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Abstract 

We distinguish between (i) voting systems in which voters can rank candidates and 

(ii) those in which they can grade candidates, such as approval voting, in which voters can 

give two grades—approve (1) or not approve (0)—to candidates.  While two grades rule 

out a discrepancy between the average-grade winners, who receive the highest average 

grade, and the superior-grade winners, who receive more superior grades in pairwise 

comparisons (akin to Condorcet winners), more than two grades allow it.  We call this 

discrepancy between the two kinds of winners the paradox of grading systems, which we 

illustrate with several examples and whose probability we estimate for sincere and 

strategic voters through a Monte Carlo simulation.  We discuss the tradeoff between (i) 

allowing more than two grades, but risking the paradox, and (ii) precluding the paradox, 

but restricting voters to two grades.  
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The Paradox of Grading Systems 

1.  Introduction 

For more than 60 years, the standard framework for analyzing voting and social 

choice, due to Arrow (1951; rev ed., 1963), has been one in which the voters are assumed 

to rank candidates, possibly with ties, from best to worst.  Consistent with such a 

framework are such well-known voting systems as the Borda count, the Hare system of 

single transferable voting (STV)—also known as instant runoff voting (IRV) and ranked 

choice voting (RCV)—and many others. 

Beginning with the work of Brams and Fishburn (1978) as well as other theorists 

about the same time (see Brams and Fishburn, 1983; rev. ed., 2007), an alternative 

framework, based on grading candidates, was proposed.  Brams and Fishburn championed 

approval voting (AV), in which voters can give only two grades—approve (1) or not 

approve (0)—to candidates, but other theorists later proposed that voters be allowed to 

give more grades (some favor three grades, others more).  

Only AV rules out a discrepancy between the average-grade (AG) winners, who are 

recipients of the highest average grade, and the superior-grade (SG) winners, who receive 

more superior grades in pairwise comparisons (akin to Condorcet winners in ranking 

systems).  But if voters can give more than two grades to candidates, not only may an AG 

winner not be an SG winner but, in the extreme case, every voter except one may grade 

the SG winner higher than the AG winner.  

If grades are mapped into ranks, with higher grades being given higher ranks, an SG 

winner is a Condorcet winner, who is preferred to every other candidate based on 

rankings.  Just as a winner under the Borda count or the Hare system may not be a 
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Condorcet winner, an AG winner may not be an SG winner when there are more than two 

grades. 

When this discrepancy occurs, we say there is a paradox of grading systems.  More 

precisely, because there may be tied AG winners, or the SG winners may be in a cycle—in 

which case we treat all candidates in the cycle as winners—we say that a paradox occurs if 

and only if the set of AG and the set of SG winners differ. 

We estimate through simulation the probability of the paradox for a type of 

impartial culture, in which all voters are equally likely to give each of the possible grades 

to every candidate.  We start by assuming three grades, with varying numbers of 

candidates and voters.  Then we allow the number of grades to increase to determine its 

effect on the probability of the paradox.  We base these calculations on a Monte Carlo 

simulation but show, in a simple case, that the exact probability closely approximates the 

simulated probability; and the simulated probabilities vary only slightly in different runs 

of the simulation.   

Implicitly, our impartial-culture model assumes, in its first form, that voters are 

sincere, so they need not give their top candidate the highest grade nor their bottom 

candidate the lowest grade.  Besides assuming that voters are sincere, we also assume, in a 

second form of the model, that voters are strategic in the sense that they desire to help and 

hurt, respectively, their top and bottom candidates—to the maximum degree possible—by 

giving their top candidate(s) the highest grade and their bottom candidate(s) the lowest 

grade.   

To assess the effects of strategic voters on the probability of the paradox, we 

constrain the second form of the impartial-culture model to ensure that every voter gives 
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at least one candidate the top grade and at least one candidate the bottom grade.  In fact, 

the strategic probabilities do not deviate much from the sincere probabilities.  

The paper proceeds as follows.  In section 2, we compare ranking systems, like the 

Borda count and the Hare system, and grading systems, highlighting their similarities and 

differences.  Although SG winners are akin to Condorcet winners when grades are 

replaced by ranks, ranking systems and grading systems are not equivalent.  In section 3, 

we analyze grading systems, giving several examples of the paradox of grading systems. 

In section 4, we provide a general method for finding SG winners (determining AG 

winners is straightforward).  Then we present our simulation results, showing that the 

paradox is not an infrequent phenomenon in both the sincere and strategic models, 

although our results almost surely overestimate what its actual, real-world occurrence 

would be.  In section 5, we discuss the tradeoff between (i) allowing more than two 

grades, but risking the paradox, and (ii) precluding the paradox, but restricting voters to 

two grades.                  

2.  Ranking Versus Grading Systems  

Whether one ranks or grades candidates, there are different ways the ranks or 

grades can be aggregated.  To illustrate for ranking systems, if there are c candidates, the 

Borda count awards points to candidates, from 0 for a voter’s lowest-ranked candidate to 

c–1 for a voter’s highest-ranked candidate.  It sums these points across all voters, and the 

candidate with the most points, or greatest score, wins.   

By contrast, the Hare system starts by eliminating candidates with the fewest first-

choice votes.  It then transfers the votes of their supporters to their next-highest-ranked 
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candidates who remain in the race, continuing this elimination-and-transfer process until 

one candidate receives a majority of votes and thereby becomes the winner.   

Formally, a grading system is a voting system in which a voter can give any of g 

grades, {w1, w2, …, wg}, to each candidate.  Grades need not be equally spaced; for 

example, (wg–wg−1) could be large in relation to other differences of adjacent grades.  Here, 

however, we assume that the grades are given by the natural numbers, starting with a 

lowest grade of 0 and ending with a highest grade of g–1.  While sincere voters need not 

give either a lowest or a highest grade to any of the candidates, strategic voters give at 

least one lowest grade and one highest grade to candidates.     

Like ranking systems, grading systems can differ in how the grades are aggregated 

to determine a winner.  The average-grade (AG) system we analyze here is one in which 

the grades of each candidate are summed across all voters and averaged, with the 

candidate with the highest average grade the AG winner.    

This grading system is sometimes referred to as range or score voting (Center for 

Election Science, 2015; Center for Range Voting, 2015) or evaluative or utilitarian voting 

(Baujard et al., 2014, and references therein).  Other methods for aggregating grades to 

determine a winner, such as choosing a candidate with the highest median grade, have 

been proposed (Balinski and Laraki (2011).1  It turns out that a median-grade system is 

                                                
1 Because ties for highest median grade are common when there are relatively few grades, Balinski and 

Laraki (2011) propose a method for breaking ties in a system they call “majority judgment.”  Cumulative 

voting, in which votes can allocate a fixed number of votes to one or more candidates, effectively allows 

voters to grade candidates, though it is not usually thought of as a grading system.  It is used to elect 

multiple winners, unlike the systems analyzed here, and affords parties or factions the opportunity to elect 
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also vulnerable to the paradox of grading systems, as we will illustrate with an example in 

section 4, but we focus on AG and how the frequency of the paradox of grading systems—

when the AG and SG winners differ—depends on the numbers of candidates, grades, and 

voters.    

To determine an SG winner, we compare each candidate’s grades with the grades of 

all other candidates.  Candidate X beats candidate Y if the number of voters who grade X 

higher than Y exceeds the number who grade Y higher than X.  If one candidate beats each 

rival in a pairwise comparison with each, then he or she is the unique SG winner.  But as 

with Condorcet winners, SG winners may be in a top cycle, whereby they each beat all 

candidates not in the cycle—because more voters give them more higher grades—but 

there is no smaller set of candidates all of whom beat everyone else.  Members of the top 

cycle can be either beaten or tied by at least one other candidate in the cycle.  There is a 

paradox of grading systems if and only if the sets of AG winners and SG winners differ.  

Before we analyze the paradox of grading systems, we show that AV precludes the 

paradox: 

Proposition 1.  With two grades, the sets of AG and SG winners are identical.2  

                                                                                                                                             
candidates in proportion to their size in the electorate.  For analyses of its properties and experience with it, 

see Brams (1975; rev. ed., 2003) and Bowler et al. (2003).  

2 Merrill and Nagel (1987) distinguish a balloting method, such as one that allows two grades, from a 

method for aggregating the ballots (what they call “decision rules”), such as one that elects the candidate 

with more superior grades in pairwise comparisons—or, equivalently, the highest average grade—which is 

what AV does.  As we will show, using a different aggregation method can produce a winner different from 

the AG-SG winner, even when there are only two grades (the Hare system is an example).  However, 
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Proof.  Because an AG winner—when averaging the candidates’ grades of 1 and 

0—has, by definition, the highest average grade, he or she must have been approved of by 

more voters than any other candidate.  Thus, in pairwise comparisons, more voters give 

the AG winner a grade of 1, and other candidates a grade of 0, than vice versa—ignoring 

0-0 and 1-1 ties—so an AG winner is also an SG winner.  The proof extends easily if the 

winner sets have more than one candidate. n   

We next give an analogue of Proposition 1 (Proposition 2 below) for the median-

grade, Borda, and Hare systems.  But first we specify precisely how we determine winners 

under each of these systems:   

1.  Median grade.  When there are only two grades, 0 and 1, all candidates will 

have a median grade of either 0 or 1 (or occasionally ½, based on the standard definition 

of median), so there may often be ties for the median-grade winner, as noted in ftn. 1.  We 

assume the method of Balinski and Laraki (2011, pp. 224-225) to break ties,3 which 

ensures that the candidate receiving the largest number of 1s is the median-grade winner. 

                                                                                                                                             
systems that choose as winners the candidates with the highest median grade or the highest Borda score 

duplicate AV in always selecting AG-SG winners if there are two grades.  

3 For any g, the method breaks ties as follows: Order the grades for each candidate from low to high; for an 

even number of grades, treat the grade just below the middle, rather than the average of the two middle 

grades, as the median; delete each candidate’s (tied) median grade; obtain the median for each candidate 

from the new (smaller) sets of grades; and, if there is still a tie, continue to delete grades successively, one at 

a time, in the same way as before, until the tie is broken.  As an example for g = 2, suppose the ordered 

grades from 6 voters are 0 0 1 1 1 1 for candidate X and 0 1 1 1 1 1 for Y, with the remaining candidates 

receiving more 0s than 1s (the medians, as just defined, are underscored).  Deleting both underscored 

medians yields 0 0 1 1 1 for X and 0 1 1 1 1 for Y.  The new medians are again tied, so they are deleted, 
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2.  Borda.  When a voter ranks candidates as tied under the Borda system, each of 

them receives the mean of the corresponding strict ranks (see ftn. 6 below for an example).  

Thus, with the Borda system restricted to two grades, if there are c candidates and a voter 

assigns a 0 (do not approve) to k of them (1 ≤ k ≤ c – 1) and a 1 (approve) to the remaining 

(c – k), then the scores will be (k – 1)/2—the mean of (0, 1, ..., k – 1)—for each of the 

former candidates, and (c + k – 1)/2—the mean of (k, k + 1, ..., c − 1)—for each of the 

latter.  

3.  Hare.  When a voter ranks candidates as tied under the Hare system, and there 

are m ways to resolve the aggregate of ties, we specify that the voter's ballot is to be 

counted as a fraction of a ballot, 1/m, for each of those m ways [e.g., with two grades, m is 

equal to k! × (c – k)! if a ballot has k 0s and (c – k) 1s].  For instance, under Hare with 

three candidates and two grades, if a ballot gives a 1 to candidates X and Y and a 0 to 

candidate Z, then it is tallied as half a ballot ranked (X, Y, Z) and half a ballot ranked (Y, X, 

Z). 

Proposition 2.  With two grades, the sets of median-grade and Borda winners are 

each identical to the set of AG (and therefore also SG) winners.  But the set of Hare 

winners can differ from the other four sets of winners. 

Proof.  Median-grade winner: The candidate with the most 1s is the median-grade 

winner.  But that candidate is also the AG winner.  

Borda winner: On a given ballot with k 0s and (c – k) 1s, the score difference 

between an approved and a non-approved candidate is [(c + k – 1)/2 – (k – 1)/2], or c/2.  

                                                                                                                                             
giving 0 0 1 1 for X and 0 1 1 1 for Y.  The tie is now broken in favor of Y as the median-grade winner, who 

indeed did receive more 1s. 
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The key to the proof for Borda is that this difference, c/2, does not depend on k, the 

number of candidates not approved.  Ballots with the AG winner approved, and any other 

candidate Z not approved, are more numerous than those of the opposite type, so the AG 

winner’s score surplus of c/2 for each of the former ballots exceeds Z’s surplus of c/2 for 

each of the latter, thereby making the Borda and AG winners the same. 

The proofs for median-grade and Borda winners extend easily if the winner sets 

have more than one candidate. 

Hare winner: The following counterexample, with 3 candidates and 27 voters, 

establishes that the Hare winner set may differ from the AG winner set (and thus also from 

the SG, median-grade, and Borda winner sets):  

2 voters: Approve of A only 

6 voters: Approve of both A and B 

6 voters: Approve of both A and C 

7 voters: Approve of B only 

6 voters: Approve of C only 

The AV totals are 2 + 6 + 6 = 14 for A, 6 + 7 = 13 for B, and 6 + 6 = 12 for C, so average 

grades are 1/27 of those values, and A is the AG winner.  But the number of top ranks (i.e., 

first-place votes) is 2 + (½ × 6) + (½ × 6) = 8 for A, (½ × 6) + 7 = 10 for B, and (½ × 6) + 

6 = 9 for C.  Thus, Hare eliminates A on the first round, after which B becomes the Hare 

winner by beating C, 6 + 7 = 13 votes to 6 + 6 = 12 (or 14 to 13 if the 2 voters who voted 

for A only split evenly between B and C).  [Note that, as must be the case, A is the SG 

winner, beating B by 8 to 7 and C by 8 to 6 (these numbers disregard indeterminate 
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voters); is the median-grade winner, with a median of 1, versus 0 for both B and C; and is 

the Borda winner, with points equal to 28½, versus 27 for B and 25½ for C.] n 

Thus, when there are only two grades, AG, SG, median-grade, and Borda mimic AV in 

rendering the same winners as AV, whereas Hare does not. 

To forge a link between grading systems like AV and median grade, and ranking 

systems like Borda and Hare, assume that the higher the grade that a voter gives to a 

candidate, the higher his or her rank.  If, as under AV, there are only two grades, voters 

express dichotomous preferences: They prefer approved to nonapproved candidates, but 

they do not make finer distinctions within their approved and nonapproved subsets.  

If voters have dichotomous preferences, under AV each voter has a dominant 

strategy of approving only the candidates in his or her preferred subset of candidates, 

which yields an outcome at least as good and sometimes better than any other strategy.  If 

all voters choose their dominant strategies, then a candidate wins under AV if and only if 

he or she is a Condorcet winner (Brams and Fishburn, 1978).  If voter preferences are not 

dichotomous, winners under the Borda count or the Hare system may differ from 

Condorcet winners; and AG winners may differ from SG winners, as we will show in 

section 3.  

If there is a Condorcet paradox because of a top cycle, different Condorcet 

completion methods have been proposed for choosing one candidate from among the 

candidates in the top cycle.  For example, the Black procedure chooses the Borda winner.  

Another possibility is to choose the AV winner, using a ballot that captures not only ranks 

but also approval votes, the latter to be used only if needed (Potthoff, 2013, 2014). 
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We do not propose a “solution” to choosing among candidates in a top cycle when 

there are more than two grades.  Instead, as Proposition 1 shows, AV offers a solution: It 

renders the AG and SG winners—and, per Proposition 2, also the median-grade and Borda 

winners—identical when there are two grades.  This is decidedly not the case when there 

are more than two grades, as we show in the next section, wherein we focus on differences 

between the AG and SG winners.  

3.  The Paradox of Grading Systems  

We next present several examples of the paradox of grading systems.  Except for 

one example with two candidates, we assume that there are three candidates but varying 

numbers of voters and grades.  

Example 1: 3 grades, {2, 1, 0}, and 9 voters   

2 A voters: Grades of (2, 1, 0) to (A, B, C)  

3 B voters: Grades of (0, 2, 1) to (A, B, C) 

4 C voters: Grades of (1, 0, 2) to (A, B, C) 

A, B, and C voters are those who give the highest grade (i.e., 2) to, respectively, candidates 

A, B, and C.  Multiplying the numbers of A, B, and C voters by the grades they give to 

each candidate, and dividing by the total number of voters, the AG winner is C, whose 

average grade is  

(2×0)+ (3×1)+ (4×2)

9
=
11

9
, 

compared with average grades of 8/9 for A and B.   
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To determine the SG winner(s), we ask which candidate(s) receive more higher 

grades in the three pairwise contests: 

• A vs. B: 2 A and 4 C voters (total: 6) grade A higher; 3 B voters grade B higher  

• B vs. C: 2 A and 3 B voters (total: 5) grade B higher; 4 C voters grade C higher 

• C vs. A: 3 B and 4 C voters (total: 7) grade C higher; 2 A voters grade A higher  

These contests generate a cycle of winners,  

A ≻ B ≻ C ≻ A ,            

in which a majority of voters grade each of A, B, and C higher than the candidate to his or 

her right, in the cycle.  Thus, whether a candidate wins or loses in a pairwise contest 

depends on whom he or she is paired against.     

If a subset of candidates is in a top cycle (in Example 1, all candidates are in the top 

cycle, so there are no “bottom” candidates), we consider all candidates in the cycle to be 

SG winners.  Because the set of three candidates differs from the single AG winner (C), 

there is a paradox of grading systems.4  

There cannot be a paradox under AV (Proposition 1).  To see why in the case of 

Example 1, assume that each of the A, B, and C voters collapse their three grades into two 

by giving the candidate who receives the highest grade of 2 a grade of 1, and the candidate 

                                                
4 The Borda count gives rise to the same paradox in Example 1 if the grades of 2, 1, and 0 are interpreted as 

ranks, because the Borda winner, C, is different from the three candidates in the Condorcet cycle.  In our 

later examples, however, the grades do not necessarily correspond to Borda scores, including tied scores, 

and the Borda and AG winners can differ.  
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who receives the lowest grade of 0 a grade of 0.  As for the candidates who receive the 

middle grade of 1, voters may or may not approve of them.   

For concreteness, assume that the A and B voters approve only of their first choices, 

but the C voters also approve of their second choice, A:   

2 A voters: Grades of (1, 0, 0) to (A, B, C)  

3 B voters: Grades of (0, 1, 0) to (A, B, C) 

4 C voters: Grades of (1, 0, 1) to (A, B, C) 

This would occur if the C voters view A as “close enough” to C to be acceptable, too.  

Observe that A is the AG winner with an average grade of 6/9, trailed by B and C 

with average grades of 3/9 and 4/9, respectively (recall that before the dichotomization, C 

was the AG winner).  Because A is graded  

• higher than B by the 2 A and 4 C voters (total: 6), and lower by the 3 B voters 

• higher than C by the 2 A voters, and the same by the 3 B voters (both 0’s) and the 4  

  C voters (both 1’s)  

A is also the SG winner, as guaranteed by Proposition 1, although A is the candidate with 

the fewest first-choice supporters.  

To illustrate when a candidate like C with the most first-choice support might be 

displaced under AV, consider the 1912 U.S. presidential election, though it does not 

mirror Example 1 exactly.  It is reasonable to suppose that Theodore Roosevelt, the 

Progressive (“Bull Moose”) candidate who received 27% of the popular vote, was 

acceptable to many supporters of the Republican candidate, William Howard Taft, who 

received 24% of the popular vote.  Roosevelt, after all, had been a Republican when he 
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was president earlier and was, presumably, more acceptable to Taft supporters than 

Woodrow Wilson, the Democratic candidate who received 41% of the popular vote.  If 

Roosevelt had been approved of by both Progressive and Republican voters,5 then he 

would have easily beaten the Democratic candidate, Woodrow Wilson, the candidate with 

the most first-choice support, with 51% approval.  

Example 1 illustrates the occurrence of the paradox of grading systems when there 

is a top cycle, in which a single AG winner (C) is different from the set of candidates in 

the cycle.  When, as here, AG and SG winners overlap but do not coincide, we call the 

condition a weak paradox of grading systems.  The paradox is starker when there is no 

overlap between the AG and SG winners, which we call a strong paradox of grading 

systems, as in our next example:  

Example 2: 4 grades, {3, 2, 1, 0}, and 3 voters   

1 voter: Grades of (3, 0, 0) to (A, B, C)  

1 voter: Grades of (2, 3, 3) to (A, B, C) 

1 voter: Grades of (0, 1, 1) to (A, B, C) 

The AG winner is A, with an average grade of 5/3, whereas B and C each receive an 

average grade of 4/3.  But B and C receive higher grades than A from the second and third 

voters, so they are the SG winners.  

                                                
5 Taft, also, would have benefited from the approval of both his supporters and Roosevelt supporters, but 

probably not to the extent of Roosevelt for two reasons: Roosevelt (i) edged him out in the plurality vote and 

(ii) probably would have drawn more support from Wilson voters, and even supporters of Eugene Debs, the 

Socialist candidate who received 6% of the vote, because he was generally perceived to be less conservative 

than Taft. 
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Example 2 also differs from Example 1 in showing that the paradox can occur with 

only 3 voters, though we assume in Example 2 that there are 4 rather than 3 grades.  Note 

that the second voter does not give a bottom grade (0), and the third voter does not give a 

top grade (3) to any of the candidates, so they are sincere—or at least not strategic—in the 

sense defined earlier.   

Of course, the first voter may also be sincere if he or she believes that A is 

genuinely deserving of a top grade and both B and C of a bottom grade.  Although we are 

not able to distinguish in a case like this whether a voter is acting sincerely or strategically 

if he or she gives no middle grades, we require in our strategic model that all voters give 

at least one candidate a top grade and one candidate a bottom grade.  This is not the case 

for the second and third voters in Example 2.  

Example 2 illustrates how a grading system differs from a ranking system like the 

Borda count, which in general requires that different ranks be given to each candidate (i.e., 

the ranking is strict).6  A more significant difference is that, unlike ranking systems, 

wherein the ranks have the same meaning for all voters when they are aggregated, this is 

not true of grades.   

To illustrate, the top grade of the first two voters (3) has triple the effect in helping 

a favorite candidate as the top grade of the third voter (1).  Similarly, the bottom grade of 

                                                
6 If a voter’s ranking is not strict, the usual convention is to give all tied candidates the mean of the ranks if 

the ranking were strict.  To illustrate in Example 2, with ranks of 2, 1, and 0 for the three candidates, the 

Borda scores of the first voter would be (2, ½, ½), of the second voter (0, 1½, 1½), and of the third voter (0, 

1½, 1½).  In this example, B and C would be the tied winners, and there would be no paradox of grading 

systems, because these candidates are preferred by two of the three voters.  In general, when translating 

ranks into grades or grades into ranks, ranking systems and grading systems may give different outcomes.  
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the first and third voters (0) is much more significant in hurting a least favorite candidate 

than the bottom grade of the second voter (2).  These statements apply only in an absolute 

sense, though.  In a relative sense, the first voter has triple the effect of each of the last 

two, because (3 – 0) is thrice (3 – 2) or (1 − 0).    

While the ranks of a ranking system like the Borda count can be interpreted as 

grades (see ftns. 4 and 6), a grading system allows voters to express levels of satisfaction 

or dissatisfaction that a ranking system does not.  In this sense, a grading system offers a 

richer menu of choices for voters.    

Of course, AV limits this menu to two grades.  Translating the grades of the voters 

in Example 2 into 1 and 0 in the obvious way (observe that each voter has dichotomous 

preferences, based on the grades), the AG and SG outcomes yield the same pair of 

candidates, showing there is no paradox under AV.    

It is worth pointing out that even when there are only two candidates, there may be 

a strong paradox of grading systems, as our next example demonstrates: 

Example 3: 3 grades, {2, 1, 0}, and 5 voters   

2 voters: Grades of (2, 0) to (A, B)  

3 voters: Grades of (0, 1) to (A, B)  

The AG winner is A, with an average grade of 4/5, whereas B receives an average grade 

of 3/5.  But B receives a higher grade from 3 of the 5 voters and so is the SG winner.  

But if there are only two candidates, strategic voters will always have an incentive 

to give the top grade to their preferred candidate and the bottom grade to their 

nonpreferred candidate, making implausible the choice of a middling grade (1 in this 
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example).7  Accordingly, we assume in our simulation later that there are always at least 

three candidates in both the sincere and strategic models.  

Our next example illustrates an extreme example of the strong paradox—that all 

voters except one may grade the SG winner higher than the AG winner.8    

Example 4: 6 grades, {5, 4, 3, 2, 1, 0}, and 5 voters   

1 voter:   Grades of (5, 0, 0) to (A, B, C)  

4 voters: Grades of (0, 1, 1) to (A, B, C) 

The AG winner is A, with an average grade of 5/5, whereas B and C each receive an 

average grade of 4/5.  But B and C receive higher grades than A from 4 of the 5 voters, so 

they are the SG winners.  

One can blame the election of A on the 4 voters who give B and C, their preferred 

candidates, only the next-lowest grade of 1.  But independent of their choices, this strong 

paradox of grading systems would be nullified if, as under AV, the maximum grade that 

the first voter can give A is 1.  

A paradox can occur when there are three candidates, three voters, and three 

grades—even when voters are strategic, and each voter gives at least one candidate a 

maximum grade of 2, and at least one candidate a minimum grade of 0—as the following 

example demonstrates: 

                                                
7 Such a dichotomization is effectively what AV forces, and not just for two candidates.  If there are only 

two candidates, plurality voting suffices to enable a voter to vote for just his or her preferred candidate. 

8 This was also true in Example 2, but “all except one” meant only 2 of the 3 voters rather than, as in 

Example 4, 4 of the 5 voters. 
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Example 5: 3 grades, {2, 1, 0}, and 3 voters   

1 voter: Grades of (2, 1, 0) to (A, B, C)  

1 voter: Grades of (0, 2, 0) to (A, B, C) 

1 voter: Grades of (0, 0, 2) to (A, B, C) 

The AG winner is B, with an average grade of 3/3, whereas A and C each receive an 

average grade of 2/3.  But there is a cycle of winners,  

A ~ B ≻  C ~ A   

where “~” denotes a tie—that is, candidates on each side of this sign receive higher grades 

than each other from the same number of voters (one each in this example).  There is a 

(weak) paradox of grading systems because the AG winner (A) and the SG winners (A, B, 

C) are not identical. 

One might argue in this example that B is the most deserving SG winner because 

he or she is the only candidate to have more higher grades (2) than one of the other 

candidates (C).  On the other hand, each candidate can, via the cycle, win or tie against 

another candidate. 

We adopt an inclusive definition of SG winners by including all candidates in a 

top cycle linked by either ties or wins.  This definition avoids the problem of determining, 

especially in complex cycles in which the candidates may have different numbers of ties 

or wins, which candidates in the cycle deserve to be called the SG winners.   

We have given several examples of both the weak paradox and the strong paradox 

of grading systems.  Such paradoxes can afflict any grading systems with more than two 

grades.  
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We turn next to assessing the probability of the paradox under different conditions.  

But first we describe how we make our calculations and then present the results of our 

simulation.    

4.  The Probability of the Paradox of Grading Systems 

Although it is straightforward to determine AG winners, the determination of SG 

winners requires a more complex procedure.  We begin with a list of voters’ grades, as 

illustrated by the table in the top half of Figure 1, in which 4 voters—shown along the 

rows, {I, II, III, IV}— give 4 candidates—shown across the columns, {A, B, C, D}—4 

grades, {0, 1, 2, 3}, which are the entries in the table.   Thus, for example, voter I gives 

candidate C a grade of 1.   

We call this the data table.  Note that voter II does not satisfy the constraint of the 

strategic model, because he or she does not give a lowest grade of 0 or a highest grade of 3 

to any candidate. 

Figure 1 about here 

Let c be the number of candidates.  From the data table, we construct a c × c 

matrix whose entries, (i, j), are 1 if more voters give the row candidate i a higher grade 

than the column candidate j, ½ if the same number of voters give candidates i and j higher 

grades, and 0 if more voters give candidate j a higher grade than candidate i.  (Voters who 

give i and j the same grade are not counted in this comparison.)  We call this the win 

matrix.  Its diagonal elements are all 0. 

To illustrate the derivation of the win matrix from the data table, consider entry (1, 

3) of the win matrix, which is based on comparing how many of the four voters grade A 
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higher than C vs. grade C higher than A.  Voters I, III, and IV grade A higher, and none 

grade C higher (voter II grades the two candidates the same), so the (1, 3) entry is 1, 

indicating that more voters grade A higher. 

 The set of SG winners is derived from the win matrix.  One method is as follows.  

Obtain the column totals in the win matrix—½, 2½, 2½, ½ for candidates A, B, C, D 

(respectively) in the example.  Order the candidates, low to high, according to their 

column totals—A, D, B, C here (the order does not matter where there are ties).  Rearrange 

the columns of the data table so that they are in this same order—columns 1-4 for 

candidates A, D, B, C, respectively.  Now use this new data table to create a new win 

matrix (actually, it is just the original one rearranged).  Finally, examine successively the 1 

× 1, 2 × 2, 3 × 3, ...,  sub-matrices in the upper left corner of the new win matrix until 

reaching the first such sub-matrix that has nothing but 0's directly below it.  The 

candidates associated with the columns (or rows) of that sub-matrix constitute the SG 

winner set.  In the example, the first qualifying sub-matrix in the upper left corner is 2 × 2, 

so the SG winner set is {A, D}. 

We next analyze the probability of the weak paradox of grading systems for 

different numbers of candidates (c), voters (v), and grades (g).  We begin by assuming g = 

3 and let c and v vary.  Then we let g vary as well. 

Our results are based on a computer simulation using Python, in which we ran 

10,000 trials to estimate the probability of the weak paradox for different values of (c, v, 

g).9   The simulation is necessitated by the fact that even for very small parameter values, 

an exhaustive calculation can be infeasible.  Each of the cv cells in the data table can be 

                                                
9 We are grateful to Sean J. Vasquez for writing the computer program to do the simulation.   
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filled with any of the g grades.  For example, assume (c, v, g) = (3, 4, 5).  Then for each of 

the 3 candidates, each of the 4 voters can assign him or her one of 5 grades, giving 

gcv = 53×4 = 512 = 244,140,625 

different combinations for sincere voting.  (Our simulation samples less than 0.0041% of 

these.10)  If the number of voters is as few as 20, the number of combinations is 

astronomical. 

We present our simulation results for an impartial culture, in which each voter is 

assumed equally likely to give each possible grade to each of the candidates, which is 

what we earlier called the sincere model.  The strategic model is one in which we 

constrain each voter to giving at least one candidate a bottom grade and at least one 

candidate a top grade. 

We define and implement the strategic model as follows.  Our definition specifies 

that all voter grade assignments that have at least one top grade and one bottom grade are 

equally likely.  Other definitions are possible, but ours seems reasonable, need not cause 

programming problems, and (at least for moderate parameter values) does not lead to 

computational infeasibility.  To implement, we draw as for the sincere model, but, 

generally, some of the voter grade combinations that we draw will not satisfy the 

constraint of the strategic model.  Then we replace each of the non-conforming voters by 

voters that do satisfy the constraint, drawing at random as many voters as is necessary 

until v voters are found.  Because of the need to replace voters who do not give both a 

                                                
10 The sampling is with replacement, so in general it may include duplicate combinations, but that is 

unlikely for this example. 
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bottom grade to one candidate and top grade to another candidate, probabilities based on 

the strategic model take considerably longer to compute for the 10,000 trials (though a 

different technique could possibly reduce the time).  

In Table 1 we give the results of our simulation for three grades (g = 3) and 

different numbers of voters (v) and candidates (c).  It may seem incongruous that the 

number of candidates can exceed the number of voters, but this situation is not as unusual 

as it sounds.  It occurs, for example, when members of a small governing board or search 

committee (e.g., v = 3 in Table 1) must choose from among several candidates (e.g., c = 

10).  More common for elections that political scientists study is that the number of voters 

(e.g., v = 50 in Table 1) substantially exceeds the number of candidates (e.g., c = 3).  

Table 1 about here 

We have estimated through simulation the probabilities for the sincere and strategic 

models in all cases except v = 25 and 50.  To calculate these probabilities for the strategic 

model without reducing the number of trials from 10,000 would have required an 

inordinate amount of computer time.  Because the probabilities for the strategic model for 

v = 3 - 9 do not differ much from those of the sincere model (generally, by less than 10% 

of the probability), there is not much lost in omitting the strategic probabilities for v = 25 

and v = 50. 

When exhaustive calculations needed to compute exact results can be made, one 

finds that the simulated probabilities are generally accurate to within ±0.01 of the exact 

results.  This accords with the standard error of a sample probability, which is at most 
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0.005 (equal to (½  ×  ½)/10,000).11  For example, when (c, v, g) = (3, 3, 3) for the 

sincere model, there are gcv = 33×3 = 39 = 19,683 combinations.  One can examine them all 

to determine that the exact probability of a weak paradox of grading systems—to four 

decimal places—is 4,302/19,683 =  0.2186, compared with a simulated probability of 

0.2216, both of which round to 0.22.  For the strategic model, the exact probability is 

342/1,728 = 0.1979, compared with a simulated probability of 0.2037, both of which 

round to 0.20.   

Because of the random element in the choice of 10,000 trials, the simulated 

probability will vary from sampling to sampling.  Consistent with a standard error not 

above 0.005 for a simulated probability and not above 2 times that for the difference 

between two such probabilities, we have found that different samples generally produce 

simulated probabilities well within 0.02 of each other—and within ±0.01 of the exact 

probability, as noted above—demonstrating that the Monte Carlo simulation yields almost 

exact values.  We summarize our findings from Table 1 for the sincere model when g = 3:   

1.  Holding v constant, the probability of the paradox increases with the number of 

candidates c. 

2.  Holding c constant, the probability of the paradox increases with the number of 

voters up to about v = 5 - 8 and then decreases.    

3.  The probabilities range from a low of 22% (v = 3, c = 3) to a high of 51% (v = 

6, c = 10).  

                                                
11 For n Bernoulli trials each with success probability p (the binomial distribution), the standard error of the 

sample proportion of successes is 𝑝(1 − 𝑝)/𝑛  , which is maximized at p = ½. 
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These probabilities of the weak paradox, averaging about 40%, are high, but recall 

that they do not mean that the AG and SG winners will always be non-overlapping.  While 

the sets of AG and SG winners are different, some members may be common to the two 

sets.  Only when there is a strong paradox will there be no overlap in the AG and SG 

winners (illustrated by Examples 2, 3, and 4), ensuring that the AG and SG winners are 

entirely different.12   

Because every candidate has the same probability of obtaining each grade, on 

average he or she will have the same average grade, making the election highly 

competitive.  Elections with three or more such candidates are rare, though we describe 

one in the concluding section. 

Suffice it to say here that the probabilities in Table 1 probably substantially 

overestimate the probability of a paradox of grading systems in actual elections.13  

Nevertheless, it is likely that they accurately indicate what factors (increases in v; 

increases in c up to 5 - 8 candidates) increase the probability of the paradox.  

In Table 2, we show the probability of the weak paradox for different numbers of 

grades (g = 3, 5, 7, 9).14  We chose these values because they enable a voter to choose a 

                                                
12 We did not calculate the probability of a strong paradox.  It seemed to us that the possibility, not the 

certainty, of different AG and SG winners was the first question to address in inquiring whether a 

discrepancy posed a serious problem.       

13 Regenwetter et al. (2006) make a similar point about the probability of the Condorcet paradox, showing 

that the paradox turns up much less often than its theoretical probability, based on the impartial-culture 

assumption.     

14 The first column of Table 2 when g = 3 repeats probabilities from Table 1.   
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median grade (1, 2, 3 or 4, when grades start at 0) for a candidate that he or she believes 

falls squarely in the middle.  We summarize our findings from Table 2: 

4.  For fixed values of (c, v) for g up to 9, the probability of the paradox increases 

with the number of grades, at least up to g = 7. 

5.  The probabilities of the paradox range from a low of 22% to a high of 56%.   

Table 2 about here 

As in Table 1, the probabilities of the paradox in Table 2 are almost surely 

overestimates of the probabilities that would be observed in actual elections.  But the fact 

that AG and SG winners may differ for all grading systems except AV highlights the issue 

of how best to resolve such a discrepancy, which we will turn to in the concluding section.    

It is well known that different ranking systems can produce different winners, so it 

should come as no surprise that this is true of different grading systems.  While we have 

concentrated on differences between AG and SG winners, these differences extend to 

median-grade winners, whose election is advocated by Balinski and Laraki (2011).  

Indeed, median-grade winners may differ from both AG and SG winners, as our final 

example shows: 

Example 6: 3 grades, {2, 1, 0}, and 9 voters   

2 A-B voters: Grades of (2, 2, 0) to (A, B, C)  

3 B-C voters: Grades of (1, 2, 2) to (A, B, C) 

4 A-C voters: Grades of (1, 0, 1) to (A, B, C) 

In fact, there is no overlap at all of the three kinds of winners: 
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• The AG winner is A, with an average grade of 11/9, whereas B and C have 

average grades of 10/9.   

• The SG winner is C, because (i) 3 B-C voters grade C higher than A, whereas 2 A-

B voters grade A higher than C (the 4 A-C voters are indifferent); and (ii) 4 A-C voters 

grade C higher than B, whereas 2 A-B voters grade B higher than C (3 B-C voters are 

indifferent).  Hence, more voters grade C higher than each of A and B.  

• The median-grade winner is B, with a median grade of 2, whereas A and C each 

have median grades of 1.   

In this example, we can ask, and answer, who would have won under AV.  Because 

all 9 voters, based on their grades (two candidates graded equally, and higher than the 

third), have dichotomous preferences, we can readily translate their grades into 1s and 0s.  

Doing so yields AV vote totals for (A, B, C) of   

 [2 × (1, 1, 0)] + [3 ×  (0, 1, 1)] + [4 ×  (1, 0, 1)] = (6, 5, 7), 

so C would be the winner, consistent with voters’ choosing their dominant strategies under 

AV and thereby electing the Condorcet winner, who is also the AG-SG winner under AV.  

We can also ask what the probability of the (weak) paradox of grading is (i.e., AG 

and SG winner sets not identical) when, as in Example 6, (c, v, g) = (3, 9, 3).  From Tables 

1 and 2, it is estimated to be 0.2709.  We have also estimated through simulation the 

probability that the sets of AG, SG, and median-grade winners are not identical (using the 

standard definition of the median), which is 0.1084 in this example.  

But even the latter probability overestimates the probability of a strong paradox 

(involving all three of the AG, SG, and median-grade winner sets), because it allows for 
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the overlap of the winning sets, which does not occur in Example 6.  In fact, exhaustive 

examination of all 19,683 possible combinations, using SAS (and again using the standard 

definition of the median), shows that Example 6, except for the labeling of the candidates, 

is the only example in which the AG, SG, and median-grade winners are all different, 

without overlap, for subsets of 2, 3, and 4 voters whose members give the same grades 

(with g = 3) to the three candidates.  These subsets may be thought of as political parties, 

whose members grade the candidates in the manner shown in Example 6.   

Example 6 throws into sharp relief the normative question of who should win when 

different grading systems yield different winners, especially when there is a strong 

paradox (even including a different median-grade winner—see Example 6) and, therefore, 

no overlap among the different winners.  We offer some thoughts on this question in the 

final section.   

5.  Conclusions 

Just as different ranking systems, such as the Borda count and the Hare system of 

single transferable vote, may produce different winners, so may different grading systems 

if there are more than two grades.  We gave several examples in which the AG and SG 

winners are different, and one example in which the AG, SG, and median-grade winners 

not only differ but also have no overlap.  When these differences occur, there is a paradox 

of grading systems, and a strong paradox when there is no overlap in the sets of winners 

(so each system elects a different winner).   

The probability of the paradox for the sincere and strategic models increases with 

the number of candidates; and with the number of voters up to about 5 - 8, depending on 
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the number of candidates.  The probability of the paradox also increases with the number 

of grades, at least up to 7.   

The strategic model, in which all voters give at least one candidate a bottom grade 

and at least one candidate a top grade, seems a more realistic model than the sincere model 

without such a constraint.  Giving bottom and top grades to one’s least and most preferred 

candidates increases the chances of not electing a least preferred, and electing a most 

preferred, candidate.   

But this leaves open how one should grade candidates who fall in the middle, which 

is analyzed in Brams and Fishburn (1983, rev. ed., 2007, ch. 5).   Unless voters 

dichotomize their grades by grading up some of these candidates to the maximum grade, 

and grading down the others to the minimum grade—which is in effect to reduce the 

grades to two (as under AV)—then a paradox can occur.  

We know of no uses of a grading system in public elections, so there is no basis for 

judging the relative frequency of a paradox in such elections.  But there are elections, such 

as the 1977 Democratic mayoral primary election in New York City, in which the paradox 

would likely have occurred if a grading system had been used.  In this election, no 

candidate received as much as 20% of the vote, and five candidates received more than 

10% (Edward Koch won with 19.8%, just beating out Mario Cuomo who received 18.7%). 

In close elections in which there is a bunching of candidates at the top, it may be 

desirable to let voters make judgments of who, among their middling candidates, deserves 

to be approved and who not.  In that sense, AV is “responsive” to the views of each voter 

(Brams et al., 1988), though others—including Saari and Van Newenhizen (1988), who 

favor the Borda count—disagree.  Still other theorists have suggested from three 
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(Felsenthal, 1989; Hillinger, 2005; Alcantud and Laruelle, 2014) to six (Balinski and 

Laraki, 2011) to more grades be used, but they disagree on whether it is better to choose 

an AG winner, an SG (or Condorcet) winner, or a median-grade winner.  

Among grading systems, we favor AV (g = 2), not only because it ensures that the 

AG and SG winners are the same, so there is no paradox, but also because it is sensitive to 

how individual voters dichotomize their middling candidates.  Whether voters approve of 

many or few such candidates, their choices influence the choice of a winner.  As a case in 

point, if the first voter in Example 5 approves of the candidate graded 1 (B), B wins under 

AV, but if not there is a three-way tie among A, B, and C, in which case one candidate 

presumably would be chosen at random.  Likewise, depending on how the A, B, and C 

voters in Example 1 dichotomize their 1 votes, any of the three candidate could be the 

unique AV winner.   

If voters can give more than two grades, they will have a strong incentive to give a 

maximum grade to only one candidate—at least if he or she is viewed as a contender—and 

a minimum grade to all the other candidates.  If a voter’s favorite is not viewed as a 

contender, then he or she will be motivated to give a maximum grade to his or her 

(noncompetitive) favorite and a favorite among the contenders, and a minimum grade to 

everybody else.  In either case, these strategies are tantamount to those that would be used 

under AV. 

To be sure, in some nonpublic elections, such as in judging certain sporting events 

(e.g., figure skating) and rating wines, grading systems are used and generally work well.  

In these contests, there is typically not a single winner.  Three players usually receive 

medals in sports contests, though not all have the same prestige, and more than one wine 
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may be rated highly.  However, the award(s) go to the AG winners, not the SG winners, 

though a case can be made that the SG winners are just as deserving when there is a 

paradox.   

To conclude, we have identified a paradox of grading systems, which is not just a 

mirror of the well-known differences that crop up in aggregating votes under ranking 

systems.  Unlike these systems, for which there is no accepted way of reconciling which 

candidate to choose when, for example, the Hare, Borda, and Condorcet winners differ, 

AV provides a solution when the AG and SG winners differ.   

Although AV may not be the ideal system to use in figure-skating contests or wine-

tasting competitions—wherein voters have little or no incentive to dichotomize their 

grades—we think it has much to commend it in political contests in which more than two 

grades can result in the paradox, even when voters are strategic.  AV has been advocated 

for other reasons, including its simplicity and practicality,15 but our intent in this paper has 

been to show how it resolves a troublesome paradox.  

 

                                                
15 Some uses of, and experience with, AV in elections are discussed in Brams and Fishburn (2005), Laslier 

and Sanver (2010), Felsenthal and Machover (2012), Baujard et al. (2014), and references therein.  Brams 

(2008), Brams and Sanver (2009), Sanver (2010), and Camps et al. (2014) suggest ways in which ranking 

and grading systems can be combined or otherwise reconciled.    
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Figure 1 

Data Table and Win Matrix for 4 Candidates, 4 Voters, and 4 Grades 

 

Data Table 

 

 Candidate A Candidate B Candidate C Candidate D 

Voter I 2 0 1 3 

Voter II 1 1 1 2 

Voter III 3 0 0 0 

Voter IV 3 1 0 0 

 

 

Win Matrix 

 

 Candidate A Candidate B Candidate C Candidate D 

Candidate A 0 1 1 ½  

Candidate B 0 0 ½  0 

Candidate C 0 ½  0 0 

Candidate D ½  1 1 0 
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Table 1 

Probability of Weak Paradox of Grading Systems for Sincere (Strategic) Models with 

Three Grades (g = 3), as a Function of the Numbers of Candidates (c) and Voters (v) 

 

 

#Candidates→   

#Voters ↓ 

                  

c = 3 

                  

c = 4 

                  

c = 5 

                  

c = 6 

           

c = 9 

              

c = 10 

v = 3 0.2216 

(0.2037) 

0.2797 

(0.2995) 

0.3339 

(0.3501) 

0.3747 

(0.4017) 

0.4340 

(0.4490)    

0.4523 

(0.4508) 

v = 4 0.2443 

(0.2874) 

0.3168 

(0.3447) 

0.3487 

(0.3740) 

0.3933 

(0.4081) 

0.4687 

(0.4698) 

0.4732 

(0.4889) 

v = 5 0.2526 

(0.2315) 

0.3157 

(0.3393) 

0.3663 

(0.3757) 

0.4179 

(0.4194) 

0.4847 

(0.4807) 

0.4970 

(0.4909) 

v = 6 0.2627 

(0.2671) 

0.3321 

(0.3391) 

0.3839 

(0.3758) 

0.4057 

(0.4194) 

0.4897 

(0.4909) 

0.5084 

(0.5045) 

v = 7 0.2633 

(0.2394) 

0.3225 

(0.3330) 

0.3746 

(0.3724) 

0.4129 

(0.4103) 

0.4863 

(0.4918) 

0.4977 

(0.4944) 

v = 8 0.2658 

(0.2555) 

0.3284 

(0.3372) 

0.3854 

(0.3708) 

0.4097 

(0.4055) 

0.4900 

(0.4891) 

0.5016 

(0.5131) 

v = 9 0.2709 

(0.2426) 

0.3249 

(0.3314) 

0.3780 

(0.3681) 

0.4116 

(0.4120) 

0.4857 

(0.4880) 

0.4869 

(0.5069) 

v = 25 0.2518 0.3071 0.3448 0.3873 0.4441 0.4557 

v = 50 0.2310 0.2919 0.3253 0.3455 0.4087 0.4273 
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Table 2 

Probability of Weak Paradox of Grading Systems for Sincere Model, as a Function of 

the Numbers of Candidates (c), Voters (v), and Grades (g) 

 

#Grades →                    

#Candidates/#Voters ↓ 

                  

g = 3 

                  

g = 5 

                     

g = 7 

                  

g = 9 

c = 3:     

v = 3 0.2216 0.3276 0.3372 0.3344 

v = 4 0.2443 0.3763 0.4183 0.4534 

v = 9 0.2709 0.3369 0.3614 0.3572 

v = 25 0.2518 0.3059 0.3310 0.3378 

c = 4:     

v = 4 0.3168 0.4661 0.5103 0.5476 

v = 5 0.3157 0.4307 0.4385 0.4385 

v = 9 0.3249 0.4196 0.4394 0.4475 

v = 25 0.3071 0.3733 0.3962 0.4452 

c = 5:     

v = 5 0.3663 0.4947 0.5008 0.5016 

v = 6 0.3839 0.5000 0.5275 0.5562 

v = 9 0.3780 0.4657 0.4997 0.5021 

v = 25 0.3448 0.4399 0.4526 0.4631 
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