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Abstract

The asymptotic distribution of the Gaussian quasi-maximum likelihood esti-

mator (QMLE) is obtained for a wide class of asymmetric GARCH models with

exogenous covariates. The true value of the parameter is not restricted to belong to

the interior of the parameter space, which allows us to derive tests for the signifi-

cance of the parameters. In particular, the relevance of the exogenous variables can

be assessed. The results are obtained without assuming that the innovations are

independent, which allows conditioning on different information sets. Monte Carlo

experiments and applications to financial series illustrate the asymptotic results. In

particular, an empirical study demonstrates that the realized volatility is an helpful

covariate for predicting squared returns, but does not constitute an ideal proxy of

the volatility.

Keywords: APARCH model augmented with explanatory variables, Boundary of the param-

eter space, Consistency and asymptotic distribution of the Gaussian quasi-maximum likelihood

estimator, GARCH-X models, Power-transformed and Threshold GARCH with exogenous co-

variates.

1 Introduction

The GARCH-type models are of the form

εt = σtηt, (1)
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where the squared volatility σ2
t is the best predictor of ε2

t given a certain information set

Ft−1 available at time t. More precisely, it is assumed that E(ε2
t | Ft−1) = σ2

t > 0, or

equivalently that σt > 0, σt ∈ Ft−1 and E(η2
t | Ft−1) = 1. For the usual GARCH models,

Ft−1 is simply the sigma-field generated by the past returns {εu, u < t}, and the volatility

has a parametric form σt = σ(εu, u < t; θ0), where θ0 is a vector of parameters. It is how-

ever often the case that some extra information is available, under the form of a vector

xt−1 of exogenous covariates, such as the daily volume of transactions, or high frequency

intraday data, or even series of other returns. It is natural to try to take advantage of

the extra information, in order to improve the prediction of the squares. To incorporate

the information conveyed by {xu, u < t} into Ft−1, researchers have considered GARCH

models augmented with additional explanatory variables, the so-called GARCH-X mod-

els, which are of the form σt = σ(εu, xu, u < t; ϑ0), where ϑ0 is a vector of parameters

including a parameter θ0 specific to the past returns and a parameter π0 related to the

exogenous covariates (see e.g. Engle and Patton (2001) and the references therein).

In practice, the difficulties are the choice of the parametric form (as illustrated by

Bollerslev (2008), there exists a plethora of GARCH formulations) and the estimation

of the parameter ϑ0. The two problems are closely related. For GARCH, as well as

for GARCH-X models, the coefficients are generally positively constrained, and tests of

nullity of some components of ϑ0 help to find a parsimonious GARCH-X formulation.

The usual estimator of the GARCH models is the quasi-maximum likelihood estimator

(QMLE), which does not require to specify a particular distribution for the error term ηt.

The consistency of the QMLE does even not require that (ηt) be iid, which is particularly

relevant for GARCH-X models (see Remarks 3 and 4 below). The asymptotic normality

however requires that the true value of the parameter belongs to the interior of the

parameter space, which is generally not the case when components of ϑ0 are equal to

zero.

Questions that seem particularly relevant in the GARCH-X framework are: is it really

useful to introduce covariates in the volatility? which covariates should we add to Ft−1?

how many lagged values should we consider in the GARCH formulation? Some researchers

and practitioners even reject any GARCH model, and consider that the realized volatility

is a sufficiently good proxy of the volatility. In the GARCH-X framework, that leads to
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the following question: is it necessary to include the past returns {εu, u < t} in the

volatility when the sequence (xt) of the realized volatilities is available?

Each of these questions can be discussed by testing the nullity of certain components

of ϑ0. It is thus of interest to study the behaviour of the estimator ϑ̂n of ϑ0 when this

parameter may stand at the boundary of the parameter space. To our knowledge, this

problem has not yet been explicitly considered for GARCH-X models. This will be the

focus of this paper. We now present the class of GARCH-X that we will consider, and

then we detail the main objectives of the paper.

1.1 The model

Let x+ = max(x, 0) and x− = max(−x, 0). We consider the model defined by





εt = h
1/δ
t ηt

ht = ω0 +
∑q

i=1 α0i+(ε+
t−i)

δ + α0i−(ε−t−i)
δ +

∑p
j=1 β0jht−j + π′

0xt−1

(2)

where xt = (x1,t, . . . , xr,t)
′ is a vector of r exogenous covariates. To ensure that ht > 0

with probability one, assume that the covariates are almost surely positive and that the

coefficients satisfy α0i+ ≥ 0, α0i− ≥ 0, β0j ≥ 0, ω0 > 0, δ > 0 and π0 = (π01, . . . , π0r)
′ ≥ 0

componentwise.

In absence of covariates, i.e. when π0 = 0, this equation corresponds to the Asym-

metric Power GARCH (APARCH) model introduced by Ding et al. (1993). Model (2)

can thus be called APARCH-X. The APARCH is rather general, since it nests numer-

ous ARCH-type parameterizations used by the practitioners. The standard GARCH is

obtained with δ = 2 and α0i− = α0i+. Motivated by the fact that the autocorrelations

are often larger for |εt| than for ε2
t , Taylor (1986) proposed the model with δ = 1 and

α0i− = α0i+. When α0i− > α0i+, a negative return has a higher impact on the future

volatility than a positive return of the same magnitude. This is a well-documented styl-

ized fact that is called "leverage effect". Two widely used models that allow for the

leverage effect are the TARCH of Zakoïan (1994), obtained with δ = 1, and the GJR of

(Glosten et al., 1993), obtained with δ = 2. One popular ARCH formulation that is not

nested by the APARCH is the EGARCH model of Nelson (1991). The inference of the

EGARCH is however quite difficult, and the behaviour of the QMLE is still partially un-
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known for this model (see Wintenberger (2013)). Another exponential formulation that

is not encompassed by (2) is the log-GARCH model (see Sucarrat and Escribano (2010)).

1.2 The objectives

The most comprehensible results concerning the inference of the APARCH model can be

found in Pan et al. (2008) and in Hamadeh and Zakoïan (2011) (HZ hereafter).1 To our

knowledge, there exists no general result concerning the estimation of the APARCH-X

model. Actually, even if practitioners often add exogenous variables to volatility models,

the probabilistic properties and the statistical inference of ARCH models with exogenous

variables have not been yet extensively studied. Notable exceptions are the papers of Han

(2013), Han and Kristensen (2014) and Han and Park (2012, 2014), which studied the

inference of the GARCH(1,1) model augmented by an additional covariate which can be

persistent. A common assumption to all the references previously given in this section, is

that the true value of the parameter belongs to the interior of the parameter space. Under

this assumption, and other regularity conditions, the QMLE is asymptotically normally

distributed. When the parameter belongs to the boundary of the parameter space, the

asymptotic distribution of the QMLE may be non standard (see Andrews (2001) for a

general reference, and Francq and Zakoïan (2007) for applications to GARCH models).

An important consequence of the non normality of the QMLE is that the standard t-ratio

or the Wald tests used to identify the order p and q are also non standard (see e.g. Francq

and Zakoïan (2009) and the reference therein).

Our first objective is thus to study the asymptotic distribution of the QMLE of the

APARCH-X model when the parameter is not restricted to belong to the interior of the

parameter space. For the applications we have in mind, the covariates can be for instance

lagged values of other squares returns, or realized volatilities, or positive and negative

parts of relative volume increments. The covariates will be supposed to be positive and

stationary, but they are allowed to be strongly correlated, and also correlated with ηt.

Therefore, the covariates will not be weakly or strongly exogenous in the sense of Engle

et al. (1983), but we can say that the xi,t’s are exogenous variables in the sense that their

1Note that the APARCH model is called Power-Transformed Threshold GARCH in these two papers
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dynamics is not specified by the APARCH-X model.

Our second objective is to propose tests of nullity for one or several components of

ϑ0. This is closely related to the first objective because, due to the positivity constraints

on the components of ϑ0, under the null hypothesis, the true parameter stands at the

boundary of the parameter space. This allows us to determine the asymptotic distribution

of the QMLE.

The remainder of the paper is organized as follows. In Section 2, we first discuss the

strict stationarity. We then introduce the Gaussian quasi-maximum likelihood estimator

for APARCH-X model (2) and derive conditions for its consistency. The asymptotic

distribution of the QMLE is studied conditioning on different information sets. We also

consider the problem of testing the nullity of certain coefficients. The simulation results

and two real data applications are presented in Section 3. Section 4 concludes the paper.

All the proofs are collected in Section 5.

2 Main results

We first discuss the strict stationarity, which will be the main condition for the consistency

of the QMLE.

2.1 Strict stationarity

Assuming that p ≥ 2 and q ≥ 2, let the vector of dimension 2q + p − 2

Y t =
(
ht+1, . . . , ht−p+2,

(
ε+

t

)δ
,
(
ε−t
)δ

, . . . ,
(
ε+

t−q+2

)δ
,
(
ε−t−q+2

)δ)′
.

It is easy to see that (εt) satisfies (2) if and only if

Y t = C0tY t−1 + B0t, (3)

where B0t = (ω0 + π′
0xt, 0, . . . , 0)′ is a vector of dimension 2q +p−2 and C0t is a matrix

depending on (η+
t )δ, (η−

t )δ and

ϑ0 = (θ′

0, π
′

0)
′
, θ0 = (ω0, α01+, α01−, . . . , α0q+, α0q−, β01, . . . , β0p)

′ .

The explicit form of C0t can be found on page 507 in HZ. By modifying slightly the

definitions of Y t and C0t, we still have the representation (3) when p < 2 or q < 2.
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Now assume that

A1: (ηt, x
′
t) is a strictly stationary and ergodic process, and there exists s > 0 such that

E|η1|s < ∞ and E‖x1‖s < ∞.

Note that, for GARCH-type models of the form (2), the sequence (ηt) is usually assumed

to be a white noise, but this assumption is not necessary. Following Brandt (1986) and

Bougerol and Picard (992b), the stationarity relies on the top Lyapunov

γ := lim
t→∞

1

t
log ‖C0tC0,t−1 · · ·C01‖ a.s.,

which is well defined in [−∞, +∞) because E log+ ‖C01‖ < ∞ under the condition

E|η1|s < ∞ (see (A.5) in Pan et al. (2008)). It is showed in the previous reference that

when (ηt) is iid and satisfies some regularity conditions, there exists a unique strictly

stationary solution to the APARCH model if and only if γ < 0. The following lemma

shows that the condition is the same for the APARCH-X.

Lemma 1 Suppose that A1 is satisfied. If γ < 0, the APARCH-X equation (2) (or

equivalently (3)) admits a unique strictly stationary, non anticipative and ergodic solution.

The solution of (3) is given by

Y t = B0t +
∞∑

k=1

(
k∏

i=1

C0,t−i−1

)
B0,t−k. (4)

When γ ≥ 0, there exists no stationary solution to (2) and to (3).

Remark 1 In the case p = q = 1, the top Lyapunov takes the explicit form

γ = E log{α0+

(
η+

1

)δ
+ α0−

(
η−

1

)δ
+ β0} (5)

with the simplified notations α0+ = α01+, α0− = α01− and β0 = β01. Under A1 and

γ < 0, the volatility is given by

ht =
∞∑

k=0

k∏

i=1

a (ηt−i)̟t−k−1, (6)

with a(z) = α0+(z+)δ + α0−(z−)δ + β0, the convention
∏k

i=1 a (ηt−i) = 1 when k = 0, and

̟t = ω0 + π′
0xt. The stationary solution of the APARCH-X model is

εt =

{
∞∑

k=0

k∏

i=1

a (ηt−i)̟t−k−1

}1/δ

ηt. (7)
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Remark 2 It has to be noted that the strict stationarity condition γ < 0 given in

Lemma 1 does not involve the exogenous variables xt. Taking xt = εt is not forbid-

den, but of course Assumption A1 entails that (xt) is stationary, and in this case, the

lemma becomes trivial.

2.2 Strong consistency of the QMLE

Hamadeh and Zakoïan (2011) showed that, for APARCH models, the power parameter δ

is difficult to be estimated in practice. The quasi-likelihood being very flat in the direction

of δ, estimating this parameter leads to imprecise results and considerably slows down

the optimization routine. We therefore consider that δ is fixed. In many applications,

δ = 1 (as in the TARCH) or δ = 2 (as in the GJR model). Let d = 2q + p + r + 1 be

the remaining number of unknown parameters. A generic element of the parameter space

Θ ⊆ (0, +∞) × [0, +∞)d−1 is denoted by

ϑ = (ω, α1+, α1−, . . . , αq+, αq−, β1, . . . , βp, π
′)
′
.

Let (ε1, . . . , εn) be a realization of length n of the stationary solution (εt) to the

APARCH-X model (2), and let (x1, . . . ,xn) be the corresponding observations of the

exogenous variables. Given initial values ε1−q, . . . , ε0, σ̃1−p ≥ 0, . . . , σ̃0 ≥ 0, x0 ≥ 0, the

Gaussian quasi-likelihood is given by

Ln (ϑ) = Ln (ϑ, ε1, . . . , εn, x1, . . . ,xn) =
n∏

t=1

1√
2πσ̃2

t

exp

{−ε2
t

2σ̃2
t

}

where the σ̃t are defined recursively, for t ≥ 1, by

σ̃δ
t = σ̃δ

t (ϑ) = ω +

q∑

i=1

αi+

(
ε+

t−i

)δ
+ αi−

(
ε−t−i

)δ
+

p∑

j=1

βjσ̃
δ
t−j + π′xt−1.

The QMLE of ϑ0 is defined as any measurable solution ϑ̂n of

ϑ̂n = arg max
ϑ∈Θ

Ln (ϑ) = arg min
ϑ∈Θ

Q̃n (ϑ) (8)

where

Q̃n (ϑ) =
1

n

n∑

t=1

ℓ̃t, ℓ̃t = ℓ̃t (ϑ) =
ε2

t

σ̃2
t

+ ln σ̃2
t . (9)

Let Aϑ+(z) =
∑q

i=1 αi+zi, Aϑ−(z) =
∑q

i=1 αi−zi and Bϑ(z) = 1 −∑p
j=1 βjz

j. To show

the strong consistency of the QMLE, we need the following assumptions.
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A2: E (ηt | Ft−1) = 0 and E (η2
t | Ft−1) = 1, where Ft−1 denotes the σ-field generated by

{εu, xu, u < t}.

A3: ϑ0 ∈ Θ, Θ is compact.

A4: for all i ≥ 1, the support of the distribution of ηt−i given Ft,i, where Ft,i is a σ−field

generated by {ηt−j, j > i,xt−k, k > 0}, is not included in [0,∞) or in (−∞, 0] and

contains at least three points.

Assumption A4 is an identifiability condition which prevents taking redundant explana-

tory variables in the volatility, for instance xt−1 =
(
ε+

t−i

)δ
(see Remark 5 below).

A5: γ < 0 and
∑p

j=1 βj < 1 for all ϑ ∈ Θ.

A6: there exists s > 0, such that Ehs
t < ∞ and E|εt|s < ∞.

A7: if p > 0, Bϑ0
(z) has no common root with Aϑ0+(z) and Aϑ0−(z); Aϑ0+(1) +

Aϑ0−(1) 6= 0 and α0q+ + α0q− + β0p 6= 0 (with the notation α00+ = α00− = β00 = 1).

A8: If d is a non zero vector of R
r then d′x1 is not degenerated.

Assumptions A3, A5 and A7 have already been used to show the consistency of the

QMLE for GARCH models. Assumption A8 is an identifiability condition which is

obviously necessary to avoid multicollinearity of the explanatory variables. The following

remarks concern respectively A2 and A4.

Remark 3 Assumptions A1 and A2 entail that (ηt,Ft) is a conditionally homoscedastic

martingale difference. For the GARCH-type models, it is usual to assume the stronger

assumption that (ηt) is iid (0, 1). Note, however, that Escanciano (2009) and Han and

Kristensen (2014) employed A2. The advantage of using A2 is that (2) becomes a semi-

strong model, that can be satisfied for different σ-fields Ft, corresponding for example to

different sequences of exogenous variables (xt). Indeed, A2 is satisfied for a model of

the form (1) whenever E (εt | Ft−1) = 0 and E (ε2
t | Ft−1) = σ2

t > 0. With APARCH-X

models, for which several information sets Ft can be naturally investigated, Assumption

A2 seems thus more flexible than the iid assumption.
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Remark 4 Let us give an example of a data generated process for which several GARCH-

X models of the form (2) coexist under the semi-strong noise Assumption A2. As-

sume that X t = (εt, yt)
′ follows the bivariate GARCH model X t = Σ

1/2
t ηt, where

Σt = diag
(
σ2

1,t, σ
2
2,t

)
with ηt iid N (0, I2), and σ2

i,t = ωi + αiε
2
t−1 + βiσ

2
i,t−1 + πiy

2
t−1

for i = 1, 2. The process (εt) thus follows a (strong) GARCH-X(1,1) model with ex-

ogenous variable xt = y2
t . Nijman and Sentana (1996) showed that (εt) also follows a

GARCH(2,2) model, without exogenous variable, but with a semi-strong noise satisfying

A2, which is not independent in general.

Remark 5 Note that when there is no covariate and when (ηt) is iid, Assumption A4

reduces to

P [η1 > 0] ∈ (0, 1) and the support of the distribution of η1 contains at least 3 points,

which is exactly the identifiability condition A2 of HZ. When there exist covariates, A4

rules out the existence of collinearities between the exogenous variables and the functions

of the past returns involved in the volatility. For example, the assumption precludes

that d′xt−1 = (ε+
t−i)

δ with d ∈ R
r (otherwise the variable (η+

t−i)
δ given Ft,i would be

degenerated, and thus almost surely equal to 0, which is impossible under A4).

The following lemma shows that A6 can be suppressed when (ηt) is iid.

Lemma 2 If γ < 0 and Assumptions A1-A2 hold with (ηt) iid (0,1), then A6 is satisfied.

It will be convenient to approximate the sequence
(
ℓ̃t (ϑ)

)
by an ergodic stationary

sequence. Therefore, denote by
(
σδ

t

)
t

=
{
σδ

t (ϑ)
}

t
the strictly stationary, ergodic and

non-anticipative solution of

σδ
t = ω +

q∑

i=1

αi+

(
ε+

t−i

)δ
+ αi−

(
ε−t−i

)δ
+

p∑

j=1

βjσ
δ
t−j + π′xt−1. (10)

Note that σδ
t (ϑ0) = ht. Let Qn (ϑ) and ℓt be obtained by replacing σ̃δ

t with σδ
t in Q̃n (ϑ)

and ℓ̃t.

Theorem 1 Let ϑ̂n be a sequence of QMLE satisfying (8). Then, under A1–A8,

ϑ̂n → ϑ0 a.s. as n → ∞.
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2.3 Asymptotic distribution of the QMLE

For the computation of (9), it is necessary to have σ̃t(ϑ) > 0 almost surely, for any ϑ ∈ Θ.

This is why the components of ϑ ∈ Θ are constrained to be non negative. More precisely,

it can be assumed that, for i = 2, . . . , d, the i-th section of Θ is [0, Ki] with Ki > 0 (the

first section being [ω, ω] with 0 < ω < ω). If Θ is of this form and is large enough (to

avoid, for instance, that the i-th component ϑ0i of ϑ0 be less than or equal to Ki), the

following assumption is satisfied.

A9: C := limn→∞

√
n(Θ − ϑ0) =

∏d
i=1 Ci, where Ci = [0, +∞) when ϑ0i = 0 and Ci = R

otherwise.

The set C will be called the local parameter space. This is a convex cone, which is equal

to R
d if and only if ϑ0 belongs to the interior of Θ, i.e. if all the components of ϑ0 are

non zero, under A9.

For standard GARCH models, without covariates and with (ηt) iid, note that ηt is

independent of Ft−1. In that situation, it is known that no moment condition on εt

is needed for the consistency and asymptotic normality (CAN) of the QMLE when the

GARCH parameter belongs to the interior of the parameter space, whereas moments

conditions are required when the parameter stands at the boundary of the parameter

space (see the example given in Section 3.1 of Francq and Zakoïan (2007)). When the

model is semi-strong, i.e. when ηt is not independent of Ft−1, stronger moment conditions

will be required. We thus distinguish four cases:

Case A : ηt is independent of Ft−1 and all the components of ϑ0 are strictly positive;

Case B : ηt is independent of Ft−1 and at least one component of ϑ0 is equal to zero;

Case C : ηt is not independent of Ft−1 and all the components of ϑ0 are strictly positive;

Case D : ηt is not independent of Ft−1 and at least one component of ϑ0 is equal to zero.

For simplicity, these four cases are referred to respectively as strong in the interior, strong

at the boundary, semi-strong in the interior and semi-strong at the boundary. We assume

that
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A10: Eη4
t < ∞ in Cases A and B, and E|ηt|4+ν < ∞ for some ν > 0 in Cases C and D.

A11: E |εt|2δ < ∞ and E ‖xt‖2 < ∞ in Case B, and E |εt|2δ+8δ/ν < ∞ and E ‖xt‖2+8/ν <

∞ in Case D.

Under the previous assumptions, Lemma 4 in Section 5 below shows that the matrix

J := E

(
∂2ℓt(ϑ0)

∂ϑ∂ϑ′

)
=

4

δ2
E

(
1

σ2δ
t (ϑ0)

∂σδ
t (ϑ0)

∂ϑ

∂σδ
t (ϑ0)

∂ϑ′

)
(11)

is positive definite. Let us thus consider the norm ‖x‖2
J

= x′Jx and the scalar product

〈x, y〉
J

= x′Jy for x, y ∈ R
d. In the sense of this scalar product, the orthogonal

projection of a vector Z ∈ R
d on C is defined by

ZC = arg inf
C∈C

‖C − Z‖
J

or equivalently by

ZC ∈ C and
〈
Z − ZC, C − ZC

〉
J
≤ 0, ∀C ∈ C. (12)

When ϑ0 is allowed to lie at the boundary of the parameter space, we also need the

following moment assumption.

A12: in Cases B and D, there exist Hölder conjugate numbers p and q > 1 such that

p−1 + q−1 = 1 and E|εt|2δq < ∞, E|εt|2p < ∞, E‖xt‖2q < ∞.

Theorem 2 Under the assumptions of Theorem 1 and A9–A12, as n → ∞,

√
n(ϑ̂n − ϑ0)

d→ ZC, where Z ∼ N
{
0, J−1IJ−1

}
, (13)

J is defined by (11) and

I =
4

δ2
E

[{
E
(
η4

t | Ft−1

)
− 1
} 1

σ2δ
t (ϑ0)

∂σδ
t (ϑ0)

∂ϑ

∂σδ
t (ϑ0)

∂ϑ′

]
.

Remark 6 The previous theorem provides the asymptotic distribution of the QMLE in

each of the Cases A-D. In all cases, Assumptions A1-A9 are required. Note that, in

Cases A and B, we have I = (Eη4
1 − 1)J . In Cases A and C, the local parameter space

is C = R
d, and the asymptotic distribution of the QMLE is thus normal:

√
n(ϑ̂n − ϑ0)

d→ N
{
0, (Eη4

1 − 1)J−1
}

in Cases A (14)
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and
√

n(ϑ̂n − ϑ0)
d→ N

{
0, J−1IJ−1

}
in Cases C. (15)

This result is obtained under the assumption that Eη4
t < ∞ in Case A and a slightly

stronger condition in Case C (see A10), but without moment condition on the observed

process εt. When there is no covariate (r = 0), we retrieve the results obtained by Francq

(2004) in the GARCH case (δ = 2 and α0i+ = α0i−) and when (ηt) is iid, by Escan-

ciano (2009) in the GARCH case when (ηt) is a conditionally homoscedastic martingale

difference, and by HZ in the general APARCH case. In the presence of covariates, (15)

allows to retrieve some of the results obtained by Han and Kristensen (2014) for the

GARCH-X(1,1) model, under slightly different assumptions.

When ϑ0 stands at the boundary of the parameter space (Cases B and D), it seems

that there existed no result similar to (13) for GARCH models with covariates. It is

however worth considering Cases B and D, in particular, because this gives the asymptotic

distribution of the QMLE under the null that π0 = 0. When there is no covariate, note

that A12 is satisfied when E|εt|6 < ∞ (by taking p = 3 and q = 3/2). We thus retrieve

(13) under the conditions given by Francq and Zakoïan (2007) in the particular case of

GARCH models with (ηt) iid and r = 0 (see also Andrews (1999) and the references

therein for the boundary problem in a more general estimation framework). Even when

r = 0, the authors are not aware of the existence of conditions entailing (13) for the

general APARCH model, or even for the subclass of the GARCH model in Case D.

The next proposition provides estimations for the matrices I and J required to apply

Theorem 2. Assumption A12 needs to be slightly reinforced as follow

A12’: in Cases B and D, there exist Hölder conjugate numbers p and q > 1 such that

p−1 + q−1 = 1 and E|εt|2δq < ∞, E|εt|4p < ∞, E‖xt‖2q < ∞.

Proposition 1 Under the assumptions of Theorem 2 with A12 replaced by A12’, strongly

consistent estimators of J and I are given by

Ĵn =
4

δ2

1

n

n∑

t=1

1

σ̃2δ
t (ϑ̂n)

∂σ̃δ
t (ϑ̂n)

∂ϑ

∂σ̃δ
t (ϑ̂n)

∂ϑ′
, (16)

12



and

În =
4

δ2

1

n

n∑

t=1

(
η̂4

t − 1
) 1

σ̃2δ
t (ϑ̂n)

∂σ̃δ
t (ϑ̂n)

∂ϑ

∂σ̃δ
t (ϑ̂n)

∂ϑ′
. (17)

with η̂t = εt/σ̃t(ϑ̂n).

Remark 7 In Cases A and B, in view of Remark 6, the estimator defined by (17) can

be replaced by

În =

(
1

n

n∑

t=1

η̂4
t − 1

)
Ĵn. (18)

Theorem 2 and Proposition 1 allow to test if one or several GARCH coefficients are

equal to zero, which is important for identifying the orders of the model and the relevant

covariates. For simplicity, we concentrate on the case of testing the nullity of only one

coefficient. Let ek be the k-th element of the canonical basis of R
d. We will test the

hypothesis that the k-th element of ϑ0 is equal to zero, assuming the other elements are

positive:

H0 : e′

kϑ0 = 0 and e′

ℓϑ0 > 0 ∀ℓ 6= k against H1 : e′

kϑ0 > 0. (19)

For this testing problem, the Student t-test statistic is defined by

tn(k) =
e′

kϑ̂n√
e′

kΣ̂ek

, Σ̂ = Ĵ
−1

n ÎnĴ
−1

n .

Denote by χ2
ℓ(α) the α-quantile of the chi-squared distribution with ℓ degrees of freedom.

As a corollary of Theorem 2 and Proposition 1, we obtain the following result.

Corollary 1 Under the assumptions of Theorem 2, the test of rejection region

{t2n(k) > χ2
1(1 − 2α)}

has the asymptotic level α under H0 and is consistent under H1 defined in (19).

Remark 8 Because the asymptotic distribution of the QMLE is non Gaussian under the

null, the standard t-ratio test of rejection region {t2n(k) > χ2
1(1 − α)} would have the

wrong asymptotic level α/2 instead of α.
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3 Numerical illustrations

We now illustrate our asymptotic results on Monte Carlo simulations and on financial

series of daily returns and volumes, as well as high frequency intraday data.

3.1 Simulation experiments

The aim of this section is to study the finite sample behavior of the QMLE and of tests of

significance of the form (19), in the different frameworks corresponding to Cases A-D. We

thus simulated the following TARCH-X(1,1) model with 2 lagged values of an exogenous

variable




εt = σtηt

σt = ω0 + α0+(ε+
t−1) + α0−(ε−t−1) + β0σt−1 + π01xt−1 + π02xt−2.

(20)

The exogenous variable xt is assumed to be the stochastic volatility defined by

xt = eyt , yt = ayt−1 + et (21)

where (et) is independently and N (0, 1) distributed. In Cases A and B, we also assume

that ηt is iid N (0, 1) and independent of (et). In Cases C and D, we assume that,

given Ft−1, the variable
√

νt/(νt − 2)ηt follows a Student distribution with νt degrees of

freedom, where νt = 5 + xt−1. This specification of νt guarantees that A10 is satisfied.

Indeed, the fourth order moment exists because

Eη4
t = E

(
η4

t

∣∣Ft−1

)
= E

(
3(νt − 2)

νt − 4

)
≤ E (3(νt − 2)) < ∞

and, by a similar argument, it can be shown that a moment of order larger than 4 also

exists. We took the parameter ϑ0 = (0.046, 0.027, 0.092, 0.843, 0.089, π02) where π02 = 0

in Cases B and D (this value of parameter corresponds to the estimated value of the

parameter for the series BA studied in Section 3.3 below) and π02 = π01 = 0.089 in Cases

A and C. In each of the four cases, we simulated 500 independent replications of model

(20) for the two sample sizes n = 1, 000 and n = 2, 000. To attenuate the effect of the

initial values, the first 200 values of each simulation have been eliminated. Figures 1, 2,

3, 4 display the boxplots of the estimation errors of the QMLE corresponding to the four

cases. As expected, the accuracy of the estimators always increases with n. It can be

14



noted that the estimators are more accurate when the model is strong (Cases A and B)

than when it is semi-strong (Cases C and D). The boxplots also display more frequent

outliers in the semi-strong case. Also, in accordance with the asymptotic theory, the

distribution of the errors is clearly non Gaussian, especially for the estimation of π02,

when the true value of the parameter stands at the boundary of the parameter space

(Cases B and D). Table 1 gives the empirical frequencies of rejection of the hypotheses

π01 = 0 and π02 = 0. The test of the null hypothesis π01 = 0 (which is false in the four

cases) is more powerful in Cases A and B (corresponding to a strong model) than C and

D (corresponding to a semi-strong model). This is not surprising since, as shown by the

boxplots, the semi-strong model is less accurately estimated than the strong one. Less

obviously, the test is slightly more powerful in Cases B and D (when π02 = 0) than in

Cases A and C (when π02 = 0.089). Turning to the test of the null hypothesis π02 = 0

(which is true in Cases B and D), one can see that the type 1 errors are well controlled

when n = 2, 000. Indeed, when the nominal level is 5%, the empirical relative frequency

of rejection over the 500 independent replications should vary between 2.2% and 6.6%

with probability of approximately 95%. When the nominal level is 1%, it varies from

0.4% to 2.0% with the same probability. All the relative rejection frequencies displayed

in Table 1 are within these 95% limits when n = 2, 000.

15



Table 1: Relative frequencies (in %) of rejection of the assumptions that the first and second lagged

values of the exogenous variable do not appear in the conditional variance

Hπ01

0 : π01 = 0 Hπ02

0 : π02 = 0

α = 1% α = 5% α = 1% α = 5%

n = 1, 000 n = 2, 000 n = 1, 000 n = 2, 000 n = 1, 000 n = 2, 000 n = 1, 000 n = 2, 000

A 83.00 99.40 96.00 99.80 66.80 91.00 85.80 98.40

B 99.40 100.00 100.00 100.00 3.60 1.40 7.60 5.20

C 72.80 92.00 88.00 98.00 50.80 77.20 70.60 92.60

D 96.40 98.80 99.20 98.80 2.20 2.00 6.40 5.80
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Figure 1: Boxplots of 500 estimation errors for the QMLE of the parameter ϑ0 of a

TARCH-X(1,1) in Case A (strong in the interior) for the two sample sizes n = 1, 000 and

n = 2, 000.

Figure 2: As Figure 1 but in Case B (strong at the boundary)
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Figure 3: As Figure 1 but in Case C (semi-strong in the interior)

Figure 4: As Figure 1 but in Case D (semi-strong at the boundary)
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3.2 SP500 with realized range, volume and other indices

In this section, we built a model which aims to explain the volatility of the daily returns

of the SP500 index by its past values, the realized range, the volume and other stock

returns. The data set has been downloaded from http://finance.yahoo.com/ and

covers the period from January 4, 1985 to August 26, 2011. We considered the series of

the relative range rrt = (hight − lowt)/lowt, where hight and lowt denote respectively

the highest and lowest prices of the day. We also measured the relative volume by the

formula vt =
∣∣∣ volt

1

20

∑
20

i=1
volt−i

− 1
∣∣∣, where volt denotes the daily number of shares traded.

We did not consider directly (volt) as covariate because this series is non stationary. The

indicator vt compares the present volume with the averaged volume over the past 20 days,

which is a technique used by some traders. Figure 3.2 displays the series of the returns

εt, the ranges rrt and the relative volumes vt, which look stationary. We also added the

returns of the Nikkei, Nikt, and of the FTSE, Ftt, as potential explanatory variables for

the SP500 volatility. We fitted APARCH-X(1,1) models with δ ∈ {0.5, 1, 1.5, 2}. The

model with the largest likelihood is obtained for δ = 1, and is given by





εt = htηt

ht = 0.018
(0.006) 0.002

+ 0.000
(0.020) 0.500

ε+
t−1 + 0.110

(0.035) 0.001
ε−t−1 + 0.879

(0.020) 0.000
ht−1 + 4.331

(1.493) 0.002
rrt−1

+ 0.061
(0.026) 0.010

vt−1 + 0.000
(0.007) 0.500

Nik2
t−1 + 0.000

(0.007) 0.500
Ft2t−1.

Under the estimated value of each coefficient, the estimated standard deviation is given

into brackets, followed by the p-value of the test that the coefficient is equal to zero. One

can see that the range rrt−1 and the volume vt−1 are significant covariates, whereas the

returns Nik2
t−1 and Ft2t−1 are not. This is in accordance with several empirical studies

showing that the realized range, and to a lesser extent, the volume can help to predict the

volatility (see e.g. Fuertes et al. (2009)). This is also consistent with other studies showing

that the volatility spillover effects between stock markets are mainly instantaneous.
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Figure 5: Return, range and relative volume of the SP500 index from January 4, 1985 to

August 26, 2011 (October 19, 1987 corresponds to the black Monday, and October 13,

2008 corresponds to the beginning of the stock market crash of 2008).
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3.3 US stocks with realized volatility

The data used in this section come from Section 4.2 of Laurent et al. (2014)2 and concern

49 large capitalization stocks of american stock exchanges, covering the period from

January 4, 1999 to December 31, 2008 (2,489 trading days). At the end of each trading

day t, the log-return in percentage εt and the realized volatility rvt (computed as the sum

of intraday squared 5-minute log-returns) are available.

The first question that we are interested in is whether the realized volatility is useful

to predict the squared returns or not. More precisely, we would like to know how many

lagged values of the realized volatility have to be considered in the volatility equation.

In order to answer this question, we estimated APARCH-X(1,1) models of the form





εt = h
1/δ
t ηt

ht = ω + α+(ε+
t−1)

δ + α−(ε−t−1)
δ + βht−1 + π1 rv

δ/2
t−1 + π2 rv

δ/2
t−2,

(22)

with δ ∈ {0.5, 1, 1.5, 2}. The variables rvt−1 and rvt−2 are raised to the power δ/2 in

order to have the same unit of measure for ε2
t , the squared volatility h

2/δ
t and the realized

volatility rvt, regardless of δ. The selected value of δ is that which leads to the maximum

value of the quasi-likelihood. Table 2 displays the fitted model on each of the 49 stocks.

For all the estimated models, except 3 over the 49, one observes that α− > α+, which is

in accordance with the leverage effect (i.e. the fact that the volatility tends to increase

more after a negative return than after a positive return of the same magnitude). We

mostly find π1 significantly non zero and π2 close to zero. From this table, it is clear that

yesterday’s realized volatility often helps in predicting today’s squared return.

Another question that we would like to investigate is whether the realized volatility

is a good proxy of the volatility or not. Of course, the answer depends on what the

precise meaning of "volatility" is. Here, we define the volatility as the best predictor of

the squared return given all the information available Ft−1, consisting in the past returns

and the past realized volatilities. We thus consider the model





εt = h
1/δ
t ηt

ht = ω + α+(ε+
t−1)

δ + α−(ε−t−1)
δ + βht−1 + π0 rv

δ/2
t .

(23)

2The authors are grateful to Sébastien Laurent who has kindly provided them with the data set.
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Note that this model is considered for explanatory purposes only, but can not be used

for predicting ε2
t since it involves the unavailable realized volatility at time t. The null

hypothesis that the realized volatility rvt is the best proxy of the volatility ht can be

formally written as

H0 : α+ = α− = β = 0. (24)

No need to use a formal test, the null hypothesis (24) is clearly rejected on all the

estimated models for the 49 stocks (see Table 3), in particular, because the persistent

parameter β̂ is always highly significant. From this study, we can draw the conclusion

that the realized volatility is far from being an ideal proxy of the actual volatility. It

is thus questionable to compare volatility forecasts with realized volatilities, a practice

which is however becoming common in finance since the celebrated paper of Hansen and

Lunde (2005).

22



Table 2: APARCH-X(1,1) models (22) fitted by QMLE on daily returns of US stock with two lagged

values of realized volatilities as covariates. The estimated standard deviations are displayed into paren-

theses. For the estimated values of π1 and π2, one star (*) means a p-value p ∈ [0.01, 0.05) for testing the

nullity of the coefficient, two stars (**) means p ∈ [0.001, 0.01), and three stars (***) means p < 0.001.

The last column gives the selected value of the power δ.

ω α+ α− β π1 π2 δ

AAPL 0.080 (0.029) 0.042 (0.015) 0.055 (0.013) 0.796 (0.056) 0.120∗ (0.072) 0.000 (0.079) 0.5

ABT 0.046 (0.027) 0.023 (0.024) 0.019 (0.027) 0.661 (0.100) 0.285∗∗∗(0.071) 0.000 (0.102) 0.5

AXP 0.027 (0.010) 0.000 (0.019) 0.074 (0.019) 0.809 (0.038) 0.155∗∗ (0.061) 0.000 (0.069) 1

BA 0.046 (0.022) 0.027 (0.020) 0.092 (0.023) 0.843 (0.037) 0.084 (0.065) 0.000 (0.071) 2

BAC 0.007 (0.010) 0.009 (0.026) 0.090 (0.029) 0.813 (0.045) 0.151∗∗ (0.063) 0.000 (0.083) 1

BMY 0.000 (0.020) 0.051 (0.018) 0.077 (0.025) 0.880 (0.031) 0.072 (0.106) 0.000 (0.108) 1

BP 0.017 (0.015) 0.010 (0.020) 0.043 (0.017) 0.682 (0.068) 0.191∗ (0.086) 0.106 (0.092) 0.5

C 0.013 (0.011) 0.019 (0.025) 0.123 (0.028) 0.744 (0.056) 0.178∗∗ (0.059) 0.007 (0.077) 1

CAT 0.045 (0.022) 0.000 (0.016) 0.011 (0.017) 0.780 (0.066) 0.183∗∗ (0.074) 0.000 (0.087) 0.5

CL 0.127 (0.054) 0.032 (0.021) 0.212 (0.065) 0.424 (0.105) 0.156∗∗ (0.057) 0.193∗∗ (0.073) 2

CSCO 0.013 (0.015) 0.000 (0.020) 0.054 (0.020) 0.848 (0.034) 0.131 (0.081) 0.000 (0.084) 1

CVX 0.082 (0.030) 0.014 (0.022) 0.068 (0.025) 0.716 (0.071) 0.102∗ (0.062) 0.088 (0.088) 2

DELL 0.000 (0.006) 0.030 (0.012) 0.055 (0.012) 0.874 (0.034) 0.093 (0.080) 0.000 (0.085) 0.5

DIS 0.042 (0.021) 0.000 (0.016) 0.070 (0.022) 0.807 (0.056) 0.132∗ (0.063) 0.002 (0.069) 2

EK 0.182 (0.091) 0.071 (0.029) 0.111 (0.036) 0.583 (0.161) 0.224∗ (0.103) 0.000 (0.155) 0.5

EXC 0.092 (0.033) 0.056 (0.032) 0.157 (0.039) 0.677 (0.060) 0.196∗∗ (0.072) 0.000 (0.077) 1.5

F 0.060 (0.046) 0.068 (0.037) 0.075 (0.025) 0.740 (0.050) 0.091 (0.088) 0.103 (0.097) 1

FDX 0.033 (0.018) 0.012 (0.021) 0.025 (0.021) 0.803 (0.070) 0.162∗ (0.074) 0.000 (0.081) 0.5

GE 0.005 (0.010) 0.000 (0.019) 0.052 (0.022) 0.802 (0.050) 0.180∗ (0.085) 0.000 (0.076) 1

GM 0.026 (0.023) 0.018 (0.015) 0.047 (0.023) 0.881 (0.031) 0.094 (0.093) 0.000 (0.099) 2

HD 0.007 (0.010) 0.000 (0.015) 0.030 (0.013) 0.850 (0.037) 0.135∗ (0.070) 0.000 (0.071) 0.5

HNZ 0.007 (0.009) 0.050 (0.018) 0.084 (0.022) 0.840 (0.038) 0.105∗ (0.059) 0.000 (0.064) 1

HON 0.015 (0.012) 0.000 (0.023) 0.108 (0.019) 0.860 (0.030) 0.092 (0.068) 0.000 (0.065) 1

IBM 0.011 (0.007) 0.000 (0.015) 0.044 (0.016) 0.858 (0.033) 0.116∗ (0.063) 0.000 (0.070) 0.5

INTC 0.013 (0.009) 0.000 (0.012) 0.031 (0.013) 0.862 (0.029) 0.119∗ (0.061) 0.000 (0.063) 0.5

JNJ 0.022 (0.011) 0.004 (0.023) 0.176 (0.033) 0.757 (0.049) 0.144∗∗ (0.061) 0.000 (0.070) 1.5

KO 0.009 (0.016) 0.010 (0.023) 0.084 (0.028) 0.702 (0.057) 0.248∗∗ (0.082) 0.000 (0.093) 1

LLY 0.021 (0.089) 0.071 (0.029) 0.065 (0.036) 0.245 (0.146) 0.108 (0.097) 0.599∗ (0.316) 0.5

MCD 0.015 (0.010) 0.031 (0.015) 0.043 (0.016) 0.863 (0.029) 0.096 (0.065) 0.000 (0.070) 0.5
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Table 2: (continued)

ω α+ α− β π1 π2 δ

MMM 0.035 (0.020) 0.011 (0.024) 0.015 (0.024) 0.777 (0.057) 0.181∗ (0.104) 0.000 (0.104) 0.5

MOT 0.011 (0.010) 0.004 (0.014) 0.066 (0.015) 0.888 (0.025) 0.081 (0.067) 0.000 (0.070) 1

MRK 0.022 (0.013) 0.017 (0.017) 0.085 (0.024) 0.904 (0.026) 0.046 (0.073) 0.000 (0.065) 1

MS 0.015 (0.016) 0.011 (0.019) 0.058 (0.022) 0.720 (0.080) 0.251∗∗∗(0.078) 0.000 (0.102) 0.5

MSFT 0.000 (0.011) 0.046 (0.019) 0.038 (0.015) 0.731 (0.066) 0.237∗∗∗(0.073) 0.000 (0.100) 0.5

ORCL 0.000 (0.010) 0.001 (0.014) 0.050 (0.016) 0.888 (0.024) 0.095 (0.063) 0.000 (0.065) 1

PEP 0.011 (0.010) 0.042 (0.017) 0.070 (0.021) 0.842 (0.035) 0.084 (0.058) 0.000 (0.066) 2

PFE 0.005 (0.006) 0.014 (0.010) 0.041 (0.010) 0.956 (0.010) 0.014 (0.031) 0.000 (0.029) 2

PG 0.032 (0.021) 0.000 (0.027) 0.134 (0.035) 0.649 (0.074) 0.269∗∗∗(0.080) 0.000 (0.100) 1

QCOM 0.051 (0.027) 0.029 (0.019) 0.110 (0.024) 0.819 (0.038) 0.116∗ (0.065) 0.000 (0.070) 1.5

SLB 0.116 (0.049) 0.003 (0.017) 0.015 (0.019) 0.827 (0.045) 0.121∗ (0.067) 0.000 (0.073) 2

T 0.008 (0.009) 0.003 (0.013) 0.050 (0.018) 0.881 (0.023) 0.087 (0.055) 0.000 (0.058) 2

TWX 0.000 (0.030) 0.041 (0.028) 0.150 (0.033) 0.564 (0.063) 0.211∗∗ (0.071) 0.166∗ (0.081) 1.5

UN 0.020 (0.010) 0.039 (0.021) 0.108 (0.039) 0.705 (0.064) 0.189∗∗ (0.072) 0.000 (0.078) 2

VZ 0.012 (0.011) 0.050 (0.019) 0.054 (0.020) 0.787 (0.051) 0.162∗∗ (0.063) 0.000 (0.074) 0.5

WFC 0.000 (0.011) 0.020 (0.024) 0.091 (0.029) 0.734 (0.056) 0.120∗ (0.069) 0.100 (0.073) 1

WMT 0.002 (0.006) 0.010 (0.012) 0.047 (0.013) 0.916 (0.016) 0.050 (0.061) 0.000 (0.061) 2

WYE 0.000 (0.008) 0.012 (0.013) 0.042 (0.013) 0.877 (0.029) 0.099 (0.063) 0.005 (0.069) 0.5

XOM 0.073 (0.030) 0.021 (0.021) 0.066 (0.023) 0.742 (0.073) 0.118∗ (0.060) 0.048 (0.085) 2

XRX 0.000 (0.017) 0.010 (0.019) 0.012 (0.020) 0.828 (0.049) 0.170∗∗ (0.056) 0.000 (0.084) 0.5
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Table 3: "Unusable" APARCH-X(1,1) model (23) with contemporaneous realized volatility as covariate

(extract).

ω α+ α− β π0 δ

AAPL 0.078 (0.026) 0.031 (0.015) 0.042 (0.014) 0.794 (0.048) 0.133 (0.039) 0.5

ABT 0.037 (0.023) 0.005 (0.023) 0.000 (0.027) 0.664 (0.066) 0.304 (0.064) 0.5

AXP 0.029 (0.010) 0.000 (0.016) 0.028 (0.016) 0.746 (0.039) 0.227 (0.039) 0.5

BA 0.080 (0.034) 0.012 (0.029) 0.069 (0.029) 0.702 (0.059) 0.231 (0.054) 1.5

BAC 0.000 (0.013) 0.000 (0.028) 0.027 (0.027) 0.648 (0.053) 0.349 (0.062) 0.5

BMY 0.000 (0.025) 0.035 (0.019) 0.047 (0.021) 0.821 (0.029) 0.147 (0.043) 0.5

BP 0.009 (0.012) 0.000 (0.017) 0.021 (0.016) 0.727 (0.049) 0.269 (0.053) 0.5

C 0.008 (0.013) 0.000 (0.024) 0.076 (0.024) 0.679 (0.058) 0.276 (0.057) 1

UN 0.023 (0.011) 0.018 (0.023) 0.085 (0.039) 0.626 (0.059) 0.274 (0.052) 2

VZ 0.008 (0.010) 0.043 (0.019) 0.041 (0.020) 0.801 (0.042) 0.159 (0.043) 0.5

WFC 0.000 (0.011) 0.000 (0.022) 0.051 (0.028) 0.748 (0.050) 0.228 (0.050) 1

WMT 0.000 (0.008) 0.013 (0.013) 0.017 (0.014) 0.835 (0.028) 0.152 (0.028) 0.5

WYE 0.000 (0.009) 0.007 (0.014) 0.034 (0.014) 0.868 (0.025) 0.118 (0.032) 0.5

XOM 0.066 (0.026) 0.014 (0.022) 0.036 (0.024) 0.757 (0.052) 0.170 (0.046) 2

XRX 0.000 (0.019) 0.000 (0.019) 0.000 (0.025) 0.792 (0.044) 0.216 (0.059) 0.5
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4 Conclusion

In this paper, we studied the asymptotic behavior of the QMLE for the versatile class

of the semi-strong PGARCH models augmented with exogenous variables. The main

assumptions on the exogenous variables are the stationarity and non-colinearity with the

other explanatory variables of the volatility. This allows to incorporate some additional

covariates for predicting the volatility of the financial returns, such as the volumes, the

realized ranges, other past squared returns or intraday realized volatilities. Since the true

value of the parameter is not constrained to belong to the interior of the parameter space,

we were able to derive tests for the significance of the exogenous variables. For the asymp-

totic distribution of the QMLE, we investigated four different situations corresponding

to strong or semi-strong models, and to parameters inside or at the boundary of the pa-

rameter space. When the GARCH-X parameter belongs to the interior of the parameter

space, the asymptotic distribution of the QMLE is normal, whereas it is the projection of

a normal distribution on a convex cone when one or several coefficients are equal to zero.

For models with positive coefficients, the asymptotic distribution is obtained under very

mild conditions, in particular, without any moment condition on the observed process.

When the parameter stands at the boundary, moment conditions are required, and the

extra assumptions are stronger for semi-strong than for strong models. Moreover, the

sandwich form of the variance involved in the asymptotic distribution becomes simpler

in the strong case.

The asymptotic theory developed in the paper has been applied to simulations and

real series. Our empirical results are in accordance with numerous applied studies, and

complement them by providing a formal test for the significance of the exogenous vari-

ables. In particular, we generally find useful the volume, the realized range and the

intraday realized volatility for predicting the squares of the financial returns, but none of

these variables can be considered as a perfect proxy of the volatility.
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5 Proofs and technical lemmas

Proof of Lemma 1. The arguments being quite standard, we just give a sketch of

proof (see e.g. Theorem 2.4 in Francq and Zakoïan (2010) for a similar result with a

more detailed proof). Because all the components of C0t and B0t are non-negative, the

components of Y t defined by (4) are always well defined in [0, +∞]. Since E |log ‖B01‖| <

∞, by the Cauchy rule, when γ < 0, the components of Y t are shown to be almost surely

finite. The process Y t satisfies (3) and, being a measurable function of (ηt, xt), it is also

stationary and ergodic under A1. The uniqueness of the stationary solution is shown as

in the case π0 = 0. For the converse, note that when a (finite) stationary solution exists

for (3), then

lim
k→∞

(
k∏

i=1

C0,t−i−1

)
B0,t−k = 0 a.s.

Note also that (
k∏

i=1

C0,t−i−1

)
B0,t−k ≥

(
k∏

i=1

C0,t−i−1

)
B

where B is obtained by replacing π0 with 0 in B01. Pan et al. (2008) have shown that(
k∏

i=1

C0,t−i−1

)
B → 0 a.s. entails that γ < 0.3 ✷

Proof of Lemma 2. The result is known when π0 = 0 (see Proposition A.1 in HZ). For

notational simplicity, we give the proof for general π0 when p = q = 1. If γ < 0, ht is

then given by (6). Using the elementary inequality (
∑

i ui)
s ≤∑i u

s
i for any sequence of

positive numbers ui and any s ∈ (0, 1], and the Cauchy-Schwarz inequality, we obtain

Ehs
t ≤

∞∑

k=0

E

(
k∏

i=1

a(ηt−i)̟t−k−1

)s

=
∞∑

k=0

E

(
k∏

i=1

as(ηt−i)̟
s
t−k−1

)

≤
∞∑

k=0

(
k∏

i=1

Ea2s(ηt−i)E̟2s
t−k−1

)1/2

.

By Assumption A1, there exists s > 0 such that E̟2s
t < ∞. Moreover, the fact that

γ = E log a(ηt) < 0 and that Ear(ηt) < ∞ for some r > 0 entails that there exists s > 0

such that Ea2s(ηt) < 1 (see e.g. Lemma 2.2 in (Francq and Zakoïan, 2010)). It follows

3Pan et al. (2008) employed different assumptions, but a careful examination of their proof and of

Lemma 3.4 in Bougerol and Picard (992a) reveals that the assumption that (ηt) is iid, as well as their

regularity condition A1, are useless for that result.
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that Ehs
t < ∞, and thus Eh

s/δ
t < ∞ for some s > 0. By the Cauchy-Schwarz inequality

and A1, we deduce that E |εt|s/2 < ∞. ✷

The following lemma is useful to show the identifiability of the parameters under A4.

Lemma 3 Let X be a random variable which takes at least three values and P (X > 0) ∈
(0, 1). If a(X+)δ + b(X−)δ = c a.s., with a, b, c ∈ R, then a = b = 0.

Proof. If a = 0 and b 6= 0 then b(X−)δ = c with probability one. Since P (X > 0) > 0,

we must have c = 0. It follows that X− = 0 a.s. which is in contradiction with the

assumption that P (X > 0) < 1.

If a 6= 0 and b 6= 0, we obtain X =
( c

a

)1/δ

when X > 0 and X = −
(c

b

)1/δ

when

X < 0 which is in contradition with assumption that X has at least three values. ✷

Proof of Theorem 1. The consistency can be shown by establishing the following

intermediate results:

i) lim
n→∞

sup
ϑ∈Θ

∣∣∣Qn (ϑ) − Q̃n (ϑ)
∣∣∣ = 0 a.s.

ii) If σt(ϑ) = σt(ϑ0) a.s. then ϑ = ϑ0.

iii) E |ℓt (ϑ)| < ∞ and if ϑ 6= ϑ0, E |ℓt (ϑ)| > E |ℓt (ϑ0)|.
iv) For any ϑ 6= ϑ0, there exists a neighborhood V (ϑ) such that

lim inf
n→∞

inf
ϑ
∗
∈V (ϑ)

Qn (ϑ∗) > Eℓ1 (ϑ0) a.s.

The proofs of i), iii) and iv) being essentially the same as when the parameter π is

not present, we only give the proof of ii).

Assume that σt(ϑ) = σt(ϑ0) a.s. By the second part of A5, the polynomials Bϑ(B)

and Bϑ0
(B) are invertible. We thus have

{Aϑ+(B)

Bϑ(B)
− Aϑ0+(B)

Bϑ0
(B)

}(
ε+

t

)δ
+

{Aϑ−(B)

Bϑ(B)
− Aϑ0−(B)

Bϑ0
(B)

}(
ε−t
)δ

+

{
π′B

Bϑ(B)
− π′

0B

Bϑ0
(B)

}
xt =

ω0

Bϑ(1)
− ω

Bϑ0
(1)

a.s. (25)

If
Aϑ+(B)

Bϑ(B)
6= Aϑ0+(B)

Bϑ0
(B)

or
Aϑ−(B)

Bϑ(B)
6= Aϑ0−(B)

Bϑ0
(B)

, then there exist c+
i0

6= 0 or c−i0 6= 0, a

constant e and a sequence of vectors (di) such that

∞∑

i=i0

c+
i Bi

(
ε+

t

)δ
+

∞∑

i=i0

c−i Bi
(
ε−t
)δ

+
∞∑

i=1

d′

ixt−i = e.
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Since
(
ε+

t

)δ
= σδ

t

(
η+

t

)δ
and

(
ε−t
)δ

= σδ
t

(
η−

t

)δ
, there exists (a, b)′ ∈ R

2\(0, 0) such that

a
(
η+

t−i0

)δ
+ b
(
η−

t−i0

)δ
= ct,i0

where ct,i is a measurable function of {ηt−j, j > i, xt−k, k > 0}. It follows that

L
(

a
(
η+

t−i0

)δ
+ b
(
η−

t−i0

)δ∣∣∣Ft,i0

)
= L (ct,i0| Ft,i0)

where L(X|Y ) denotes the distribution of X given Y . By lemma 3 and A4, we obtain

a = b = 0. Therefore, we have

Aϑ+(B)

Bϑ(B)
=

Aϑ0+(B)

Bϑ0
(B)

and
Aϑ−(B)

Bϑ(B)
=

Aϑ0−(B)

Bϑ0
(B)

(26)

By A7, we obtain Aϑ+(B) = Aϑ0+(B), Aϑ−(B) = Aϑ0−(B) and Bϑ(B) = Bϑ0
(B). Then

(25) becomes

(π − π0)
′
xt−1 = ω0 − ω,

which entails π = π0 and ω = ω0 under A8. Hence, (ii) is proved. ✷

The proof of the asymptotic distribution of the QMLE is split into several technical

lemmas.

Lemma 4 Under the assumptions of Theorem 2,

(i) E

∥∥∥∥
∂ℓt(ϑ0)

∂ϑ

∂ℓt(ϑ0)

∂ϑ′

∥∥∥∥ < ∞, E

∥∥∥∥
∂2ℓt(ϑ0)

∂ϑ∂ϑ′

∥∥∥∥ < ∞.

(ii) J is non-singular and var

{
∂ℓt(ϑ0)

∂ϑ

}
= I.

Proof of Lemma 4. First note that the derivatives of ℓt(ϑ) =
ε2

t

σ2
t

+ ln σ2
t are

∂ℓt (ϑ)

∂ϑ
=

∂

∂ϑ

{
ε2

t

(σδ
t )

2/δ
+

2

δ
ln σδ

t

}
=

2

δ

{
1 − ε2

t

σ2
t

}{
1

σδ
t

∂σδ
t

∂ϑ

}
(27)

and

∂ℓ2
t (ϑ)

∂ϑ∂ϑ′
=

2

δ

{
1 − ε2

t

σ2
t

}{
1

σδ
t

∂2σδ
t

∂ϑ∂ϑ′

}
+

2

δ

{
δ + 2

δ

ε2
t

σ2
t

− 1

}{
1

σδ
t

∂σδ
t

∂ϑ

}{
1

σδ
t

∂σδ
t

∂ϑ′

}
. (28)

In Cases A and B (strong model), one can thus prove (i) by showing that

E

∥∥∥∥
1

σδ
t

∂σδ
t (ϑ0)

∂ϑ

∥∥∥∥
2

< ∞ (29)
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and

E

∥∥∥∥
1

σδ
t

∂2σδ
t (ϑ0)

∂ϑ∂ϑ′

∥∥∥∥ < ∞. (30)

In Cases C and D (semi-strong model), using the Hölder inequality and E|ηt|4+ν < ∞,

the existence of the first expectation in (i) can be proven by showing that

E

∥∥∥∥
1

σδ
t

∂σδ
t (ϑ0)

∂ϑ

∥∥∥∥
2+8/ν

< ∞. (31)

Thanks to A2, the second expectation of (i) is still obtained by showing (30).

The existence of the moments in (29)–(31) is already known when π0 is absent, (ηt)

is iid and ϑ0 belongs to the interior of Θ (see the proof of (i) and (ii) of Theorem 2.2 in

HZ). We now explain the changes in the proof induced by the our particular framework

in the case p = q = 1. The proof can be easily extended to the general case.

Since σδ
t =

∑
∞

j=0 βjct,j with ct,j = ω + α+

(
ε+

t−j−1

)δ
+ α−

(
ε−t−j−1

)δ
+ π′xt−j−1, we have

∂σδ
t

∂ω
=

∞∑

j=0

βj =
1

1 − β
,

∂σδ
t

∂α+

=
∞∑

j=0

βj
(
ε+

t−j−1

)δ
,

∂σδ
t

∂α−

=
∞∑

j=0

βj
(
ε−t−j−1

)δ
,

∂σδ
t

∂β
=

∞∑

j=1

jβj−1ct,j,

∂σδ
t

∂π
=

∞∑

j=0

βjxt−j−1.

Similar expressions hold for the second order derivatives. Noting also that

ω := inf
ϑ∈Θ

σδ
t > 0, (32)

under the moment conditions in A11, we have (29) and (30) in Case B, and (30) and

(31) in Case D. In Cases A and C, we have

1

σδ
t

∂σδ
t

∂ω
≤ 1

ω
,

1

σδ
t

∂σδ
t

∂α+

≤ 1

α+

,
1

σδ
t

∂σδ
t

∂α−

≤ 1

α−

,
1

σδ
t

∂σδ
t

∂πi

≤ 1

πi

,

with the notation π = (π1, . . . , πr)
′. Using the inequalities

x

1 + x
≤ xs and (x + y)s ≤

xs + ys, for x, y ≥ 0 and s ∈ (0, 1], we also have

1

σδ
t

∂σδ
t

∂β
≤ 1

βωs

∞∑

i=1

iβis
{

ωs + αs
+

(
ε+

t−i−1

)δs
+ αs

−

(
ε−t−i−1

)δs
+ (π′xt−i−1)

s
}

.

30



Note that, for any q ≥ 1, under the moments assumptions in A1 and A6, we have

∥∥∥
(
ε+

t−i−1

)δs
∥∥∥

q
< ∞,

∥∥∥
(
ε−t−i−1

)δs
∥∥∥

q
< ∞ and ‖(π′xt−i−1)

s‖q < ∞

for sufficiently small s > 0. It follows that (29) and (31), for any ν > 0, hold true when

all the components of ϑ0 are non-zero. By the same arguments, we can even show the

stronger result that for any s0 > 0 there exists a neighborhood V (ϑ0) of ϑ0 included in

Θ such that

E sup
ϑ∈V (ϑ0)

∥∥∥∥
1

σδ
t

∂σδ
t (ϑ)

∂ϑ

∥∥∥∥
s0

< ∞ in Cases A and C. (33)

We obtain (30) by similar arguments, which completes the proof of (i) in the two remain-

ing cases A and C.

We now turn to the proof of (ii). Note that the second equality in (11) comes from

(28) and the fact that E(η2
t | Ft−1) = 1. Using (27), we also have var (∂ℓt (ϑ0)/∂ϑ) = I.

It remains to show that J is invertible. If it is not the case, then there exists c ∈ R
d such

that

c′Jc =
4

δ2
E

{
1

σ2δ
t (ϑ0)

(
c′

∂σδ
t (ϑ0)

∂ϑ

)2
}

= 0.

Then a.s., c′
∂σδ

t (ϑ0)

∂ϑ
= 0. In view of (10), this implies

c′
(
1, (ε+

t−1)
δ, (ε−t−1)

δ, . . . , (ε+
t−q)

δ, (ε−t−q)
δ, σδ

t−1(ϑ0) . . . , σδ
t−p(ϑ0), xt−1

)
= 0.

By the arguments used to prove (ii) of Theorem 1, this is impossible with c 6= 0, which

completes the proof of (ii). ✷

Lemma 5 Under the assumptions of Theorem 2, as n → ∞, we have

√
n

∥∥∥∥
∂

∂ϑ
Q̃n(ϑ0) −

∂

∂ϑ
Qn(ϑ0)

∥∥∥∥ = o(1) a.s., (34)

sup
ϑ∈V (ϑ0)∩Θ

∥∥∥∥
∂2

∂ϑ∂ϑ′
Q̃n(ϑ) − ∂2

∂ϑ∂ϑ′
Qn(ϑ)

∥∥∥∥ = o(1) a.s. (35)

for some neighborhood V (ϑ0) of ϑ0,

∂2

∂ϑ∂ϑ′
Q̃n(ϑn) → J in probability when ϑn → ϑ0 in probability, (36)

√
n

∂Qn(ϑ0)

∂ϑ

d→ N {0, I} . (37)
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Proof of Lemma 5. In this proof, K and ρ denote generic constants whose values can

be modified and such that K > 0 and ρ ∈ (0, 1).

By the definition of Qn(ϑ) and Q̃n(ϑ), (34) and (35) are entailed by

1√
n

n∑

t=1

∥∥∥∥∥
∂ℓt(ϑ0)

∂ϑ
− ∂ℓ̃t(ϑ0)

∂ϑ

∥∥∥∥∥→ 0 a.s. , (38)

sup
ϑ∈V (ϑ0)∩Θ

∥∥∥∥∥
∂2ℓt(ϑ)

∂ϑ∂ϑ′
− ∂2ℓ̃t(ϑ)

∂ϑ∂ϑ′

∥∥∥∥∥→ 0 a.s. (39)

By the arguments used to show (7.60) in Francq and Zakoïan (2010), we have

∣∣∣∣∣
∂ℓt (ϑ0)

∂ϑi

− ∂ℓ̃t (ϑ0)

∂ϑi

∣∣∣∣∣ 6Kρt
(
1 + Kη2

t

) ∣∣∣∣1 +
1

σδ
t (ϑ0)

∂σδ
t (ϑ0)

∂ϑi

∣∣∣∣ .

Under A10-A11, we have Eη4
t < ∞ and (29), and thus the expectation of the right-hand

side of the inequality is bounded by Kρt. It follows that

∞∑

t=1

∣∣∣∣∣
∂ℓt (ϑ0)

∂ϑi

− ∂ℓ̃t (ϑ0)

∂ϑi

∣∣∣∣∣

has a finite expectation, and thus is finite almost surely, which entails (38). The conver-

gence (39) is shown by arguments which follow the scheme of the proof of the last part

of (d) on Page 167 in Francq and Zakoïan (2010).

To establish (36), first note that

P

(∥∥∥∥
∂2

∂ϑ∂ϑ′
Q̃n(ϑn) − J

∥∥∥∥ ≥ ǫ

)
≤ a1 + a2 + a3 + a4,

where

a1 = P

(
sup

ϑ∈V (ϑ0)∩Θ

∥∥∥∥
∂2

∂ϑ∂ϑ′
Q̃n(ϑ) − ∂2

∂ϑ∂ϑ′
Qn(ϑ)

∥∥∥∥ ≥ ǫ

3

)
,

a2 = P

(
sup

ϑ∈V (ϑ0)∩Θ

∥∥∥∥
∂2

∂ϑ∂ϑ′
Qn(ϑ) − ∂2

∂ϑ∂ϑ′
Qn(ϑ0)

∥∥∥∥ ≥ ǫ

3

)
,

a3 = P

(∥∥∥∥
∂2

∂ϑ∂ϑ′
Qn(ϑ0) − J

∥∥∥∥ ≥ ǫ

3

)
, a4 = P {ϑn 6∈ V (ϑ0)}

for any ǫ > 0 and any neighborhood V (ϑ0) of ϑ0. By the assumption that ϑn → ϑ0

in probability, we have a4 → 0 as n → ∞. By (35), for any ǫ > 0 and when V (ϑ0) is

sufficiently small, a1 → 0. The ergodic theorem and Lemma 4 imply that a3 → 0 for
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any ǫ > 0. To prove that a2 → 0, it suffices to show that, for all ǫ > 0, there exists a

neighborhood V (ϑ0) of ϑ0 satisfying

lim
n→∞

1

n

n∑

t=1

sup
ϑ∈V (ϑ0)∩Θ

∥∥∥∥
∂2

∂ϑ∂ϑ′
ℓt(ϑ) − ∂2

∂ϑ∂ϑ′
ℓt(ϑ0)

∥∥∥∥ ≤ ǫ a.s.

The result follows from the ergodic theorem, the dominated convergence theorem, the

uniform continuity of the second order derivatives of ℓt(ϑ), and by showing that

E sup
ϑ∈V (ϑ0)∩Θ

∥∥∥∥
∂2

∂ϑ∂ϑ′
ℓt(ϑ)

∥∥∥∥ < ∞ (40)

for some neighborhood V (ϑ0) of ϑ0. Let us begin to prove (40) in Cases B and D by

using A12. In view of (28) and since σt is bounded away from zero, to show (40), it

suffices to establish that

E sup
ϑ∈V (ϑ0)∩Θ

∥∥∥∥ε
2
t

∂σδ
t

∂ϑ

∂σδ
t

∂ϑ′
(ϑ)

∥∥∥∥ < ∞, E sup
ϑ∈V (ϑ0)∩Θ

∥∥∥∥ε
2
t

∂2σδ
t

∂ϑ∂ϑ′
(ϑ)

∥∥∥∥ < ∞. (41)

Now, (10), the second part of A5 and the compactness of Θ entail that

∂σδ
t

∂ϑi

= di,0(ϑ) +
∞∑

k=1

d+
i,k(ϑ)

(
ε+

t−k

)δ
+ d−

i,k(ϑ)
(
ε−t−k

)δ
+ π′

i,k(ϑ)xt−k,

with

sup
ϑ∈Θ

|di,0(ϑ)| ≤ K, sup
ϑ∈Θ

max
{
|d+

i,k(ϑ)|, |d−

i,k(ϑ)|, ‖πi,k(ϑ)‖
}
≤ Kρk.

The first moment condition in (41) thus follows from the Hölder inequality and A12.

The second moment condition is obtained by doing similar developments for the second

order derivatives. We thus have shown (40) in Cases B and D.

To establish (40) in the two other cases, let us first show that, for any s0 > 0, there

exists a neighborhood V (ϑ0) of ϑ0 such that V (ϑ0) ⊂ Θ and

E sup
ϑ∈V (ϑ0)

∣∣∣∣
σ2

t (ϑ0)

σ2
t (ϑ)

∣∣∣∣
s0

< ∞ in Cases A and C. (42)

By the arguments used to show (7.51) in Francq and Zakoïan (2010), for all ξ > 0 and

s ∈ (0, 1), there exists a neighborhood V (ϑ0) of ϑ0 such that

sup
ϑ∈V (ϑ0)

σδ
t (ϑ0)

σδ
t (ϑ)

≤ K + K

∞∑

j=0

(1 + ξ)jρjs
∣∣εt−j−1

∣∣δs
+ K

∞∑

j=0

(1 + ξ)jρjs
∥∥xt−j−1

∥∥s
.
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Without loss of generality, it can be assumed that 2s0/δ ≥ 1. By the Minskowski inequal-

ity, choosing s such that E|ε1|2ss0 < ∞ and E‖x1‖2ss0/δ < ∞ and choosing for instance

ξ =
1 − ρs

2ρs
, we have

∥∥∥∥∥ sup
ϑ∈V (ϑ0)

σ2
t (ϑ0)

σ2
t

∥∥∥∥∥

δ/2

s0

=

∥∥∥∥∥ sup
ϑ∈V (ϑ0)

σδ
t (ϑ0)

σδ
t

∥∥∥∥∥
2s0/δ

≤K + K

∞∑

j=0

(1 + ξ)jρjs
∥∥∥|ε1|δs

∥∥∥
2s0/δ

+ K

∞∑

j=0

(1 + ξ)jρjs ‖‖x1‖s‖2s0/δ < ∞.

Now, in view of (28), A2 and the Hölder inequality entail

E sup
ϑ∈V (ϑ0)

∥∥∥∥
∂2

∂ϑ∂ϑ′
ℓt(ϑ)

∥∥∥∥ ≤ K

∥∥∥∥∥1 + sup
ϑ∈V (ϑ0)

∣∣∣∣
σ2

t (ϑ0)

σ2
t (ϑ)

∣∣∣∣

∥∥∥∥∥
2

{∥∥∥∥∥ sup
ϑ∈V (ϑ0)

∥∥∥∥
1

σδ
t

∂2σδ
t (ϑ0)

∂ϑ∂ϑ′

∥∥∥∥

∥∥∥∥∥
2

+

∥∥∥∥∥ sup
ϑ∈V (ϑ0)

∥∥∥∥
1

σδ
t

∂σδ
t (ϑ0)

∂ϑ

∥∥∥∥

∥∥∥∥∥

2

4



 .

Thus, in Cases A and C, (40) comes from (33) and (42), and the analog (33) for second

order derivatives.

By (27), Lemma 4 and A2, the last result, (37), is a consequence of the central limit

theorem for square integrable martingale difference of Billingsley (1961). ✷

Proof of Theorem 2. A Taylor expansion of Q̃n(ϑ) around ϑ0 gives

Q̃n (ϑ) − Q̃n(ϑ0) =
∂Qn(ϑ0)

∂ϑ′
(ϑ − ϑ0) +

1

2
(ϑ − ϑ0)

′J(ϑ − ϑ0) + Rn(ϑ),

where

Rn(ϑ) =

{
∂Q̃n(ϑ0)

∂ϑ′
− ∂Qn(ϑ0)

∂ϑ′

}
(ϑ − ϑ0) +

1

2
(ϑ − ϑ0)

′

(
∂2Q̃n(ϑ∗)

∂ϑ∂ϑ′
− J

)
(ϑ − ϑ0),

and ϑ∗ is between ϑ and ϑ0. In view of (34), (35) and (36), as n → ∞, we have

nRn(ϑn) = oP

{√
n(ϑn − ϑ0)

}
+ oP

{
n‖ϑn − ϑ0‖2

}
(43)

when ϑn − ϑ0 = oP (1). Therefore

nRn(ϑn) = oP (1) when
√

n(ϑn − ϑ0) = OP (1). (44)

Letting

Zn = −J−1
√

n
∂Qn(ϑ0)

∂ϑ
,
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we obtain the following quadratic approximation of the objective function

Q̃n(ϑ) − Q̃n(ϑ0) =
1

2n

∥∥√n(ϑ − ϑ0) − Zn

∥∥2

J
− 1

2n
‖Zn‖2

J
+ Rn(ϑ). (45)

Let

ϑZn
= arg inf

ϑ∈Θ

∥∥√n(ϑ − ϑ0) − Zn

∥∥
J

.

Note that
√

n(ϑZn
− ϑ0) = ZC

n for n large enough, (46)

where ZC

n denotes the projection of Zn on C. We have

0 ≤ ‖√n(ϑ̂n − ϑ0) − Zn‖2
J
− ‖√n(ϑZn

− ϑ0) − Zn‖2
J

= 2n
{

Q̃n(ϑ̂n) − Q̃n(ϑZn
)
}

+ 2n
{

Rn(ϑZn
) − Rn(ϑ̂n)

}

≤ 2n
{

Rn(ϑ̂n) − Rn(ϑZn
)
}

,

where the first inequality comes from the definition of ϑZn
, the equality from (45), and

the second inequality from the definition of ϑ̂n. By (46), it follows that

∣∣∣‖
√

n(ϑ̂n − ϑ0) − Zn‖2
J
− ‖ZC

n − Zn‖2
J

∣∣∣ ≤ 2n
{

Rn(ϑ̂n) − Rn(ϑZn
)
}

. (47)

We now show that Rn(ϑ̂n)−Rn(ϑZn
) = oP (1). By definition of ϑZn

and since ϑ0 ∈ Θ,

we also have
∥∥√n(ϑZn

− ϑ0) − Zn

∥∥
J
≤ ‖Zn‖J

.

The Minskowski inequality then entails that

∥∥√n(ϑZn
− ϑ0)

∥∥
J
≤
∥∥√n(ϑZn

− ϑ0) − Zn

∥∥
J

+ ‖Zn‖J
≤ 2 ‖Zn‖J

.

By (37), we have ‖Zn‖J
= OP (1), and thus

√
n(ϑZn

− ϑ0) = OP (1). In view of (44),

this entails nRn(ϑZn
) = oP (1). By definition of ϑ̂n and (45), we have

0 ≤ 2nQ̃n(ϑ0) − 2nQ̃n(ϑ̂n) = ‖Zn‖2
J −

∥∥∥
√

n(ϑ̂n − ϑ0) − Zn

∥∥∥
2

J
− 2nRn(ϑ̂n).

It follows that, by the cr-inequality,

∥∥∥
√

n(ϑ̂n − ϑ0)
∥∥∥

2

J

≤ 2

(∥∥∥
√

n(ϑ̂n − ϑ0) − Zn

∥∥∥
2

J

+ ‖Zn‖2
J

)

≤ 4 ‖Zn‖2
J
− 4nRn(ϑ̂n).
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We now show that
√

n(ϑ̂n − ϑ0) = OP (1), arguing by contradiction. The consistency

of ϑ̂n and (43) then entail that nRn(ϑ̂n) = oP

(∥∥∥
√

n(ϑ̂n − ϑ0)
∥∥∥

2

J

)
. It follows that

√
n(ϑ̂n −ϑ0) = OP (1). From (44), we deduce that nRn(ϑ̂n) = oP (1). Thus, (47) can be

rewritten as

‖√n(ϑ̂n − ϑ0) − Zn‖2
J
− ‖ZC

n − Zn‖2
J

= oP (1). (48)

Using the characterization (12) of the projection on a convex cone, we have

‖√n(ϑ̂n − ϑ0) − Zn‖2
J

= ‖√n(ϑ̂n − ϑ0) − ZC

n‖2
J

+ ‖ZC

n − Zn‖2
J

+ 2
〈√

n(ϑ̂n − ϑ0) − ZC

n, Z
C

n − Zn

〉
J

≥ ‖√n(ϑ̂n − ϑ0) − ZC

n‖2
J

+ ‖ZC

n − Zn‖2
J
.

Using (48), we thus obtain

‖√n(ϑ̂n − ϑ0) − ZC

n‖2
J
≤ ‖√n(ϑ̂n − ϑ0) − Zn‖2

J
− ‖ZC

n − Zn‖2
J

= oP (1).

The continuous mapping theorem and (37) entail ZC

n
d→ ZC, and the conclusion follows.

✷

Proof of Proposition 1. We only show (17) because (16) and (18) are obtained directly

from arguments used in the proof of Theorem 1. Let

In(ϑ) =
4

δ2

1

n

n∑

t=1

St(ϑ), St(ϑ) =

(
ε4

t

σ4
t (ϑ)

− 1

)
1

σ2δ
t (ϑ)

∂σδ
t (ϑ)

∂ϑ

∂σδ
t (ϑ)

∂ϑ′
. (49)

The difference between In(ϑ̂n) and În is due to the initial values used to compute σ̃δ
t (ϑ).

Because the difference σδ
t (ϑ) − σ̃δ

t (ϑ) does not depend on the covariates (xt), one can

use standard arguments to show that

lim
n→∞

∥∥∥In(ϑ̂n) − În

∥∥∥ = 0 a.s.

The ergodic theorem shows that

lim
n→∞

‖In(ϑ0) − I‖ = 0 a.s.

Using the strong convergence of ϑ̂n to ϑ0, it remains to show that, for any ǫ > 0, there

exists a neighborhood V (ϑ0) of ϑ0 such that

lim
n→∞

sup
ϑ∈V (ϑ0)

‖In(ϑ) − In(ϑ0)‖ ≤ ǫ.
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It suffices to show that there exists a neighborhood V (ϑ0) of ϑ0 such that

E sup
ϑ∈V (ϑ0)∩Θ

‖St(ϑ)‖ < ∞, (50)

and the result will follow from the ergodic theorem applied to
{
supϑ∈V (ϑ0) ‖St(ϑ) − St(ϑ0)‖

}
t
,

the dominated convergence theorem, and the uniform continuity of ϑ 7→ St(ϑ) in the

neighborhood of ϑ0.

In Cases A and C, (50) follows from A10, (33) and (42). In Cases B and D, (50)

follows from A12 and the Hölder inequality. ✷

References

Andrews, D.W. (1999) Estimation when a parameter is on a boundary. Econometrica

67, 1341–1383.

Andrews, D.W. (2001) Testing when a parameter is on the boundary of the maintained

hypothesis. Econometrica 69, 683–734.

Billingsley, P. (1961) The Lindeberg-Levy theorem for martingales. Proceedings of the

American Mathematical Society 12, 788–792.

Bollerslev, T. (2008) Glossary to ARCH (GARCH). Volatility and Time Series Econo-

metrics: Essays in Honor of Robert F. Engle (eds. T. Bollerslev, J. R. Russell and

M. Watson), Oxford University Press, Oxford, UK.

Bougerol, P. and N. Picard (1992a) Strict stationarity of generalized autoregressive

processes. Annals of Probability 20, 1714–1729.

Bougerol, P. and N. Picard (1992b) Stationarity of GARCH processes and of some

nonnegative time series. Journal of Econometrics 52, 115–127.

Brandt, A. (1986) The stochastic equation Yn+1 = AnYn + Bn with stationary coeffi-

cients. Advance in Applied Probability 18, 221–254.

Ding, Z., Granger, C. and R.F. Engle (1993) A long memory property of stock mar-

ket returns and a new model. Journal of Empirical Finance 1, 83–106.

37



Engle, R.F., Hendry, D.F. and J.F. Richard (1983) Exogeneity. Econometrica 51,

277–304.

Engle, R.F. and A.J. Patton (2001) What good is a volatility model. Quantitative

finance 1, 237–245.

Escanciano, J.C. (2009) Quasi-maximum likelihood estimation of semi-strong GARCH

models. Econometric Theory 25, 561–570.

Francq, C. and J-M. Zakoïan (2004) Maximum likelihood estimation of pure GARCH

and ARMA-GARCH processes. Bernoulli 10, 605–637.

Francq, C. and J-M. Zakoïan (2010) GARCH Models: Structure, Statistical Infer-

ence and Financial Applications. John Wiley.

Francq, C. and J-M. Zakoïan (2007) Quasi-Maximum Likelihood Estimation in GARCH

Processes when some coefficients are equal to zero. Stochastic Processes and their

Applications 117, 1265–1284.

Francq, C. and J-M. Zakoian (2009) Testing the nullity of GARCH coefficients: cor-

rection of the standard tests and relative efficiency comparisons. Journal of the

American Statistical Association 104, 313–324.

Fuertes, A.M., Izzeldin, M. and E. Kalotychou (2009) On forecasting daily stock

volatility: the role of intraday information and market conditions. International

Journal of Forecasting 25, 259–281.

Glosten, L.R., Jaganathan, R. and D. Runkle (1993) On the relation between the

expected values and the volatility of the nominal excess return on stocks. Journal

of Finance 48, 1779–1801.

Hamadeh, T. and J-M. Zakoïan (2011) Asymptotic properties of LS and QML esti-

mators for a class of nonlinear GARCH processes. Journal of Statistical Planning

and Inference 141, 488–507.

Han, H. (2013) Asymptotic Properties of GARCH-X Processes. Journal of Financial

Econometrics Forthcoming.

38



Han, H. and D. Kristensen (2014) Asymptotic Theory for the QMLE in GARCH-

X Models With Stationary and Nonstationary Covariates. Journal of Business &

Economic Statistics 32, 416–429.

Han, H. and J.Y. Park (2012) ARCH/GARCH with persistent covariates: Asymp-

totic theory of MLE. Journal of Econometrics 167, 95–112.

Han, H. and J.Y. Park (2014) GARCH with omitted persistent covariate. Economics

Letters 124, 248–254.

Hansen, P.R. and A. Lunde (2005) A forecast comparison of volatility models: does

anything beat a GARCH(1,1)? Journal of applied econometrics 20, 873–889.

Laurent, S., Lecourt, C. and F.C. Palm (2014) Testing for jumps in conditionally

Gaussian ARMA-GARCH models, a robust approach. Computational Statistics &

Data Analysis. http://dx.doi.org/10.1016/j.csda.2014.05.015

Nelson, D. B. (1991) Conditional heteroskedasticity in asset returns: A new approach.

Econometrica 59, 347–370.

Nijman, T. and E. Sentana (1996) Marginalization and contemporaneous aggrega-

tion in multivariate GARCH processes. Journal of Econometrics 71, 71–87.

Pan, J., Wang, H. and H. Tong (2008) Estimation and tests for power-transformed

and threshold GARCH models. Journal of Econometrics 142, 352–378.

Sucarrat, G. and A. Escribano (2010) The Power Log-GARCH Model. Working doc-

ument, Economic Series 10-13, University Carlos III, Madrid.

Taylor, S.J. (1986) Modelling Financial Time Series, New-York : Wiley.

Wintenberger, O. (2013) Continuous invertibility and stable QML estimation of the

EGARCH(1,1) model. Scandinavian Journal of Statistics 40, 846–867.

Zakoïan, J-M. (1994) Threshold heteroskedastic models. Journal of Economic Dynam-

ics and Control 18, 931–955.

39


	Introduction
	The model
	The objectives

	Main results
	Strict stationarity
	Strong consistency of the QMLE
	Asymptotic distribution of the QMLE

	Numerical illustrations
	Simulation experiments
	SP500 with realized range, volume and other indices
	US stocks with realized volatility

	Conclusion
	Proofs and technical lemmas

