
Munich Personal RePEc Archive

Maximin Envy-Free Division of

Indivisible Items

Brams, Steven and Kilgour, Marc and Klamler, Christian

New York University, Wilfrid Laurier University, University of Graz

22 March 2015

Online at https://mpra.ub.uni-muenchen.de/63189/

MPRA Paper No. 63189, posted 24 Mar 2015 14:38 UTC

Maximin Envy-Free Division of Indivisible Items

Steven J. Brams

Department of Politics

New York University

New York, NY 10012

USA

steven.brams@nyu.edu

D. Marc Kilgour

Department of Mathematics

Wilfrid Laurier University

Waterloo, Ontario N2L 3C5

CANADA

mkilgour@wlu.ca

Christian Klamler

Institute of Public Economics

University of Graz

A-8010 Graz

AUSTRIA

christian.klamler@uni-graz.at

March 2015

 2

Abstract

Assume that two players have strict rankings over an even number of indivisible

items. We propose algorithms to find allocations of these items that are maximin—

maximize the minimum rank of the items that the players receive—and are envy-free and

Pareto-optimal if such allocations exist. We show that neither maximin nor envy-free

allocations may satisfy other criteria of fairness, such as Borda maximinality. Although

not strategy-proof, the algorithms would be difficult to manipulate unless a player has

complete information about its opponent’s ranking. We assess the applicability of the

algorithms to real-world problems, such as allocating marital property in a divorce or

assigning people to committees or projects.

 3

Maximin Envy-Free Division of Indivisible Items

Steven J. Brams, D. Marc Kilgour, and Christian Klamler1

1. Introduction

In this paper, we assume that two players strictly rank an even number of indivisible

items. We propose new algorithms that assign equal numbers of items to the players in a

maximin allocation, which maximizes the rank of the least preferred item received by

either player.2 If an envy-free allocation exists, the algorithms find at least one that is

maximin, Pareto-optimal, and envy-free. If there is no such allocation, the algorithms still

yield maximin Pareto-optimal allocations.

A simple condition determines whether envy-free allocations exist; if so, two earlier

algorithms, AL (Brams, Kilgour, and Klamler, 2014) and SA (Brams, Kilgour, and

Klamler, 2015), find at least one that is Pareto-optimal and envy-free. However, the

allocations they yield need not be maximin, which is the main property we investigate in

this paper.

The paper proceeds as follows. In section 2, we define four properties of fair

division—Pareto-optimality, envy-freeness, maximinality, and Borda maximinality—that

we later use to assess the fairness of allocations. We then determine a property (maximin

depth) that characterizes maximin allocations and use it to develop an algorithm, the

Maximin Algorithm, that finds all maximin allocations. We give several examples that

1 Kilgour acknowledges the support of a Discovery Grant from the Natural Sciences and Engineering

Research Council of Canada, and Klamler from grant P23724-G11, “Fairness and Voting in Discrete

Optimization,” of the Austrian Science Fund (FWF).
2 Maximin is used in a different sense in Procaccia and Wang (2014), who provide an algorithm that

guarantees each player at least 2/3 of its maximin share of the value of all items, wherein the metric is

utilities rather than ranks.

 4

demonstrate that, while maximin allocations always exist, only some or even none may be

envy-free.

In section 3 we give two conditions for the existence of an envy-free allocation, the

second of which is a restriction on the first, and prove that if there exists an envy-free

allocation, then there exists an envy-free maximin allocation. Our proof relies on an

algorithm we call Singles-Doubles (SD), which incorporates the earlier AL algorithm.

SD produces an envy-free maximin allocation iff the players’ rankings satisfy the

envy-free condition alluded to earlier. By re-applying SD, we can produce an envy-free

maximin allocation that may be different from that given by SD; we call the algorithm that

does so Iterated SD, or ISD.

In section 4 we show that maximin envy-free allocations may not satisfy other

fairness properties, such as Borda maximinality or Pareto-optimality. We also show that

SD and ISD are not strategy-proof, though we argue that they would be difficult to

manipulate unless a player has complete information about its opponent’s ranking.

In section 5 we summarize our results and offer some conclusions. SD, and

especially ISD, are generally simpler to compute than AL, but AL, which is often needed

to allocate all the items, is an essential component of both SD and ISD.3 These algorithms

are preferable to AL and to SA not only for ease of computation but also for ensuring that

an allocation is maximin. We assess their applicability to real-world problems, such as

allocating marital property in a divorce or assigning people to committees or projects.

2. Maximin Allocations

We make three assumptions:

3 The computational complexity of fair-division algorithms that assume, as here, ordinal preferences is

analyzed in Bouveret et al. (2010) and Aziz et al. (2013).

 5

1. There are two players and n distinct items, where n > 0 is even.

2. Each player has a positive utility for each item and ranks the items strictly.

3. The utility of a set of items for a player is the sum of the utilities of the items

 that comprise it.

While our algorithms use only players’ rankings of items, not their utilities, they produce

allocations that satisfy at least some of the properties defined below, provided that the

players’ utilities are consistent with their rankings.

We next define three properties of allocations:

• Efficiency or Pareto-Optimality (PO): There is no other allocation that is at least

 as preferred by all players and strictly preferred by at least one.

• Envy-freeness (EF): Each player values the set of items it receives at least as much

 as the set of items received by any other player (below we offer a definition

 more appropriate to the context of ranks).

• Maximinality (MX): The allocation maximizes the minimum rank of the items

 received by any player.

A player’s Borda score for a subset of items is the sum of the points given to each item,

where a player’s lowest-ranked item receives 0 points, its next-lowest 1 point, and so on.

The fourth property of an allocation that we analyze is the following:

• Borda Maximinality (BMX): The allocation maximizes the minimum Borda score

 of the items received by any player.

 6

An allocation is MX if the rank of the least-preferred item that either player receives is as

high as possible, and it is BMX if the Borda score of the player with the lower score is as

high as possible. As we will show, these properties are independent—none implies any of

the others.

To define EF based on players’ rankings, we assume that each player makes item-

by-item comparisons of the items it receives with the items that another player receives.

We say that an allocation is item-wise envy-free for a player, say A, relative to another

player, say B, iff there is an injection, or 1-1 mapping, from A’s items to B’s items such

that A prefers each of its items to the item of B to which it is mapped (Brams, Kilgour, and

Klamler, 2014). An allocation is item-wise envy-free (EF) iff no player envies any other

player.4

Assume A and B submit strict preference rankings of the n items. A complete

allocation is an assignment of all the items, half (n/2) to A and half to B. Because our

definition of envy-freeness is based on each player’s comparing each of the items it

receives with an item that the other player receives, we do not consider unequal

allocations of the items to the players, which would preclude item-by-item comparisons.

Denote by B(n, k) the binomial coefficient,
n

k

!

"
#

$

%
& , where 0 ≤ k ≤ n. Because a

complete allocation is uniquely determined by choosing, say, A’s subset, the total number

of complete allocations of the n items is B(n, n/2).

4 If A does not envy B in the item-wise sense, then A’s utility for its own subset must be greater than A’s

utility for B’s subset, no matter what the numerical values of A’s utilities are, as long as they are consistent

with A’s ranking (our earlier definition of EF). For an allocation to be item-wise EF, each player must

receive the same number of items. Then item-wise EF, which we henceforth assume, implies EF based on

players’ utilities for their subsets. The converse is not true, making item-wise EF the more stringent

definition.

 7

Define the depth of any complete allocation to be the rank of the least preferred

item assigned to either player. Consider the following example, where n = 8 and the

players strictly rank the items from best to worst (i.e., from left to right) as follows:

Example 1: A: 1 2 3 4 5 6 7 8

 B: 8 7 6 1 2 3 4 5

Assume that A receives items {1, 3, 4, 7} and B receives items {2, 5, 6, 8}, which we

abbreviate as the complete allocation (1347, 8625) to (A, B). It has depth 8 since the least-

preferred item received by either player is item 5, which B ranks 8th (A ranks the least-

preferred item it receives, item 7, 7th). Similarly, the complete allocation (1235, 8762) has

depth 5, and the complete allocation (1456, 8723) has depth 6.

Because there are only a finite number of complete allocations—B(8, 4) = 70 in

Example 1—there is at least one that minimizes the depth. We call such an allocation a

maximin allocation.5 In Example 1, there are two such allocations, (1345, 8762) and

(2345, 8761) at depth 5, which we will return to later to ascertain their other properties.

For any pair of rankings of n items, define the maximin depth as the least integer, f,

with the property that every item is ranked f th or higher in at least one player’s ranking. In

Example 1, f = 5, because every item is in the top 5 of either A’s ranking or B’s ranking,

but at least one item, namely item 5, is not in the top 4 of either player’s ranking.

Note that some items, like item 1, are in the top 5 of both players’ rankings. But the

important property of the maximin depth is that every item, from 1 to 8, is in the top 5 of

some player’s ranking.

5 It could as well be called a minimax allocation, because minimizing the maximum depth, and maximizing

the minimum depth, are equivalent processes, though in game theory maximin and minimax outcomes may

not be the same.

 8

Lemma 1. n/2 ≤ f ≤ n. Both f = n/2 and f = n are possible.

Proof. The two players’ top h items can contain, together, at most 2h items. In

order that the conjunction of the two players’ top h items include every one of the n items,

we must have 2h ≥ n, or h ≥ n/2. If A’s top n/2 items are disjoint from B’s top n/2 items,

we have f = n/2. If A’s and B’s least-preferred items are identical, we have f = n. n

Lemma 2. Any complete allocation has a depth of at least f.

Proof. Because f is, by definition, the smallest integer such that every item appears

among either A’s or B’s top f items, no complete allocation can have depth h < f, for then

at least one item would not appear in either player’s top h items. n

It follows from Lemma 2 that the depth of a maximin (MX) allocation must be at

least f. In fact, every MX allocation has depth f. Below we show how to find all MX

allocations via the Maximin Algorithm.

To apply the Maximin Algorithm, we need the concepts of singles and doubles.

Assume that the MX depth is f < n. Call an item a single if it is a top f item for only one

player, and call it a double if it is a top f item for both players. In Example 1, where f = 5,

there are two doubles, 1 and 2, and six singles, 3, 4, 5, 6, 7, and 8, as can readily be seen

when we place a vertical bar in the rankings of A and B at depth 5:

Example 1: A: 1 2 3 4 5 | 6 7 8

 B: 8 7 6 1 2 | 3 4 5

Every single is listed once among each player’s top f items—in Example 1, they are 3, 4,

and 5 for A, and 6, 7, and 8 for B—and once among the other player’s (B’s and A’s,

respectively) bottom n – f items.

 9

It follows that a player’s top f items must include n – f singles and f – (n – f) = 2f – n

doubles. Moreover, because n is even, each player’s top f items must include an even

number of doubles. Note that, if f = n, there are no singles—all items are doubles.

Maximin Algorithm

Input: A’s and B’s rankings of n > 0 items, where n is even.

Output: All complete MX allocations to (A, B).

1. Determine f.

2. If f = n, select any subset of n/2 items and assign it to A, with the remainder to B.

The algorithm ends.

3. If f ≠ n, identify player A’s singles, and assign them to A. Then select any subset

of doubles containing (½)(2f – n) doubles, and assign it to A. Assign the remaining

doubles, and all of B’s singles, to B. The algorithm ends.

Theorem 1. Assume A and B strictly rank n items, where n is even. Then every

allocation produced by the Maximin Algorithm is a maximin allocation, and every

maximin allocation can be obtained in this way.

Proof. If f = n, it follows from Lemma 1 and Lemma 2 that any MX allocation has

depth n. Therefore, every complete allocation is MX. Since every complete allocation

can be produced by step 2, the theorem is proved in this case.

Now assume that f < n, so there is at least one single. Observe that any allocation

produced by step 3 has depth exactly f, and there is at least one such allocation. This fact,

together with Lemma 2 and the definition of MX, proves that the MX allocations are

exactly those with depth f. Thus, any allocation produced by step 3 is an MX allocation,

 10

and any MX allocation can be achieved using step 3. This completes the proof of the

theorem. n

Whatever the value of f, there are always 2f – n doubles, and this number is even.

Thus, it follows from Theorem 1 that the number of distinct MX allocations equals

B(2f – n, (½)(2f – n)). With respect to the bounds on f in Lemma 1, if f = n/2, the MX

allocation is unique (because there are no doubles), and if f = n, there are B(n, n/2) MX

allocations (because there are no singles).

In Example 1, 2f – n = 2, so there are B(2, 1) = 2 selections in step 2 of the Maximin

Algorithm—namely, to assign either item 1 or item 2 to A, in addition to A’s singles, 3, 4,

and 5. Thus, the two MX allocations to A are {1, 3, 4, 5} and {2, 3, 4, 5}, and the

corresponding complete allocations are (1345, 8762) and (2345, 8761), as we noted

earlier.

To illustrate further the determination of MX allocations, we present two more

examples. We will return to them in section 3, wherein we analyze the envy-freeness of

MX allocations:

Example 2: A: 1 2 3 4 5 6 | 7 8

 B: 2 3 6 5 7 8 | 1 4

Observe from the vertical bars at f = 6 that A’s single items are 1 and 4 and B’s are 7 and

8, while 2, 3, 5, and 6 are doubles. Giving two of the latter items to each player produces

B(4, 2) = 6 distinct MX allocations:

(1234, 5678); (1245, 3678); (1246, 3578); (1345, 2678); (1346, 2578); (1456, 2378).

 11

Example 3: A: 1 2 3 4 5 | 6

 B: 2 3 1 5 6 | 4

In this example, n = 4 and f = 5; A’s only single is 4, and B’s is 6, leaving four doubles, 1,

2, 3, and 5. As in Example 2, there are 6 MX allocations, in which A obtains item 4 plus

two doubles, and B obtains item 6 plus two doubles. As we will show in section 3,

Examples 1 and 2 admit EF allocations, whereas Example 3 does not.

3. Envy-Freeness

If f = n, both players rank the same item last, so the maximin depth is n, and there

are no singles. There also are no envy-free (EF) complete allocations, because one player

(say, A) must receive the commonly lowest-ranked item; by Lemma 1 of Brams, Kilgour,

and Klamler (2014), A receives fewer of the items it prefers to its lowest-ranked item than

B does, so A must (item-wise) be envious. Henceforth, we assume f < n, which implies

that each player has at least one single, so there is the possibility (but not the certainty) of

an EF allocation.

In Example 1, where f = 5, we showed in section 2 that there are two MX

allocations, (1345, 8762) and (2345, 8761). Only the first is EF. Notice in each that A

receives its singles, 3, 4, and 5, and B receives its singles, 8, 7, and 6. However, it is the

distribution of the doubles, 1 and 2, that determines whether the allocation is EF.

Only when A receives item 1 and B receives item 2 is the allocation EF. Following

our earlier definition of (item-wise) envy-freeness, we can then pair each player’s items

with the items received by the opponent such that each player ranks each of its items

higher than the item of the other player with which it is paired. Letting “≻ ” denote “is

preferred to,” the following comparisons,

 12

A: 1 ≻ 2, 3 ≻ 6, 4 ≻ 7, 5 ≻ 8; B: 8 ≻ 1, 7 ≻ 3, 6 ≻ 4, 2 ≻ 5

show that each player (pairwise) prefers items it receives to items received by the other

player (this is not the only possible pairing).

For Example 2, it can be shown that only the fourth allocation of the six listed in

section 2 is EF. For Example 3, it can be shown that none of the six MX allocations listed

in section 2 is EF. Brams, Kilgour, and Klamler (2014) show that an EF allocation exists

iff Condition D (see below) is met, but they give no information about whether any EF

allocation is maximin.

We now present conditions (on a pair of rankings) for the existence of an allocation

to be both maximin and EF. We then propose an algorithm (two, in fact) to find an MX-

EF allocation if one exists. We begin with two conditions:

Condition C(k): The set of A’s top k items is identical to the set of B’s top k items.

Condition D: Condition C(k) fails for every odd value of k.

For any pair of preference rankings with f < n, define s to be the positive integer such that

the first single (in either player’s ranking) occurs at rank s. In Example 1, s = 1, because

the single item 8 appears 1st in B’s ordering. In Example 2, s = 1 (item 1 appears 1st in A’s

ranking), and in Example 3, s = 4 (item 4 appears 4th in A’s ranking).

Because Example 3 has no EF allocations, one might think that s = 1 is necessary

for the existence of an EF allocation. But Example 4 shows otherwise:

Example 4: A: 1 2 3 4 5 | 6

 B: 2 3 5 1 6 | 4

 13

In this example, f = 5 and s = 4 (item 4 appears 4th in A’s ranking). Exactly one of the six

complete allocations determined by the Maximin Algorithm, (134, 256), is EF, as

demonstrated by the pairing:

A: 1 2, 3 5, 4 6; B: 2 3, 5 1, 6 4

We have assumed that each player has at least one single. That single can be

preceded in the player’s ranking only by doubles, of which there are 2f – n. Thus, we

must have s < 2f – n + 1. In particular, all items that appear prior to rank s in either

player’s ranking must be doubles.

We define a third condition that is essentially a restriction of Condition D:

Condition DS: Condition C(k) fails for every odd value of k satisfying k < s.

In particular, if s = 1, the players’ rankings satisfy Condition DS, because C(k) is defined

only for k = 1, 2, …, n. Because there are no odd values of k satisfying k < s, Condition

DS holds by default.

We show next that Condition DS is necessary and sufficient for the existence of an

EF-MX allocation.

Theorem 2. Assume A and B strictly rank n items, where n is even. Then the

following are equivalent:

(1) Condition D holds.

(2) Condition DS holds.

(3) There exists a complete EF-MX allocation.

≻ ≻ ≻ ≻ ≻ ≻

 14

Proof. A complete EF-MX allocation is an EF allocation, so the proof of Brams,

Kilgour, and Klamler (2014) demonstrates that (3) implies (1). To show that (1) implies

(2), we assume that Condition C(k) holds for some odd value of k and show that it must

hold for some value of k satisfying k < s. First, we prove that k ≤ f. Otherwise, because k

is odd and n is even, we would have f < k < n. Then a player’s (say, A’s) top k items

contain all of the doubles plus all except n – k of B’s singles. But these n – k singles must

appear among B’s top f, and therefore top k, items. Hence, the two players cannot have

identical top k sets if k > f.

Therefore, if Condition C(k) holds for some odd value of k, then k ≤ f. We now

show that k < s. The top k items in each player’s (say, A’s) ranking must be doubles,

because any single of A would not appear until after rank f in B’s ranking, and s ≤ f. It

follows that k < s and, therefore, that (1) implies (2).

Consequently, Theorem 1 depends on showing that (2) implies (3). Assume that

Condition DS holds. We will show that the following algorithm always produces a

complete EF-MX allocation if such an allocation exists.

SD (Singles-Doubles) Algorithm

Input: A’s and B’s rankings of n > 0 items, where n is even

Output: A complete MX-EF allocation to (A, B)

1. Determine f.

2. If f = n, stop. There are no MX-EF allocations.

3. Identify A’s singles, and assign them to A. Identify B’s singles, and assign them to

B. Stop if all items have been allocated.

 15

4. Assign doubles using the following iterative procedure: Identify each player’s

most preferred unassigned double. If they are different, assign them accordingly.

If they are the same, identify the player who can be assigned its second-most

preferred unassigned double without creating envy, and assign the items

accordingly, breaking ties at random. Repeat until all doubles are assigned.6

First we show that, if it allocates all the doubles, the SD Algorithm produces a

complete MX allocation. After all singles have been assigned, there remain 2f – n

doubles. As noted above, this number is even. For now, assume that the iterative

procedure continues until all doubles have been assigned. Then each player receives its

own singles plus half the doubles, which comprise n – f + (½)(2f – n) = n/2 items, so the

allocation is complete.

In this allocation, each player receives its own singles plus half of the doubles,

which implies that the depth of the allocation is at most f. But from the definition of f,

there is some item that does not appear in either player’s ranking until rank f. Because the

allocation is complete, some player must receive this item. Therefore, the depth of the

allocation is f, which implies that the allocation is a complete MX allocation.

Finally, we show that the SD procedure never breaks down if Condition DS holds.

First, if the procedure stops at step 2, it is clear than Condition DS must fail. We now

show that Condition DS also implies that if, at any stage of the iteration in step 4, the same

unassigned double is most preferred by both players, then at least one player can be

assigned its second-most preferred unassigned double without creating envy.

6 Step 4 is essentially the AL algorithm of Brams, Kilgour, and Klamler (2014).

 16

Suppose that, at some stage of the iterative procedure, both players most prefer the

unassigned double, x. Denote A’s second-most preferred unassigned double by y. Let p

denote the number of doubles already assigned to A. Then A must prefer all previously

assigned doubles to x. Let qA denote the number of doubles already assigned to B that A

prefers to y. Note that

qA ≤ p, (1)

because the same number of doubles has been given to each player.

Let sA equal the number of A’s singles that A prefers to y. If envy is created when x

is assigned to B and y is assigned to A, then we must have

p + sA < qA + 1. (2)

Inequalities (1) and (2) are inconsistent unless sA = 0. In that case, we must have qA = p.

Similarly, if B’s second-most preferred item is z, then p must equal the number of

doubles already assigned to B, each of which B prefers to x. Let qB denote the number of

doubles already assigned to A that B prefers to z, and let sB equal the number of B’s singles

that B prefers to z. For the same reason as for A, if envy is created when x is assigned to A

and z is assigned to B, then we must have sB = 0 and qB = p.

Step 4 breaks down iff the process cannot be continued without creating envy. In

this case, the first 2p + 1 items in A’s ranking are the p doubles already assigned to A, the

p doubles already assigned to B, and x, and these same 2p + 1 items are at the top of B’s

ranking. Hence, the rankings satisfy Condition C(2p + 1). Moreover, none of the first 2p

+ 1 items in either player’s ranking can be a single, so we must have 2p + 1 < s. It follows

 17

that the assumption that the SD Algorithm breaks down implies that Condition DS is

violated, which shows that (2) implies (3), completing the proof. n

Corollary 1. If A’s and B’s rankings of an even number of items admit a complete

EF allocation, then they admit a complete EF-MX allocation.

To illustrate how the SD Algorithm works, consider Example 1, in which the

allocation of the six singles gives a partial allocation of (345, 876) to (A, B), leaving two

doubles, {1, 2}, to be allocated. Both players prefer item 1 to item 2. We can assign B its

less preferred item 2 without causing B to envy A, whereas assigning item 2 to A would

make A envious of B. Thus, we must assign item 1 to A and item 2 to B to prevent envy,

so (1345, 8762) is the only EF-MX allocation.

Clearly, Example 1 must satisfy both Condition D and Condition DS. To verify

Condition D, one must check that the subsets of A’s and B’s top items, at odd ranks 1, 3, 5,

and 7, are different. For example, at rank 5, A’s subset of top items is {1, 2, 3, 4, 5}, and

B’s subset is {8, 7, 6, 1, 2}, which partially overlap but are different.

Condition DS reduces the number of checks from four to zero, because s = 1, and

there is no odd k < s. Hence, we can see immediately that there is an EF-MX allocation,

which we showed earlier to be (1345, 8762).

Condition DS fails in Example 3, which we noted earlier has no EF-MX allocation.

In this example, s = 4, so the top k sets that must be checked are k = 1 and k = 3. Although

the players’ top k items when k = 1 are different (1 for A, 2 for B), their top k subsets of

items when k = 3 are both {1, 2, 3}, so Condition DS is violated (as is Condition D).

We next revise the SD Algorithm to allow singles to be allocated in multiple stages,

which obviates tests for envy insofar as possible:

 18

ISD (Iterated Singles-Doubles) Algorithm

Input: A’s and B’s rankings of n > 0 items, where n is even.

Output: A complete MX-EF allocation to (A, B)

1. Determine f.

2. If f = n, stop. There are no MX-EF allocations.

3. Identify A’s singles, and assign them to A. Identify B’s singles, and assign them to

B. Stop if all items have been allocated.

4. If the players’ least-preferred unassigned items are different, consider only the

unassigned items and repeat step 3 to identify and assign new singles.

5. Assign doubles using the following iterative procedure: Identify each player’s

most preferred unassigned double. If they are different, assign them accordingly.

If they are the same, identify the player who can be assigned its second-most

preferred unassigned double without creating envy, and assign the items

accordingly, breaking ties at random. Repeat until all doubles are assigned.

For a given pair of rankings, the ISD algorithm may be faster and more convenient than

the SD algorithm, depending on the number of “ties” that arise in step 4 of the SD

Algorithm. Some of those ties may be avoided if ISD includes two or more repetitions of

step 3.7

As the following example shows, it can also produce a different MX-EF allocation

(9 and 0 are the 9th and 10th items):

7 Repetitions of step 3 ensure the envy-freeness of the items it allocates, because a player is assigned its own

singles, which it ranks at or above rank f, to the opponent’s singles, which it ranks below rank f. In other

words, each player item-wise prefers its singles to the other player’s singles.

 19

Example 5: A: 1 2 3 4 5 6 7 8 9 | 0

 B: 8 7 6 3 2 1 5 4 0 | 9

As shown by the vertical bars, initially the singles are 0 and 9, which are assigned to B and

A, respectively. The maximin depth f, which we now call f1, is 9. The rankings of the

remaining items, and the new vertical bars at f2 = 5, are as follows:

 A: 1 2 3 4 5 | 6 7 8

 B: 8 7 6 3 2 | 1 5 4

After assigning the 2nd-stage singles, 6, 7, and 8 to B and 1, 5, and 4 to A, the rankings of

the remaining items, and the new vertical bars at f3 = 1, are as follows:

 A: 2 | 3

 B: 3 | 2

After assigning the 3rd-stage singles, 3 and 2, to B and A, respectively, the complete

allocation is (12459, 87630), which is EF and MX.

This is not the only EF-MX allocation in Example 5. The SD Algorithm produces

(12349, 87650), which switches items 3 and 5 between the two players. Thus, ISD yields

a different allocation, which is why we regard it as a different algorithm. However, the

condition in step 4 may be met as soon as A’s and B’s singles are assigned in step 3, in

which case the procedure followed under ISD is the same as under SD. An example is

Example 1 (repeated): A: 1 2 3 4 5 | 6 7 8

 B: 8 7 6 1 2 | 3 4 5

 20

where, after the singles are assigned (3, 4, and 5 to A, and 6, 7, and 8 to B), both players’

least-preferred item is 2, so step 5 is used to assign unassigned items 1 and 2. Similarly, in

Examples 2 and 4, ISD requires step 4, executed once, before there is a commonly least-

preferred unassigned item (3).

The fact that Example 5 has (at least) two EF-MX allocations suggests that they

might be compared according to other fairness properties. We address this question in the

next section.

4. Other Fairness Properties of Complete Allocations

In Example 5, the SD Algorithm gave the complete allocation (12349, 87650),

while the ISD Algorithm gave the complete allocation (12459, 87620). Both allocations

are EF and MX, so one might ask whether one is preferable to the other according to

properties different from EF and MX.

For this purpose, consider the Borda scores of each allocation. Borda scores are

one way to tie a player’s evaluation of a subset of items to its rankings of them. In

particular, Borda scores facilitate comparing subsets of n/2 items.

In Example 5, the Borda scores of the ISD allocation are (29, 30), and the scores of

the SD allocation are (31, 28). Because its minimum score (29) is higher, the ISD

allocation is the BMX allocation unless there is another allocation with a minimum Borda

score of 29 or less. There is not.8

But the minimum Borda scores of SD and ISD can be reversed, as shown by our

next example, rendering the SD allocation, instead of the ISD allocation, BMX:

8 It is easy to show that the only close competitor to the ISD allocation is a switch of items 3 and 5 between

A and B, but this simply gives the SD allocation, which we showed is not BMX.

 21

Example 6: A: 1 2 3 4 5 6 7 | 8

 B: 3 4 5 1 7 2 8 | 6

In this example, the ISD allocation, (1246, 3578), gives Borda scores of (19, 16), whereas

one of the SD allocations, (1256, 3478), gives Borda scores of (18, 17), so this SD

allocation has a higher minimum score. It is not difficult to ascertain that, among all

possible allocations, it is indeed BMX.

But there is another issue. Both SD and ISD give EF-MX allocations. Yet a BMX

allocation may be neither EF nor MX, as our next example shows:

Example 7: A: 1 2 3 4 5 6 7 | 8

 B: 4 2 5 6 3 7 8 | 1

Here, f = 7 and s = 1, and both SD and ISD give the unique EF-MX allocation, (1237,

4568), with Borda scores of (19, 17). But the BMX allocation, determined by an

exhaustive search, is (1238, 4567), with Borda scores of (18, 18). Bizarrely, the BMX

allocation gives A its worst item (8), precluding its being either EF or MX.

We summarize the foregoing results in the following statement:

Proposition 1. The minimum Borda count of an SD allocation may be less than,

equal to, or greater than the minimum Borda count of an ISD allocation. Either

allocation may be a BMX allocation; or a BMX allocation may be neither EF nor MX, and

thus neither SD nor ISD.

 22

We note that there are examples in which a BMX allocation may satisfy one of EF or MX

but not the other. On the other hand, there are also examples, such as Examples 2 and 4,

in which SD and ISD give the same allocation, and it is BMX.

Thus, a complete allocation may be both EF and MX, one but not the other, or

neither. To illustrate, in Example 1, the allocation (2345, 8761) is MX but not EF,

whereas (1235, 8764) is EF but not MX. The situation is just as complex when we include

the property of Pareto-optimality.9

Fortunately, both SD and ISD always find at least one PO allocation—SD by the

allocation of singles in one stage (if possible), and ISD by the allocation of singles in

multiple stages (if possible).10 In Example 2, both algorithms give the unique EF-MX

allocation (the fourth of the six MX allocations shown in section 2), which Pareto-

dominates the fifth MX allocation, which is not EF.

But a Pareto-dominated allocation may be both MX and EF, as our next example

shows:

Example 8: A: 1 2 3 4 5 | 6 7 8

 B: 8 5 4 7 6 | 1 2 3

Here, f = 5 and s = 1; after the allocation of singles, 1, 2, and 3 to A and 6, 7, and 8 to B,

the doubles, 4 and 5, remain. ISD is applicable, but both SD and ISD yield the allocation

9 An allocation is PO iff it is the product of a sequence of sincere of item choices by the players—that is,

choices that are consistent with the players’ preference rankings (Brams and King, 2005). Thus in Example

1, if A and B sincerely choose items in the alternating order ABABABAB, they obtain the allocation (1234,

8765); if the alternating order is BABABABA, they obtain the allocation (1235, 8764). The first allocation is

PO but neither EF nor MX, whereas the second is PO and EF but not MX.
10 If an SD or ISD allocation were not PO, there would be a preferred allocation of singles or doubles to

each player. But at every stage at which singles are allocated, neither player would prefer any of its

opponent’s singles to its own, so neither player can—by trading any of its singles for the other player’s

singles—improve its allocation at that stage. As for the doubles, they are allocated according to AL, which

guarantees that at least one allocation will be PO (Brams, Kilgour, and Klamler, 2014).

 23

(1234, 8576), which is EF and MX. While another allocation, (1235, 8476), is also EF

and MX, it is Pareto-dominated by the first.

We next consider whether SD or ISD is strategy-proof: Can a player obtain a better

allocation by misrepresenting its preference ranking? Our final example shows that both

algorithms are vulnerable:

Example 9: A: 1 2 3 4 5 6 7 | 8 9 0

 B: 0 9 2 1 8 6 4 | 7 3 5

Here, f = 7 and s = 1, so after the allocation of singles (7, 3, 5 to A and 8, 9, 0 to B), only

the doubles, 1, 2, 4 and 6, remain. Both SD and ISD allocate 1 and 4 to A and 2 and 6 to

B. Thus, the complete allocation by both SD and ISD is the MX-EF allocation, (13457,

09286).

But suppose that A reports a false ranking:

Example 9': A': 1 2 3 0 5 6 8 9 | 4 7

 B: 0 9 2 1 8 6 4 7 | 3 5

Now f = 8 and s = 3, so after the allocation of singles (3 and 5 to A and 4 and 7 to B), the

doubles, 1, 2, 0, 6, 8, and 9 remain. Both SD and ISD allocate the doubles (126, 098), so

the complete allocation is (12356, 09847). It is clear that A prefers the subset {1, 2, 3, 5,

6} to the subset {1, 3, 4, 5, 7}, so A has benefitted by misreporting its preference ranking

as A'. This proves that neither SD nor ISD is strategy-proof.11

11 In fact, any “bottom-up” procedure involving two players who submit rankings is vulnerable to

misrepresentation (Brams and Taylor, 1999, pp. 21-24). Under such a procedure, one player chooses first,

and the players anticipate a sequence of later choices (e.g., in which they alternate choosing items). Optimal

choices in such a game constitute a Nash equilibrium (Kohler and Chandrasekaran, 1971; Brams and

Straffin, 1979), but they do not necessarily yield an EF allocation when one exists.

 24

Although not strategy-proof, SD and ISD seem relatively invulnerable to

strategizing in the absence of either player’s having complete information about its

opponent’s preferences. The manipulator’s task might be further complicated if the other

player is aware that the manipulator might try to capitalize on its knowledge and takes

countermeasures (e.g., through deception) to try to prevent its exploitation.

We summarize the foregoing results for PO and strategy-proofness in the following

propositions:

Proposition 2. A PO allocation may be both EF and MX, one but not the other, or

neither. A Pareto-inferior allocation may be EF, MX, or both.

Proposition 3. SD and ISD always find a PO allocation, possibly different. Each

algorithm is vulnerable to manipulation by a player’s misrepresenting its sincere

preference ranking.

5. Conclusions

We have proposed two algorithms for dividing an even number of indivisible items

between two players, based only on their strict rankings of the items. The innovation in

this paper is that the allocations are maximin (MX)—the lowest-ranked item received by

either player is as high as possible in that player’s ranking. Earlier algorithms for

allocating indivisible items, including AL and SA, do not always produce MX allocations.

If there is an envy-free (EF) allocation, then both algorithms produce one that is EF

and MX, and it is Pareto-optimal (PO). If there is no EF allocation, each algorithm gives

an MX-PO allocation. The single-stage algorithm (SD) may give a different allocation

 25

from the multiple-stage (ISD) algorithm. If they are different, either, both, or neither of

the allocations produced by the two algorithms may be Borda maximin (BMX).

Neither SD nor ISD is strategy-proof. However, each algorithm would be difficult

to manipulate in practice unless one player had complete information about the rankings

of its opponent, which seems unlikely.

The problem of allocating a set of indivisible items to two individuals is of course

much broader than discussed here. Each player’s utility for each subset of items could be

specified, with synergies permitted; and a player might receive any non-empty subset of

items, not two equal-size subsets, as required here. But it is important to note that

Condition DS, which we showed is equivalent to the existence of a complete MX-EF

allocation (of equal numbers of items) is itself equivalent to Condition D. Moreover, it is

known that if rankings are assigned at random (equiprobably), then as the number of items

increases, the probability approaches 1 that Condition D, and therefore DS, is satisfied

(Brams, Kilgour, Klamler, 2014). In other words, for large numbers of items, it is very

likely that an MX-EF allocation exists, though this result will be compromised if the

players’ rankings are correlated (e.g., if each ranks the same item as its top item).

SD and ISD seem most applicable to allocation problems in which there are

numerous small items. If there is one big item that two players desire (e.g., the house in a

divorce), it may not be possible to prevent envy, especially if the procedure specifies that

each player receive the same number of items.12 In such a case, the most practical

solution might be to sell the big item—in effect, making it divisible—and divide the

proceeds.

12 This stipulation might be viewed as an essential to achieving fairness in some situations.

 26

The items being allocated need not be physical goods but could, for example, be

committees over which two persons have different preferences, but on which they cannot

serve together (perhaps because they are married). In business, an executive may have to

decide which employees should be assigned to two projects. If each project leader ranks

the employees in terms of their fitness, our algorithms could be used to allocate the

employees. The executive could then justifiably claim that a fair procedure, based on the

input of the project leaders, was used, and he or she had no control in making the project

assignments. Impartiality of this sort seems especially important in assigning people

rather than more impersonal items.

 27

References

Aziz, Haris, Serge Gaspers, Simon Mackenzie, and Toby Walsh (2013). “Fair

Assignment of Indivisible Objects under Ordinal Preferences.” Preprint, University

of New South Wales, Australia.

http://www.cse.unsw.edu.au/~sergeg/papers/AzizGMW14aamas.pdf

Bouveret, Sylvain, Ulle Endriss, and Jérôme Lang (2010). “Fair Division under Ordinal

Preferences: Computing Envy-Free Allocations of Indivisible Goods,”

Proceedings of the 2010 Conference on ECAA 2010: 19th European Conference on

Artificial Intelligence, vol. 215. Amsterdam: IOS Press, pp. 387-392.

Brams, Steven J., D. Marc Kilgour, and Christian Klamler (2014). “Two-Person Fair

Division of Indivisible Items: An Efficient, Envy-Free Algorithm.” Notices of the

AMS 61, no. 2 (February): 130-141.

Brams, Steven J., D. Marc Kilgour, and Christian Klamler (2015). “A Better Way to

Divide Things.” Preprint.

Brams, Steven J., and Daniel L. King (2005). “Efficient Fair Division: Help the Worst

Off or Avoid Envy?” Rationality and Society 17, no. 4 (November): 387-421.

Brams, Steven J., and Philip D. Straffin, Jr. (1979). “Prisoners’ Dilemma and Professional

Sports Draft,” American Mathematical Monthly 86, no. 2 (February): 80-88.

Brams, Steven J., and Alan D. Taylor (1999). The Win-Win Solution: Guaranteeing Fair

Shares to Everybody. New York: W. W. Norton.

Kohler, David A., and R. Chandrasekaran (1971). “A Class of Sequential Games,”

Operations Research 19, no 2 (March-April): 270-277.

Procaccia, Ariel D., and Junxing Wang (2014). “Fair Enough: Guaranteeing

 28

Approximate Maximin Shares.” Preprint, Computer Science Department,

Carnegie Mellon University. http://www.cs.cmu.edu/~arielpro/papers/mms.pdf

