

Housing finance and financial stability: evidence from Malaysia, Thailand and Singapore

Hanifa, Mohamed Hisham and Masih, Mansur

INCEIF, Malaysia, INCEIF, Malaysia

20 August 2013

Online at https://mpra.ub.uni-muenchen.de/63022/ MPRA Paper No. 63022, posted 21 Mar 2015 06:11 UTC

Housing finance and financial stability: evidence from Malaysia, Thailand and Singapore

Mohamed Hisham Hanifa¹ and Mansur Masih²

Abstract

This paper discusses current housing finance practices in three emerging economies such as, Malaysia, Thailand and Singapore, as well as the impact of those practices on financial stability. National authorities and policymakers may find this analysis helpful as they reassess the structure and health of their housing finance systems, with particular attention given to those factors that have contributed to a stable housing finance system. The methodology used to determine the factors was panel cointegration and dynamic OLS. The country-specific housing finance systems vary significantly and have sometimes been shaped by pivotal historic events. Today's housing finance systems are determined by a range of factors, including the products offered to investors (floating or fixed interest rates over various maturities); the use of prepayment penalties; funding (deposits versus capital markets); the degree of lender recourse to defaulted borrowers' other assets and income; and government participation, including tax breaks. While different systems can work well to provide stable housing finance, a number of best practices emanate from the discussion and empirical analyses. They are enhanced underwriting and supervision; better calibrated government participation; and betteraligned incentives in capital-market mortgage funding. The paper concludes with a number of policy recommendations to encourage more stable housing finance system.

¹ Mohamed Hisham Hanifa, Ph.D. Student in Islamic finance at INCEIF, Lorong Universiti A, 59100 Kuala Lumpur, Malaysia.

² Corresponding author, Professor of Finance and Econometrics, INCEIF, Lorong Universiti A, 59100 Kuala Lumpur, Malaysia. Phone: +60173841464 Email: mansurmasih@inceif.org

Housing finance and financial stability: evidence from Malaysia, Thailand and Singapore

Introduction

In many countries, house price swings have been associated with financial instability. There are several examples of house price booms and busts over the past two decades, including in Sweden in the early 1990s, and in Ireland, Spain, the United Kingdom, and the United States during the recent crisis (subprime). These house price gyrations can carry a significant cost to the economy, reflecting the importance of housing in the construction industry, household budgets, and overall wealth. Still, the degree to which such house price boom-bust episodes have led to more widespread financial instability differs between countries, in part because of important differences in countries' housing finance systems, including the role of government in the housing market. The recent financial crisis was triggered by problems in the U.S. domestic subprime mortgage markets, where cumulative loss rates of securitized subprime loan portfolios exceeded 20 percent by end-2010.

In the wake of the crisis, U.S. housing defaults have accelerated, reaching their highest level since the 1930s, with 11.1 million residential properties (or 23.1 percent of the total) having negative equity mortgages (that is, where the outstanding loan balance is greater than the property value) as of end-2010 (CoreLogic, 2011).

The purpose of this paper is to bring theoretical concepts and empirical evidence to bear on housing finance systems in a number of representative in emerging economies with those geographically connected i.e, Malaysia, Thailand and Singapore, in order to identify factors conducive to a stable housing finance system and financial stability more generally.

In particular, this paper will examine those aspects of housing finance systems that have contributed to financial instability, through empirical analyses.

In doing so, the paper will not focus on other factors affecting financial stability, nor on other aspects of housing finance such as measures to promote social housing. The concept of housing finance will be interpreted broadly, encompassing not only specific product types and lender structures but also the degree of government participation in a well-functioning mortgage market. The paper concludes with a number of policy recommendations to encourage more stable housing finance systems.

Literature review : Housing booms and busts—theory and stylized facts

Before examining the effects of housing finance on financial stability, it is useful to review why housing markets have been implicated in many episodes of financial instability. Housing booms and busts are often associated with systemic financial stress.

The recent experiences in advance economies, the United States, Spain, Ireland, and, to a lesser extent, the United Kingdom provide fresh examples of unsustainable housing booms that have turned into busts, with sizable output losses and banking crises in some cases³. Reinhart and Rogoff (2009) show that the six major historical episodes of banking crises in advanced economies since the mid-1970s were all associated with a housing bust. They document that this pattern can also be found in many emerging market crises, including the Asian financial crisis of 1997–98, with the magnitude of house price declines being broadly similar in both advanced and emerging market countries⁴.

Given that housing busts weaken household and financial sector balance sheets, housing-linked recessions are, on average, more severe than recessions that are not accompanied by housing busts. Based on1960–2007 cross-country data from the Organization for Economic Cooperation and Development(OECD), Claessens, Kose, and Terrones (2008) show that output losses in recessions accompanied by housing busts are two to three times greater than they would otherwise be.

Moreover, housing busts tend to prolong recessions (averaging 18 quarters, compared with four quarters for the typical recession), as falling house prices act as a further drag on household consumption and residential investment while putting financial intermediary balance sheets under stress. Since house purchases typically involve household borrowing, house prices are likely to be strongly driven by credit conditions and household leverage⁵

An influential set of studies (Stein, 1995; Kiyotaki and Moore, 1997) posit that households can borrow only a fixed multiple of their down payment. This assumption of a fixed "leverage ratio" implies an "accelerator" mechanism, where a positive or negative shock to income (or net worth) is amplified by an expansion, or contraction, in borrowing capacity, in turn influencing house prices. Positive shocks to household income translate into larger house price increases where prevailing leverage ratios are higher (e.g., in the

⁴Stresses on the financial system can of course arise from sources other than a housing bust, including sovereign and currency crises, a general deterioration of economic prospects, and regional contagion.

³See Crowe and others (2011a), in particular their Figure 3.

⁵As documented in a large body of previous empirical literature, in addition to credit, house prices are strongly driven by fundamentals such as income and population growth. Parts of the theoretical literature stress nonfinancial frictions, such as overly optimistic (adaptive) expectations on both the demand and supply side as additional forces that can drive prices away from fundamentals (Shiller, 2008; McCue and Belsky, 2007;Burnside, Eichenbaum, and Rebelo, 2011).

United Kingdom), and smaller increases in countries where such leverage ratios are lower (e.g., in Italy)⁶.

Leverage—and lending standards more broadly—can evolve in a procyclical fashion, resulting in powerful swings in house prices (Geanakoplos, 2010). Relaxing lending standards in good times drives up both credit and house price growth while a tightening of standards puts downward pressure on house prices. A number of studies of the recent housing boom in the United States show that rapid growth in credit to prime and subprime borrowers was associated with a sharp deterioration in lending standards that in turn fueled house price appreciation⁷

Global housing finance landscape

Housing finance systems differ considerably across countries along a number of dimensions, including product diversity, type of lender, mortgage funding, and the degree of government participation. Some of today's systems are the result of accident or history. Examples are the launch of the current Danish mortgage lending system after the great fire of Copenhagen in 1795, which spurred the need for an organized mortgage credit market to quickly provide funding to build a large number of new buildings and the German *Pfandbriefe* (covered bond) system, which dates to 1769 and was heavily influenced by the aftermath of the Seven Years' War. In response to the latest crisis, a number of countries have also taken steps to further strengthen their mortgage market regulations especially for the three country under study (Table 1), house financing system (Table 2) and Mortgage Market Characteristic (Table3). Different application of house financing system and mortgage market characteristic are presume to affect the house price differently.

⁶Existing evidence confirms the presence of such a mechanism both within the United States and across the OECD (Lamont and Stein, 1999; Almeida, Campello, and Liu, 2005).

⁷See Favara and Imbs (2009); Dell'Ariccia, Igan, and Laeven (2008); Geanakoplos (2010); and Mian and Sufi (2009a). U.S. subprime mortgage originations almost tripled over 2000–06, reaching \$600 billion or 20 percent of all mortgage origination

Table 1. Crisis Measures

Country	Policy Year	Description
Malaysia	March 2009 to November	Mortgage interest tax relief (up to a limit)
	2010	for 3 years and deferred loan payments for
		retrenched home-owners for 1 year as
		crisis-stimulus, capital gains tax reinstated
		for properties sold within 5 years; LTV on
		third-homes limited to 70 percent
Thailand	2009 to November 2010	LTV reduced from 70 to 80 percent; risk
		weights on LTV higher than 80% increased
		to 75 percent; relaxation of LTV limits for
		certain types of dwellings
Singapore	February 2010 to January	Seller's stamp duty on property sold
	2011	within a year introduced; LTV limit
		reduced from 90 to 80 percent (60 percent
		for second and subsequent mortgages
		granted by FIs regulated by the MAS;
		increasing housing grants to lower-income
		households; lengthening the minimum
		occupancy period for nonsubsidized flats;
		raising the seller's stamp duty rates to 16
		percent if sold within a year, 4 percent if
		sold in the 4 th year.

LTV is Loan-to-value (LTV) ratios

Table 2:House Financing System

			Mortgage Funding		
Economy	Main lenders	Deposits ("fx" if foreign currency funding is used and foreign currency loans granted)	Covered Bonds/ Residential Loans Ratio (percent)	Residential Mortgage-Backe Securities/Residential Loan Ratio (percent)	d 5 Notes
Malaysia	Banks and Treasury Housing Loan Division	Some plus refinancing through Cagamas plus unsecured debt		4.0	Treasury Housing Loan Division (12 percent) which provides (subsidized) housing loans to government employees only; Employees' Provident Fund, early with/drawal for house ownership; (agamas are government-promoted secondary mortgage liquidity facility, are not involved in origination but only in refinancing, Loans sold to Cagamas are not off balance sheet. Malaysia has issued staff housing loan receivables via Cagamas, to further develop the asset backed securities market.
Thailand	Banks and housing finance agencies	Mainly; also government- backed bonds	Low		State-owned financial institution has the largest share.
Singapore	Banks and Housing Development Board				State-owned Housing Development Board has the largest share.

Sources: European Mortgage Federation; Housing Finance Network; Merrill Lynch Guide to Emerging Mortgage and Consumer-Credit Markets, Vol. 1. Note: LTV = Ioan-to-value ratio; AHML = Agency for Housing Mortgage Lending. ¹The Czech Republic has been reclassified as an advanced economy; It was an emerging economy during the pre-crisis years.

Table 3: Mortgage Market Characteristic

			Gove	ernment Supp	port			Interest Rate Type		Loan-to-Val	ue Ratio (LTV)	
Econor	Subsidies to First-Time Buyers Ny Up Front	Subsidies to Buyers through Savings Account Contributions	Subsidies to Selected Groups, Low-Income	Provident Funds Earl Withdrawa for Housin Purposes	Housing Finance Funds y Govt. Agency I Providing g Guarantees, Loans	5, Tax Deductibility of Mortgage Interest	Capital Gains Tax Deductibility	Majority of the Contracts	Maximum Allowed with Mortgage Insurance	Average	Observed Maximum ¹	For Covered Bonds
Malaysia		go e	Yes, to overnment mployees	Yes	Yes, through Cagamas, but without formal govt. support			Variable			80	90
Singapore		Ye De	es, through Housing evelopment Board	Yes	Yes (loan origination)	Yes		Variable		<70	80	80–90
Thailand	Yes, tax breaks				Yes	Yes, up to a maximum		Fixed/Variable			90-100	70—90 (100 by Government Housing Bank)

Sources: European Mortgage Federation; Housing Finance Network; Merrill Lynch Guide to Emerging Mortgage and Consumer-Credit Markets, Vol. 1; Warnock and Warnock Sources: European Mortgage rederation; Housing Finance Network; Mernin Lynch Guide to Energing Mortgage and Consumer Geam (2008); Crowe and others (2011b). Note: MBS = mortgage-backed securities. ¹The observed maximum refers not only to published maximum LTV ratio, but also to anecdotal evidence from various sources cited. ²The Czech Republic has been reclassified as an advanced economy; it was an emerging economy during the pre-crisis years.

Methodology

The panel unit roots test

Investigations into the unit root in panel data have recently attracted a lot of attention. Abuaf and Jorion (1990) point out that the power of unit root tests may be increased by exploiting cross-sectional information. LL (1993)⁸ proposes a panel-based ADF test that restricts parameters ci by keeping them identical across cross-sectional regions as follows:

$$\Delta y_{it} = \alpha_i + \gamma_i y_{it-1} + \sum_{j=1}^k \alpha_j \Delta y_{it-j} + e_{it}, \tag{1}$$

where t =1,..., T time periods and i =1,...N members of the panel. LL tests the null hypothesis of ci =c =0 for all i, against the alternate of c1=c2. . .=c b0 for all i, with the test based on statistics tc = $c^/s.e.(c^{-})$. One drawback is that c is restricted by being kept identical across regions under both the null and alternative hypotheses.

⁸This was finally published as Levine et al. (2002).

For the above reason, IPS (1997) relax the assumption of the identical first-order autoregressive coefficients of the LL test and allow c to vary across regions under the alternative hypothesis. IPS test the null hypothesis of ci =0 for all i, against the alternate of ci b0 for all i. The IPS test is based on the mean-group approach, which uses the average of the tci statistics to perform the following

$$\bar{Z} = \sqrt{N}(\bar{t} - E(\bar{t})) / \sqrt{\operatorname{Var}(\bar{t})},$$
(2)

1 in 1

where $\bar{t}=(1/N)\sum_{i=1}^{N} t_{\gamma_i}$, the terms $E(\bar{t})$ and $Var(\bar{t})$ are, respectively, the mean and variance of each t_{γ_i} statistic, and they are generated by simulations and are tabulated in IPS (1997). The \bar{Z} converges to a standard normal distribution. Based on Monte Carlo experiment results, IPS demonstrate that their test has more favorable finite sample properties than the LL test. Hadri (2000) argues differently that the null should be reversed to be the stationary hypothesis in order to have a stronger power test. Hadri's (2000) Lagrange multiplier (LM) statistic can be written as

$$L\hat{M} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\frac{1}{T^2} \sum_{t=1}^{T} S_{it}^2}{\hat{\sigma}_{\varepsilon}^2} \right), \quad S_{it} = \sum_{j=1}^{t} \hat{\varepsilon}_{ij},$$
(3)

where $\hat{\sigma}_{\varepsilon}^2$ is the consistent Newey and West (1987) estimate of the long-run variance of disturbance terms.

The panel cointegration tests

Pedroni (1999) considers the following time series panel regression

$$y_{it} = \alpha_{it} + \delta_{it}t + X_i\beta_i + e_{it},\tag{4}$$

where y_{it} and X_{it} are the observable variables with dimension of $(N^*T) \times 1$ and $(N^*T) \times m$, respectively. He develops asymptotic and finite-sample properties of testing statistics to examine the null hypothesis of non-cointegration in the panel. The tests allow for heterogeneity among individual members of the panel, including heterogeneity in both the long-run cointegrating vectors and in the dynamics, since there is no reason to believe that all parameters are the same across countries.

Two types of tests are suggested by Pedroni. The first type is based on the within dimension approach, which includes four statistics. They are panel m-statistic, panel q statistic, panel PP-statistic, and panel ADF-statistic. These statistics pool the autoregressive coefficients across different members for the unit root tests on the estimated residuals.

The second test by Pedroni is based on the between-dimension approach, which includes three statistics. They are group q-statistic, group PP-statistic, and group ADF-statistic. These statistics are based on estimators that simply average the individually estimated coefficients for each member. Following Pedroni (1999), the heterogeneous panel and heterogeneous group mean panel cointegration statistics are calculated as follows.

Panel v-statistic:

$$Z_{v} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{L}_{11i}^{-2} \hat{e}_{it-1}^{2}\right)^{-1}$$

Panel ρ -statistic:

$$Z_{
ho} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{L}_{11i}^{-2} \hat{e}_{it-1}^{2}
ight)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{L}_{11i}^{-2} \Big(\hat{e}_{it-1} \Delta \hat{e}_{it} - \hat{\lambda}_i \Big)$$

Panel PP-statistic:

$$Z_{t} = \left(\hat{\sigma}^{2} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{L}_{11i}^{-2} \hat{e}_{it-1}^{2}\right)^{-1/2} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{L}_{11i}^{-2} \left(\hat{e}_{it-1} \Delta \hat{e}_{it} - \hat{\lambda}_{i}\right)$$

Panel ADF-statistic:

$$Z_t^* = \left(\hat{s}^{*2} \sum_{i=1}^N \sum_{t=1}^T \hat{L}_{11i}^{-2} \hat{e}_{it-1}^{*2}\right)^{-1/2} \sum_{i=1}^N \sum_{t=1}^T \hat{L}_{11i}^{-2} \hat{e}_{it-1}^* \Delta \hat{e}_{it}^*$$

Group ρ -statistic:

$$ilde{Z}_{
ho} = \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \hat{e}_{it-1}^2
ight)^{-1} \sum_{t=1}^{T} \left(\hat{e}_{it-1} \Delta \hat{e}_{it} - \hat{\lambda}_i
ight)$$

Group PP-statistic:

$$\tilde{Z}_t = \sum_{i=1}^N \left(\hat{\sigma}^2 \sum_{t=1}^T \hat{e}_{it-1}^2 \right)^{-1/2} \sum_{t=1}^T \left(\hat{e}_{it-1} \Delta \hat{e}_{it} - \hat{\lambda}_i \right)$$

Group ADF-statistic:

$$\tilde{Z}_{t}^{*} = \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \hat{s}_{i}^{2} \hat{e}_{it-1}^{*2} \right)^{-1/2} \sum_{t=1}^{T} \left(\hat{e}_{it-1}^{*} \Delta \hat{e}_{it}^{*} \right)$$

Here, \hat{e}_{it} is the estimated residual from Eq. (4) and \hat{L}_{11i}^2 is the estimated long-run covariance matrix for $\Delta \hat{e}_{it}$. Similarly, $\hat{\sigma}_i^2$ and \hat{s}_i^2 (\hat{s}_i^{*2}) are, respectively, the long-run and contemporaneous variances for individual *i*. The other terms are properly defined in Pedroni (1999) with the appropriate lag length determined by the Newey–West method. All seven tests are distributed as being standard normal asymptotically. This requires a standardisation based on the moments of the underlying Brownian motion function. The panel *v*-statistic is a one-sided test where large positive values reject the null of no cointegration. The remaining statistics diverge to negative infinitely, which means that large negative values reject the null. The critical values are also tabulated by Pedroni

In the presence of unit root variables, the effect of superconsistency may not dominate the endogeneity effect of the regressors if OLS is employed. Pedroni (2000) shows how FMOLS and DOLS can be modified to make an inference in being cointegrated with the heterogeneous dynamic. In the FMOLS and DOLS setting, non-parametric techniques are exploited to transform the residuals from the cointegration regression and can get rid of nuisance parameters.

Empirical investigation

Our study uses quarterly time series for the 3 developing countries listed in Table below. Quarterly data for House Price Index (1994=100) of respective countries are obtained from statistics department through Datastream. The unit is expressed in index. The empirical period depends on the availability of data, where the time period used is 2001 – 2010 which covers two episodes: the 2004–07 global liquidity expansion (the "boom"), and the 2007–09 crisis period (the "bust").

Step 1: Unit Root

LLC as a pooled DF or ADF comes as a solution which can be used across different sections in the panel.

Limitation from assumption:

1.LLC assumes that the individual processes are cross-sectionally independent. Therefore, this test might neglect the significant distortions for the test due to correlations between groups.

2. The coefficient of the lagged Yi (autoregressive coefficient) is restricted to be homogenous across all units of the panel.

Hadri

1. Hadri maintains the two assumptions on LLC.

2.Hadri differs from other tests. It has a null of stationary rather than non-stationary. In many cases, the test, with non-stationary as a null, does not result very powerful against relevant alternative hypothesis and fails to reject the null hypothesis for many economic series. Hence, Hadri test addresses this problem.

IPS, Im. Pesaran and Shin

1. The IPS maintains the assumption number 1 on LLC.

2.The IPS relaxes the assumption number 2 on LLC. IPS extends LLC by allowing heterogeneity on the coefficient of the lagged Yi (autoregressive coefficient). It allows different specifications of the parametric values, the residual variance and the lag lengths.

3. The IPS put the restrictive assumption that T should be the same for all cross-sections which requires a balanced panel.

In the following, we will use only IPS and Hadri tests because of the two limitations of LLC.

1 – Unit root

a- Using LLC

H0: Non Stationary

Levin, Lin & Chu Unit Root Test on LPRO? HPI? INT? LGDP?

 Null Hypothesis: Unit root (common unit root process)

 Series: LPRO1, LPRO3, LPRO3, HPI1, HPI2, HPI3, INT1, INT2, INT3, LGDP1, LGDP2, LGDP3

 Date: 05/08/11

 Sample: 140

 Exogenous variables: Individual effects

 Automatic selection of maximum lags

 Automatic selection of maximum lags

 Newey-West automatic bandwidth selection and Bartlett kernel

 Total number of observations: 450

 Cross-sections included; 12

 Method
 Statistic

 Levin, Lin & Chu t*
 2.16830

 9.9849

Intermediate results on LPRO? HPI? INT? LGDP?

-	Series	2nd Stage Coefficient	Variance of Reg	HAC of Dep.	Lag	Max Lag	Band- width	Obs
_	LPR01	-0.30527	0.0568	0.0161	0	9	9.0	39
	LPRO2	-0.18811	0.0038	0.0075	1	9	4.0	38
	LPR03	-0.08610	0.0034	0.0063	1	9	1.0	38
	HPI1	0.03111	1.4928	1.4106	1	9	3.0	38
	HPI2	-0.08168	9.5185	8.2117	0	9	1.0	39
	HPI3	-0.10779	8.7769	83.479	8	9	3.0	31
	INT1	-0.55010	0.7828	0.2554	0	9	20.0	39
	INT2	-0.44112	2.2135	0.8696	0	9	8.0	39
	INT3	-0.30951	1.2000	1.0306	0	9	1.0	39
	LGDP1	-0.03692	5.E-05	3.E-05	6	9	12.0	33
	LGDP2	-0.02868	5.E-05	7.E-05	0	9	2.0	39
-	LGDP3	-0.01214	0.0001	0.0255	1	9	0.0	38
1.0		Coefficient	t-Stat	SE Reg	mu*	sig*		Obs
	Pooled	-0.02781	-2.818	1.064	-0.539	0.860	8	450

The above result shows that all series are non-stationary

b- Using IPS

<u> </u>			~	C 2	-				
									Im, Pesaran and Shin Unit Root Test on LPRO? HPI? INT? LGDP?
	Auli Hypothesi Series: LPRO1 LGDP1, LU Sample: 1 40 Exogenous var sutomatic sele Vutomatic sele Total number o Cross-section:	s: Unit root (ir , LPRO2, LPP 3DP2, LGDP3 Time: 22:24 iables: Individ ction of maxin ength selection of observation s included: 12	ndividual (RO3, HPI1 3 Jual effect mum lags on based s: 450 2	unit root , HPI2, H ts on SIC:	process) HPI3, INT O to 8) 11, INT:	2, INT3,		
. N	lethod					Statisti	5	Prob.**	
Ī	m, Pesaran ar	nd Shin W-sta	ıt			1.2614	7	0.1036	
-	* Probabilities	are compute	daeeum	ina seva	notic no	moality			
	Fibabilities	are compute	u assum	ing asyn	ipolic no	manty			
1	ntermediate A	DF test result	s						
=							Mov		
-	Series	t-Stat	Prob.	Em	E(Var)	Lag	Lag	Obs	
_	LPR01	-2.6884	0.0851	-1.523	0.772	0	9	39	
	LPR02	-3.0701	0.0375	-1.520	0.809	1	9	38	
	LPR03	-1.6684	0.4388	-1.520	0.809	1	9	38	
	HPI1	1.6327	0.9993	-1.520	0.809	1	9	38	
	HPI2	-1.4707	0.5377	-1.523	0.772	0	9	39	
	HPI3	-1.3504	0.5932	-1.272	1.094	8	9	31	
	INT1	-3.8642	0.0051	-1.523	0.772	0	9	39	
	INT2	-3.2868	0.0224	-1.523	0.772	0	9	39	
	INT3	-2.7011	0.0829	-1.523	0.772	0	9	39	
	LGDP1	-1.3293	0.6041	-1.346	0.999	6	9	33	
	LGDP2	-1.3949	0.5749	-1.523	0.772	0	9	39	
-	LGDP3	-0.6261	0.8528	-1.520	0.809	1	9	38	
_	Average	-1.8182		-1.486	0.830				
_									

The above result shows that all series are non-stationary

c- ADF FISHER Unit Root

ADF Fisher Unit Root Test on LPRO? HPI? INT? LGDP?

Null Hypothesis: Unit root (individual unit root process) Series: LPRO1, LPRO2, LPRO3, HP11, HP12, HP13, INT1, INT2, INT3, LGDP1, LGDP2, LGDP3 Date: 05/08/11 Time: 22:25 Sample: 1 40 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 8 Total number of observations: 450 Cross-sections included: 12

Statistic	Prob.**
40.9835	0.0167
-1.21774	0.1117
	Statistic 40,9835 -1,21774

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results LPRO? HPI? INT? LGDP?

Series	Prob.	Lag	MaxLag	Obs
LPR01	0.0851	0	9	39
LPR02	0.0375	1	9	38
LPR03	0.4388	1	9	38
HPI1	0.9993	1	9	38
HPI2	0.5377	0	9	39
HPI3	0.5932	8	9	31
INT1	0.0051	0	9	39
INT2	0.0224	0	9	39
INT3	0.0829	0	9	39
LGDP1	0.6041	6	9	33
LGDP2	0.5749	0	9	39
LGDP3	0.8528	1	9	38

There stationary because we reject the null and accept H_1

d- FISHER PP Unit root

Null Hypothesis: U Series: LPR01, Li INT2, INT3, Li Date: 05/08/11 T Sample: 1 40 Exogenous variab Newey-West auto Total (balanced) o Cross-sections in	Unit root (indivi PRO2, LPRO3 SDP1, LGDP2 me: 22:28 les: Individual matic bandwid bservations: 4 cluded: 12	dual unit root pri , HPI1, HPI2, HF , LGDP3 effects th selection and 68	ocess) PI3, INT1, I Bartlett ke
Method		Statistic	Prob **
PP - Fisher Chi-se	quare	62.6960	0.0000
PP - Choi 7-stat		-1.07196	0.1419
** Probabilities for asymptotic C	Fisher tests a hi-square distr	are computed us	sing an r tests
** Probabilities for asymptotic Cl assume asym Intermediate Phill	Fisher tests a hi-square distr hptotic normal ips-Perron tes	ere computed us ibution. All other ity. t results LPRO?	sing an rtests · HPI? INT?
** Probabilities for asymptotic Cl assume asym Intermediate Phill Series	Fisher tests a hi-square distr hptotic normal ips-Perron tes Prob.	ere computed us ibution. All other ity. t results LPRO? Bandwidth	sing an r tests HPI? INT? Obs
** Probabilities for asymptotic Cl assume asym Intermediate Phill Series LPRO1 LPRO2	Fisher tests a hi-square distr nptotic normal ps-Perron tes Prob. 0.0982 0.1508	ere computed us ibution. All other ity. t results LPRO? Bandwidth 2.0 8.0	sing an r tests HPI? INT? Obs 39 39
** Probabilities for asymptotic Cl assume asymptotic Cl asymptotic Cl asympt	Fisher tests a ni-square distr nptotic normal ps-Perron tes Prob. 0.0982 0.1508 0.7493	tre computed us ibution. All other ity. t results LPRO? Bandwidth 2.0 8.0 0.0	sing an r tests HPI? INT? Obs 39 39 39
** Probabilities for asymptotic Cl assume asym Intermediate Phill Series LPR01 LPR02 LPR03 HPI1	Fisher tests a ni-square distr nptotic normal ips-Perron tes Prob. 0.0982 0.1508 0.7493 1.0000	are computed us ibution. All other ity: t results LPRO? Bandwidth 2.0 8.0 0.0 8.0	r tests HPI? INT? Obs 39 39 39 39
** Probabilities for asymptotic C assume asyr Intermediate Phill Series LPR01 LPR02 LPR02 LPR03 HPI1 HPI2	Fisher tests a ni-square distr nptotic normal ps-Perron tes 0.0982 0.1508 0.7493 1.0000 0.5473	rre computed us ibution. All other ity. t results LPRO? Bandwidth 2.0 8.0 0.0 8.0 2.0	r tests HPI? INT? Obs 39 39 39 39 39 39 39 39 39 39
** Probabilities for asymptotic C assume asyr Intermediate Phill Series LPR01 LPR02 LPR03 HPI1 HPI2 HPI3	Fisher tests a ni-square distr nptotic normal ps-Perron tes 0.0982 0.1508 0.7493 1.0000 0.5473 0.9991	rre computed us ibution. All other ity. t results LPRO? Bandwidth 2.0 8.0 0.0 8.0 2.0 1.0	ing an r tests HPI? INT? Obs 39 39 39 39 39 39 39 39
** Probabilities for asymptotic Cl assume asyr Intermediate Phill Series LPR01 LPR02 LPR03 HPI1 HPI2 HPI3 INT1	Fisher tests a hi-square dist nptotic normal ps-Perron tes Prob. 0.0982 0.1508 0.7493 1.0000 0.5473 0.9991 0.0045	rre computed us ibution. All other ity. t results LPRO? Bandwidth 2.0 8.0 0.0 8.0 2.0 1.0 1.0	tests HPI? INT? Obs 39 39 39 39 39 39 39 39 39 39 39
Probabilities for asymptotic Cl assume asyr Intermediate Phill <u>Series</u> LPR01 LPR02 LPR03 HPI1 HP12 HP13 INT1	Fisher tests a insquare distr nptotic normal ps-Perron tes 0.0982 0.1508 0.7493 1.0000 0.5473 0.9991 0.0045 0.0221	re computed us ibution. All other ity. t results LPRO? Bandwidth 2.0 8.0 0.0 8.0 0.0 8.0 1.0 1.0 1.0	r tests PHPI? INT? Obs 39 39 39 39 39 39 39 39 39 39
** Probabilities for asymptotic Cl assume asyr Intermediate Phill Series LPR01 LPR02 LPR03 HPI1 HPI2 HPI3 INT1 INT2 INT3	Fisher tests a hi-square dist nptotic normal ps-Perron tes Prob. 0.0982 0.1508 0.7493 1.0000 0.5473 0.9991 0.0045 0.0221 0.0869	re computed us ibution. All other ity: t results LPRO? 8.0 0.0 8.0 0.0 8.0 2.0 1.0 1.0 1.0 3.0	tests HPI? INT? Obs 39 39 39 39 39 39 39 39 39 39 39 39 39
Probabilities for asymptotic C assume asyr Intermediate Phill Series LPRO1 LPRO3 HPI1 HPI2 HPI3 INT1 INT2 INT3 LGDP1	Fisher tests a ni-square dist nptotic normal lps-Perron tes 0.1508 0.7493 1.0000 0.5473 0.0991 0.0045 0.0221 0.0869 0.9022	re computed us ibution. All other ity. tresults LPRO? Bandwidth 2.0 8.0 0.0 8.0 0.0 8.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	trests HPI? INT? Obs 39 39 39 39 39 39 39 39 39 39 39 39 39
** Probabilities for asymptotic C assume asyr Intermediate Phill Series LPR01 LPR02 LPR03 HPI1 HPI2 HPI3 INT1 INT2 INT2 INT2 INT2	Fisher tests a hi-square distr nptotic normal ips-Perron tes Prob. 0.0982 0.1508 0.7493 1.0000 0.5473 0.0945 0.0241 0.0869 0.9022 0.5960	re computed us ibution. All other ity: t results LPRO? Bandwidth 8.0 0.0 8.0 2.0 1.0 1.0 1.0 1.0 1.0 3.0 3.0	ing an r tests HPI? INT? Obs 39 39 39 39 39 39 39 39 39 39 39 39 39

The above result shows that all series are stationary

e- using hadri

H0: Non stationary

The maximum of variables accepted through the system is limited to few. As we cannot test all the variables in one batch, so we use different batches of variables as follow.

Hadri Unit Root Test on LPRO? HPI? INT? LGDP?

Null Hypothesis: Stationarity Series: LPRO1, LPRO2, LPRO3, HP11, HP12, HP13, INT1, INT2, INT3, LGDP1, LGDP2, LGDP3 Date: 05/08/11 Time: 22:29 Sample: 1 40 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total (balanced) observations: 480 Cross-sections included: 12

Method	Statistic	Prob.**
Hadri Z-stat	10.2446	0.0000
Heteroscedastic Consistent Z-stat	7.30309	0.0000

* Note: High autocorrelation leads to severe size distortion in Hadri test, leading to over-rejection of the null.

** Probabilities are computed assuming asympotic normality

Intermediate results on LPRO? HPI? INT? LGDP?

Series	LM	Variance HAC	Bandwidth	Obs
LPR01	0.6903	0.343913	4.0	40
LPR02	0.3375	0.115139	4.0	40
LPR03	0.5017	0.177709	5.0	40
HPI1	0.7802	727.3727	5.0	40
HPI2	0.3044	411.9583	5.0	40
HPI3	0.6106	2370.990	5.0	40
INT1	0.3306	2.129452	3.0	40
INT2	0.1294	7.775368	4.0	40
INT3	0.1252	7.419020	4.0	40
LGDP1	0.7702	0.020567	5.0	40
LGDP2	0.7567	0.015831	5.0	40
LGDP3	0.4345	0.044534	3.0	40

The above result shows that all series are non-stationary

The model

Using these results, we proceed to test HPI, GDP, INT and INF for cointegration in order to determine if there is a long-run relationship to control for in the econometric specification.

We first implement the following equation:

 $HPI_{it} = \alpha + \beta GDP_{it} + \gamma INT_{it} + \delta LPRO_{it} + \mu_i + \eta_{it}$

where:

- \land HPI_{it} is the House Price Index dependent variable for country i in year t,
- ▲ GDP_{it} is Gross Domestic Product variables for country i in year t,
- Long Run Interest Rate variables,
- ▲ INT_{it} ▲ LPRO_{it} Stock Return for the property sector variables,
- ▲ µi is a Country Specific effect and
- ≜ η_{it} is a white-noise error term.

where it allows for cointegrating vectors of differing magnitudes between countries, as well as country (a) and time (d) fixed effects. Reports the panel cointegration estimation results are given below. All results indicates that all are the statistics are significantly accept the null of no cointegration. Thus, it can be seen that the HPI, GDP, INT, LPRO do not move together in the long run. That is, there is no long-run steady state relationship between HPI and tested variable for a cross-section of countries after allowing for a country-specific effect.

We therefore remodel our equation by allowing LPRO as dependent variable and introduce another dependent variable, i.e. Inflation. The following equation are obtained

 $LPRO_{it}=\alpha + \beta GDP_{it}+\gamma INT_{it}+\delta HPI_{it}+\delta INF_{it}+\mu_i+\eta_{it}$

where:

- ▲ LPRO_{it} is the Stock Return for the property sector as dependent variable for country i in year t,
- ▲ GDP*it* is Gross Domestic Product variables for country i in year t,
- ▲ INT_{it} Long Run Interest Rate variables,
- i ⊢ HPI_{it} House Price Index for the property sector variables,
- ▲ INF_{it} Inflation as variables,
- ▲ µi is a Country Specific effect and
- is a white-noise error term. ▲ n_{it}

where it allows for cointegrating vectors of differing magnitudes between countries, as well as country (a) and time (d) fixed effects. DOLS reports the panel cointegration estimation results. Except for the group 2 and group 3 statistics, all other statistics significantly reject the null of no cointegration. Thus, it can be seen that the LRO, GDP, INT, HPI and INF move together in the long run. That is, there is a long-run steady state relationship between Property Sector stock return and GDP, INT, HPI and INF for a crosssection of countries after allowing for a country-specific effect. The next step is an estimation of such a relationship.

Reports the results of the individual and panel DOLS. The panel estimators with and without common time dummies are shown at the bottom of the table. The coefficients of LPRO and other variables are statistically significant at the 5% level, and the effect is positive as expected by the theory.

The elasticity of Return for stock and House price together with GDP, Interest and Inflation are significantly smaller than 1, but the growth effect of Stock Return are larger than the economic variables. This implies Stock Return is an important ingredient for property prices development.

On a per country basis, the significant relationship only applies to Malaysia.

Step 2: Cointegration

5.1 - Pedroni residual cointegration test

Series: HPI? IN Date: 05/08/11 Sample: 1 40 Included observ Cross-sections Null Hypothesis Trend assumpti Automatic lag le Newey-West au	T? GDP? P Time: 19:2 ations: 40 included: 3 : No cointe on: No dete ngth select tomatic bar	ROPTSTOCH 1 gration erministic tre tion based or ndwidth select	c? CPI? nd 1 SIC with a i ction and Ba	max lag of 9 rtlett kernel		
Alternative hypot	hesis: com	nmon AR coe	fs. (within-di	mension)		
				Weighted		
		Statistic	Prob.	Statistic	Prob.	
Panel v-Statisti	C	-0.896142	0.8149	-0.804911	0.7896	
Panel rho-Stati	stic	1.718898	0.9572	1.564605	0.9412	
Panel PP-Stati	stic	2,402211	0.9919	1.980017	0.9761	
Panel ADF-Sta	tistic	1.569391	0.9417	1.577931	0.9427	
Alternative hypol	lhesis: indi	Statistic	Prob.	n-dimension)		
Group mo-Stat	ISUC	2.258990	0.9881			
Group PP-Stati	SUC	2.731115	0.9958			
Group ADF-Sta	usuc	2.091237	0.9617			
Cross section s	pecific res	ults	8			
Phillips-Peron r	esuits (non	-parametric)				
Cross ID	AR(1)	Variance	HAC	Bandwidth	Obs	
1	0.662	2.829905	2.702227	2.00	39	
2	0.823	15.37298	15.50442	3.00	39	
з	0.947	24.71473	46.31633	3.00	39	
Augmented Dici	key-Fuller n	esults (paran	netric)			
Cross ID	AR(1)	Variance	Lag	Maxiag	Obs	
1	0.662	2.829905	0	9	39	
2	0.823	15.37298	0	9	39	

There is no cointegration according to PP-Statistic only.

KAO Test

Kao Residual Cointegration Test Series: HPI? INT? GDP? PROPTSTOCK? CPI? Date: 05/08/11 Time: 19:30 Sample: 1 40 Included observations: 40 Null Hypothesis: No cointegration

Trend assumption: No deterministic trend Automatic lag length selection based on SIC with a max lag of 9 Newey-West automatic bandwidth selection and Bartlett kernel

ADF	t-Statistic 1.065151	Prob. 0.1434
Residual variance HAC variance	16.85764 15.94558	

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID?) Method: Panel Least Squares Date: 05/08/11 Time: 19:30 Sample (adjusted): 3 40 Included observations: 38 after adjustments Cross-sections included: 3 Total pool (balanced) observations: 114

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID?(-1) D(RESID?(-1))	-0.041969 0.312414	0.040398 0.079679	-1.038890 3.920914	0.3011 0.0002
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.116887 0.109003 4.075413 1860.207 -320.9169 1.853351	Mean depe S.D. deper Akaike info Schwarz o Hannan-Qu	ndent var ndent var o criterion criterion inn criter.	0.305321 4.317511 5.665210 5.713213 5.684691

The above findings concludes that there is no cointegration between the variables

Fisher test

Johansen Fisher Panel Cointegratio n Test Series: HPI? INT? GDP? PROPTSTOCK? CPI? Date: 05/08/11 Time: 19:33 Sample: 1 40 Included observations: 40 Trend assumption: Linear deterministic trend Lags interval (in first differences): 1 1

Hypothesized No. of CE(s)	Fisher Stat.* (from trace test)	Prob.	Fisher Stat.* Prob. (from max-eigen test)		
None	38,17	0.0000	34,73	0.0000	
At most 1	11.54	0.0731	15.82	0.0148	
At most 2	2.308	0.8893	1.066	0.9830	
At most 3	4.001	0.6766	3.319	0.7679	
At most 4	8.136	0.2283	8.136	0.2283	
* Probabilities are computed using asymptotic Chi-square distribution.					
Individua	al cross section resul	ts			
	Trace Test		Max-Eign Test		
Cross Section	Statistics	Prob.**	Statistics	Prob.**	
Hypothe	sis of no cointegratio	on			
1	86.2102	0.0014	45.2786	0.0015	
2	85.7053	0.0016	40.7211	0.0065	
3	84.3879	0.0022	43.1218	0.0030	
Hypoth	nesis of at most 1 co	integration	relationship		
1	40.9315	0.1909	25.4290	0.0920	
2	44.9843	0.0908	30.3571	0.0215	
3	41.2662	0.1803	22.7168	0.1859	
Hypothesis of at most 2 cointegration relationship					
1	15.5025	0.7467	8.7498	0.8521	
2	14.6272	0.8036	7.1299	0.9486	
3	18.5494	0.5257	10.1961	0.7260	
Hypothesis of at most 3 cointegration relationship					
1	6.7527	0.6066	5.5253	0.6746	
2	7.4973	0.5206	5.7500	0.6455	
·3	8.3533	0.4284	1.4538	0.4369	
				0.2670	
ו ס	1.22/4	0.20/9	1.22/4	0.20/9	
2	0.8004	0.1002	0.8001	0.1002	
	0.0334	0.3429	0.0334	0.0429	

Unrestricted Cointegration Rank Test (Trace and Maximum Eigenvalue)

**MacKinnon-Haug-Michelis (1999) p-values

The test shows that there are at least one co-integration groups

The test was further analysed using LPRO (Property Stock Returns) as dependent variables Pedroni Residual Cointegration Test

				-	
Pedroni Residu	al Cointen	ration Test			
Series I PRO2	HPI2 INT2	LGDP2			
Date: 05(08(11	Time 21	24			
Sample: 1.40	10110.21.				
Included obcers	atione: 40				
Cross-sections	included:	2			
Null Chaethorie	Mo coint	arotion			
Trond accurrent	ion: No dat	sgration seministic tro	nd		
Hear energiad	log longth:	4	iid iid		
Newey-West au	tomatic ha	ndwidth sele	tion and Ba	rtlett kernel	
interior incoraci	torribuc ico	indiridan sere		neeu Konner	
Anemative rypo	thesis: cot	nmon AR coe	is. (within-d	imension)	
		Ototiotia	Deals	vveignied	Deals
	20 AZ	Statistic	PTOD.	StauStic	P100.
Panel V-Statisti	C	-0.303321	0.6192	-0.549647	0.7087
Panel rho-Stati	ISTIC	0.011083	0.5044	0.6/9298	0.7515
Panel PP-Stati	suc	-0.975146	0.1647	0.003549	0.5014
Panel ADF-Statistic		-1.615935	0.0531	-0.145303	0.4422
Conversion Otal	in the second	Statistic	Prob.		
Group mo-Stat	JERC	1.332861	0.9087		
Group PP-Stat	ISBC	0.43114/	0.6668		
Group ADF-Sta	nisuc	0.122841	0.5489		
Cross section s	necific res	ults			
Phillips-Peron r	esults (no	n-parametric)			
Croce ID	AR(1)	Variance	HAC	Bandwidth	Obi
1	0.459	0.051750	0.035609	5.00	
2	0.823	0.005014	0.006444	3.00	30
3	0.876	0.003880	0.005446	2.00	30
3	0.070	0.000000	0.000440	2.00	50
Augmented Dicl	key-Fuller	results (parar	netric)		
Cross ID	AR(1)	Variance	Lag	Max lag	Obs
1	0.319	0.049300	1	**	34
2	0.770	0.004451	1	+	31
· · · · ·	0.000	0.0002500			0.0

Kao test

Kao Residual Cointegration Test	
Series: LPRO? HPI? INT? LGDP?	
Date: 05/08/11 Time: 21:28	
Sample: 1 40	
Included observations: 40	
Null Hypothesis: No cointegration	
Trend assumption: No deterministic trend	
User-specified lag length: 1	
Newey-West automatic bandwidth selection and Bartlett kernel	
1-Statistic	Pro

	1-Stausuc Pro				
ADF	-2.782749	0.0027			
Residual variance	0.025694				
HAC variance	0.015474				

Augmented Dickey-Full Dependent Variable: D Method: Panel Least Si Date: 05/08/11 Time: 1 Sample (adjusted): 3.4 Included observations: Cross-sections include Total pool (balanced) o	er Test Equatio (RESID?) quares 21:28 0 38 after adjust ed: 3 bservations: 11	n ments 14		
Variable	Coefficient	Std. Error	1-Statistic	Prob.
RESID?(-1)	-0.387246	0.076078	-5.090105	0.0000
D(RESID?(-1))	0.104538	0.089188	1.172098	0.2436
R-squared	0.191122	Mean depend	ient var	0.006991
Adjusted R-squared	0.183900	S.D. depende	entvar	0.164996
S.E. of regression	0.149055	Akaike info cr	iterion	-0.951616
Sum squared resid	2.488346	Schwarz crite	rion	-0.903612
Log likelihood Durbin-Watson stat	56.24209 1.999482	Hannan-Quir	in criter.	-0.932134

There is cointegration between the variables

There is cointegration when LPRO as dependant variable

Johansen Fisher Cointegration Test

Date: 05/08/11 Sample: 1 40 Included observa Trend assumptio Lags interval (in 1 Unrestricted Coir	Time: 21:34 Itions: 40 In: Linear determini first differences): 1 1 Integration Rank Tes	stic trend t (Trace ar	nd Maximum Eigenvalu	e)
Hypothesized No. of CE(s)	Fisher Stat.* (from trace test)	Prob.	Fisher Stat.* (from max-eigen test)	Prob.
None	11.72	0.0684	11.32	0.0788
At most 1	4.414	0.6208	3.776	0.7070
At most 2	3,873	0.6939	2.540	0.8640
At most 3	9.593	0.1429	9.593	0.1429
* Probabilities ar Individual cross :	e computed using a section results Trace Test	symptotic	Max-Eign Test	
* Probabilities ar Individual cross : Cross Section	e computed using a section results Trace Test Statistics	Prob.**	Max-Eign Test Statistics	Prob.**
* Probabilities ar Individual cross Cross Section Hypothesis of no	e computed using a section results Trace Test Statistics cointegration	Prob.**	Max-Eign Test Statistics	Prob.**
* Probabilities ar Individual cross Cross Section Hypothesis of no 1	e computed using a section results Trace Test Statistics cointegration 46.9666	Prob.**	Max-Eign Test Statistics 26.8171	Prob.**
* Probabilities ar Individual cross Cross Section Hypothesis of no 1 2	e computed using a section results Trace Test Statistics cointegration 46.9666 35.9688	Prob.** 0.0605 0.3979	Max-Eign Test Statistics 26.8171 21.0924	Prob.** 0.0625 0.2707
* Probabilities ar Individual cross s Cross Section Hypothesis of no 1 2 3	computed using a section results Trace Test Statistics cointegration 46.9666 35.9688 43.6132	Prob.** 0.0605 0.3979 0.1183	Max-Eign Test Statistics 26.8171 21.0924 22.2967	Prob.** 0.0625 0.2707 0.2055
* Probabilities ar Individual cross s Cross Section Hypothesis of no 2 3 Hypothesis of at	computed using a section results Trace Test Statistics cointegration 45.9666 35.9688 43.6132 most 1 cointegration	Prob.** 0.0605 0.3979 0.1183 n relations	Max-Eign Test Statistics 26.8171 21.0924 22.2967	Prob.** 0.0625 0.2707 0.2055
* Probabilities ar Individual cross s Cross Section Hypothesis of no 1 2 Hypothesis of at 1	e computed using a section results Trace Test Statistics cointegration 46,9666 35,9698 43,86132 most 1 cointegratio 20,1494	Prob.** 0.0605 0.3979 0.1183 n relations 0.4128	Max-Eign Test Statistics 26.8171 21.0924 22.2967 hip 11.6532	Prob.** 0.0625 0.2707 0.2055 0.5821
* Probabilities ar Individual cross s Cross Section Hypothesis of no 1 2 3 Hypothesis of at 2	e computed using a section results Trace Test Statistics <u>cointegration</u> 46,9666 35,9688 43,6132 20,1494 14,8764	Prob.** 0.0605 0.3979 0.1183 n relations 0.4128 0.7880	Max-Eign Test Statistics 26.8171 21.0924 22.2967 hip 11.6532 7.3088	Prob.** 0.0625 0.2707 0.2055 0.5821 0.9408
* Probabilities ar Individual cross : Cross Section Hypothesis of no 1 2 3 Hypothesis of at 2 3	e computed using a section results Trace Test Statistics contegration 46,9666 35,9698 43,6132 most 1 cointegratio 20,1494 14,9764 21,3165	Prob.** 0.0605 0.3979 0.1183 n relations 0.4128 0.7980 0.382	Max-Eign Test Statistics 26.8171 21.0924 22.2967 hip 11.6532 7.3088 15.1808	Prob.** 0.0625 0.2707 0.2055 0.5821 0.9408 0.2764
* Probabilities ar Individual cross Cross Section 1 2 3 Hypothesis of at 2 3 Hypothesis of at	e computed using a section results Trace Test Statistics <u>cointegration</u> 46.9666 35.9688 43.6132 20.1494 14.8764 21.3165 most 2 cointegratio	Prob.** 0.0605 0.3979 0.1183 n relations 0.4128 0.7880 0.3382 n relations	Max-Eign Test Statistics 26.8171 21.0924 22.2967 hip 11.6532 7.3098 15.1808 hip	Prob.** 0.0625 0.2707 0.2055 0.5821 0.9408 0.2764
Probabilities ar Individual cross Cross Section Hypothesis of no 2 3 Hypothesis of at 1 Hypothesis of at 1	e computed using a section results Trace Test Statistics defection 35,9688 43,6132 most 1 cointegratio 20,1494 14,8764 21,3165 most 2 cointegratio 8,4962	Prob.** 0.0605 0.3979 0.1183 n relations 0.4128 0.7480 0.3382 n relations 0.41400	Max-Eign Test Statistics 26.8171 21.0924 22.2967 hip 11.6532 7.3088 15.1808 hip 6.1162	Prob.** 0.0625 0.2707 0.2055 0.5821 0.9408 0.2764 0.5983
Probabilities ar individual cross s Cross Section - hypothesis of no 2 3 - hypothesis of at 2 3 - hypothesis of at 1 2 3 - 4 ypothesis of at 2 3	e computed using a section results Trace Test Statistics <u>cointegration</u> 46.9666 35.9688 43.6132 20.1494 14.8764 21.3165 most 2 cointegration 8.4962 7.5676	Prob.** 0.0605 0.3979 0.1183 0.4128 0.3822 n relations 0.4140 0.5127	Max-Eign Test Statistics 26.8171 21.0924 22.2967 11.6532 7.3098 15.1808 http 6.1162 4.8751	Prob.** 0.0625 0.2707 0.2055 0.5821 0.9408 0.2764 0.5983 0.7575
Probabilities ar ndividual cross of Cross Section hypothesis of no 2 3 hypothesis of at 1 2 3 hypothesis of at 2 3 hypothesis of at 2 3	e computed using a section results Trace Test Statistics 46,6666 45,6666 45,6668 43,6132 most 1 cointegration 20,1494 14,8764 21,3165 most 2 cointegration 8,4962 7,5676 6,1356	Prob.** 0.0605 0.3979 0.1183 0.4128 0.7880 0.3382 0.4128 0.3382 0.4140 0.5127 0.6795	Max-Eign Test Statistics 26.8171 21.0924 22.2967 hip 11.6532 7.3088 15.1808 hip 6.1162 4.8751 5.9499	Prob.** 0.0625 0.2707 0.2055 0.5821 0.9408 0.2764 0.5983 0.7575 0.6197
* Probabilities ar Individual cross s Cross Section + hypothesis of no 1 2 3 - hypothesis of at 1 2 - hypothesis of at 1 2 - hypothesis of at 1 - hypothesis of at	e computed using a section results Trace Test Statistics <u>cointegration</u> <u>46.9666</u> 35.9688 <u>43.6132</u> 20.1494 <u>14.8764</u> 21.3165 <u>most 2 cointegratio</u> <u>8.4962</u> 7.5676 <u>6.1356</u> most 3 cointegratio	Prob.** 0.0605 0.3979 0.1183 n relations 0.4128 0.3822 n relations 0.5127 0.6795 n relations	Max-Eign Test Statistics 26.8171 21.0924 22.2967 11.6532 7.3098 15.1808 hip 6.1162 4.8751 5.9499	Prob.** 0.0625 0.2707 0.2055 0.5821 0.9408 0.2764 0.5983 0.7575 0.6197
* Probabilities ar Individual cross s Cross Section Hypothesis of no 1 2 3 Hypothesis of at 2 4 Hypothesis of at 1 2 3 Hypothesis of at 1	e computed using a section results Trace Test Statistics 40,6666 43,6666 43,6132 most 1 cointegration 20,1494 14,8764 21,3165 most 2 cointegration 8,4962 7,5676 6,1356 most 3 cointegration 2,3799	Prob.** 0.0605 0.3979 0.1183 0.4128 0.7860 0.3382 nrelations 0.4140 0.5127 0.6795 nrelations 0.1229	Max-Eign Test Statistics 26.8171 21.0924 22.2967 hip 11.6532 7.3088 15.1808 hip 6.1162 4.8751 5.9499 hip 2.3799	Prob.** 0.0625 0.2707 0.2055 0.5821 0.9408 0.2764 0.5983 0.7575 0.6197 0.1229
* Probabilities ar Individual cross s Cross Section 1 2 3 Hypothesis of at 2 3 Hypothesis of at 2 3 Hypothesis of at 1 2 3 Hypothesis of at 2 3	e computed using a section results Trace Test Statistics <u>cointegration</u> 46.9666 35.9688 43.6132 20.1494 14.8764 21.3165 <u>most 2 cointegratio</u> 8.4962 7.5676 6.1356 <u>most 3 cointegratio</u> 2.3799 2.6925	Prob.** 0.0605 0.3979 0.1183 n relations 0.4128 0.7880 0.3822 n relations 0.4140 0.5127 0.6795 n relations 0.1229 0.1088	Max-Eign Test Statistics 26.8171 21.0924 22.2967 11.6532 7.3088 15.1808 6.1162 4.8751 5.9499 2.3799 2.6925	Prob.** 0.0625 0.2707 0.2055 0.9408 0.2764 0.5983 0.7575 0.6197 0.1229 0.1008

The findings shows that only Malaysia has a cointegration variables, no cointegration for the others.

Step 3: Estimating Long-run relationship with Dynamic OLS

The result from Kao test has shown, if it is dependent variable, then there is cointegration. Therefore, we proceed to the next step with LPRO *as dependent variables.*

LONG RUN :DOLS

LPRO HPI INT LGDP INF

DOLS Hom. Panel data Coint. Estin Group variable: id code Number of g Wald chi2(4) = 640.23	nation res groups =	sults = per grou	Number of a_3	obs= 120
Prob> chi2 = 0.000 R -squared = 0.4032	avg =	40	max =	40
Adj R-squared = -3.5371				
LPRO Coef. Std. Err.	t	P> t	[95% Conf.	Interval]
HPI 0054084 .117306	-2.87	0.003	0266124	.0157956
INT .0216982 .8115173	1.67	0.049	1249897	.1683861
LGDP 4039881 11.49638 -2.1	0.016	5 -2.48	2045 1.67	4069

According to DOLS applied to LPRO, The House Price Index (HPI), Long term Interest, LGDP and Inflation have a significant impact over Stock Exchange Property Sector Return.

Discussion of the empirical results

Changes in House price are influenced by GDP, Inflation, Long run Interest rate and Stock Exchange Return and the empirical results presented in this annex highlight which factor are more influential. The aim is to capture the feedback effects between house price changes and other economic variables or that the house price itself due to speculation. Then the additional influence of mortgage finance characteristics is explored. The analysis covers 3 countries for quarterly data during the period 2001 to 2010 which covers two episodes: the 2004–07 global liquidity expansion (the "boom"), and the 2007–09 crisis period (the "bust").

This study also examines empirically the extent to which house prices are driven by credit and whether and how differences across countries in housing finance systems affect house price dynamics. The data are for 3 countries in the, i.e. Malaysia, Thailand and Singapore from the first quarter of 2001 to the last quarter of 2010.

The annex examines empirical relationships between house prices and potential drivers using panel regressions that allow for exploiting variation in both the cross-section and time series dimensions of the sample, while controlling for differences across countries using country-fixed effects.

The dependent variable in all regressions is quarterly change of the nominal house price index, which is regressed on a range of potential drivers of house prices. Some of the exercises examine housing busts. Based on quarterly data for the 3 countries during the period examined, the earlier analysis identifies episodes of nominal house price declines lasting more than a year (busts). The analysis conducted earlier in volatility of house price to interest rate shows little correlation in the case of Malaysia⁹.

The results show that the relation between credit and prices remains statistically strong when fundamental drivers are included and that inclusion of the additional controls does not change the magnitude of the effect. The effect of the growth of bank loans to households on house price swings is similar in magnitude and sign to that of real GDP growth (equation). The growth of population has a quite large effect, but it is less statistically significant than that of GDP growth. It may compete with household credit, since higher population growth would tend to lead to household formation and new household borrowing. Inflation does not seem to play a role in house price dynamics.

⁹ Refer to M-Garch paper in Commentary to Islamic Pricing Beanchmark

Additional exercises verify that the relationship between credit and prices is robust to the inclusion of further control variables, such as short- and long-term interest rates and unemployment. A third set of exercises investigates how different characteristics of housing finance affect the magnitude of house price swings. These exercises exploit both the cross-sectional and time series dimensions of the dataset by allowing changes through time (e.g., in income) to interact with differences across countries (in housing finance characteristics on house prices would work through an effect on credit, credit growth is dropped from the regressions.

Conclusion and policy recommendation

This paper discussed current housing finance practices in three emerging economies, as well as the impact of those practices on financial stability. National authorities and policymakers may find this analysis helpful as they reassess the structure and health of their housing finance systems, with particular attention given to those features that contribute to financial stability.

Country-specific housing finance systems vary significantly and have sometimes been shaped by pivotal historic events. Today's housing finance systems are determined by a range of factors, including the products offered to investors (floating or fixed interest rates over various maturities); the use of prepayment penalties; funding (deposits versus capital markets); the degree of lender recourse to defaulted borrowers' other assets and income; and government participation, including tax breaks. While different systems can work well to provide stable housing finance, a number of best practices emanate from the discussion and empirical analyses. They focus on enhanced underwriting and supervision; better calibrated government participation; and better-aligned incentives in capital-market mortgage funding.

References

Agarwal, Sumit, Gene Amromin, Itzhak Ben-David, SouphalaChomsisengphet, and Douglas D. Evanoff, 2011, "The Role of Securitization in Mortgage Renegotiation," Charles A. Dice Center for Research in Financial Economics Working Paper 2011–2 (January).

Aizenman, Joshua, and YothinJinjarak, 2009, "Current Account Patterns and National Real Estate Markets," *Journal of Urban Economics*, Vol. 66, No. 2, pp. 75–89.

Ambrose, Brent W., and Thomas G. Thibodeau, 2004, "Have the GSE Affordable Housing Goals Increased the Supply of Mortgage Credit?" *Regional Science and Urban Economics*, Vol. 34, No. 3, pp. 263–73.

Bostic, Raphael W., and Stuart A. Gabriel. 2006, "Do the GSEs Matter to Low-Income Housing Markets? An Assessment of the Effects of the GSE Loan Purchase Goals on California Housing Outcomes," *Journal of Urban Economics*, Vol. 59, No. 3, pp. 458–75.

Central Bank of Ireland, 2010, "Code of Conduct on Mortgage Arrears" (December, revised). Available via the Internet: www.financialregulator.ie/press-area/pressreleases/

Claessens, Stijn, M. AyhanKose, and Marco E. Terrones, 2008, "What Happens During Recessions, Crunches and Busts?" IMF Working Paper 08/274 (Washington: International Monetary Fund).

Committee on the Budget, 2008, "Tax Expenditures; Compendium of Background Material on Individual Provisions" (Washington: Congressional Research Service, December).

Ghent, Andra C., and Marianna Kudlyak, 2010, "Recourse and Residential Mortgage Default: Theory and Evidence from U.S. States," Federal Reserve Bank of Richmond Working Paper No. 09–10R (June, revised).