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Abstract

We develop a framework in which individuals’ preferences co-evolve with their abilities to deceive others

regarding their preferences and intentions. Specifically, individuals are characterized by a level of cognitive

sophistication and by a subjective utility function. Increased cognition is costly, but higher level individuals are

able to completely deceive lower level opponents about their preferences and intentions. Only individuals who

are of the same cognitive level can observe each others preferences. Our main results show that, despite the

limited possibility to observe preferences, and despite the strong form of deception, only efficient population

states can be stable. We extend our model to study preferences that depend also on the opponent’s type.

Keywords: Evolution of Preferences; Indirect Evolutionary Approach, Theory of Mind; Depth of Rea-

soning; Deception. JEL codes: C72, C73, D01, D03, D83.

1 Introduction

For a long time economists took preferences as given. The study of their origin and formation was considered a

question outside the scope of economics. Over the past two decades this has changed dramatically. In particular,

there is now a large literature on the evolutionary foundations of preferences (for an overview, see Robson

& Samuelson, 2011). A prominent strand of this literature is the so-called “indirect evolutionary approach”,

pioneered by Güth & Yaari (1992) (term coined by Güth, 1995). This approach has been used to explain the

existence of a variety of “non-standard” preferences that do not coincide with material payoffs, e.g. altruism,

spite, and reciprocal preferences.1 Typically, the non-materialistic preferences in question convey some form of

commitment advantage that induces opponents to behave in a way that benefits individuals with non-materialistic

preferences, as described by Schelling (1960) and Frank (1987). Indeed, Heifetz et al. (2007) show that this kind

of result is generic.

∗Valuable comments were provided by Vince Crawford, Itzhak Gilboa, Larry Samuelson, and Jörgen Weibull, as well as participants
at presentations in Oxford, at G.I.R.L.13 in Lund, the Toulouse Economics and Biology Workshop, DGL13 in Stockholm, and the
25th International Conference on Game Theory at Stony Brook. Erik Mohlin was supported in part by the European Research
Council, grant no. 230251.

†Affiliation: Queen’s College and Department of Economics, University of Oxford. Address: Queen’s College, High Street, Oxford,
OX1 1AW, United Kingdom. E-mail: yuval.heller@queens.ox.ac.uk.

‡Affiliation: Nuffield College and Department of Economics, University of Oxford. Address: Nuffield College, New Road, Oxford
OX1 1NF, United Kingdom. E-mail: erik.mohlin@nuffield.ox.ac.uk.

1For example, Bester & Güth (1998), Bolle (2000), and Possajennikov (2000) study combinations of altruism, spite, and selfishness.
Ellingsen (1997) finds that preferences that induce aggressive bargaining can survive in a Nash demand game. Fershtman & Weiss
(1998) study evolution of concerns for social status. Sethi & Somanthan (2001) study the evolution of reciprocity in the form of
preferences that are conditional on the opponent’s preference type. In the context of the finitely repeated Prisoner’s Dilemma,
Guttman (2003) explores the stability of conditional cooperation. Dufwenberg & Güth (1999) study firm’s preferences for large sales.
Güth & Napel (2006) study preference evolution when players use the same preferences in both ultimatum and dictator games.
Koçkcesen & Ok (2000) investigate survival of more general interdependent preferences in aggregative games. Friedman & Singh
(2009) show that vengefulness may survive if observation has some degree of informativeness.
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A crucial feature of the indirect evolutionary approach is that preferences are explicitly or implicitly assumed

to be at least partially observable.2 Consequently the results are vulnerable to the existence of mimics who signal

that they have, say, a preference for cooperation, but actually defect on cooperators, thereby earning the benefits

of having the non-standard preference without having to pay the cost (Samuelson, 2001). The effect of varying

the degree to which preferences can be observed has been investigated by Ok & Vega-Redondo (2001), Ely &

Yilankaya (2001), Dekel et al. (2007), and Herold & Kuzmics (2009). They confirm that the degree to which

preferences are observed decisively influences the outcome of preference evolution.

However, the degree to which preferences are observed is still exogenous in these models. In reality we would

expect both the preferences, and the ability to observe or conceal them to be the product of an evolutionary

process.3 This paper studies the missing link between evolution of preferences and evolution of how preferences are

concealed and detected. In our model the ability to observe preferences, as well as the ability to deceive and induce

false beliefs about preferences, is endogenously determined by evolution, jointly with the evolution of preferences.

Mutual observation of preferences only occurs whether players of the same cognitive level meet. Our main result

is that such a “grain” of perfect observability is sufficient to imply efficient play in any stable population state.

Overview of the Model. As in standard evolutionary game theory we assume an infinite population of

individuals who are uniformly randomly matched to play a symmetric normal form game.4 Each individual

has a type, which is a tuple, consisting of a preference component and a cognitive component. The preference

component is identified with a utility function over the set of outcomes (i.e. action profiles). In an extension we

allow for type-interdependent preferences, which are represented by utility functions that are defined over both

action profiles and the opponent’s type. The cognitive component is simply a natural number, representing the

level of cognitive sophistication of the individual.5 The cost of increased cognition is strictly positive.

When the individuals in a match are of different cognitive levels, the one with the higher level is assumed to

be able to deceive the one with the lower level. For tractability reasons, and in order to “stack the cards” against

our main result, we model a strong form of deception. The deceiver observes the opponent’s preferences perfectly,

and is allowed to choose whatever she wants the deceived party to believe about the deceiver’s intended action

choice. A strategy profile that is consistent with this form of deception is called a deception equilibrium. When

both individuals are of the same cognitive level, we assume that each player observes the opponent’s preferences,

and as a result, the individuals play a Nash equilibrium of the complete information game induced by their

preferences.6

2Gamba (2013) is an interesting exception. She assumes play of a self-confirming equilibrium, rather than a Nash equilibrium, in
an extensive form game. This allows for evolution of non-materialistic preferences even when they are completely unobservable. An
alternative is to allow for a dynamic that is not strictly payoff monotonic. This approach is pursued by Frenkel et al. (2014), who
show that multiple biases (inducing non-materialistic preferences) can survive in plausible non-monotonic evolutionary dynamics
even if they are unobservable, because each approximately compensates for the errors of the others.

3On this topic, Robson & Samuelson (2011) write: “The standard argument is that we can observe preferences because people
give signals – a tightening of the lips or flash of the eyes – that provide clues as to their feelings. However, the emission of such
signals and their correlation with the attendant emotions are themselves the product of evolution. [...] We cannot simply assume
that mimicry is impossible, as we have ample evidence of mimicry from the animal world, as well as experience with humans who
make their way by misleading others as to their feelings, intentions and preferences. [...] In our view, the indirect evolutionary

approach will remain incomplete until the evolution of preferences, the evolution of signals about preferences, and the evolution of

reactions to these signals, are all analysed within the model.” [Emphasis added] (pp. 14–15)
4It is known that positive assortative matching is conducive to the evolution of altruistic behaviour (Hines & Maynard Smith,

1979) and non-materialistic preferences even when preferences are perfectly unobservable (Alger & Weibull, 2013). It is also known
that finite populations allow for the evolution of spiteful behaviours (Schaffer, 1988) and non-materialistic preferences (Huck &
Oechssler, 1999). By assuming that individuals are uniformly randomly matched in an infinite population, we avoid confounding
these effects with the effect of endogenising the degree of observability.

5The one-dimensional representation of cognitive ability reflects the idea that if one is good at deceiving others, then one is more
likely to be good also at reading others and avoiding to be deceived by them. In this paper we simplify this relation by assuming a
perfect correlation between the two abilities, and leave the study of more general relations for future research.

6Our assumption that players of equal levels play Nash equilibrium relies on the, so-called, “folk-theorem of evolutionary game
theory”, which implies that any stable population state must be a Nash equilibrium of the underlying complete information game
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The state of a population is described by a configuration, consisting of a type distribution and a behaviour

policy. The type distribution is simply a finite support distribution on the set of types. The behaviour policy

specifies a Nash equilibrium for each match between cognitive equals, and a deception equilibrium for each match

between types of different cognitive levels. In a neutrally stable configuration all incumbents earn the same, and

if a small group of mutants enter they earn weakly (strictly) less than the incumbents in any focal post-entry

state. A focal post-entry state is one in which the incumbents behave against each other in the same way as

before the mutants entered.

Results. We first show that the behavior of type θ̄ with the highest cognitive level in the incumbent population

(henceforth, “highest type”) in a stable configuration satisfies three properties (Theorem 1). First, type θ̄ plays

efficiently (i.e. maximizing the fitness) when meeting itself. The intuition is that otherwise a highest-type mutant

who mimics the play of θ̄ against all incumbents while playing efficiently against itself, would outperform type

θ̄ (an application of a “secret-handshake” argument, Robson, 1990). The second result is that θ̄ maximizes its

own fitness against all “lower” types (i.e. types with lower cognitive levels). The intuition is that otherwise a

highest-type mutant who mimics the play of θ̄ against most incumbents, except that he maximizes the fitness

against one of the lower types, would outperform type θ̄. Finally we show that a lower type cannot achieve more

than the efficient level of fitness when being matched against θ̄. The intuition is that otherwise a highest-type

mutant who mimics this lower type when being matched with θ̄, while mimicking θ̄ against all other opponents,

would outperform type θ̄.

Next we restrict attention to generic games (i.e., each fitness payoff is independently drawn from a continuous

distribution) and obtain our main result: any stable configuration must induce efficient play in all matches between

all types. The proof can be brief sketched as follows. We first show that any type θ in a stable configuration

must play efficiently when meeting itself. This is because otherwise a mutant could enter, which has the same

level as θ and has the same utility function as θ, except that the efficient action, ā is a subjective best-reply to

itself. We show that there exists a focal post-entry state in which the mutant plays the same as the incumbent

θ except playing the efficient profile(ā, ā) against itself and possibly against some of the higher types. Next, we

show that any two types must play efficiently. The intuition is that otherwise the mean within-groups fitness is

higher than the between-groups fitness, which implies instability to small perturbations in the frequency of the

types (a type who becomes slightly more frequent will be have higher fitness relative to the other incumbents,

and this will take the population away).

The existing literature (e.g., Dekel et al., 2007) shows that if players perfectly observe the opponent’s prefer-

ences (or do so with sufficiently high probability), then only efficient outcomes are stable. Our key contribution

is showing that a “grain” of perfect observability is enough to imply efficiency. While, the existing models assume

that any player perfectly observe the preferences of any other player, our model only assumes perfect observability

as a “tie-breaking” rule: players with equal-levels s to perfectly observe each other’s preferences, but by acquiring

a higher cognitive level (which may incur an arbitrarily low cognitive cost), a player can completely deceive the

opponent about his preferences.

Next we make a few observations, which allow us to fully characterize stable configurations in generic games.

First, we observe that any generic game admits at most one efficient action, and that this action is either strict

equilibrium or not a best-reply to itself. In the former case, we show the stability of an homogenous population

players with the lowest cognitive level and with preferences such that the efficient action is dominant. Moreover, if

the cognitive cost required for achieving the second cognitive level is sufficiently low, then this stable configuration

is essentially unique. In any other case (i.e. the underlying game admits no efficient action, or the efficient action

is not a best-reply to itself), there is no stable configuration.

for many evolutionary dynamics (see Nachbar, 1990 for a formal statement and proof).
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Finally, we note that non-generic games may admit different kinds of stable configurations. One particular

interesting family of non-generic games is the family of zero-sum games, such as the Rock-Paper-Scissors game

(Example ??). We analyse this game and characterize an heterogeneous stable population in which different

cognitive levels co-exist, players with equal levels play the Nash equilibrium, and players with higher levels beat

their opponents (but this gain is compensated by the higher cognitive costs). The construction is similar to that

of Conlisk (2001).

Variants and Extensions. As mentioned above, our main result relies on having full observability as the

“tie-breaking” rule. In Section 5 we consider the opposite assumption, namely, that players with equal level do

not observe each others preferences. We show that this variant yields very different results. Specifically, we show

that (1) any pure strict equilibrium (possibly, non-efficient) of the underlying game is stable, and (2) the highest

type always play a Nash equilibrium (again, not necessarily efficient) when being matched against themselves.

Thus, whether stability implies efficiency or Nash equilibrium behavior, crucially depends on “grain” of

exogenous observability assumption in the matches between equals in our model. The existing literature (e.g.,

Ok & Vega-Redondo (2001); Ely & Yilankaya (2001); Dekel et al. (2007); Norman (2012)) show that if players

cannot observe each other’s preferences, then only Nash equilibria can be stable. Our results show that a “grain”

of non-observability among players with equal levels is enough to imply strong relations between stability and Nash

equilibria, even though our setup allows a player to spend (possibly arbitrarily low) additional cognitive cost,

obtains a higher level than his opponent, and fully observe his preferences.

In most of the paper we deal only with “type-neutral” preferences that depends only over action profiles.

Section 6 extends the analysis to interdependent preferences that may also depend on the opponent’s type.

Herold & Kuzmics (2009) study a similar setup while assuming perfect observability of types among all players.

Their key result shows that any mixed action that yields each player a payoff above his maxmin payoff, can be

the outcome of a stable configuration. We show a slightly weaker extension of this result while assuming only

perfect observability among players with equal levels. Specifically, we show that pure stable population states

(i.e. populations in which everyone play the same pure action) are essentially Nash equilibria that yield each

player a payoff above the maxmin value. We conclude by characterizing stable configurations in the “Hawk-Dove”

game (Section 6.4). We show that such games admit heterogeneous stable configurations in which players with

different levels co-exist, each type has discriminating preferences that induce cooperation only against itself, and

higher types “exploit” lower types (and this is compensated by their higher cognitive levels.)

In Appendix B we briefly present another variant of the model in which the deceiver is not able to tailor

the attempted deception to the current opponent’s type. Instead, an individual has to use the same attempted

deception against all opponents. One can show that qualitatively similar results also hold with this less flexible

form of deception.

Further related literature. “Ok & Vega-Redondo (2001) and Ely & Yilankaya (2001) investigate the case in

which preferences are unobservable, and all preferences defined over outcomes are allowed. They show that only

Nash equilibria of the game with material/fitness payoffs can be implemented by evolutionarily stable preferences.

More generally, Dekel et al. (2007) study environments in which there is a fixed probability that a player observes

the preferences of the opponent. They confirm the previous results for unobservable preferences. Furthermore,

they show that if preferences are perfectly, or almost perfectly, observable, then only efficient outcomes can

be supported by neutrally stable preferences.7 Our results indicate that when deception is introduced and

observation is endogenised, then a pure profile has to be both Nash and efficient in order to be the sole outcome

supported by neutrally stable preferences. Herold & Kuzmics (2009) expand the framework of Dekel et al. (2007)

7See Norman (2012) for related results in a dynamic model.
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to include interdependent preferences, i.e. preferences that depend on the opponent’s preference type. Under

perfect or almost perfect observability, if all preferences that depend on the opponent’s type are considered, then

any symmetric outcome above the minmax material payoff is evolutionarily stable. In our setting a pure profile

also has to be a Nash equilibrium in order to be the sole outcome supported by evolutionarily stable preferences.

Herold & Kuzmics (2009) find that non-discriminating preferences (including selfish materialistic preferences)

are typically not evolutionarily stable on their own. In contrast, certain preferences that exhibit discrimination

are evolutionarily stable. Similarly, evolutionary stability requires the presence of discriminating preferences also

in our setup.”

There is a large literature in biology and evolutionary psychology on the evolution of ‘theory of mind’ (Premack

& Woodruff 1979). According to the “Machiavellian intelligence” hypothesis (Humphrey, 1976), and “social brain”

hypothesis (Dunbar, 1998), the extraordinary cognitive abilities of humans evolved as a result of the demands

of social interactions, rather than the demands of the natural environment: in a single-person decision problem

there is a fixed benefit of being smart, but in a strategic situation it may be important to be smarter than the

opponent. From an evolutionary perspective, the potential advantage of a better theory of mind has to be traded

off against the cost of increased reasoning capacity. Increased cognitive sophistication in the form of higher-order

beliefs is associated with non-negligible costs (Holloway, 1996, Kinderman et al. 1998). Our model incorporates

these features.

There is a smaller literature on the evolution of strategic sophistication within game theory; see, e.g. Stahl

(1993), Banerjee & Weibull (1995), Stennek (2000), Conlisk (2001), Abreu & Sethi (2003), Mohlin (2012),

Rtischev (2012), and Heller (2015). As in these papers, we provide results to the effect that different degrees of

cognitive sophistication may co-exist.

Kimborough et al. (2014) construct a model to demonstrate the advantage of having a theory of mind (un-

derstood as an ability to ascribe stable preferences to other players) over learning by reinforcement. In novel

games the ascribed preferences allow the agents with a theory of mind to draw on past experience whereas a

reinforcement learner without such a model has to start over again. Hopkins (2014) explains why costly signaling

of altruism may be especially valuable for those agents who have a theory of mind.

Robson (1990) initiated a literature on evolution in cheap talk games by formulating the secret handshake

effect: evolution selects an efficient stable state if mutants can send messages that the incumbents either do not

see or not benefit from seeing. Against the incumbents a mutant plays the same action as the incumbents do,

but against other mutants the mutant plays an action that is a component of the efficient equilibrium. Thus

the mutants are able to invade unless the incumbents are already playing efficiently. See also Matsui (1991). As

pointed out by Wärneryd (1991), and Schlag (1993), among others, problems arise if either the incumbents use

all available messages (so that there is no message left for the incumbents to coordinate on) or the incumbents

follow a strategy that induces the mutants to play an action that lowers the mutants’ payoffs below those of the

incumbents. Kim & Sobel (1995) use stochastic stability arguments, and Wärneryd (1998) uses complexity costs,

to circumvent this problem. Similarly, evolution selects efficient outcome in our model, where the preferences

also serve the function of messages

Structure. The rest of the paper is organized as follows. Section 2 presents the model. In Section 3 we

define our stability notions. The results for the main model are presented in Section 4. Section 5 deals with

a variant in which a player cannot observe the preferences of an opponent with the same cognitive level. 6

extends the model to include type-interdependent preferences. In Section 1 we discuss related literature. Section

7 concludes. Appendix A contains proofs not in the main text. Appendix B presents a variant of the model with

uniform deception. Appendix C formally constructs heterogeneous stable populations in Rock-Scissor-Paper and

Hawk-Dove games.
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2 Model

We consider a large population of agents, each of which is endowed with a type that determines her subjective

preferences and her cognitive level. The agents are randomly matched to play a symmetric two-player game.

A dynamic evolutionary process of cultural learning, or biological inheritance, increases the frequency of more

successful types. In the next section, we present a static solution concept to capture stable population states in

such environments.

2.1 Underlying Game

Consider a symmetric two-player normal form game G with a finite set A of pure actions and a set ∆ (A) of

mixed actions (or strategies). We use the letter a (σ) to describe a typical pure action (mixed action). Payoffs

are given by π : A × A → R, where π (a, a′) is the payoff to a player using action a against action a′. The

payoff function is extended to mixed actions in the standard way, where π (σ, σ′) denotes the material payoff to

a player using strategy σ, against an opponent using strategy σ′. With a slight abuse of notation let a denote

the degenerate mixed strategy that puts all weight on pure strategy a. We adopt this convention for probability

distributions throughout the paper.

Remark 1. The restriction to symmetric games is without loss of generality when dealing with interactions in a

single population. In cases in which the interaction is asymmetric, it can be captured in our setup (as is standard

in the literature; see, e.g. Selten, 1980 and Samuelson, 1991) by embedding the asymmetric interaction in a

larger, symmetric game in which nature first randomly assigns the players to roles in the asymmetric interaction.

2.2 Types

We imagine a large (technically infinite) population of individuals who are uniformly randomly matched to play

the game G. Each individual i in the population is endowed with a type

θ = (u, n) ∈ Θ = U × N,

consisting of (von Neumann-Morgenstern) preferences, identified with a utility function, u ∈ U and a cognitive

level n ∈ N. Let ∆ (Θ) be the set of all finite support probability distributions on Θ. A population is represented

by a finite support type distribution µ ∈ ∆ (Θ). Let C (µ) denote the support (carrier) of type distribution

µ ∈ ∆ (Θ). Elements of C (µ) will be called incumbents. Given a type θ, we use uθ and nθ to refer to its

preferences and cognitive level, respectively.

In the main model we assume that the preferences are defined over action profiles, as in Dekel et al. (2007).

This means that any preferences can be represented by a utility function of the form

u : A × A → R.

The set of all possible (modulo affine transformations) utility functions on A × A is U = [0, 1]
|A|2

. Let BRu (σ′)

denote the set of best replies to strategy σ′ given preferences u, i.e. BRu (σ′) = arg maxσ∈∆(A) u (σ, σ′).

Later, in Section 6, we analyse type-interdependent preferences, which depend also on the opponent’s type,

as in Herold & Kuzmics (2009). In contrast preferences defined solely over action profiles will be referred to as

type-neutral preferences.

There is a fitness cost to increased cognition, represented by a positive and strictly increasing cognitive cost

function k : N → R+. The fitness payoff of an individual equals the material payoff from the game, minus the

6



cognitive cost. Let kn denote the cost of having cognitive level n. Hence kθ = knθ
denotes the cost of having

type θ. Without loss of generality, we assume that k1 = 0. In some of our results we will make the additional

assumption that k2 is sufficiently small.

2.3 Configurations

A complete description of a state of the population is constituted by a type distribution and a behaviour policy

for each type in the support of the type distribution. An individual’s behaviour is assumed to be (subjectively)

rational in the sense that it maximizes her subjective preferences given the belief she has about the opponent’s

expected behaviour. However, her beliefs may be incorrect, if she is deceived by her opponent. An individual is

deceived if and only if her opponent is of a higher cognitive level.

If two individuals of the same cognitive level are matched to play, then they play a Nash equilibrium of the

game induced by their preferences. Given two preferences u, u′ ∈ U , let NE (u, u′) ⊆ ∆ (A) × ∆ (A) be the set

of mixed equilibria of the game induced by the preferences u and u′, i.e.

NE (u, u′) = {(σ, σ′) ∈ ∆ (A) × ∆ (A) : σ ∈ BRu (σ′) and σ′ ∈ BRu′ (σ)} .

Remark 2. Similar to most of the existing literature of the indirect evolutionary approach (e.g., Güth & Yaari,

1992, Dekel et al., 2007, Section 3), we assume full observability of the opponent’s preferences. However, while

the existing literature assumes this for all interactions, we only assume this when two incumbents with the same

cognitive level interact. When two agents with different levels meet, the observability is endogenously determined

by the deception efforts of the player with the higher level, and the observability assumption is only used as a

“tie breaking rule”. In Section XXX we analyse the opposite “tie breaking rule”, according to when agents with

the same cognitive level interact, they do not observe the opponent’s preferences.

If two individuals of different cognitive levels are matched to play, then the individual with the higher cognitive

level (henceforth, the higher type) observes the opponent’s preferences perfectly, and is able to deceive the

opponent (henceforth, the lower type). The deceiver is allowed to choose whatever she wants the deceived party

to believe about the deceiver’s intended action choice. The deceived party best responds given her possibly

incorrect belief.

For simplicity, we assume that if the deceived party has multiple best replies, then the deceiver is allowed to

break indifference, and choose which of the best replies she wants the deceived party to play. Consequently the

deceiver is able to induce the deceived party to play any strategy that is a best reply to some belief about the

opponent’s mixed action, given the deceived party’s preferences.

Given preferences u ∈ U , let Σ (u) denote the set of undominated strategies. By the minmax theorem, Σ (u)

is also the set of actions that are best replies to at least one strategy of the opponent (given the preferences u).

Formally, we define

Σ (u) = {σ ∈ ∆ (A) : there exists σ′ ∈ ∆ (A) such that σ ∈ BRu (σ′)} .

We say that a strategy profile is a deception equilibrium if the strategy profile is optimal from the point of view

of player i under the constraint that player j has to play an undominated strategy. Formally:

Definition 1. Given two types θ, θ′ with nθ > nθ′ , a strategy profile (σ̃, σ̃′) is a deception equilibrium if

(σ̃, σ̃′) ∈ arg max
σ∈∆(A),σ′∈Σ(uθ′ )

uθ (σ, σ′) .

7



Let DE (θ, θ′) be the set of all such deception equilibria.

We are now in a position to define our key notion of a configuration, by combining a type distribution with

a behaviour policy, as represented by Nash equilibria and deception equilibria.

Definition 2. A configuration is a pair (µ, b) where µ ∈ ∆ (U) is a type distribution, and b : C (µ) × C (µ) −→

∆ (A) is a behaviour policy such that for each θ, θ′ ∈ C (µ) :

nθ = nθ′ =⇒ (bθ (θ′) , bθ′ (θ)) ∈ NE (θ, θ′) , and

nθ > nθ′ =⇒ (bθ (θ′) , bθ′ (θ)) ∈ DE (θ, θ′) .

We interpret bθ (θ′) = b (θ, θ′) as the strategy of type θ when being matched with type θ′.

Given a configuration (µ, b) we call the types in its support the incumbents.

Note that standard arguments imply that for any type distribution µ there exists a mapping b : C (µ) ×

C (µ) −→ ∆ (A) such that (µ, b) is a configuration.

The expected fitness to an individual of type θ in configuration (µ, b) is:

Πθ ((µ, b)) =
∑

θ′∈C(µ)

µ (θ′) · π (bθ (θ′) , bθ′ (θ)) − kθ.

When all incumbent types have the same expected fitness, we say that the configuration is balanced, and denote

this uniform expected payoff by Π ((µ, b)) .

Remark 3. Our model assumes that a player may use different deceptions against different types with lower

cognitive levels. We note that all our results remain the same (with minor changes to the proofs) in an alternative

setup in which individuals have to use the same mixed action in their deception efforts towards all opponents

with lower cognitive levels. We refer to this as uniform deception. The formal changes in the model that are

required to implement this variant are described in Appendix A.

3 Evolutionary Stability

3.1 Definitions

Recall that a neutrally stable strategy (Maynard Smith & Price, 1973 and Maynard Smith, 1982) is a strategy

that, if played by most of the population, weakly outperforms any other strategy. Similarly, an evolutionarily

stable strategy is a strategy that, if played by most of the population, strictly outperforms any other strategy.

Definition 3. A strategy σ ∈ ∆ (A) is a neutrally stable strategy (NSS) if for every σ′ ∈ ∆ (A) there is some

ε̄ ∈ (0, 1) such that if ε ∈ (0, ε̄), then π̃ (σ′, (1 − ε) σ + εσ′) ≤ π̃ (σ, (1 − ε) σ + εσ′). If the weak inequality is

replaced by strict inequality for each σ′ 6= σ, then σ is an evolutionarily stable strategy (ESS).

We extend the notions of neutral and evolutionary stability, from strategies to configurations. We begin by

defining the type game that is induced by a configuration.

Definition 4. For any configuration (µ, b) the corresponding type game Γ(µ,b) is the symmetric two-player game

where each player’s strategy space is C (µ), and the payoff to strategy θ, against strategy θ′, is π (bθ (θ′) , bθ′ (θ))−

kθ.
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The definition of a type game allows us to apply notions and results from standard evolutionary game

theory, where evolution acts upon strategies, to the present setting where evolution acts upon types. A similar

methodology was used in Mohlin (2012). Note that each type distribution with support in C (µ) is represented

by a mixed strategy in Γ(µ,b).

We want to capture robustness with respect to small groups of individuals, henceforth called mutants, which

introduce new types and new behaviours into the population. Suppose that a fraction ε of the population is

replaced by mutants and suppose that the distribution of types within the group of mutants is µ′ ∈ ∆ (Θ).

Consequently the post-entry type distribution is µ̃ = (1 − ε) · µ + ε · µ′. That is, for each type θ ∈ C (µ) ∪ C (µ′),

µ̃ (θ) = (1 − ε) · µ (θ) + ε · µ′ (θ). In line with most of the literature on the indirect evolutionary approach we

assume that adjustment of behaviour is infinitely faster than the adjustment of the type distribution.8 Thus

we assume that the post-entry type distribution quickly stabilizes into a configuration
(

µ̃, b̃
)

. There may exist

many such post-entry type configurations, all with the same type distribution, but with different behaviour

policies. We note that incumbents do not have to adjust their behaviour against other incumbents in order to

continue playing Nash equilibria, and deception equilibria, among themselves. For this reason, we assume that

the incumbents maintain the same pre-entry behaviour among themselves. In doing so we also follow Dekel et al.

(2007). Formally:

Definition 5. Let (µ, b) and
(

µ̃, b̃
)

be two configurations such that C (µ) ⊆ C (µ̃). We say that
(

µ̃, b̃
)

is focal

(with respect to (µ, b)) if θ, θ′ ∈ C (µ) implies that b̃θ (θ′) = bθ (θ′) .

Standard fixed point arguments imply that for every configuration (µ, b) and every type distribution µ̃ satis-

fying C (µ) ⊆ C (µ̃) , there exists a behaviour policy b̃ such that
(

µ̃, b̃
)

is a focal configuration.

Our stability notion requires that the incumbents outperform all mutants in all configurations that are focal

relative to the initial configuration.

Definition 6. A configuration (µ, b) is a neutrally stable configuration (NSC), if for every µ′ ∈ ∆ (Θ), there

is some ε̄ ∈ (0, 1) such that for all ε ∈ (0, ε̄), it holds that if
(

µ̃, b̃
)

, where µ̃ = (1 − ε) · µ + ε · µ′, is a focal

configuration, then µ is an NSS in the type game Γ(µ̃,b̃). The configuration (µ, b) is an evolutionarily stable

configuration (ESC) if the same conditions imply that µ is an ESS in the type game Γ(µ̃,b̃) for each µ′ 6= µ.

3.2 Remarks

We discuss four issues related to our notion of stability.

1. The main stability notion that we use in the paper is NSC. The stronger notion of ESC is not useful in

our main model because there always exist equivalent types that have slightly different preferences (as the

set of preferences is a continuum) and induce the same behaviour as the incumbents. Such mutants would

always achieve the same fitness as the incumbents in post-entry configurations, and thus ESCs will never

exist. Note that the stability notions in Dekel et al. (2007) and Alger & Weibull (2013) are also based on

neutral stability.9 In Section 6 we study a variant of the model in which the preferences may depend also

on the opponent’s types. This will allow for the existence of ESCs.

2. Observe that Definition 6 implies internal stability with respect to small perturbations in the frequencies

of the incumbent types (because when µ′ = µ, then µ is required to be an NSS in Γ(µ,b)). By standard

arguments, internal stability implies that any NSC is “balanced”: all incumbent types obtain the same

fitness.
8Sandholm (2001) and Mohlin (2010) are exceptions.
9In their stability analysis of homo hamiltonensis preferences Alger & Weibull (2013) disregard mutants who are behaviourally

indistinguishable from homo hamiltonensis upon entry.

9



3. By simple adaptations of existing results in the literature, one can show that NSCs and ESCs are dynami-

cally stable. NSCs are Lyapunov stable: no small change in the population composition can lead it away

from µ in the type game Γ(µ̃,b̃), if types evolve according to the replicator dynamic (Thomas, 1985, Bomze

& Weibull, 1995). ESCs are also asymptotically stable: populations starting close enough to µ eventually

converge to µ in Γ(µ̃,b̃) if types evolve according to a smooth payoff-monotonic selection dynamic (Taylor

& Jonker, 1978, Cressman, 1997, Sandholm, 2010).

4. The stability notions of Dekel et al. (2007) and Alger & Weibull (2013) only consider monomorphic groups

of mutants (i.e. all mutants having the same type). We also consider stability against polymorphic groups

of mutants (as do Herold & Kuzmics, 2009). One advantage of our approach is that it allows us to

use an adaptation of the well-known notion of ESS, which immediately implies dynamic stability and

internal stability, whereas Dekel et al. (2007) have to introduce a novel notion of stability without these

properties. We note that our results remain similar with an analogous notion of stability that deals only

with monomorphic mutants, except that in this case stability of pure outcomes would imply only a weaker

notion of efficiency that compares the fitness only to symmetric profiles, as discussed in Remark 4.2 below.

4 Results

4.1 Preliminaries

We say that a strategy profile is efficient if it maximizes the sum of fitness payoffs. Formally:

Definition 7. A strategy profile (σ, σ′) is efficient in the game G = (A, π) if π (σ, σ′) + π (σ′, σ) ≥ π (a, a′) +

π (a′, a), for each action profile (a, a′).

Let π̄ = maxa,a′∈A (0.5 · (π (a, a′) + π (a, a′))) denote the efficient payoff - the average payoff achieved by

players who play an efficient profile. If a symmetric strategy profile (σ∗, σ∗) is efficient, then we say that the

strategy σ∗ is efficient.

A pure Nash equilibrium (a, a) is strict if π (a, a) > π (a′, a) for all a′ ∈ A. If a symmetric action profile (a, a)is

a (strict) Nash equilibrium, of the fitness game, then we say that the action a is a (strict) Nash equilibrium, of

the fitness game.

Given a configuration (µ, b) let n̄ = maxθ∈C(µ) nθ denote the the maximal cognitive level of the incumbents.

We refer to incumbents with this cognitive level as the highest types.

A deception equilibrium is fitness maximizing if it maximizes the fitness of the type with the higher level

of the types in the match (under the restriction that the type with the lower level plays an action that is not

dominated given her preferences). Formally:

Definition 8. Let θ, θ′ be two types with nθ > nθ′ . A deception equilibrium (σ̃, σ̃′) ∈ DE (θ, θ′) is fitness

maximizing if:

(σ̃, σ̃′) ∈ argmaxσ∈∆(A), σ′∈Σ(uθ′ )π (σ, σ′) .

Let FMDE (θ, θ′) ⊆ DE (θ, θ′) denote the set of all such fitness-maximizing deception equilibria of two types

θ, θ′ with nθ > nθ′ . Note that FMDE (θ, θ′) might be an empty set (if there is no action profile that maximizes

both the fitness and the subjective utility of the higher type).

A configuration is pure if everyone plays the same action. Formally:

Definition 9. A configuration (µ, b) is pure if there exists a∗ ∈ A such that bθ (θ′) = a∗ for each θ, θ′ ∈ C (µ) .
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With a slight abuse of notation we denote such a pure configuration by (µ, a∗), and we refer to a∗ as the

outcome of the configuration.

In order to simplify the notation and the arguments in the proofs we assume throughout this section that

underlying game admits at least 3 actions (i.e. |A| ≥ 3). The results can be extended to games with two actions

but this makes the notation more cumbersome and the proofs less instructive.

4.2 Characterization of the Highest Types’ Behavior

In this section we characterize the behavior of an incumbent type, θ̄ = (u, n̄), which has the highest level of

cognition in the population. We show that the behavior satisfies the following three conditions:

1. Type θ̄ plays an efficient action when meeting itself.

2. Type θ̄ maximizes its fitness in all interactions with types with lower cognitive levels.

3. Any opponent with a lower cognitive level achieves at most π̄ when being matched with θ̄.

Theorem 1. Let (µ∗, b∗)be an NSC, and θ, θ̄ ∈ C (µ∗).

1. If nθ̄ = n̄ thenπ
(

bθ̄

(

θ̄
)

, bθ̄

(

θ̄
))

= π̄.

2. If nθ < nθ̄ = n̄ then
((

bθ̄ (θ) , bθ

(

θ̄
)))

∈ FMDE
(

θ̄, θ
)

.

3. If nθ < nθ̄ = n̄ then π
(

bθ

(

θ̄
)

, bθ̄ (θ)
)

≤ π̄.

The formal proof can be found in the appendix. here we provide a brief sketch of it. The proof utilises mutants

(denoted θ1, θ2, and θ̂ below) with the highest cognitive level n̄ and with a specific kind of utility functions, called

indifferent and pro-generous, that make a player indifferent between all their own actions, but may make the

player prefer the opponent to take an action that allows the player to obtain the highest possible fitness payoff.

1. To prove part 1 of the Theorem, assume to the contrary that π
(

bθ̄

(

θ̄
)

, bθ̄

(

θ̄
))

< π̄. Let a1, a2 ∈ A be

any two actions such that (a1, a2) is an efficient action profile (i.e. 0.5 · (π (a1, a2) + π (a1, a2)) = π̄).

Consider two mutant types θ1 and θ2, (θ1 6= θ2) which are of the highest cognitive level that is present in

the population, and have indifferent and pro-generous utility functions. Suppose equal fractions of these

two mutant types enter. There is a post-entry population, in which; the incumbents keep their pre-entry

play among each other, the mutants play a fitness-maximizing deception equilibria against lower types,

the mutants mimic the play of θ̄ against all incumbents of level n̄, the mutants mimic θ̄ when facing a

mutant of the same type, and when mutant type θ1 meets mutant type θ2 they play the efficient profile

(a1, a2). In such a focal post-entry configuration a mutant earns weakly higher fitness than θ̄ against the

incumbents, and the mutants on average earn strictly more than θ̄ against the mutants. This implies that

(µ∗, b∗) cannot be an NSC.

2. To prove part 2 , assume to the contrary that
((

bθ̄ (θ) , bθ

(

θ̄
)))

6∈ FMDE
(

θ̄, θ
)

. Suppose mutants of type

θ̂ enter. Consider a post-entry configuration in which the incumbents keep their pre-entry play among each

other, and the mutants mimic the play of θ̄, except that they play a fitness-maximizing deception equilibria

against all lower types. The mutants obtains a weakly higher payoff than θ̄ against all types, and a strictly

higher payoff than θ̄ against some lower type. Thus(µ∗, b∗) cannot be an NSC.

3. To prove part 3 , assume to the contrary that π
(

bθ

(

θ̄
)

, bθ̄ (θ)
)

> π̄. Suppose mutants of type θ̂ enter.

Consider a post-entry configuration in which the incumbents keep their pre-entry play among each other,

while the mutants; (i) play fitness-maximizing deception equilibria against lower types, (ii) mimic type θ
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against type θ̄, and (iii) mimic the play of θ̄ against all other types. The mutant θ̂ earns strictly more than

θ̄ against both θ̂ and θ̄. The mutant earns weakly more than θ̄ against all other types. This implies that

(µ∗, b∗) cannot be an NSC.

Remark. The first part of Theorem 1 (a highest types must play an efficient strategy when meeting itself) is

similar to Dekel et al.’s (2007) Proposition 2, which shows that only efficient outcomes can be stable in in a setup

with perfect observability and no deception. We should note that Dekel et al. (2007) use a weaker notion of

efficiency. An action is efficient in the sense of Dekel et al. (2007) (DEY-efficient) if its fitness is highest among

the symmetric strategy profiles (i.e. action a is DEY-efficient if π (a, a) ≥ π (σ, σ) for all strategies σ ∈ ∆ (A)).

Observe that our notion of efficiency (Definition 7) implies DEY-efficiency, but the converse is not necessarily

true. The weaker notion of DEY-efficiency is the one relevant in the set up of Dekel et al. (2007), because they

consider only monomorphic groups mutants; i.e. all mutants that enter at the same time are of the same type.

A similar result would hold also in our setup, if we imposed a similar limitation on the set of feasible mutants.

However, without such a limitation, heterogeneous mutants can correlate their play, and our stronger notion of

efficiency is required to characterise stability.

An immediate corollary of Theorem 1 is that a game without efficient actions (i.e., a game that has only non-

symmetric efficient profiles) do not admit any NSCs.

Corollary 1. If G does not admit an efficient action (i.e. if π (a, a) < π̄ for each a ∈ A ), then the game does

not admit any NSC.

4.3 Characterization of Pure NSCs

We now present three results which, together with Theorem 1, allow us to completely characterise NSCs with

pure outcomes. The first proposition shows that in a pure NSC all incumbents have the minimal cognitive level,

since having a higher ability does not yield any advantage when everyone plays the same action.

Claim 1. If (µ, a∗) is an NSC, and (u, n) ∈ C (µ), then n = 1.

Proof. Since all players earn the same game payoff of π (a∗, a∗) , they must also incur the same cognitive cost,

or else the fitness of the different incumbent types would not be balanced (which contradicts (µ, a∗) being

an NSC). Moreover, this uniform cognitive level must be level 1. Otherwise a mutant of a lower level, who

strictly prefers to play a∗ against all actions, would strictly outperform the incumbents in nearby post-entry

focal configurations.

The following proposition shows that if k2 (the cost of having cognitive level 2) is sufficiently small, then

any outcome of a pure NSC must be a Nash equilibrium of the underlying game. The reason is that if the pure

outcome is not a Nash equilibrium, then the population can be invaded by mutants with cognitive level 2, who

deceive the incumbents into thinking they face other incumbents, and best reply to the incumbents’ play.

Proposition 1. Suppose

k2 < δ := min
a,a′,a′′ s.t. π(a,a′′) 6=π(a′,a′′)

|π (a, a′′) − π (a′, a′′)| . (1)

If (µ, a∗) is an NSC, then (a∗, a∗) is a symmetric Nash equilibrium, in fitness payoffs.

Proof. Assume to the contrary that (µ, a∗) is a pure NSC and a∗ is not a best response to itself; i.e. there exist

a′ ∈ A such that π (a′, a∗) > π (a∗, a∗). Assume without loss of generality that a′ is a best reply against a∗

(in fitness terms). By Proposition 1, all incumbents have cognitive level 1. Consider a mutant θ′ = (π, 2) with
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cognitive level 2 and materialistic preferences. There is a focal post-entry configuration in which mutants play

the deception equilibrium (a′, a∗) against the incumbents. Observe that the mutants obtain a strictly higher

payoff when facing an incumbent, than what two incumbents earn against each other:

π (a′, a∗) − k2 > π (a′, a∗) − δ ≥ π (a∗, a∗) .

This implies that if the mutants are sufficiently rare, they outperform the incumbents in the post-entry focal

configuration.

The last proposition shows that any action that is both efficient and a strict Nash equilibrium, can be induced

as the outcome of an NSC. The intuition is as follows (and is similar to Dekel et al., 2007, Proposition 6). Consider

a monomorphic population in which all individuals have cognitive level 1 and the efficient strict Nash action is

a dominant action. The action being strict Nash and efficient, implies that any group of mutants is weakly

outperformed.

Proposition 2. If ā is an efficient action and a strict Nash equilibrium (in fitness payoffs), then there exists a

type distribution µ such that (µ, ā) is an NSC.

Proof. Consider a monomorphic configuration (µ, ā) consisting of type (θ∗, 1) where all incumbents are of cogni-

tive level 1 and of the same preference type θ∗, which strictly prefers to play ā regardless of what the opponent

plays. Observe, that after any mutant’s entry, in all focal post-entry configurations the incumbent θ∗ will always

play ā (since ā is strictly dominant for θ∗). Since the incumbent is always playing ā, and (ā, ā ) is a strict Nash

equilibrium of G, mutants that do not play ā when they are matched with θ∗ will obtain strictly less fitness than

the incumbents if their population share is sufficiently small. But for mutants that play ā whenever they are

matched with θ∗, the incumbents’ average fitness is given by π(ā, ā), and since mutants cannot obtain an average

fitness strictly higher than this when they are matched among themselves (since (ā, ā) is efficient), they cannot

obtain a strictly higher average fitness either. We conclude that (µ, ā) is an NSC.

Part 1 of Theorem 1, together with Propositions 1-2 imply that pure NSCs outcomes are essentially efficient

Nash equilibria. Formally:

Corollary 2 (Characterization of pure NSCs).

1. If (a∗, a∗) is both efficient and a strict Nash equilibrium in fitness payoffs, then it is the outcome of a pure

NSC.

2. If (a∗, a∗) is the outcome of a pure NSC and k2 < δ, then it is both efficient and a Nash equilibrium in

fitness payoffs.

4.4 Characterization of NSCs in Generic Games

In this section we characterize NSCs in generic games, by which we mean games in which any two different action

profiles both gives an individual player different payoffs, and yields different total payoffs.

Definition 10. A (symmetric) game is generic if for each a, a′, b, b′ ∈ A, {a, a′} 6= {b, b′} implies:

π (a, a′) 6= π (b, b′) , and π (a, a′) + π (a′, a) 6= π (b, b′) + π (b′, b) .

For example, if the entries of the payoff matrix π are drawn from a continuous distribution on an open subset

of the real numbers, then the induced game is generic with probability one.
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Note that a generic game admits at most one efficient action profile. Due to Corollary 1, we can restrict

attention to games with a single efficient action. Let ā denote this unique efficient action.

Our first result shows that each incumbent type plays efficiently when meeting itself.

Theorem 2. Let (µ∗, b∗)be an NSC of a generic game and let θ ∈ C (µ∗). Then π (bθ (θ) , bθ (θ)) = (ā, ā).

The outline of the proof is as follows (the formal proof is in Appendix A.3). In order to obtain a contradiction

assume that there exists an incumbent that does not play ā. Let θ̄ ∈ C (µ∗) be the type with the highest cognitive

level, among the types that do not play ā against themselves. Let û be a utility function which is identical to

uθ̄ except that: (1) the payoff of the outcome (ā, ā) is increased by the minimal amount required to make it a

best reply to itself, and (2) the payoffs of some other outcome is altered slightly (to ensure û is not already an

incumbent) in a way that does not force θ̂ to behave differently from θ̄. Suppose a mutant of type θ̂ =
(

θ̂, nθ̄

)

enters. Consider a focal post-entry configuration in which the mutants mimic the play of the incumbent θ̄ in

all matches except: (1) they play the efficient profile (ā, ā) among themselves (which yields a higher payoff than

what θ̄ achieves when being matched against θ′), and (2) when the mutant faces a higher type they either play

(ā, ā) or the same deception equilibrium that the higher type plays against θ̄. It follows that the mutant θ̂ earns

a strictly higher payoff than θ̄ against θ̂ , and a weakly higher fitness than type θ̄ against all other types. Thus

the the mutants strictly outperform the incumbents, which contradicts (µ∗, b∗)being an NSC.

The following Theorem shows that any two types play efficiently when meeting each other. The intuition is

that populations in which within-type matchings yields higher payoff (π̄ according to Theorem 2) than out-group

matchings (an average payoff of less than π̄) are dynamically unstable: a slight increase in a group’s frequency

would increase its fitness and would take the population away from the initial state.

Theorem 3. Let (µ∗, b∗) be an NSC of a generic game, and let θ, θ′ ∈ C (µ∗). Then bθ (θ′) , bθ′ (θ) = ā.

Proof. Assume to the contrary that there exist two types θj , θk ∈ C (µ∗), θj 6= θk, such that bθ (θ′) 6= ā 6= bθ′ (θ) .

This implies that 0.5 ·
(

π
(

bθj
(θk) , bθk

(θj)
)

+ π
(

bθk
(θj) , bθj

(θk)
))

< π̄. The fact that (µ∗, b∗) is an NSC implies

that µ∗ is an NSS in the type game Γ(µ∗,b∗). Let B be the payoff matrix of the type game Γ(µ∗,b∗) and let

n = |C (µ∗)|. It is well known (e.g., Hofbauer & Sigmund, 1988, Exercise 6.4.3 and Hofbauer (2011, pp. 1-2))

that an interior strategy profile of a normal form game can be an NSS only if the payoff matrix is negative

semi-definite with respect to the tangent space, i.e. only if x · Bx ≤ 0 for each x ∈ R
n such that

∑

i xi = 0.

Assume without loss of generality that type θj (θk) is represented by the jth (kth) row of the matrix B. Let

the column vector x be defined as follows:

x (i) =



















1 i = j

−1 i = k

0 i 6= j, k

.

That is the vector x has all entries equal to zero, except the jth entry which is equal to 1, and the kth entry

which is equal to −1. We have

x · Bx = Bjj − Bjk − Bjk + Bkk

= ā − knθj
+ ā − knθk

−
(

π
(

bθj
(θk) , bθk

(θj)
)

− knθj
+ π

(

bθk
(θj) , bθj

(θk)
)

− knθk

)

= 2 · ā −
(

π
(

bθj
(θk) , bθk

(θj)
)

+ π
(

bθk
(θj) , bθj

(θk)
))

> 0.

Thus B is not negative semi-definite.

14



Note that that in a generic game any pure action is either a strict equilibrium, or not a best reply to itself.

Combining the results of this section with the above charachterisation of pure NSCs yields the following corollary,

which fully characterises the NSCs of generic games.

Corollary 3. Let G be a generic game.

1. If G admits an efficient action ā that is also a Nash equilibrium, then there is a pure NSC in which all types

(i) have cognitive level one, and (ii) always play ā. Converesely, if k2 < δ, then this NSC is essentially

unique: any NSC must satisfy both properties (i) and (ii).

2. Otherwise, the game does not admit any NSC.

4.5 Non-pure NSCs in non-Generic Games

The previous two subsections fully characterized (i) pure NSCs and (ii) NSCs in generic games. In this section we

analyse non-pure NCSs in non-generic games. Non-generic games may be of interest in various setups, such as:

(1) normal-form representation of generic extensive-form games (the induced matrix is typically non-generic), and

(2) special interesting families of games, such as zero-sum games. Unlike generic games, non-generic games can

admit (non-pure) NSCs with multiple cognitive level and non-Nash behavior. To demonstrate this we consider

the Rock-Paper-Scissors game, with the payoff matrix

R P S

R 0, 0 −1, 1 1, −1

P 1, −1 0, 0 −1, 1

S −1, 1 1, −1 0, 0

.

The following result shows that, under mild assumptions on the cognitive costs function, this game admits an

NSC in which all players have the same materialistic preferences, but players of different cognitive levels co-exist,

and non-Nash profiles are played in all matches of two individuals of different cognitive levels. More precisely,

when individuals of different cognitive levels meet, the higher level individual deceives the lower level individual

to take a pure action that the higher level individual then best responds to. Thus the higher level individual

earns 1 and her opponent earns −1. Individuals of the same cognitive level play the unique Nash equilibrium.

This means that higher-level types will obtain the payoff 1 more often than lower-level types, and lower-level

types will obtain the payoff −1 more often than higher-level types. In the NSC this payoff difference is offset

exactly by the higher cognitive cost paid by higher types. Moreover, the cognitive cost is increasing so that at

some point the cost of cognition outweighs any payoff differences that may arise from the underlying game. This

implies that there is an upper bound on the cognitive sophistication in the population.

Proposition 3. Let G be a Rock-Paper-Scissors game. Let uπ denote the (materialistic) preference such that

uπ (a, a′) = π (a, a′) for all profiles (a, a′). Suppose that the marginal cognitive cost is small but non-vanishing,

so that (a) there is an N such that kN ≤ 2 < kN+1, and (b) it holds that 1 > kn+1 − kn for all n ≤ N .10 There

exists an NSC (µ∗, b∗), such that C (µ∗) ⊆ {(uπ, n)}N
n=1, and µ∗ is mixed (i.e. |C (µ∗)| > 1). The behaviour of

the incumbent types is as follows: if the individuals in a match are of different cognitive level, then the higher

level plays Paper and the lower level plays Rock; if both individuals in a match are of the same cognitive level,

then they both play the unique nash equilibrium (i.e. randomise uniformly over the three actions).

Appendix C.2 contains a formal proof of this result an relates it to a similar construction in Conlisk (2001).

10If we define δ as in (1) then we have δ = 1, in Proposition 3. Thus the condition that δ > kn+1 − kn for all n in Proposition 3,
may be viewed as an extension of the condition k2 < δ in Proposition 1.
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5 Non-Observability Among Cognitive Equals

The main model assumes that types with equal levels can observe each others preferences. In this section we

present an alternative “tie-breaking rule” according to which players are unable to observe the preferences of an

opponent with the same cognitive level.

5.1 Changes to the Baseline Model

Play Between Types with Equal Cognitive Levels. If two individuals of the same cognitive level are

matched to play, then they play a Bayes-Nash equilibrium of the Bayesian game in which each player only knows

that his opponent has the same cognitive level (but he cannot observe his opponent’s preferences). Given a

distribution of types µ, we say that n ∈ projN C (µ) if there exists a type (u, n) ∈ C (µ). Given a distribution

µ and n ∈ projN C (µ), let Θn denote the set of types with level n, and let µn denote the distribution of types

conditional on having cognitive level n:

µn (u, n) =
µ (u, n)

∑

(u′,n)∈C(µ) µ (u′, n)
.

Given distribution µ and n ∈ projN C (µ), a vector of action profiles (σθ)θ∈Θn
is a Bayes-Nash equilibrium of

the game between types with level n, if each player best-reply to the aggregate behavior of players with the

same cognitive level. Let BNE (n) ⊆ (∆A)
|Θn|

be the set of Bayes-Nash equilibria of the game induced by the

interactions between players with cognitive level n, i.e.

BNE (n) =

{

(σθ)θ∈Θn
∈ (∆A)

|Θn|
: ∀σ(u,n) ∈ Θn, σ(u,n) ∈ argmaxσ∈∆(A)

∑

θ∈Θn

µn (θ) · u (σ, σθ)

}

.

The play among types with equal levels is analogous to the play of all types in the unobservable case of Dekel

et al. (2007, Section 4). Players with different cognitive levels play deception equilibria as in the baseline model.

Redefining Configurations. We redefine the notion of a configuration as follows:

Definition 11. A configuration is a pair (µ, b) where µ ∈ ∆ (U) is a type distribution, and b : C (µ) × C (µ) −→

∆ (A) is a behaviour policy such that:

1. Players play the same against all opponents with the same level, i.e. for each n ∈ projN C (µ), if θ, θ′, θ′′ ∈ Θn

then bθ (θ′) = bθ (θ′′).

2. Types with the same level play a Bayes-Nash equilibrium, i.e. for each n ∈ projN C (µ)

(

(bθ (θ))θ∈Θn

)

∈ BNE (n) .

3. Types with different levels play deception equilibria, i.e. for each θ, θ′ ∈ C (µ) :

nθ > nθ′ =⇒ (bθ (θ′) , bθ′ (θ)) ∈ DE (θ, θ′) .

Redefining NSC. Unlike in the baseline model, focal configurations (in which the incumbents keep their pre-

entry play) do not always exist. Accordingly, we modify the definition NSC slightly to require the existence of a

focal configuration for any given distribution of mutants.11 Formally:

11All the results remain the same if one only requires δ-focality à la Dekel et al. (2007)
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Definition 12. A configuration (µ, b) is a neutrally stable configuration (NSC), if for every µ′ ∈ ∆ (Θ), there

is some ε̄ ∈ (0, 1) such that for all ε ∈ (0, ε̄), it holds that; (1) there exists a focal configuration
(

µ̃, b̃
)

, where

µ̃ = (1 − ε) · µ + ε · µ′, and (2) for each such focal configuration
(

µ̃, b̃
)

, the distribution µ is an NSS in the type

game Γ(µ̃,b̃).

5.2 Results

The following simple results show that with non-observable equals, it is no longer the case that stable outcomes

must be efficient. The first result shows that any strict Nash equilibrium (even non-efficient) is the outcome of

a pure NSC. The argument is similar to Dekel et al. (2007, Proposition 5-b) and is presented briefly.

Proposition 4. Let a∗ ∈ A be a strict Nash equilibrium. Then there exists a pure NSC (µ, a∗) where µ contains

a single type (1, u∗) such that a is a strictly dominant action given the utility function u∗.

Proof. Observe that the incumbents always play a∗ in any focal configuration (and that such focal configuration

always exist). The fact that a∗ is a strict equilibrium implies that any mutant who does not always play a∗

against the incumbents is strictly outperform if the mutants are sufficiently rare. If the mutant type has level

one, it implies that he must always play a∗ also against mutants, and that it achieves the same payoff as the

incumbents. If the mutant has higher cognitive level, then if the mutants are sufficiently rare the higher cognitive

cost implies that it is strictly outperformed.

The next result shows that players with the highest type must play a Nash equilibrium (of the underlying

game) among themselves.The argument is similar to Dekel et al. (2007, Proposition 5-a) and is presented briefly.

Claim 2. Let (µ∗, b∗) be an NSC and let n̄ be the highest cognitive level. The action profile (bθ (θ))θ∈Θn̄
is a

Bayes-Nash equilibrium of the fitness game. That is:

∀θ∗ ∈ Θn̄, bθ∗ (θ∗) ∈ argmaxσ∈∆(A)

∑

θ∈Θn

µn (θ) · π (σ, bθ (θ)) .

Proof. Assume to the contrary the the highest types do not play a Bayes-Nash equilibrium of the fitness game.

Let θ̄ ∈ Θn̄ be one such type. That is

bθ∗ (θ∗) /∈ argmaxσ∈∆(A)

∑

θ∈Θn

µn (θ) · π (σ, bθ (θ)) .

Let θ′ = (u′, n̄) be a mutant type which is indifferent between any two outcomes, and which mimics the play of

θ∗ against lower types, while best-replying in the induced fitness game between the highest types. Such a mutant

type would strictly outperform the incumbent θ̄ in any focal configuration.

6 Type-Interdependent Preferences

In this section we describe an extension of our baseline model, such that the preferences may depend not only

on action profiles, but also on the opponent’s type.

6.1 Changes to the Baseline Model

We briefly describe how to amend the model to handle type-interdependent preferences. Our construction is

similar to that of Herold & Kuzmics (2009).
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When the preferences of a type depend on the opponent’s type, we can no longer work with the set of all

possible preferences, because it would create problems of circularity and cardinality.12 Instead, we must restrict

attention to a pre-specified set of feasible preferences. We begin by defining ΘID as an arbitrary set of labels.

Each label is a pair θ = (u, n) ∈ ΘID, where n ∈ N and u is a type-interdependent utility function that depends

on the played action profile as well as the opponent’s label,

u : A × A × ΘID → R.

Each label θ = (u, n) may now be interpreted as a type. The definition of u extends to mixed actions in the

obvious way. We use the label u also to describe its associated utility function u. Thus u (σ, σ′, θ′) denotes the

subjective payoff that a player with preferences u earns when she plays strategy σ against an opponent with type

θ′ who plays strategy σ′.

Let UID denote the set of all preferences that are part of some type in ΘID, i.e. UID = {u : ∃n ∈ N

s.t. (u, n) ∈ ΘID}. For each type-neutral preference u ∈ U we can define an equivalent type-interdependent

preference u ∈ UID, which is independent of the opponent’s type; that is, u′ (σ, σ′, θ′) = u′′ (σ, σ′, θ′′) for each

u′, u′′ ∈ UID. Let UN denote the set of all such type-interdependent versions of the type-neutral preferences of

the baseline model. All of our results allow, but do not require, that UN ⊆ UID.

Next, we amend the definitions of Nash equilibrium, undominated strategies, and deception equilibrium. The

best-reply correspondence now takes both strategies and types as arguments: BRu (σ′, θ′) = arg maxσ∈∆(A) u (σ, σ′, θ′).

Accordingly we adjust the definition of the set of Nash equilibria,

NE (θ, θ′) = {(σ, σ′) ∈ ∆ (A) × ∆ (A) : σ ∈ BRu (σ′, θ′) and σ′ ∈ BRu′ (σ, θ)} ,

and the set of undominated strategies

Σ (θ) = {σ ∈ ∆ (A) : there exists σ′ ∈ ∆ (A) and θ′ ∈ ΘID such that σ ∈ BRu (σ′, θ′)} .

Finally, we adapt the definition of deception equilibrium. Given two types θ, θ′ with nθ > nθ′ , a strategy profile

(σ̃, σ̃′) is a deception equilibrium if

(σ̃, σ̃′) ∈ arg max
σ∈∆(A),σ′∈Σ(θ′)

uθ (σ, σ′, θ′) .

Let DE (θ, θ′) be the set of all such deception equilibria. The rest of our model remains unchanged.

6.2 Pure Maxmin and Minimal Fitness

The pure maxmin and minmax values give a minimal bound to the fitness of an NSC. Given a game G = (A, π) ,

define M(M̄) as its pure maxmin (minmax) value:

M = max
a1∈A

min
a2∈A

π (a1, a2) ,

M = min
a2∈A

max
a1∈A

π (a1, a2) .

12The circularity comes from the fact that each type contains a preferences component, which is identified with a utility function
defined over types (and action profiles). To see that this creates a problem if the set of types is unrestricted, let Θ∗ be the set of
types and suppose that the corresponding set of preferences, U∗, contains all mappings u : A × A × Θ∗ → R. The cardinality of
this set is |U | · |Θ∗|, but if U∗ is indeed the set of all mappings u : A × A × Θ∗ → R, then we must have |U∗| = |U | · |Θ∗|. Since
|Θ∗| ≥ |U∗| this is a contradiction. See also footnote 10 in Herold & Kuzmics (2009).
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The pure maxmin value M
¯

is the minimal fitness payoff a player can guarantee herself in the sequential game in

which she plays first, and the opponent replies in an arbitrary way (i.e. not necessarily in a way that maximizes

the opponent’s fitness.) The pure minmax value M is the minimal fitness payoff a player can guarantee herself in

the sequential game in which her opponent plays first an arbitrary action, and she best-replies to the opponent’s

pure action. It is immediate that M ≤ M, and that the minmax value in mixed actions is between these two

values.

Let aM
¯

be a maxmin action of a player; an action aM
¯

guarantees that the player’s payoff is at least M
¯

,

aM ∈ arg max
a1∈A

min
a2∈A

π (a1, a2) .

The following simple lemma (which holds also in the baseline model with type-neutral preferences) shows that

the maxmin value is a lower bound on the fitness payoff obtained in an NSC. The intuition is that if the payoff

is lower, then a mutant of cognitive level 1, with preferences such that the maxmin action aM is dominant, will

outperform the incumbents.

Definition 13. Given a pure action a∗ ∈ A, let ua∗ ∈ UN be the (type-neutral) preferences in which the player

obtains a payoff of 1 if she plays a∗ and a payoff of 0 otherwise (i.e. a∗ is a dominant action regardless of the

opponent’s preferences).

Proposition 5. Assume that (uaM , 1) ∈ ΘID. Let (µ, b) be an NSC. Then Π (µ, b) ≥ M .

Proof. Assume to the contrary that Π (µ, b) < M . Consider a monomorphic group of mutants with type (uaM , 1) .

The fact that aM is a maxmin action implies that

π(u
aM ,1)

((

µ̃, b̃
))

≥ M

in any post-entry configuration. Furthermore, due to continuity it holds that Πθ

(

µ̃, b̃
)

< M for any θ ∈ C (µ)

in all sufficiently close focal post-entry configuration. This contradicts µ being an NSS in Γ(µ̃,b̃), and thus it

contradicts (µ, b) being an NSC.

6.3 Characterisation of Pure Stable Configurations

In this subsection we show that, essentially, a pure action can be an outcome of an ESC if and only if it is a Nash

equilibrium that yields each player a payoff above her minmax/maxmin value.

We first adapt Propositions 1-1 to the current setup. Specifically, we show that if (µ∗, a∗) is a pure NSC,

then: (1) all incumbents have the same cognitive level, and (2) a∗ is a symmetric Nash equilibrium, provided

that the marginal cognitive costs are sufficiently small (smaller than δ, as defined in (1)).

Proposition 6. Let (µ∗, a∗) be a pure NSC. Then:

1. θ, θ′ ∈ C (µ∗) ⇒nθ = nθ′ .

2. If for each n kn+1 − kn < δ, then a∗ is a symmetric Nash equilibrium (in fitness payoffs).

Proof.

1. Since all players earn the same game payoff of π (a∗, a∗) , they must also incur the same cognitive cost, or

else the fitness of the different incumbent types would not be balanced (which contradicts (µ, a∗) being an

NSC).
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2. Assume to the contrary that there exist a′ ∈ A such that π (a′, a∗) > π (a∗, a∗). Assume without loss

of generality that a′ is a best reply against a∗ (in fitness terms). By part (i) all the incumbents have

cognitive level n. Consider a monomorphic group of mutants θ′ = (π, n + 1). There is a focal post-entry

configuration in which the mutants play the deception equilibrium (a′, a∗) against the incumbents. Observe

that the mutants obtain a strictly higher payoff when facing an incumbent, than what two incumbents earn

against each other:

π (a′, a∗) − (kn+1 − kn) > π (a′, a∗) − δ ≥ π (a∗, a∗) .

This implies that if the mutants are sufficiently rare, they outperform the incumbents in the post-entry

focal configuration.

Let aM̄ be a minmax action, i.e. an action that guarantees that the opponent’s payoff is at most M̄ ;

aM̄ ∈ arg min
a2∈A

max
a1∈A

π (a1, a2) .

Definition 14. Given any two actions ã, ã′ ∈ A, let uã

ã′ be the discriminating preferences defined by the following

utility function: For all a′,

uã

ã′ (a, a′, θ′) =











1 if uθ′ = uã

ã′ and a = ã

1 if uθ′ 6= uã

ã′ and a = ã′

0 otherwise

.

In words, the preferences uã

ã′ are such that ã is a dominant action against an opponent with the same

preferences, and ã′ is the dominant action against all other opponents.

The following result shows that any action a∗ that is both a symmetric Nash equilibrium and yields a payoff

above the minmax value can be implemented as the unique pure outcome of an ESC. (Recall that θ is used to

denote that probability distribution µ puts all weight on θ, i.e. µ (θ) = 1.)

Proposition 7. Assume that
(

ua∗

aM̄
, 1

)

∈ ΘID. If action a∗ is a symmetric Nash equilibrium and π (a∗, a∗) > M,

then
((

ua∗

aM̄
, 1

)

, a∗
)

is an ESC.

Proof. Suppose that all incumbents are of type
(

ua∗

aM̄
, 1

)

. Note that in all focal post-entry configurations the

incumbent
(

ua∗

aM̄
, 1

)

always plays either a
∗

or aM̄ . Against a mutant (θ, 1) with cognitive level 1, an incumbent

plays a
∗

if and only if u (θ) = ua∗

aM̄
. The fact that π (a∗, a∗) > M implies that any mutant θ 6=

(

ua∗

aM̄
, 1

)

earns

a strictly lower payoff against the incumbents in any post-entry configuration. As a result, if the frequency of

mutants is sufficiently small, then they are strictly outperformed. Against a mutant (θ, n) with cognitive level

n > 1, an incumbent may play either a
∗

or aM̄ . Since a∗ is a symmetric Nash equilibrium and π (a∗, a∗) > M the

mutants earn at most π (a∗, a∗) in matches against incumbents. Consequently, as the fraction of mutants vanishes

the average fitness of mutants is weakly less than π (a∗, a∗) − kn, and the average fitness of the incumbents is

π (a∗, a∗). Since k is strictly increasing this implies that
((

ua∗

aM̄
, 1

)

, a∗
)

is an ESC.

The results of this section imply the following corollary, which characterises pure outcomes of stable configu-

rations in terms of being Nash equilibria that yield payoffs above the pure maxmin/minmax values.

Corollary 4.

1. If action a∗ is a Nash equilibrium and π (a∗, a∗) > M̄, then it is the pure outcome of an ESC.
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2. If action a∗ is a pure outcome of an NSC and ∀n, kn+1 − kn < δ, then a∗ is a symmetric Nash equilibrium

and π (a∗, a∗) ≥ M.

6.4 Application: In-Group Cooperation and Out-Group Exploitation

The following table represents a family of Hawk-Dove games. When both players play D (Dove) they earn 1

each and when they both play H (Hawk) they earn 0. When a player plays H against an opponent playing D,

she obtains an additional gain of g > 0 and the opponent incurs a loss of l ∈ (0, 1).

H D

H 0, 0 1 + g, 1 − l

D 1 − l, 1 + g 1, 1

. (2)

It is natural to think of mutual play of D as the cooperative outcome. We define preferences that induce players

to cooperate with their own kind and to seek to exploit those who are not of their own kind.

Definition 15. Let un denote the preferences such that:

(1) If uθ′ = un and nθ′ = n then un (D, a′, θ′) = 1 and un (H, a′, θ′) = 0 for all a′.

(2) If uθ′ 6= un or nθ′ 6= n then un (H, a′, θ′) = 1 and un (D, a′, θ′) = 0 for all a′.

Thus, facing someone who is of the same type, an individual with un-preferences strictly prefers cooperation,

in the sense of playing D. When facing someone who is not of the same type, an individual with un-preferences

prefers the exploitative outcome (H, D), and after that she prefers the destructive outcome (H, H) over the

remaining outcomes.

Under the assumption that g > l and that the marginal cognitive costs are sufficiently small (but non-

vanishing), we construct an ESC in which only individuals with preferences from {ui}∞
i=1 are present. Individuals

of different cognitive levels co-exist, and non-Nash profiles are played in all matches between equals. When

individuals of the same level meet, they play mutual cooperation (D, D). When individuals of different levels

meet, the higher level plays H and the lower level plays D. The gain from obtaining the high payoff of 1 + g

against lower types is exactly compensated by the higher cognitive costs. In contrast, if g < l then the game

does not admit this kind of stable configuration.

Proposition 8. Let G be the game represented in (2), where g > 0 and l ∈ (0, 1). Suppose that the marginal

cognitive cost is small but non-vanishing, so that (a) there is an N such that kN ≤ l + g < kN+1, and (b) it holds

that g > kn+1 − kn for all n ≤ N .

(i) If g > l then there exists an ESC (µ∗, b∗), such that C (µ∗) ⊆ {(un, n)}N
n=1, and µ∗ is mixed (i.e.

|C (µ∗)| > 1). The behaviour of the incumbents is as follows: if the individuals in a match are of different

cognitive levels, then the higher level plays H and the lower level plays D; if both individuals in a match are of

the same cognitive level, then they both play D.

(ii) If g = l then there exists an NSC with the above properties.

(iii) If g < l then there does not exist any NSC (µ∗, b∗), such that C (µ∗) ⊆ {(un, n)}∞
n=1.

The formal proof is presented in Appendix C.3.

7 Conclusion and Directions for Future Research

We have developed a model in which preferences co-evolve with the ability to detect others’ preferences and

misrepresent one’s own preferences. We do this by allowing for heterogeneity with respect to costly cognitive
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ability. The assumption of an exogenously-given level of observability of the opponent’s preferences, which

has characterised the indirect evolutionary approach so far, is replaced by a Machiavellian notion of deception

equilibrium, which endogenously determines what each player observes.

Only one, seemingly small, aspect of the observability structure remains exogenous: the observability among

players with equal cognitive levels. Our main results surprisingly shows that a “grain” of perfect observability

among equals is enough to imply that only efficient configurations can be stable. However, we later show that

this result crucially depend on the “tie-breaking” rule. If we assume that players with equal levels cannot observe

each other’s preferences, then stable configurations do not have to be efficient (instead they are closely related

to Nash equilibria of the underlying games). We leave for future research a model that will endogenize also the

observability among equals.

Our model assumes a very powerful form of deception. This allows us to derive sharp results that clearly

demonstrate effects of endogenising observation, and introducing deception. We expect similar but weaker effects

to be present when deception takes a weaker form. Specifically, we think that the “Bayesian” deception is an

interesting model for future research: each incumbent type is associated with a signal, agents with high cognitive

levels can mimic the signals of types with lower cognitive levels, and agents maximise their preferences given the

received signals and the correct Bayesian inference about the opponent’s type.

In a companion paper (Heller & Mohlin, 2014) we study environments in which players are randomly matched,

and make inferences about the opponent’s type by observing her past behaviour (rather than observing the type

directly as is standard in the “indirect evolutionary approach”). In future research, it would be interesting to

combine both approaches and allow the observation of the past behaviour to be influenced by deception.

Most papers taking the indirect evolutionary approach study the stability of preferences defined over material

outcomes. Moreover, it is common to restrict attention to some parameterised class of such preferences. Since

we study preferences defined on the more abstract level of action profiles (or the joint set of action profiles and

opponent’s types in the case of type-interdependent preferences) we do not make predictions about whether some

particular kind of preferences over material outcomes, from a particular family of utility functions, will be stable

or not. It would be interesting to extend our model to such classes of preferences. Furthermore, with preferences

defined over material outcomes it would be possible to study co-evolution of preferences and deception not only

in isolated games, but also when individuals play many different games using the same preferences. We hope to

come back to these questions and we invite others to employ and modify our framework in these directions.

A Proofs

A.1 Preliminaries

This subsection section contains notation and definitions that will be used in the following proofs.

A generous action is an action such that if played by the opponent, it allows a player to achieve the maximal

fitness payoff. Formally:

Definition 16. Action ag ∈ A is generous, if there exists an a ∈ A such that π (a, ag) ≥ π (a′, a′′) for all

a′, a′′ ∈ A.

Fix a generous action ag ∈ A of the game G. A second-best generous action is an action such that if played

by the opponent, it allows a player to achieve the maximal fitness payoff under the constraint that the opponent

is not allowed to play the generous action ag. Formally:

Definition 17. Action ag2
∈ A is second-best generous, conditional on ag ∈ A being first best generous, if there

exists a ∈ A such that π (a, ag2
) ≥ π (a′, a′′) for allla′, a′′ ∈ A such that a′′ 6= ag.
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Fix a generous action ag ∈ A, and fix a second-best generous action ag2
∈ A, conditional on ag ∈ A being

first best generous. For each α ≥ β ≥ 0, let uα,β be the following utility function:

uα,β (a, a′) =



















α a′ = ag

β a′ = ag2

0 otherwise

.

Observe that such a utility functionuα,β satisfies:

1. Indifference - the utility functiononly depends on the opponent’s action; i.e., the player is indifferent between

any two of his own actions.

2. Pro-generosity - the utility is highest (second-highest) if the opponent plays the (second-best) generous

action, and lowest otherwise.

Let UGI = {uα,β |α ≥ β ≥ 0} be the family of all such preferences, called pro-generosity indifferent preferences.

Note that Ug includes a continuum of different utilities (under the assumption that G includes at least three

actions). Thus for any set of incumbent types we can always find a utility function in Ug which is does not belong

to any of the current incumbents.

A.2 Proof of Theorem 1 (Behaviour of the Highest Types)

A.2.1 Proof of Theorem 1.1

Assume to the contrary that π
(

bθ̄

(

θ̄
)

, bθ̄

(

θ̄
))

< π̄. (Note that the definition of π̄ implies that the opposite

inequality is impossible). Let a1, a2 ∈ A be any two actions such that (a1, a2) is an efficient action profile,

i.e. 0.5 · (π (a1, a2) + π (a1, a2)) = π̄. Let θ1, θ2 be two types that satisfy: (1) the types are not incumbents;

θ1, θ2 /∈ C (µ∗), (2) both types have the highest incumbent cognitive level; nθ1
= nθ2

= n̄, and (3) both types

have different pro-generosity indifferent preferences; uθ1
, uθ2

∈ UGI and uθ1
6= uθ2

. Let µ′ be the distribution

that assigns mass 0.5 to each of these types. The post-entry type distribution is µ̃ = (1 − ǫ) · µ + ǫ · µ′. Let the

post-entry behaviour policy b̃ be defined as follows:

1. Behaviour among incumbents respects focality; b̃θ (θ′) = bθ (θ′) for each incumbent pair θ, θ′ ∈ C (µ∗).

2. In matches between mutants and incumbents of lower types, behaviour is such that the mutants maximize

their fitness;
(

b̃θi
(θ′) , b̃θ′ (θi)

)

∈ FMDE (θi, θ′) for each i ∈ {1, 2} and θ′ ∈ C (µ∗) with nθ′ < n̄.

3. In matches between mutants and incumbents of the highest type, the mutants mimick θ̄ and the higher

types play the same way they play against θ̄;
(

b̃θi
(θ′) , b̃θ′ (θi)

)

=
(

bθ̄ (θ′) , bθ′

(

θ̄
))

, for each i ∈ {1, 2} and

θ′ ∈ C (µ∗) with nθ′ = n̄.

4. Two mutants of different types play efficiently when meeting each other; b̃θi
(θj) = ai for each i 6= j ∈ {1, 2}.

5. Two mutants of the same type play like θ̄ plays against itself, when meeting each other;b̃θi
(θi) = bθ̄

(

θ̄
)

for

each i ∈ {1, 2}.

In virtue of point 1 the construction
(

µ̃, b̃
)

is a focal configuration (with respect to (µ, b)). By point 2 the mutants

θ1 and θ2 earn weakly more than θ̄ against lower types. By point 3 the mutants earn exactly the same as θ̄

aginst all the highest incumbent types (including θ̄). By 4 and 5 the mutants on average earn strictly more than

θ̄ against the mutants. In total average fitness earned by θ1 and θ2 is strictly higher than that of θ̄, against a
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population who follows
(

µ̃, b̃
)

. This implies that µ′ is a strictly better reply against µ∗ in the population game

Γ(µ̃,b̃). Thus, µ∗ is not a symmetric Nash equilibrium, and therefore it is not an NSS, in Γ(µ̃,b̃), which implies

that that µ∗ is not an NSC.

Remark 4. In this proof the mutants only outperform the incumbents on average. This allows for the possibility

that one mutant earns strictly less than θ̄, while the other mutant earns strictly more than θ̄. That is enough

to prove the desired result. However, we could also have proved our result with a construction involving three

different mutants θ1, θ2, θ3 , each of which earns strictly more than θ̄ in the post-entry configuration. This would

be achieved if the three mutant types are equally frequent, and any two mutants of the same type play like θ̄

plays against itself (point 5 above), but play as follows when facing another mutant: (i) mutant θ1 plays a1

against θ2 and a2 against θ3, (ii) mutant θ2 plays a1 against θ3 and a2 against θ1, and (iii) mutant θ3 plays a1

against θ1 and a2 against θ2.

A.2.2 Proof of Theorem 1.2

Assume to the contrary that
((

bθ̄ (θ) , bθ

(

θ̄
)))

6∈ FMDE
(

θ̄, θ
)

. Let θ̂ be a type that satisfies: (1) not being an

incumbent; θ̂ /∈ C (µ∗), (2) having the highest incumbent cognitive level; nθ̂ = n̄, and (3) having pro-generosity

indifferent preferences; uθ̂ ∈ UGI . Let µ′ be the distribution that assigns mass one to type θ̂. The post-entry

type distribution is µ̃ = (1 − ǫ) · µ + ǫ · µ′. Let the post-entry behaviour policy b̃ be defined as follows:

1. Behaviour among incumbents respects focality; b̃θ (θ′) = bθ (θ′) for each θ, θ′ ∈ C (µ∗).

2. In matches between mutants and incumbents of lower types, behaviour is such that the mutants maximize

their fitness;
(

b̃θ̂ (θ′) , b̃θ′

(

θ̂
))

∈ FMDE
(

θ̂, θ′
)

for each θ′ ∈ C (µ∗) with nθ′ < n̄.

3. In matches between mutants and incumbents of the highest type, the mutant mimicks θ̄ and the higher

types play the same way they play against θ̄;
(

b̃θ̂ (θ′) , b̃θ′

(

θ̂
))

=
(

bθ̄ (θ′) , bθ′

(

θ̄
))

, for each θ′ ∈ C (µ∗)

with nθ′ = n̄.

Note that
(

µ̃, b̃
)

is a focal configuration (with respect to (µ, b)), and that θ̂ obtains a strictly higher fitness than θ̄

against a population who follows
(

µ̃, b̃
)

. This implies that µ′ is a strictly better reply against µ∗ in the population

game Γ(µ̃,b̃). Thus, µ∗ is not a symmetric Nash equilibrium, and therefore it is not an NSS, in Γ(µ̃,b̃), which

implies that that µ∗ is not an NSC.

A.2.3 Proof of Theorem 1.3

Assume to the contrary that π
(

bθ

(

θ̄
)

, bθ̄ (θ)
)

> π̄, which immediately implies that π
(

bθ̄ (θ) , bθ

(

θ̄
))

< π̄. Let θ̂

be a type that satisfies: (1) not being an incumbent; θ̂ /∈ C (µ∗), (2) having the highest incumbent cognitive level;

nθ̂ = n̄, and (3) having pro-generosity indifferent preferences; uθ̂ ∈ UGI . Let µ′ be the distribution that assigns

mass one to type θ̂. The post-entry type distribution is µ̃ = (1 − ǫ) · µ + ǫ · µ′. Let the post-entry behaviour

policy b̃ be defined as follows:

1. Behaviour among incumbents respects focality; b̃θ (θ′) = bθ (θ′) for each θ, θ′ ∈ C (µ∗).

2. In matches between mutants and incumbents of lower types, behaviour is such that the mutants maximize

their fitness;
(

b̃θ̂ (θ′) , b̃θ′

(

θ̂
))

∈ FMDE
(

θ̂, θ′
)

for each θ′ ∈ C (µ∗) with nθ′ < n̄.

3. In a match between a mutant θ̂ and the incumbent θ̄, the mutant mimicks θ, and the incumbent θ̄ plays

the same way it plays against θ;
(

b̃θ̂

(

θ̄
)

, b̃θ̄

(

θ̂
))

=
(

bθ

(

θ̄
)

, bθ̄ (θ)
)

.
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4. θ̂ plays against itself the same way θ̄ plays against itself;
(

b̃θ̂

(

θ̂
)

, b̃θ̂

(

θ̂
))

=
(

b̃θ̄

(

θ̄
)

, b̃θ̄

(

θ̄
))

, and

5. θ̂ mimics θ̄ against all other highest types, and these higher types play against θ̂ the same as they play

against θ̄;
(

b̃θ̂ (θ′) , b̃θ′

(

θ̂
))

=
(

bθ̄ (θ′) , bθ′

(

θ̄
))

for each θ′ 6= θ̄ with nθ′ = n̄.

Note that
(

µ̃, b̃
)

is a focal configuration (with respect to (µ, b)). By point 2 the mutant θ̂ earns weakly more

than θ̄ against lower types. By point 3 (and Theorem 1.1) the mutants earn strictly more than θ̄ against type θ̄.

By 3 and 4 (and Theorem 1.1 and ) the mutant earns strictly more than θ̄ against the mutant. By 5 earns the

same as θ̄ against all other types. In total average fitness earned by θ̂ is strictly higher than that of θ̄, against a

population who follows
(

µ̃, b̃
)

. This implies that µ′ is a strictly better reply against µ∗ in the population game

Γ(µ̃,b̃). Thus, µ∗ is not a symmetric Nash equilibrium, and therefore it is not an NSS, in Γ(µ̃,b̃), which implies

that that µ∗ is not an NSC.

A.3 Proof of Theorem 2 (Each Type Plays Efficiently Against Itself)

We begin by proving a lemma.

Lemma 1. If (σ1, σ2) ∈ DE (θ1, θ2) then there exist actions a1, a′
1 ∈ supp (σ1) and a2, a′

2 ∈ supp (σ2) such

that:(a1, a2) ∈ DE (θ1, θ2), and (a′
1, a′

2) ∈ DE (θ1, θ2), with π (a1, a2) ≥ π (σ1, σ2), and π (a′
1, a′

2) ≤ π (σ1, σ2).

Proof. Note that for any mixed deception equilibrium (σ1, σ2), and any action a ∈ supp (σ2), the profile (σ1, a)

is also a deception equilibrium (because othewise the deceiver would not induce the decieved party to take a

mixed action that puts positive weight on a). It follows that there are actions actions a2, a′
2 ∈ supp (σ2) such that

(σ1, a2) and (σ1, a′
2) are deception equilibria, with π (σ1, a2) ≥ π (σ1, σ2) and π (σ1, a′

2) ≤ π (σ1, σ2). Furthermore,

if (σ1, a2) and (σ1, a′
2) are deception equilibria then, for any action a ∈ supp (σ1), the profiles (a, a2) and (a, a′

2)

are also deception equilibria, with π (σ1, a2) = π (a, a2) and π (σ1, a′
2) = π (a, a′

2). Hence there are actions

a1, a′
1 ∈ supp (σ1) such that (a1, a2) and (a′

1, a′
2) are deception equilibria, with π (a1, a2) = π (σ1, a2) ≥ π (σ1, σ2),

and π (a1, a′
2) = π (σ1, a′

2) ≤ π (σ1, σ2).

We are now able to prove Theorem 2. Assume to the contrary that there exists an incumbent that does not

play ā (the unique efficient action) against itself. (From Theorem 1.1 we know that θ̊ cannot be of the highest

type in the population, denoted n̄ above.) Let θ̊ ∈ C (µ∗) be the type with the highest cognitive level, among

those types who do not play ā against themselves. That is,
(

bθ̊

(

θ̊
)

, bθ̊

(

θ̊
))

6= (ā, ā), and if nθ > nθ̊, then

(bθ (θ) , bθ (θ)) = (ā, ā).

We consider a mutant θ̂ =
(

nθ̊, û
)

/∈ C (µ∗) . If Σ
(

uθ̊

)

= ∆, then we let û ∈ UGI be such that θ̂ =
(

nθ̊, û
)

/∈

C (µ∗). If Σ
(

uθ̊

)

6= ∆, then we fix a dominated action a ∈ A\Σ
(

uθ̊

)

, and let û be defined as follows:

û (a, a′) =



















maxa∈A

(

uθ̊ (a, ā)
)

a = a′ = ā

uθ̊ (a, a′) − βa′ a = a and a′ 6= ā

uθ̊ (a, a′) otherwise

,

where each βa′ ≥ 0 is chosen such that θ̂ =
(

nθ̊, û
)

/∈ C (µ∗). That is, if Σ
(

uθ̊

)

6= ∆, then the utility function û

is constructed from the utility function uθ̊ by arbitrarily lowering the payoff of some of the outcomes associated

with the (already) dominated action a and which do not involve action ā, while increasing the payoff of the

outcome (ā, ā) by the minimal amount that make it a best reply to itself. Note that this definition of û is valid

also for the case of ā = a. It follows that a ∈ Σ
(

uθ̊

)

∪ {ā} if and only if a ∈ Σ (û). (To see this, note that if

Σ
(

uθ̊

)

6= ∆ and a = ā, then Σ (û) = Σ
(

uθ̊

)

∪ {ā}. Otherwise Σ (û) = Σ
(

uθ̊

)

.) Thus, θ̂ can be induced to play
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exactly the same pure actions as θ̊, unless ā = a, in which case θ̂ can be induced to play ā in addition to all

actions that θ̊ can be induced to play.)

Let µ′ be the distribution that assigns mass one to type
(

nθ̊, û
)

. Let the post-entry type distribution be

µ̃ = (1 − ǫ) · µ + ǫ · µ′, and let the post-entry behaviour policy b̃ be defined as follows:

1. Behaviour among incumbents respects focality; b̃θ (θ′) = bθ (θ′) for each θ, θ′ ∈ C (µ∗).

2. In matches between the mutant type θ̂ and any lower type θ′ ∈ C (µ∗) (with nθ′ < nθ̂), we distinguish two

cases.

(a) Suppose that Σ
(

uθ̊

)

= ∆. In this case let
(

b̃θ̂ (θ′) , b̃θ′

(

θ̂
))

∈ FMDE
(

θ̂, θ′
)

.

(b) Suppose that Σ
(

uθ̊

)

6= ∆. In this case let
(

b̃θ̂ (θ′) , b̃θ′

(

θ̂
))

= (a1, a2), for some (a1, a2) ∈ DE
(

θ̊, θ′
)

such that π (a1, a2) ≥ π
(

bθ̊ (θ′) , bθ′

(

θ̊
))

. By lemma XXX insert ref to lemma above XXX

above such a profile (a1, a2) exists.

3. If (σ1, σ2) ∈ DE (θ1, θ2) then there exist actions a1 ∈ supp (σ1) and a2 ∈ supp (σ2) such that (a1, a2) ∈

DE (θ1, θ2) andπ (a1, a2) ≥ π (σ1, σ2)

4. In matches between the mutant type θ̂ and any incumbent type θ′ with same level, the mutant θ̂ mimics

θ̊, and the incumbent θ′ treats the mutant θ̂ like the incumbent θ̊;
(

b̃θ̂ (θ′) , b̃θ′

(

θ̂
))

=
(

bθ̊ (θ′) , bθ′

(

θ̊
))

if

nθ′ = nθ̊ and θ′ 6= θ̂.

5. The mutant plays efficiently when meeting itself; b̃θ̂

(

θ̂
)

= ā.

6. In matches between the mutant type θ̂ and any higher type θ′ ∈ C (µ∗) (with nθ′ > nθ̂), we distinguish

two cases. Pick a profile (a1, a2) ∈ DE
(

θ′, θ̊
)

, such that π (a2, a1) ≥ π
(

bθ̊ (θ′) , bθ′

(

θ̊
))

. By lemma XXX

insert ref to lemma above XXX above such a profile (a1, a2) exists. Moreover, (since a ∈ Σ
(

uθ̊

)

∪ {ā}

if and only if a ∈ Σ (û)) it is either the case that (a1, a2) ∈ DE
(

θ′, θ̂
)

or that a2 = ā. In the latter case,

if a2 = ā, then (ā, ā) ∈ DE
(

θ′, θ̂
)

. This is due to the fact that(bθ′ (θ′) , bθ′ (θ′)) = (ā, ā) implies that ā is a

best reply to ā for type θ′. Note that π (ā, ā) ≥ π
(

bθ̊ (θ′) , bθ′

(

θ̊
))

by Theorem 1.3.

(a) If uθ′ (a1, a2) > uθ′ (ā, ā) let
(

b̃θ′

(

θ̂
)

, b̃θ̂ (θ′)
)

= (a1, a2).

(b) If uθ′ (a1, a2) ≤ uθ′ (ā, ā) let
(

b̃θ′

(

θ̂
)

, b̃θ̂ (θ′)
)

= (ā, ā).

By point 1,
(

µ̃, b̃
)

is a focal configuration (with respect to (µ, b)). By point 2 the mutant θ̂ earns weakly more

than θ̊ against lower types. By point 3 the mutant θ̂ earns the same as θ̊ against all incumbents of level nθ̊. By 3

and 4, (and the assumption that θ̊ deos not play efficiently against itself) the mutant θ̂ earns strictly more than

θ̊ against θ̂. By 5 the mutant θ̂ earns weakly more than θ̊ against all incumbents of higher cognitive level. In

total average fitness earned by θ̂ is strictly higher than that of θ̊, against a population who follows
(

µ̃, b̃
)

. This

implies that µ′ is a strictly better reply against µ∗ in the population game Γ(µ̃,b̃). Thus, µ∗ is not a symmetric

Nash equilibrium, and therefore it is not an NSS of Γ(µ̃,b̃), which implies that that µ∗ is not an NSC.

B Variant with Uniform Deception

In this section we describe how to adapt our model in a way that requires players to use the same mixed action in

their deception efforts towards all opponents with lower cognitive levels. We implement this change by replacing

the definition of configuration with a new notion of configuration with uniform deception.
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Definition 18. A configuration with uniform deception is a pair (µ, b) where µ ∈ ∆ (U) is a type distribution,

and b : C (µ) × C (µ) −→ ∆ (A) is a behavioural policy such that

1. For each type θ ∈ C (µ) , there exists σ̃ (θ) that satisfies

σ̃ (θ) ∈ arg max
σ∈∆(A)





∑

θ′∈C(µ), nθ′ <nθ

µ (θ′) · max
σ′∈BRu(σ)

uθ (σ, σ′)



 , and

2. For each θ, θ′ ∈ C (µ); bθ (θ′) = σ̃ (θ) and

nθ = nθ′ =⇒ (bθ (θ′) , b′
θ (θ)) ∈ NE (θ, θ′) , and

nθ > nθ′ =⇒ bθ′ (θ) ∈ BRuθ′
(σ̃ (θ)) .

We interpret σ̃ (θ) as the strategy that lower levels are deceived into believing is being played by type θ, and

we interpret bθ (θ′) as the strategy of type θ when being matched with type θ′.

We restrict our definition of a neutrally stable configuration to a configuration with uniform deceptions:

Definition 19. A configuration (µ, b) is a neutrally stable configuration (NSC) with uniform deception, if for

every µ′ ∈ ∆ (Θ), there is some ε̄ ∈ (0, 1) such that if
(

µ̃, b̃
)

, where µ̃ = (1 − ε) · µ + ε · µ′, is a focal configuration

with uniform deceptions, then µ is an NSS in the type game Γ(µ̃,b̃).

An analogous change can be made to the setup of interdependent preferences. All other details of the model

are unchanged. It is relatively straightforward to see that all our results hold also in this setup of uniform

deceptions, with minor adaptations to the proofs.

C Constructions of Heterogeneous NSCs in Examples

The first subsection presents a lemma on stable heterogeneous populations, which will later be used to construct

NSCs in the Rock-Paper-Scissors and Hawk-Dove games, with type-neutral and type-interdependent preferences.

C.1 A Useful Lemma on Stable Heterogeneous Populations

Consider a configuration (µ, b), consisting of a type distribution with (finite) support C (µ) ⊆ {(u, n)}∞
n=1, and

behaviour policies such that

π (bθ (θ′) , bθ′ (θ)) =











t if nθ > nθ′

w if nθ = nθ′

s if nθ < nθ′

. (3)

Thus t is the payoff that a player of type θ earns when deceiving an opponent of type θ′, and s is the payoff earned

by the deceived party. When two individuals of the same type meet they earn w. Our first lemma concerns the

type game Γ(µ,b) that is induced by a configuration (µ, b), such that C (µ) ⊆ {(u, n)}∞
n=1 and with behaviour

policies given by (3). Although we have normalised k1 = 0 in the main text, we do not omit reference to k1 in

what follows. This is done to simplify the proofs.

Lemma 2. Suppose t ≥ w ≥ s. Suppose that there is an N such that

kN − k1 ≤ t − s < kN+1 − k1, (4)
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and suppose that

t − w > kn+1 − kn for all n ≤ N . (5)

Consider the type game Γ(µ,b) induced by a configuration (µ, b) with a type distribution such that C (µ) ⊆

{(u, n)}∞
n=1, and with behaviour policies given by (3).

1. If 2w < s + t then Γ(µ,b) has a unique ESS µ∗ ∈ ∆ (C (µ)), which is mixed, i.e. C (µ∗) > 1, and in which

no type above N is present, i.e. C (µ∗) ⊆ {(u, n)}N
n=1.

2. If 2w = s + t then Γ(µ,b) has an NSS µ∗ ∈ ∆ (C (µ)), which is mixed, i.e. C (µ∗) > 1, and in which no type

above N is present, i.e. C (µ∗) ⊆ {(u, n)}N
n=1.

3. If 2w > s + t then Γ(µ,b), admits no NSS and hence no ESS.

The rest of this subsection is devoted to proving this result.

First note that that type (u, N + 1) earns strictly less than (u, 1) at all population states, and (u, N) earns

at least as much as (u, 1) at least at some population state. This immediately follows from s ≤ w ≤ t and

t − kN+1 < s − k1 and s − k1 ≤ t − kN . For this reason it is sufficient to consider the type distributions with

support in {(u, n)}N
n=1. The payoffs for a type game with all these types present are

(u, 1) (u, 2) (u, 3) . . . (u, N − 1) (u, N)

(u, 1) w − k1 s − k1 s − k1 . . . s − k1 s − k1

(u, 2) t − k2 w − k2 s − k2 . . . s − k2 s − k2

(u, 3) t − k3 t − k3 w − k3 . . . s − k3 s − k3

...
...

...
...

. . .
...

...

(u, N − 1) t − kN−1 t − kN−1 t − kN−1 . . . w − kN−1 s − kN−1

(u, N) t − kN t − kN t − kN . . . t − kN w − kN

,

or in matrix form

A =























w − k1 s − k1 s − k1 . . . s − k1 s − k1

t − k2 w − k2 s − k2 . . . s − k2 s − k2

t − k3 t − k3 w − k3 . . . s − k3 s − k3

...
...

...
. . .

...
...

t − kN−1 t − kN−1 t − kN−1 . . . w − kN−1 s − kN−1

t − kN t − kN t − kN . . . t − kN w − kN























.

Inspecting the matrix A we make the following observation:

Claim 3. Consider the game with payoff matrix A. Suppose (5) holds.

1. (u, n + 1) is the unique best response to n for all n ∈ {1, .., N − 2}.

(a) If t − kN > s − k1 then (u, N) is the unique best reply to (u, N − 1).

(b) If t − kN = s − k1 then (u, N) and (u, 1) are the only two best replies to (u, N − 1).

(c) (u, 1) is the unique best response to (u, N).

Proof. Condition (5) implies that t − kN+1 > w − kN , and the definition of N implies t − kN+1 < s − k1. Taken

together this implies that w − kN < s − k1, which means that (u, 1) is the unique best response to (u, N).
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The definition of N entails t − kN ≥ s − k1. If t − kN > s − k1 then (u, N) is the unique best reply to

(u, N − 1). If t − kN = s − k1 then (u, N) and (u, 1) are the only two best replies to (u, N − 1). Furthermore,

(5) implies that (u, n + 1) is the unique best response to (u, n) for all n ∈ {1, .., N − 2}.

It is an immediate consequence of the above lemma that all Nash equilibria of A are mixed; i.e. that they

have more than one type in their support. Next, we examine the stability properties of such equilibria. As

discussed in the proof of Theorem 3, it is well-known that if A is negative definite (semi-definite) with respect

to the tangent space, i.e. if v · Av < 0 for all v ∈ R
d
0 = {v ∈ R

d :
∑d

i=1 vi = 0}, v 6= 0, then A admits a unique

ESS (but not necessarily a unique NSS). Moreover, the set of Nash equilibria coincides with the set of NSS and

constitutes a nonempty convex subset of the simplex (Hofbauer & Sandholm 2009, Theorem 3.2).

One can show:

Claim 4. If 2w ≥ (≤) s + t then A is positive (negative) semi-definite w.r.t. the tangent space.

Proof. Let

K =













−k1 −k1 . . . −k1

−k2 −k2 . . . −k2

...
...

. . .
...

−kN −kN . . . −kN













, B =













w s . . . s

t w . . . s
...

...
. . .

...

t t . . . w













,

so that

A = B + K.

Note that v′Kv = 0 for all v ∈ R
N
0 , v 6= 0, so that v′Av < 0 for all v ∈ R

N
0 , v 6= 0, if and only if v′Bv < 0 for

all v ∈ R
N
0 , v 6= 0. Moreover, note that v′Bv < 0 for all v ∈ R

N
0 , v 6= 0, if and only if v′B̄v < 0 for all v ∈ R

N
0 ,

v 6= 0, where

B̄ =
1

2

(

B + BT
)

.

One can transform the problem to one of checking negative definiteness with respect to R
N−1 rather than the

tangent space R
N
0 ; see, e.g. Weissing (1991). This is done with the N × (N − 1) matrix P defined by

pij =











1 if n = jand n, j < N

0 if n 6= jand n, j < N

−1 if n = N

.

We have

P′B̄P =

(

w −
1

2
(s + t)

)

(I + 11′) ,

where 1 is an N − 1-dimensional vector with all entries equal to 1, and I is the identity matrix. The matrix

P′B̄P has one eigenvalue (of multiplicity N − 1) that is equal to 2w − (s + t). Finally, note that this eigenvalue

is non-negative if and only if 2w ≥ (s + t).

It follows that if 2w ≤ s + t then the game with payoff matrix A admits an NSS. If 2w > s + t then the game

does not have a mixed NSS. We are now able to prove Lemma 2.

1. If 2w < s+t then by Lemma 4 A is negative definite w.r.t. the tangent space, implying that it has a unique

ESS. Lemma 3 implies that there can be no pure Nash equilibria (and hence no pure ESS). Thus A has

a unique Nash equilibrium, which is mixed. As observed earlier, type (u, N + 1) (and higher types) earn

strictly less than (θ, 1) for all population states, which implies that that this unique equilibrium remains

an ESS also when they are included in the set of feasible types.
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2. If 2w = s + t then A is both positive and negative semi-definite w.r.t. the tangent space. In this case

A does not have an ESS but it does have a set of NSSs, all of which are Nash equilibria. Moreover, we

know that A has no pure NE, and so all NSS are mixed. Again, type (u, N + 1) (and higher types) can be

ignored because they always earn strictly less than (θ, 1).

3. If 2w < s + t then A is positive definite w.r.t. the tangent space, implying that it has no NSC.

C.2 Proof of Proposition 3: Construction of Equilibrium in Rock-Paper-Scissors

Game

Formally the behaviour of the incumbent types is as follows:

b∗
θ (θ′) =











(0, 1, 0) if nθ > nθ′

(

1
3 , 1

3 , 1
3

)

if nθ = nθ′

(1, 0, 0) if nθ < nθ′

.

Under the described behavioural policy we have

π (bθ (θ′) , bθ′ (θ)) =











1 if nθ > nθ′

0 if nθ = nθ′

−1 if nθ < nθ′

.

Start by restricting attention to the set of types {(uπ, n)}∞
n=1. That is, for the moment we use {(uπ, n)}∞

n=1

instead of Θ as the set of all types. All definitions can be amended accordingly. Lemma 2 in Appendix B implies

that there is an NSC (µ∗, b∗), such that C (µ∗) ⊆ {(uπ, n)}N
n=1, and µ∗ is mixed. Lemma 2 establishes that the

type game between the types {(uπ, n)}N
n=1 behaves much like an N -player version of a Hawk-Dove game: it has a

unique symmetric equilibrium that is in mixed strategies and that is neutrally or evolutionarily stable, depending

on whether the payoff matrix of the type game is negative semi-definite, or negative definite, with respect to the

tangent space.

It remains to show that types not in {(uπ, n)}∞
n=1 are unable to invade. Suppose a mutant of type (u′, n′)

enters. Incumbents of level n > n′ will give the mutant a belief that induces the mutant to play some action a′

and then play action a′ + 1 mod 3, which is the incumbents’ best response to a′. Thus, against incumbents of

level n > n′ the mutant earns −1. Against incumbents of level n < n′, the mutant will earn at most 1. Against

incumbents of level n′ the mutant earns at most 0. Against itself the mutant (or a group of mutants for that

matter) will earn 0. Thus any mutant of level n′ earns weakly less than the incumbents of level n′, in any focal

post-entry configuration.

Remark 5. Our analysis is similar to that of Conlisk (2001). Like us, he works with a hierarchy of cognitive types

(though in his case it is fixed and finite), where higher cognitive types carry higher cognitive costs. He stipulates

that when a high type meets a low type the high type gets 1 and the low type gets −1. If two equals meet both

get 0. He shows that there is a neutrally stable equilibrium of this game between types (using somewhat different

arguments than we do), and explores comparative static effects of changing costs. However, unlike in our model,

in Conlisk’s model all individuals have the same materialistic preferences and the payoffs earned from deception

are not derived from an underlying game.
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C.3 Proof of Proposition 8: Construction of Equilibrium in Hawk-Dove and Type-

Interdependent Preferences

Formally, the behaviour of an incumbent θ ∈ C (µ∗) facing another incumbent θ′ ∈ C (µ∗) is given by

b∗
θ (θ′) =

{

D if nθ ≥ nθ′

H if nθ < nθ′

. (6)

Under the described behavioural policy we have, for θ, θ′ ∈ {(un, n)}∞
n=1,

π (bθ (θ′) , bθ′ (θ)) =











1 + g if nθ > nθ′

1 if nθ = nθ′

1 − l if nθ < nθ′

.

Start by restricting attention to the set of types {(un, n)}∞
n=1. That is, for the moment, let {(un, n)}∞

n=1, instead

of ΘID, be the set of all types. All definitions can be amended accordingly. Under this restriction on the set

of types, the desired results (i)–(iii) follow from Lemma 2 in Appendix B. For example, to see that Lemma 2

implies part (i) for the restricted type set, note that g > l implies that 2w < t + s, and g > kn+1 − kn implies

that t − w > kn+1 − kn, in the language of Lemma 2. The arguments for (ii) and (iii) are analogous.

Next, allow for a larger set of types ΘID, such that {(un, n)}∞
n=1 ⊆ ΘID. The fact that part (iii) of Proposition

8 holds for the restricted set of types implies that it also holds for any larger set of types. It remains to prove

parts (i) and (ii) for the full set of types. We prove only part (i). The proof of part (ii) is very similar.

Consider a population consisting exclusively of types from the set {(un, n)}∞
n=1, and assume that the type

distribution of these incumbents, together with the behaviour policy (6), would have constituted an ESC if the

type set had been restricted to {(un, n)}∞
n=1. Suppose a mutant of type (u′, n′) /∈ {(un, n)}∞

n=1 enters. If it is

the case that type
(

un′

, n′
)

is not among the incumbents, then by the definition of an ESC, it must earn weakly

less against the incumbents than what the incumbents earn against each other. Thus it is sufficient to show that

the mutant of type (u′, n′) earns less than what a mutant or incumbent of the same cognitive level, i.e. type
(

un′

, n′
)

, would earn.

Against an incumbent (un, n) of level n > n′ a mutant of type (u′, n′) earns at most 1 − l, and type
(

un′

, n′
)

earns 1 − l. Against an incumbent (un, n) of level n = n′ a mutant of type (u′, n′) earns at most 1 − l, and type
(

un′

, n′
)

earns 1. Against incumbents (un, n) of level n < n′ a mutant of type (u′, n′) earns at most 1 + g, and

type
(

un′

, n′
)

earns 1 + g. Thus in all cases, a mutant (u′, n′) /∈ {(un, n)}∞
n=1 earns strictly less than what a

mutant or incumbent of type
(

un′

, n′
)

earns. Hence if mutants are sufficiently rare they will earn strictly less

than incumbents in any focal post-entry configuration.
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