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ABSTRACT. In recent years the issue of life expectancy has become of upmost importance to

pension providers, insurance companies and the government bodies in the developed world. Sig-

nificant and consistent improvements in mortality rates and hence life expectancy have led to

unprecedented increases in the cost of providing for older ages. This has resulted in an explo-

sion of stochastic mortality models forecasting trends in mortality data in order to anticipate

future life expectancy and hence quantify the costs of providing for future ageing populations.

Many stochastic models of mortality rates identify linear trends in mortality rates by time, age

and cohort and forecast these trends into the future using standard statistical methods. These

approaches rely on the assumption that structural breaks in the trend do not exist or do not have

a significant impact on the mortality forecasts. Recent literature has started to question this as-

sumption. In this paper we carry out a comprehensive investigation of the presence or otherwise

of structural breaks in a selection of leading mortality models. We find that structural breaks are

present in the majority of cases. In particular, where there is a structural break present we find

that allowing for that improves the forecast result significantly.
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1. INTRODUCTION

Over the past recent decades, life expectancy in developed countries has risen to historically

unprecedented levels. The prospects of future reductions in mortality rates are of fundamental

importance in various areas such as demography, actuarial studies, public health, social insur-

ance planning, and economic policy. Over recent years, significant progress has been made in

mortality forecasting (for a recent review see Booth and Tickle, 2008). The most popular ap-

proaches to long-term forecasting are based on the Lee and Carter (1992) model. It describes

the time-series movement of age-specific mortality as a function of a latent level of mortality,

also known as the overall mortality index, which can be forecasted using simple time-series

methods. The method was initially used to forecast mortality in the US, but since then has been

applied to many other countries (amongst others see Tuljapurkar and Boe, 1998; Carter and

Prskawetz, 2001; Lee and Miller, 2001; Booth et al., 2002; Brouhns et al., 2002; Renshaw and

Haberman, 2003 and Koissi et al., 2005).

The original Lee-Carter model received a number of criticisms (see the discussion in Lee and

Miller, 2001) primarily due to its simplistic structure and so inability to fully capture the varia-

tions present in mortality data adequately. Particularly the fact that we do not see improvements

in mortality rates across ages that are correlated to each other. This has led to several extensions

being proposed in the literature (see Booth et al., 2002) to address these inadequacies. One

major issue concerns the stability of the model over time. Since the method is usually applied

to long time-series there is a risk that important structural changes may have occurred in the

past and any neglected structural change in the estimation period may result in forecasts that

have a tendency to deviate from the future realizations of the mortality index. This could lead

to potentially large long-term forecast errors. In fact, historically, mortality in the US has not

always declined in a linear way as depicted in Lee and Carter (1992) for the period 1900-1989.

The authors of that paper also re-estimated their random walk with drift model for the mortality

index for several shorter and more recent periods and concluded that there was some instability.

Other studies also document that there has been a systematic overestimation of the projected

mortality rates in many countries (Koissi et al., 2005). In a multi-country comparison of sev-

eral versions of the Lee-Carter method, Booth et al. (2002) found significant differences in the
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forecasting performance when alternative fitting periods were used, providing further evidence

of different trends in the mortality rate.

In the demographic literature (e.g., Kannisto et al. 1994; Vaupel, 1997) it has been observed

that, for many developed countries, the reduction in mortality rates accelerated in the 1970s.

Although this observation has important implications for social, health, and research policy,

there has been little attempt to test or quantify the existence and effects of such a shift. In

this paper we provide evidence for the structural breaks present in some of the main models of

mortality. We examine the Lee-Carter model and several of its variants and test the extracted

time series for structural breaks. More specifically, having identified and fitted time series in

the various models we apply the generalised fluctuations test framework of Kuan and Hornik

(1995) and the methods of Bai and Perron (1998, 2003) to statistically test for and date any

structural breaks. Having identified the presence of structural breaks we then refit the models

allowing for these and present improved forecasting results. The proposed method is based on

recent advances in testing and estimating structural change models. The results of this analysis

should be of particular interest to the actuarial profession who have an interest in forecasting

and pricing annuity products and more recently the banking industry who are engaged in the

development of longevity hedging products.

Consideration has been given to structural changes in mortality trends in the actuarial liter-

ature. Li, Chan, and Cheung (2011) applied a broken trend stationary model to the extracted

mortality trend κt of the Lee-Carter model using the Zivot and Andrews’ (1992) procedure.

They applied the model to data from the US and from England and Wales and in each case

identified break points in the mid 1970’s. Their findings confirmed those of Renshaw and

Haberman (2003) who also identified an improvement in fitting if an adjustment in the trend

was allowed for at 1975. Coelho and Nunes (2011) repeated this analysis using the tests of

Harvey et al. (2009) and Harris et al. (2009) to identify the presence and date of any structural

breaks in the extracted mortality trend κt. Their study was wider focusing on 18 different coun-

tries in total and focusing on both males and females. Notably they found structural breaks in

16 of the 18 countries for males but in only 5 of the 18 countries for females suggesting that

any potential acceleration in mortality improvement has had a greater impact on male mortal-

ity than on female mortality. They also found a range of structural break dates from 1955, for

Japanese females, through to the year 2000 for Netherlands males. They also forecast with and
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without an allowance for the identified structural breaks and in the case of Portugal suggest an

increase in life expectancy at birth of just over 2 years (80.9 vs. 78.7) when allowing for the

break. It is important to note in each of the cases studied the mortality improvement factor κt

appears to accelerate after the break suggesting that if there is a structural break identified then

the resulting model allowing for this break will predict a higher life expectancy. In particular,

using a model which doesn’t adequately capture any structural change in the improvement in

mortality rates for pricing and reserving may lead to an under or over provision of reserves or

over or under pricing of products.

This paper contributes to the existing literature by considering not only the Lee-Carter model

but also a selection of extensions from the Lee-Carter model. We select these models as they

form a natural family of time series models applied to mortality data, all of which have been

fitted and forecast using time series approaches. The selection of two smaller models (Lee and

Carter, 1992; and Cairns et al., 2006) and two larger models (Plat, 2009; and O’Hare and Li,

2012) allows us to consider whether the inclusion of additional age, time or cohort effects has

any effect on the presence or not of structural breaks in the fitted mortality improvement factor

κt. The proposed methodology is applied to male data over the period 1950-2006 for a selection

of developed countries. Structural changes in the rate of decline in the overall mortality rate are

found for almost every country and model considered. By allowing for the structural breaks and

showing the improved fit and forecast quality we demonstrate that accounting for a structural

change leads to a major impact in mortality estimates.

The paper is organized as follows. Section 2 presents a brief review of extrapolative models

considered in this paper along with the data used and initial fitting results. In section 3 we

discuss the methodology we use to identify the structural breaks. In section 4 we present the

results of our analysis to identify structural breaks and to quantify the impact we demonstrate

the fitting and out of sample forecasting results with and without allowance for the identified

structural changes. Finally, section 5 concludes with some ideas for further research.

2. LEE-CARTER AND ITS VARIANTS

The current leading method for forecasting mortality rates is the stochastic extrapolation ap-

proach. In this method data is first transformed (by taking natural logarithms) and then analysed

using statistical methods to identify and extract patterns. These patterns are then forecast using
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well known time series approaches. The resulting forecasts are then used to predict future mor-

tality rates. The first and most well known stochastic mortality model of this type is the Lee

and Carter (1992) model. Based on US data the model uses a stochastic, time series framework

to identify a single period effect pattern in the natural logarithm of mortality rates. This linear

trend over time is extracted and using Box-Jenkins an appropriate ARIMA processes is fitted

to the data (a random walk with drift in each case). The random walk with drift is forecast and

resulting future mortality rates predicted. Also known as a one factor or one principle com-

ponent approach the model became a benchmark and underlined a new approach to modelling

mortality rates for several reasons: the model has an extremely simple structure and so is very

easy to communicate; and the use of the random walk with drift enabled the authors not only to

predict the expected future mortality rates but also to visualise the uncertainty associated with

the predictions. The full model, outlined below includes two age dependent parameters ax and

bx which respectively represent the intercept and gradient for the log mortality rate at each age

and the time or period trend κt which is forecast using a random walk with drift:

(1) ln(mx,t) = ax + bxκt + εx,t,

where ax and bx are age effects and κt is a random period effect and mx,t is the central mortality

rate of an individual aged x with last birthday during year t.

The model is known to be over parameterised and applying the necessary constraints as in

the original Lee and Carter (1992) paper the ax are given by

ax =
1

N

N∑
t=1

lnmx,t.

In the original paper the bilinear part bxκt of the model specification was determined as the first

singular component of a singular value decomposition (SVD), with the remaining information

from the SVD considered to be part of the error structure. The κt were then estimated and

refitted to ensure the model mapped onto historical data. Finally the subsequent time series κt

was used to forecast mortality rates.

The Lee-Carter model has several weaknesses and various extensions have been created to

address some of those weaknesses. The interested reader is referred to O’Hare and Li (2012) for

a more detailed discussion of those weaknesses and of the extensions of the Lee Carter model
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that have been developed to address some of those weaknesses. This has led to a family of

models being developed over time, each one adopting a similar approach to fitting and extract-

ing suitable time series and forecasting these using ARIMA models. Table 1 summarises the

structure of several of these models considered in the paper,

TABLE 1. The stochastic mortality models

Name Model and Name
M1 Lee and Carter (1992)

ln(mx,t) = ax + bxκt + εx,t
M5 Cairns et al. (2006)

logit(qx,t) = κ1t + κ2t (x− x̄) + εx,t
M9 Plat (2009)

ln(mx,t) = ax + κ1t + κ2t (x̄− x) + κ3t (x̄− x)+ + γt−x + εx,t
M10 O’Hare and Li (2012)

ln(mx,t) = ax + κ1t + κ2t (x̄− x) + κ3t
(
(x̄− x)+ + [(x̄− x)+]2

)
+ γt−x + εx,t

Note: The models selected form a sample of the existing time series models in the literature and
represent models with both small and large numbers of factors.

Data — The data that we use in this paper comes from the Human Mortality Database.1 The

data available for each country includes number of deaths Dx,t and exposure to death Ex,t for

lives aged x with last birthday during year t. We can use this to gain a proxy for the central

mortality rate for lives aged x during year t as:

(2) mx,t =
Dx,t

Ex,t
.

Due to the exponential nature of mortality rates we model the logarithmically transformed cen-

tral mortality rates.

Data is available going back to the mid nineteenth century in some cases but we have re-

stricted this study to data from 1950-2006 and to the countries US, UK, Netherlands and Aus-

tralia. These countries were chosen as the quality of the data from these countries is good,

they represent a good geographical spread around the globe and reflect countries with similarly

developed economies. Specifically, we fit the models to data between 1950-2000 and forecast

between the years 2001-2006 testing our forecasts against actual data over that period. We focus

on the age range 20-89 for several reasons. Firstly, the papers and models upon which we have

based our comparisons are also fitted to this age range. Secondly, and as identified by Currie

1This can be found at http://www.mortality.org/. The database is maintained in the Department of Demography
at the University of California, Berkeley, USA, and at the Max Planck Institute for Demographic Research in
Rostock, Germany.
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(2011), data at the older ages provide additional problems in terms of the reliability. Indeed in

several cases mortality rates determined using older data appear to fall sharply beyond age 95.

Fitting and forecasting results for Lee-Carter and its variants — Each of the models we

consider in this paper improves upon the previous one by incorporating additional patterns

identified in the data and forecasting these. The key assumption in each of these models is that

future patterns in mortality can be ascertained from the past patterns and indeed these do not

change over time. Fitting each of the models to the data over the period from 1950-2000 the

table 2 presents the results using the mean average percentage error (E1), the mean absolute

percentage error (E2) and the root mean square error (E3). Recall that the average error, E1,

equals the average of the standardized errors,

(3) E1 =
1

X1 −X2 + 1

X2∑
x=X1

T∑
t=1

projected(mx,t)− actual(mx,t)

projected(mx,t)
,

this is a measure of the overall bias in the projections. The average absolute error, E2, equals

the average of absolute value of the standardized errors,

(4) E2 =
1

X1 −X2 + 1

X2∑
x=X1

T∑
t=1

∣∣∣∣projected(mx,t)− actual(mx,t)

projected(mx,t)

∣∣∣∣,
this is a measure of the magnitude of the differences between the actual and projected rates. The

standard deviation of the error, E3, equals the square root of the average of the squared errors,

(5) E3 =

√√√√ 1

X1 −X2 + 1

X2∑
x=X1

T∑
t=1

(
projected(mx,t)− actual(mx,t)

projected(mx,t)

)2

.

As can be seen from table 2 the models, excluding the CBD model which was designed for

older ages, the accuracy of the fit is very good for all of the above models. Indeed the errors

are in the main less than a few percentage points suggesting that each model is adequately

capturing the variability present in past mortality data. However, if mortality models are to be

of any use they need to adequately forecast mortality rates. Again, each of the models have

been backtested and the results of forecasting from 2001-2006 have been tested and measured

against each of the three error measures.

The result of testing the fit and forecasting ability of the above models is that each of them

appears to perform adequately when measured using any of the measures, E1, E2, and E3.
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TABLE 2. Fitting and forecasting results for US, UK, Netherlands and Australia
male mortality rates by single age 20-89, 1950-2000.

Fitting Forecasting
US E1 E2 E3 E1 E2 E3
Lee-Carter 0.4% 3.8% 0.3% 2.8% 8.0% 1.2%
CBD -1.6% 12.0% 3.3% -3.6% 16.4% 5.6%
Plat 0.2% 2.8% 0.2% -3.6% 7.4% 0.8%
O’Hare and Li 0.1% 2.6% 0.1% -0.1% 5.5% 0.5%
UK
Lee-Carter 0.5% 4.9% 0.5% -1.7% 9.3% 1.2%
CBD 0.4% 13.8% 4.3% 0.4% 24.0% 9.3%
Plat 0.3% 2.8% 0.2% 3.3% 9.6% 2.2%
O’Hare and Li 0.2% 2.8% 0.2% 7.6% 9.6% 2.1%
NL
Lee-Carter 0.0% 6.1% 0.7% 7.4% 10.6% 2.0%
CBD -1.9% 13.7% 4.5% 4.4% 22.7% 8.5%
Plat 0.3% 4.0% 0.4% 5.4% 10.0% 1.7%
O’Hare and Li 0.2% 3.9% 0.3% 11.1% 13.2% 3.0%
AUS
Lee-Carter 0.4% 5.2% 0.6% 4.8% 11.5% 2.6%
CBD -1.3% 16.4% 6.1% 2.3% 31.0% 14.0%
Plat 0.7% 4.8% 0.6% 8.9% 13.2% 6.5%
O’Hare and Li 0.6% 4.6% 0.5% 13.8% 16.3% 6.6%

Relying on these measures alone we would conclude that any of them would be acceptable for

the purposes of forecasting mortality rates. However, the presented measures mask the fact that

there might be a structural change in the mortality improvement factor and in particular the

ability of each of these models to adequately capture that. A problem that becomes more of

an issue if we forecast mortality using these models over a longer timeframe. To demonstrate

the potential problems with the above models we plot the extracted main period effects below

in figure 1. Note for the Lee-Carter model there is only 1 period effect, κt, whilst for the for

the CBD model there are two, κ1t and κ2t (we plot κ1t ) and for the Plat (2009) and O’Hare and

Li (2012) models there are three, κ1t , κ
2
t , and κ3t (again, we plot κ1t ) for each of the countries

considered.

As can be seen from the diagrams the trend in each of the time series appears to shift and in

particular to accelerate as we move beyond the 1970’s. For the Lee-Carter model this is clear

in the figure 1 where a peak has occurred around 1970 for each of the countries considers with

the value of κt falling rapidly thereafter. With the CBD model the same comments as for the

Lee-Carter κt can be made for the parameter κ1t (albeit with a less obvious change in direction).

For the Plat (2009) and the O’Hare and Li (2012) models the direction change is clear for the κ1t
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FIGURE 1. Plots of the κt factor for the (a) Lee-Carter model, (b) CBD model,
(c) Plat model and (d) O’Hare and Li model for countries US (blue), UK (black),
Australia (light blue) and Netherlands (red).

parameter.2 In each of these models it is the κ1t parameter which drives the mortality forecast for

all ages. The other time series parameters reflect the variation in the logarithmically transformed

mortality rates specific to certain age groups but not to all age groups. As such, it is the forecast

of κ1t that is the most important to get right. If we do not forecast the direction of mortality

improvement correctly then this will cause problems not least because most mortality models

use a fitting period from 1950 onwards and so may underestimate this improvement rate. This

could have severe implications for the pricing of annuity and life products which are sensitive

to the mortality rate.

3. METHODOLOGY

To identify if there are any structural breaks present in the models, we first need to fit the

models to the data and extract the corresponding time series κt or κ1t (in the case of Cairns,

Blake and Dowd, 2006; Plat, 2009; and O’Hare and Li, 2012). This time series reflects the

average mortality rate improvement factor in each of the models and is the main driver of

2For the CBD, Plat and O’Hare and Li models the additional period effects have also been tested for structural
breaks. Whilst structural breaks are presenting some cases the impact is less and since they do not drive the
direction of future mortality rates they were deemed to be less important. The interested reader is welcome to
request this information.
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the forecasts of mortality derived from each of the models. We use Box-Jenkins approach

to identify the most suitable ARIMA process to fit to the extracted κt which in all cases turns

out to be a simple random walk with drift. If the selected ARIMA processes are appropriate

then we should expect residuals whose mean does not deviate significantly from zero. We apply

a generalised fluctuations test and that of Bai and Perron (1998, 2003) to identify and date the

structural breaks present.

3.1. Cumulative sums of residuals. The generalised fluctuation test framework includes for-

mal significance tests. Essentially, the techniques are designed to bring out departures from

constancy in a graphic way instead of parameterizing particular types of departure in advance

and then developing formal significance tests intended to have high power against these par-

ticular alternatives. More precisely, the model is fitted to the data and an empirical process is

derived that captures the fluctuation either in residuals or in parameter estimates. Under the

null hypothesis these are governed by functional central limit theorems (see Kuan and Hornik,

1995) and therefore boundaries can be found that are crossed by the corresponding limiting pro-

cesses with fixed probability α under the null hypothesis. Under the alternative the fluctuation

in the process is in general increased. Also, the trajectory of the process often sheds light on

the type of deviation from the null hypothesis such as the dating of the structural breaks. There

are several types of fluctuation tests, we outline the test using a cumulative sum of residuals for

information.

The first type of empirical fluctuations process that can be computed are cumulative sums of

residuals processes (CUSUM), which contain cumulative sums of standardized residuals. These

can be calculated recursively or using ordinary least squares. Brown et al. (1975) suggested to

consider cumulative sums of recursive residuals:

(6) Wn(t) =
1

σ̂
√
η

k+[tη ]∑
i=k+1

ũi,

where η = n−k is the number of recursive residuals and [tη] is the integer part of tη. Under this

approach the null hypothesis the limiting process for the empirical fluctuation process Wn(t)

is the standard Brownian motion W (t). More precisely the functional central limit theorem

holds: Wn ⇒ W as n→∞, where⇒ denotes weak convergence of the associated probability

measures. Under the alternative, if there is just a single structural change point t0, the recursive
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residuals will only have zero mean up to t0. Hence the path of the process should be close to 0

up to t0 and leave its mean afterwards.

The alternative of using ordinary least squares proposed by Ploberger and Krämer (1992),

bases a structural change test on cumulative sums of the common OLS residuals. Thus, the

empirical fluctuation process is defined by:

(7) W 0
n(t) =

1

σ̂
√
n

[nt]∑
i=1

ũi.

The limiting process for W 0
n(t) is the standard Brownian bridge W 0(t) = W (t) − tW (1). It

starts in 0 at t = 0 and it also returns to 0 for t = 1. Under a single structural shift alternative the

path should have a peak around t0. As an alternative we can calculate moving sums of residuals

rather than cumulative. Again we may calculate the residuals recursively or using ordinary least

squares.

3.2. Bai and Perron’s method. The idea of Bai and Perron (1998, 2003) is to estimate break

points based on calculating the global minimisers of the sum of squared residuals from say, a

regression model. Consider the piecewise linear regression method to compute the global min-

imisers of the objective function. The piecewise linear function begins with an ordering of the

observations and applies a dynamic program. With a sample of size T , the total number of pos-

sible segments is at most T (T + 1)/2. The global sum of squared residuals for any m-partition

and for any value of m must necessarily be a particular linear combination of these T (T +1)/2

sums of squared residuals. The estimates of the break dates, the m-partition (T̂1, ..., T̂m), corre-

spond to this linear combination which must have a minimal value of sum of squared residuals,

so that an optimal partition can be selected over all possible m-partitions. Once the sums of

squared residuals of the relevant partitions have been computed, a dynamic programming algo-

rithm can be used to compare possible combinations, and then find a partition which achieves a

global minimization over the entire sum of squared residuals. This method essentially proceeds

through a sequential examination of optimal one-break partitions. Based on a recursive pro-

cedure. It simply minimizes sum of squared residuals over the set of possibilities obtained by

assuming the first j elements have been optimally partitioned in m− 1+ 1 parts and that m+1

part consists of the last T − j + 1 elements. The optimal partitions can be obtained iteratively.
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Bai and Perron’s method is mostly used in the literature in identifying structural breaks,

recently Zeileis et al. (2003) developed the R package strucchange which includes most of the

existing procedures dealing with structural breaks and their latest developments, for instance

Zeileis (2000, 2005).

4. EMPIRICAL ANALYSIS

In the following sections first we now formalise our tests for structural breaks in the time

series that we have extracted from each of the models in the previous section. To clarify, we

have fit each of the models to the Male mortality data of the US, UK, Netherlands and Australia

between the years 1950 - 2000 inclusive. We have then extracted the main mortality improve-

ment factor κt or κ1t from each of the models and fitted a random walk with drift process as the

Box-Jenkins identified best ARIMA process to fit the time series. If the random walk process

is indeed an appropriate time series capturing the κt or κ1t factor then the resulting residuals

should have a mean which does not deviate from zero. We test this using the empirical fluctu-

ations test framework described by Zeileis et al. (2003). Furthermore, we use the methods of

Bai and Perron (1998, 2003) to identify structural breaks. Then, we fit and forecast the models

with and without structural breaks.

4.1. Identifying structural breaks. The structural change is located and dated by plotting

the cumulative sum of residuals and then comparing this with the known limiting processes.

Fluctuations that fall outside these known boundaries are judged to be improbably large and

hence suggest a structural change in the mean value. The known limiting process, otherwise

known as the boundary is plotted along with the cumulative sum of residuals in figure 2 and

figures 8 to 10 in the appendix.

As can be seen from the above tests there are unexpectedly large fluctuations (demonstrating

the presence of a structural break) for the majority of cases considered. However, the results are

not as conclusive as in the cases of Li, Chan, and Cheung (2011) and Coelho and Nunes (2011).

For the Lee-Carter model there appears to be a structural break present for 3 out of the 4 coun-

tries considered with the only country for which the above test does not confirm the presence

of a structural break being the UK. In the case of the CBD model we have similar conclusions

with again the extracted mortality improvement factor κ1t , for the UK not demonstrating any

presence of a structural break under the test we have carried out. For the larger factor models
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FIGURE 2. Cumulative sum of residuals test for the Lee-Carter model for (from
top left clockwise) US, UK, Netherlands and Australia with boundaries shown
in red

of Plat (2009) and O’Hare and Li (2012) the results are mixed again. In the case of Plat (2009),

the fluctuations test showed up a structural break for all four countries considered whilst the

O’Hare and Li (2012) model did not show up any structural breaks for the US or the UK. This

could be due to the quadratic effect parameter α1
x applied to the κ1t in the case of the O’Hare

and Li (2012) model as compared with the linear α1
t in the Plat (2009) case. In all the models

considered we were able to identify some structural breaks for some countries.

Having identified the presence of structural breaks the next step is to date these and then

using this information, re-forecast the models allowing for the structural break. We date the

structural break using Bai and Perron’s method. As can be seen from the table 3 and the figures

3 and figures 11 - 13 in the appendix the structural breaks identified occur with the period 1968

- 1979 with the vast majority occurring in the early 1970’s. This confirms previous findings and

would be well worth further investigation.
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FIGURE 3. Test of the structural break for the Lee-Carter model for (from top
left clockwise) US, UK, Netherlands and Australia.

4.2. Empirical analysis of modelling with and without structural changes. Having identi-

fied and dated the presence of a structural break in each of the κt factors for our models we fit

each of the models again but this time allowing for the structural break. Again we fit up to the

year 2000 and forecast from 2001 to 2006 inclusive. We allow for the identified acceleration in

the mortality improvement factor κt by refitting the model using a data set in each case which

excludes data prior to the year in which the structural break occurs. Again we measure the fore-

casting quality using the average error (E1), the mean absolute error (E2) and the root mean

square error (E3). The results are outlined in table 4 with and without this adjustment.

As can be seen in table 4 in two-thirds of the cases allowing for the structural break results in

a more accurate forecast measured on any of the three measures considered. In the case of the

Netherlands, in every case allowing for the structural break improved the result. This indicates

that structural changes should be allowed for if we are to accurately forecast mortality rates.

The consequences of not allowing for structural breaks in the modelling process for mortality
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TABLE 3. Break date results for UK, US, Netherlands and Australia using the
Lee-Carter, CBD, Plat, and O’Hare and Li models.

Model and Country Break date test statistic p-value
Lee-Carter
UK 1979 1.116 0.166
US 1968 1.603 0.012
Netherlands 1972 1.673 0.007
Australia 1970 1.623 0.010
CBD
UK 1979 1.248 0.089
US 1972 1.582 0.013
Netherlands 1972 1.863 0.002
Australia 1970 1.822 0.003
Plat
UK 1979 1.566 0.015
US 1972 1.392 0.041
Netherlands 1970 1.728 0.005
Australia 1970 2.361 0.001
O’Hare and Li
UK 1979 1.366 0.048
US 1972 1.288 0.072
Netherlands 1972 1.648 0.009
Australia 1970 2.126 0.001

rates are significant. In addition to the obvious issue of misspecifying the direction of the period

improvement factor there is also the issue of projecting confidence intervals which may be too

wide or too narrow depending on whether or not the break has been included in the fitting

period. Since the ideal fitting period cannot be known in advance further work is required to

ensure that appropriate caveats are included in any linear time series models.

We note that in allowing for the presence of structural breaks reduces the bias of the models,

see for example the CBD, Plat and O’Hare and Li models applied to US data where the E1

measure is improved by 3%-6%. This is to be expected since if we do not allow for structural

breaks then our linear trend will either overestimate or underestimate all rates beyond the break

date. We also note, looking at the E2 measure, that the absolute error is improved by as much

as 3% in the case of the Netherlands over a 5 year forecasting window. If we were to extrapolate

this forecast further into the future, as is very common when pricing mortality related products,

then this different in forecasting ability would become more pronounced.

We also plot the forecasted mortality rates with allowance (in green) and without allowance

(in blue) for the structural break. These can be seen in the case of the Lee Carter (1992) model

in figures 4 - 7. The figures for the Cairns, Blake and Dowd (2006), Plat (2009) and O’Hare
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TABLE 4. Forecasting results for US, UK, Netherlands and Australia male mor-
tality rates by single age 20-89, 2001-2006 measured on E1, E2 and E3 with
and without allowance for structural breaks.

Structural break No Structural break
E1 E2 E3 E1 E2 E3

US
Lee-Carter 1.5% 7.3% 1.0% 2.8% 8.0% 1.2%
CBD -6.2% 15.2% 5.3% -3.6% 16.4% 5.6%
Plat -6.4% 9.0% 1.3% -3.6% 7.4% 0.8%
O’Hare and Li -6.1% 8.5% 1.4% -0.1% 5.5% 0.5%
UK
Lee-Carter 3.3% 9.0% 1.6% -1.7% 9.3% 1.2%
CBD -4.8% 20.0% 7.5% 0.4% 24.0% 9.3%
Plat 3.3% 9.5% 2.5% 3.3% 9.6% 2.2%
O’Hare and Li 3.8% 12.0% 4.1% 7.6% 9.6% 2.1%
Netherlands
Lee-Carter 5.5% 9.4% 1.6% 7.4% 10.6% 2.0%
CBD 0.8% 20.7% 7.5% 4.4% 22.7% 8.5%
Plat 4.3% 9.3% 1.5% 5.4% 10.0% 1.7%
O’Hare and Li 4.1% 10.1% 1.7% 11.1% 13.2% 3.0%
Australia
Lee-Carter 4.6% 12.1% 3.2% 4.8% 11.5% 2.6%
CBD -1.7% 28.7% 12.6% 2.3% 31.0% 14.0%
Plat 6.6% 13.1% 6.7% 8.9% 13.2% 6.5%
O’Hare and Li 11.8% 29.6% 28.6% 13.8% 16.3% 6.7%

and Li (2012) show similar patterns and are available upon request. The graphical figures show

us even more than the point estimates. In particular, we can see from these figures the direction

of the forecast with and without allowing for the structural break is very different leading to

very different predictions for future mortality rates. In the majority of cases allowing for the

structural break leads to lower mortality rates. This is particularly marked for the forecast

improvements for the older ages where the gap between forecasts is wider. For example see the

Lee-Carter forecasts in figure 7. The marked difference also seems to be greater for the UK and

Netherlands and less pronounced for the US.

We also note some of the results for the Carins, Blake and Dowd (2006) two factor model

which shows some bias problems at the lower ages. The model was designed for ages 60 and

above and so not surprisingly shows some unusual behaviour at the lower ages. It also forecasts

smoothly increasing mortality rates at the older ages, this is due to the fact that when the model

is fitted to the data the fitted mortality rates are smoother and lower than the actual mortality

rates. That being said the same issue of changing direction of forecast when allowing for the
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structural break still persists with the CBD model as it does in the majority of these types of

models.
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FIGURE 4. Forecasts of mortality rates for a 20 year old for the Lee-Carter
model with allowance (in green) and without allowance (in blue) for the struc-
tural break for (from top left clockwise) Australia, UK, US, and Netherlands.
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FIGURE 5. Forecasts of mortality rates for a 40 year old for the Lee-Carter
model with allowance (in green) and without allowance (in blue) for the struc-
tural break for (from top left clockwise) Australia, UK, US, and Netherlands.
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FIGURE 6. Forecasts of mortality rates for a 60 year old for the Lee-Carter
model with allowance (in green) and without allowance (in blue) for the struc-
tural break for (from top left clockwise) Australia, UK, US, and Netherlands.

1950 1960 1970 1980 1990 2000 2010 2020 2030
0.02

0.04

0.06

0.08

0.1

0.12

0.14
(a)

1950 1960 1970 1980 1990 2000 2010 2020 2030
0.04

0.06

0.08

0.1

0.12

0.14

0.16
(b)

1950 1960 1970 1980 1990 2000 2010 2020 2030
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115
(d)

1950 1960 1970 1980 1990 2000 2010 2020 2030
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12
(c)

FIGURE 7. Forecasts of mortality rates for a 80 year old for the Lee-Carter
model with allowance (in green) and without allowance (in blue) for the struc-
tural break for (from top left clockwise) Australia, UK, US, and Netherlands.

5. CONCLUSIONS

In this paper we have considered several of the leading extrapolative models of mortality rates

and have applied the methods of Bai and Perron (2003) to test for the presence of structural

breaks in the model specifications. More specifically we have fitted the models of Lee and

Carter (1992), Cairns, Blake and Dowd (2006), Plat (2009) and O’Hare and Li (2012) to the
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data for US, UK, Australia and the Netherlands. Having noted that the forecasts of mortality

resulting from these models are driven primarily by the κt (or κ1t ) parameter, we have fitted the

best ARIMA process to the extracted time series and then tested the residuals for deviation from

zero. In fitting the ARIMA model to the κt period effect we are following the methods used by

Lee and Carter (1992) and others.

In each case we found that there was indeed a breakpoint visible in the residuals falling some-

where around the 1970’s confirming previous demographic research. We have not considered

the cause of the structural break or indeed whether the test is picking up a genuine structural

break or a gradual change in the improvement in mortality rates. In either case we have identi-

fied a pattern in the data that the ARIMA modelling approach does not capture. Identifying the

breaks, we then carried out the forecasting process again making allowance for the structural

break. The results show that in nearly two-thirds of cases the model allowing for structural

breaks provides a more accurate forecast measured on each of the E1, E2, and E3 measures.

Further research will widen the study to consider more countries and both male and female

populations to see if the results can be reported more widely.

The findings are significant in highlighting the importance of the sample period when fit-

ting a model to mortality data; however, they make no reference to possible future structural

breaks. Further research could look at more recent developments in the identification of struc-

tural breaks in models. Namely, monitoring data for structural breaks as and when they occur,

this would then allow for these breaks to be incorporated into mortality models more efficiently

reducing any future forecast errors.
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Appendix: Additional Figures and Tables

FIGURE 8. Cumulative sum of residuals test for the CBD model for (from top
left clockwise) US, UK, Netherlands and Australia with boundaries shown in
red.
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FIGURE 9. Cumulative sum of residuals test for the Plat model for (from top
left clockwise) US, UK, Netherlands and Australia with boundaries shown in
red.
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FIGURE 10. Cumulative sum of residuals test for the O’Hare and Li model for
(from top left clockwise) US, UK, Netherlands and Australia with boundaries
shown in red.
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FIGURE 11. Test of the structural break for the CBD model for (from top left
clockwise) US, UK, Netherlands and Australia.
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FIGURE 12. Test of the structural break for the Plat model for (from top left
clockwise) US, UK, Netherlands and Australia.
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FIGURE 13. Test of the structural break for the O’Hare and Li model for (from
top left clockwise) US, UK, Netherlands and Australia.
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