; in choice
among actions, both the values and the beliefs of the economic agent
are relevant to explaining his choice, regardless of how these might
differ from values or beliefs ‘objectively’ given in some sense.”

In any case, the purpose of the present investigation was to find
out how far one can get in the explanation of inertia in traders’
behavior without giving up conventional assumptions like addi-
tive probabilities, differentiable von Neumann—Morgenstern utility
function and expected utility. The main result is that, under quasi-
concavity of the expected utility function, beliefs imply intervals of
no-trade prices if, and only if, the corresponding perceived variance
function of the random return of the asset under consideration is
kinked at the no-trade point. This is equivalent to the presence of
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risk aversion of order one and it is perfectly compatible with the
expected value of the asset being a smooth function of the quantity
transacted, even and in particular at the no-trade point.

It would be possible to generalize this result to the case where
the decision maker does not have the option of a certain final wealth
but where that would be random, too, even if the agent did not trade.
In that case the variance of final wealth would be positive at the no-
trade point, but to obtain an interval of no-trade prices it would still
be necessary and sufficient that the variance function of the random
return of the asset under consideration be kinked.

NOTES

I.In case there are many risky assets, the unique no-trade price will not
necessarily be the expected value of the asset under consideration.

2.1 am grateful to Aldo Montesano for having pointed out to me the connection
of the present paper’s approach with the literature on nonadditive probabilities
and on attitude towards risk of order one.

3. For any continuous and bounded function f : R — R and any sequence
{sn} — s continuity of x;(-) and g; () implies lim, 00 Y _; f(x; (82))gi (sn) =
3>, F(xi(s)gi(s), thatis wu(s,) — w(s), by definition of weak convergence.

4. A function f is quasiconcave if the set {s| f(s) = «} is convex for any @ € R.
In the present situation, where f(s) = U(s|p) and s = 0 is a local maximizer
which is locally unique, this implies that it is also a global one. In fact, if it
were not, {s|U (s|p) = U(0|p)} would not be convex.

5. See, e.g., Meyer (1970).

REFERENCES

Arrow, K.J. (1965), The theory of risk aversion, Ch. 2 of Aspects of the Theory of
Risk Bearing. Helsinki: Yrjé Jahnsonin Saastio.

Dow, J. and Da Costa Werlang, S.R. (1992), Uncertainty aversion, risk aversion,
and the optimal choice of portfolio, Econometrica 60(1): 197-204.

Gale, D. (1979), Large economies with trading uncertainty, Review of Economic
Studies 319-338.

Gilboa, I. (1987), Expected utility theory with purely subjective non-additive
probabilities, Journal of Mathematical Economics 16: 65-88.

Gilboa, I. and Schmeidler, D. (1989), Maxmin expected utility with a non-unique
prior, Journal of Mathematical Economics 18: 141-153.

Hildenbrand, W. (1974), Core and Equilibria of a Large Economy. Princeton and
London: Princeton University Press.



NO-TRADE PRICES FOR RISK AVERSE TRADERS 99

Machina, M.J. (1982), ‘Expected utility’ analysis without the independence
axiom, Econometrica 50: 277-323.

Meyer, PL. (1970), Introductory Probability and Statistical Applications, 2nd
edn. Reading, MA: Addison Wesley.

Montesano, A. (1988), The risk aversion measure without the independence
axiom, Theory and Decision 24: 269-288.

Montesano, A. (1991), Measures of risk aversion with expected and nonexpected
utility, Journal of Risk and Uncertainty 4: 271-283.

Quiggin, J.C. (1982), A theory of anticipated utility, Jouwrnal of Economic
Behavior and Qrganization 3: 323-343,

Samuelson, PA. (1961), The St. Petersburg paradox as a divergent double limit,
International Economic Review 1: 31-37.

Schmeidler, D. (1982), Subjective probability without additivity Foerder Institute
for Economic Research Working Paper, Tel-Aviv University.

Schmeidler, D. (1989) Subjective probability and expected utility without addi-
tivity, Econometrica 57: 571-587.

Segal, U. and Spivak, A. (1990), First order versus second order risk aversion,
Journal of Economic Theory 51: 111-125.

Yaari, M.E. (1969), Some remarks on measures of risk aversion and on their uses,
Journal of Economic Theory 1: 315-329.

Yaari, M.E. (1987), The dual theory of choice under risk, Econometrica 55: 95—
153

Addpress for correspondence: Professor Gerd Weinrich, Universita Cattolica del
Sacro Cuore, Largo A. Gemelli 1, I-20123 Milano, Italy
Phone: +39 2 7234-2728; Fax: +39 2 7234-2671; e-mail: weinrich@mi.unicatt.it



