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Governments Should Not Use Declining Discount Rates 

in Project Analysis 

 
Szabolcs Szekeres1 

A number of governments have already adopted the policy of applying 
Declining Discount Rates (DDRs) to long lived projects, a move that could 
affect public sector investment decisions. Arguments for the use of Declining 
Discount Rates are based on the consideration of uncertainty, both for discount 
rates derived from social welfare functions, and for those derived from the 
characteristics of capital markets. The case for the latter is based on Martin L. 
Weitzman’s assertion that certainty equivalent discount rates are a declining 
function of time and tend to the lowest possible interest rate when interest rates 
are stochastic but perfectly auto-correlated. This paper finds that this 
conclusion is the consequence of Weitzman’s use of time reversed negative 
compounding, rather than of discounting, in the definition of net present value. 
When discounting is used instead, Weitzman’s conclusions are reversed, and 
do not support the use of Declining Discount Rates.  

JEL Codes: D61, H43 

Keywords: discount rate, uncertainty, declining discount rate, benefit-cost analysis, 
negative compounding. 

In “Should Governments Use a Declining Discount Rate in Project Analysis?” 
Kenneth J. Arrow et al. (2014:146-7) presents a case for the adoption of Declining 
Discount Rates (DDRs) by showing that two separate branches of research on the 
subject of discounting recommend it. The authors state: “Over the last decade, two 
branches of the literature have emerged concerning DDRs. The first branch extends the 
Ramsey formula for discounting benefits and costs to allow for uncertainty in the rate of 
consumption growth” while “The second branch of the DDR literature is based on the 
expected net present value (ENPV) approach. This approach was initially developed by 
Weitzman (1998, 2001, 2007), who argued that the uncertainty about future discount 
rates justifies using a decreasing term structure (i.e., time pattern) of discount rates 
today.” 

The cited second branch is the primary subject of the present paper, which will 
contend that Martin L. Weitzman’s (1998) definition of expected present value (EPV) is 
not based on discounting, but rather on time reversed negative compounding. The 
conclusion that certainty equivalent discount rates decline with time is a property of 
negative compounding and not of discounting. Consequently, when discounting is used 
instead, as intended, the Weitzman’s model yields the conclusion that certainty 
equivalent discount rates are a growing function of time. This considerably weakens the 
case for DDRs. 
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In addition, the proper role of discount rates solely derived from welfare functions 
in project analysis will be reviewed. This relates to the question raised by Arrow et al. 
(2014:154) as follows: “What if society is not on an optimal consumption path? In this 
case, theory tells us that we need to calculate the social opportunity cost of capital.” It 
will be argued that if society is not on an optimal consumption path, then, for an 
investment to be welfare increasing, its ENPV should be positive at both the welfare 
function derived discount rate, and the one derived from the social opportunity cost of 
capital. It will be argued that the latter would be the higher of the two, and would 
therefore constitute the binding hurdle rate that investment projects face. The former 
would not then be relevant to the investment decision to be made. This argument also 
weakens the case for DDRs. 

This paper is organized as follows. Section 1 analyzes Weitzman’s EPV formula; 
Section 2 explains what negative compounding is and shows that Weitzman’s EPV 
formula does not correspond to discounting, but rather to time reversed negative 
compounding; Section 3 addresses the issue of correlated interest rates implicit in 
Weitzman’s model; Section 4 discusses the role of discounting in project analysis; and 
Section 5 concludes. 

1. Weitzman’s EPV 

The essence of the Weitzman (1998) model can be formulated as follows. A risk 
neutral investor must make an investment choice with consequences in the distant future 
before knowing what the capital market interest rate will be. Once the investor has made 
his choice, the constant interest rate to prevail thence until the distant future is revealed. 
There are j possible scenarios with probabilities pj and interest rates rj. If the length of 
time between the present and the distant future is t years, the conditional discount factor 
for each scenario j is as follows, as a function of t: 

   tr

j

jeta
  (1) 

Weitzman defined the certainty equivalent discount factor used to compute the 
present value of $1 due at time t as  

     tr

jjjW

j

eptaptA
   (2) 

The corresponding certainty-equivalent discount rate RW will fulfill the following 
condition2  

   tR

W
WetA

  (3) 

from which it follows that 
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     







  

j

tr

jW

jep
t

tR ln 1  (4) 

which, as Weitzman (1998) shows, tends to the lowest possible interest rate for large t. 
This conclusion is also quoted in Arrow et al. (2014:154). 

Expression (2) above3 does not conform to the definition of present value, however, 
which requires that compounding the present value of a future sum yield the same future 
value that was discounted4, because 

     1  tr

j

tr

j

jj

epep  (5) 

where the second term is the expected compound factor derived from the same interest 
rates and probabilities. The correct EPV of $1 due in year t is 

   tr

j

j

ep
tA


 1  (6) 

which, when multiplied by the expected compound factor 
tr

j

j

ep , will clearly result in 

an expected future value (EFV) equal to $1. 

The correct certainty equivalent rate (CER) can be derived from (6) and is 

     







 

j

tr

j

jep
t

tR ln 1  (7) 

which, as Christian Gollier (2003) shows, tends to the highest possible interest rate for 
large t. 

Gollier (2003) arrived at conclusions that are diametrically opposed to those of 
Weitzman (1998) by computing CERs based on EFVs, rather than EPVs. This is the 
work that gave rise to the Weitzman-Gollier puzzle, the name by which the literature 
came to know the paradox that the Weitzman’s EPV rule results in a different CER than 
that which Gollier derived from the EFV rule, and which corresponds to expression (7). 

The paradox was this: if as a consequence of the perfect auto-correlation of interest 
rates assumed in the Weitzman (1998) model5, EFV derived CERs are growing with 
time, then how can EPV derived CERs, which should measure the opportunity cost of 
capital, be declining? The formulation of the EFV derived CERs could not be faulted, 
for their expression follows from a description of how capital markets operate and from 
the definition of expected value. Cleary the conflicting CER definitions could not both 
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4
 “The present value of an asset is obtained by calculating how much money invested today would be needed, at the going interest 

rate, to generate the asset's future stream of receipts.” (Paul A. Samuelson and William D. Nordhaus, 1992:271.) 
5
 A necessary consequence of a two time period model being used to represent the distant future. 
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be right. But because the EPV formulation proposed by Weitzman (1998) (expression 2 
above) appeared to be so plausible, it occurred to no one to question it. Consequently, 
the contradiction observed in the risk neutrality context of the Weitzman (1998) model 
was left unresolved. 

Gollier (2003) was the first to suggest the that the timing of risk bearing might be 
the cause of the discrepancy, even though a discrepancy between alternatively measured 
risk neutral CERs cannot be solved by introducing risk aversion. A sizable literature 
ensued that used utility functions to justify Weitzman’s DDR conclusions. Many 
consider that the matter was settled by Gollier and Weitzman (2009), which claimed to 
have resolved the puzzle. Szekeres (2015) finds, however, that Gollier and Weitzman 
(2009) does not address the original puzzle, and that in general adding risk aversion to 
the Weitzman (1998) model to derive risk adjusted CERs cannot resolve the 
inconsistency between alternative measures of risk neutral CERs, because investors’ 
risk aversion only affects their own valuations, not market yields.  

There is no mention of risk aversion in the second part of Arrow et al. (2014). The 
arguments presented there for the use of DDRs are therefore the same as those of 
Weitzman (1998), and consequently suffer from the same flaw. As will be discussed in 
Section 2.2 below, using the CER proposed in Arrow et al. (2014:154 expression 4) 
results in the violation of the generally accepted requirement that preferences be 
transitive. 

Expression (5) above shows that Weitzman’s EPV measure is not a present value, 
because it does not comply with the definition of present value. The next Section 
describes what it is instead. 

2. Negative compounding 

How can Weitzman’s EPV expression be interpreted if it does not compute the 

correct EPV? Notice that Weitzman’s expected discount factor tr

j

j

ep
  corresponds 

exactly to the expected compound factor 
tr

j

j

ep  when the product r·t is negative. 

Having negative r would correspond to a capital market in which resources are stored 
for a fee, rather than being lent to someone willing to pay a positive interest rate. 
Having t negative would imply reversing the flow of time.  

As Weitzman did not postulate negative interest rates (in fact he ruled them out in 
his model6), his expected discount factor must be regarded to be time reversed negative 
compounding, which is not the same as discounting when interest rates are stochastic.  

For simplicity, and to be able to use numerical examples later on, the following 
analysis assumes that there are only two states of the world, with interest rates r1 and r2, 
and probabilities p1 and p2, respectively. 

                                                 
6
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The difference between discounting and negative compounding will be explained 
with the help of two Figures. Figure 1 shows the compound and discount factors curves 
applicable to an investment of $1 made at time 0, in continuous time, with a 
deterministic annual interest rate of 5%, between years –200 and 200. The equations 
being plotted are e0.05 t for the compound factors curve, and 1/e0.05 t for the discount 
factors curve. The vertical scale in the figures is logarithmic, which is why both the 
compound factors and discount factors curves are seen to be linear. The fact that one is 
the inverse of the other is evidenced by their symmetry with respect to the horizontal 
line passing through the value of 1. It is important to note that the negative range of the 
compound factor curve is symmetric to the positive range of the discount factor curve 
around the vertical axis (year 0), which means that in the deterministic case discounting 
and negative compounding are equivalent. 

Figure 1 

COMPOUND AND DISCOUNT FACTORS,  

5% INTEREST P.A., LOGARITHMIC SCALE. 

 

Figure 2 illustrates the stochastic case. It is assumed that interest rates can be either 
1% or 5%, with equal probabilities. Figure 2 shows the compound factor curves 
corresponding to 1% and 5%, both of which are linear in logarithmic terms. Their 
expectation is no longer linear, however. Moving forward in time (positive range of 
years), compound factors corresponding to the high interest rate grow comparatively 
larger relative to those of the low interest rate, thereby pulling their expected value ever 
closer to the compound factors curve of the high rate. The same happens moving 
backwards into the past (negative range of years), in which case it is the compound 
factors corresponding to the low interest rate that grow relatively larger, and it is 
therefore towards the compound factors curve of the low interest rate that their expected 
values tend asymptotically. In other words, the higher discount factors pull the expected 
discount factors upwards over the entire time range, this effect being stronger as the 
absolute value of time increases. 
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Figure 2 

COMPOUND FACTORS AT 1% AND 5%, THEIR EXPECTED VALUE 

AND THE CORRESPONDING DISCOUNT FACTORS, LOGARITHMIC SCALE 

 

The immediate consequence of this is that the expected compound factors curve is 
no longer linear logarithmically. This is also true of the expected discount factors curve, 
which is the inverse of the expected compound factors curve. Because of this lack of 
linearity, the negative range of the expected compound factors curve is no longer 
symmetric, with respect to the vertical axis, to the positive range of the expected 
discount factors curve, and cannot be used, therefore, to calculate present values 
correctly. As Figure 2 shows, the negative range of the compound factors curve is 
significantly higher than the positive range of the discount factors curve, for all absolute 
values of time. 

This is the reason why the probability weighted average of the conditional discount 
factors of alternative interest rate scenarios (which is what the negative range of the 
expected compound factors curve is, and which Weitzman used to calculate EPVs) does 
not yield the correct EPVs of amounts compounded to the future. To facilitate 
comparison with the correct discount factors, the former are time reversed to the 
positive range of years and labeled Weitzman discount factors in Figure 2.  

It is only when negative compounding is used for discounting that DDRs will 
result, because it is only in the negative time range that the expected compound factors 
are pulled towards those of the lowest interest rate. Certainty equivalent discount rates 
derived from the expected discount factors curve (or from the compound factors curve, 
since the results are the same) will be an increasing function of time. 

2.1 A numerical comparison of discounting and negative compounding 

A numerical example will be used to further illustrate the difference between 
discounting and negative compounding, and how Weitzman discounting relates to these 
concepts. First, $1 will be compounded for 200 years and then discounted both with the 
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simple equivalent of Weitzman discounting (expression 2) and that of conventional 
discounting (expression 6). The data of the example are the following: 

Table 1 

SIMPLE INTEREST RATE UNCERTAINTY 

First rate of interest r1 1% 

Second rate of interest r2 5% 

Probability of 1st rate p1 0.5 

Probability of 2nd rate p2 0.5 

Time elapsed in years between the 
present and the future in years  

t 200 

Future value of $1 at r1 tr1eL  $7.39 

Conditional discount factor for r1  d1 = 1/ L 0.1353 

Future value of $1 at r2 tr2eH  $22,026.47 

Conditional discount factor for r2 d2 = 1/ H 4.540E-05 

Expected future value of $1 tr
2

tr
1

21 e e ppEFV   $11,016.93 

Expected discount factor 
tr

2
tr

1
21 ee

1

pp
D


  9.077E-05 

With discounting, the present value of the expected future value in this simple two 
scenario case is: 

 EPV = EFV·D = $11,016.93·9.077E-05 = $1 (8) 

The result cannot be anything other than $1, since the discount factor is the inverse 
of the expected compound factor. Notice that the compound factor itself is an expected 
value, which reflects the uncertainty of the states of the world. The corresponding CER 
is 4.65%.7 

Weitzman discounting, in contrast, discounts each state of the world separately with 
its own conditional discount factor (conditional to the relevant state of the world 
occurring). It is these alternative conditional present values that are then probability 
weighted to compute an expected present value, denoted EPVW, which yields a 
markedly different result: 

              EPVW = p1·$11,016.93·d1 + p2·$11,016.93·d2 =  

 = $11,016.93 (0.5·0.1353 + 0.5·4.54E-05) = $745.74 (9) 

This is a lot more than the original investment of $1. The corresponding CER 1.35%.8 

                                                 
7
 ln(11016.93)/200 

8
 ln(11016.93/745.74)/200  
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The reason why discounting yields the correct present value is because it exactly 
undoes the effects of compounding. The correct result could also be obtained with the 
approach of using probability weighted conditional discount factors, however, if these 
were used to multiply the corresponding conditional future values, as follows: 

  EPV = p1 L d1 + p1 H d1  

  = 0.5·$7.39·0.1353 + 0.5·$22,026.47·4.540E-05 = $1 (10) 

But negative compounding applies the conditional discount factors not to the 
conditional future value of each scenario, but to their expected value. This overstates the 
amount to be discounted for the lower interest rate scenario ($11,016.93 instead of 
$7.39), and understates it for the high interest rate scenario ($11,016.93 instead of 
$22,026.47)9. These errors do not cancel out, because the underestimation is 
proportionally much more diminished by the lower discount factor corresponding to the 
high interest rate (4.540E-05) than the overestimation is by the high discount factor 
corresponding to the low interest rate (0.1353). This necessarily results in an 
overestimation of the computed EPV.  

Weitzman assumed that the future value to be discounted would be certain, whereas 
in the above numerical example the future value is the expected value of two states of 
the world. This makes no difference for either calculation method, however. Using their 
respective CERs, each method again obtains its own present value result when 
probability weighting the two future value scenarios. This is as it should be for risk 
neutral investors. 

The following Table 2 will illustrate the relationship between Weitzman 
discounting and negative compounding, that is, compounding with negative interest 
rates. The two states of the world are still assumed to be equally likely, and t = 200. The 
initial amount compounded and discounted is $1, corresponding to which EPV is the 
expected discount factor, and EFV is the expected compound factor. 

Table 2 

COMPARISON OF NEGATIVE COMPOUNDING AND WEITZMAN DISCOUNTING 

Compounding  Weitzman discounting 

r1 -1%  r1 1% 

r2 -5%  r2 5% 

tr
2

tr
1

21 ee ppEFV   0.06769 
 t-r

2
t-r

1
21 ee ppEPV   0.06769 

Certainty equivalent 
compound rate 
R =  ln(EFV) / 200 

-1.35% 
 Certainty equivalent 

discount rate  
RW = ln(1/EPV) / 200 

1.35% 
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What the above shows, is that the expected compound factor, when interest rates 
are negative, is the same as the expected discount factor implicit in Weitzman 
discounting. The absolute values of the implicit CERs are identical, but their signs 
differ, due to the fact that the first is computed from an EFV factor, while the second is 
computed from what is taken to be an EPV. 

But note that if for the compounding case EFV = e(-0.0135)(200) we specified that t = 

-200, reversing the arrow of time, then for the EFV to be invariant we would have to 
multiply the CER by -1, which will then become the same as RW. Consequently, 
Weitzman discounting is the same as time reversed negative compounding. It shifts the 
origin of time measurement to when the future value is due, which it then negatively 
compounds backwards to the present, in lieu of discounting. 

The inverse of compounding is discounting, and the two will always be consistent 
and will yield the same CERs. Weitzman discounting also has an inverse, with which it 
is internally consistent, and with which it shares CERs. The inverse of time reversed 
negative compounding is time reversed negative discounting, which is the expected 
value of the discount factors curves in the negative time range, shown in Figure 2. Just 
as time reversed negative compounding is a kind of pseudo-discounting that 
exponentially declines while moving backwards in time, negative discounting is a kind 
of pseudo-compounding that exponentially grows while moving backwards in time. 
Time reversed negatively discounting $745.74 (the Weitzman EPV computed with the 
data of Table 1) will yield $11,016.93 by year -200. Time reversed negative discounting 
of $1 accruing in year 0 will result in $14.77 in year -200, whereas compounding the 
same amount yields $11,016.93 in year 200, using the same interest rate assumptions.  

Thus time reversed compounding and discounting are mutually consistent, but yield 
values that are very different from those derived from compounding and discounting 
when the arrow of time is not turned around.  

2.2 Negative compounding in the capital markets 

The use of Weitzman discounting (and hence of DDRs) leads to the violation of the 
requirement that preferences be transitive. According to Weitzman discounting, the 
EPV of $11,016.93 (A) due in year 200 is $745.74 (B), so the investor should be 
indifferent between them (A~B). The EFV in year 200 of investing $745.74 (B) is 
$8,215,765.37 (C), so the investor should be indifferent between them (B~C). A~B~C 
means that the investor should be indifferent between having $11,016.93 and having 
$8,215,765.37, both in year 200. An investor using DDRs would be a money pump, 
which is only possible because of the implicit violation of the transitivity of his 
preferences.  

As there is no dispute about how to compute EFVs, it is the use negative 
compounding to measure EPVs that must be wrong.  

The inconsistency between the CERs derived from negative compounding and the 
kind of compounding that operates in real capital markets will ensure that markets will 
not behave as Weitzman discounting would dictate. Therefore, it is not the CERs 
derived from Weitzman discounting that will be characteristic of capital markets, but 
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that which is derived from either compounding or discounting, as conventionally 
defined.  

3. Correlation of interest rates 

Substituting discounting for negative compounding in Weitzman’s model will 
result in increasing discount rates, rather than declining ones. This conclusion still 
depends on the key implicit assumption that annual interest rates are perfectly auto-
correlated through time, however. This assumption is a necessary consequence of 
having a two-period model represent the very long run, in which a single interest rate 
will prevail unaltered between year 0 and year t. Gollier (2009:4) concedes that “the 
decreasing nature of the term structure obtained in this framework depends heavily upon 
the assumption that shocks on the interest rate are permanent. If they are purely 
transitory, the term structure of discount rates should be flat.” 

Arrow et al. (2014) review several empirical estimates of possible DDR schedules 
for the United States. One of the earliest ones was made by Richard Newell and William 
Pizer (2001:18), which did not find the statistical evidence for the correlation required 
to observe DDRs to be particularly strong: “[the] inconsistency between the mean-
reverting forecasts and the realized interest rate is particularly troubling because we 
know that the lower range of possible interest rates ultimately determines the future 
certainty-equivalent rate. Because the random walk model does a better job of 
predicting this possibility, we find it more compelling for our application, even though 
evidence based on standard statistical tests is ambiguous.” 

However, Newell and Pizer (2001:7) also defined (in its expression 3) the certainty 
equivalent discount factor E[Pt] by using negative compounding: 

   















 



t

s

st rEPE
1

exp  (11) 

Were this be replaced by the expression corresponding to discounting, E[Pt] would 
become: 

   















 



t

s

st rEPE
1

exp1  (12) 

on the basis of which their model should show, to the extent justified by the observed 
correlation, a schedule of increasing, rather than declining discount rates. The same will 
be true of the other instances of the empirical ENPV literature. 

If the misunderstanding about ENPV were corrected, this branch of the literature 
should suggest the use of growing, rather than declining discount rates. But since the 
evidence for the requisite correlation of interest rates is not sufficiently strong, it is safer 
to just conclude that the use of DDRs is not supported by either theory or empirical 
evidence. 
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4. The Choice of Discount Rate in Project Analysis 

The classic classification of approaches to discounting is due to Arrow et al. 
(1996), according to which the “prescriptive” approach seeks to define a social welfare 
function, while the “descriptive approach” “focusses on the (risk adjusted) opportunity 
cost of capital” (page 132).  

Arguably, the first part of Arrow et al. (2014) could be classified as being 
prescriptive. Its equation (1) (p. 148), which presents the Ramsey formula that is the 
starting point of the arguments made in its first part, is the same as Equation 4.1 of 
Arrow et al. (1996:131), which defines the social time preference rate as a function of 
the pure rate of time preference, the growth rate of consumption and its marginal utility. 

The second part could be considered to be descriptive, as its main focus is 
determining the certainty equivalent of market interest rates, hence of the expected 
opportunity cost of capital. 

Therefore, the results of the first part could be taken to express time preferences, 
while the second to define consumption reallocation opportunities, thus defining 
alternative discount rates that are theoretically the same only when the optimal 
allocation of consumption is reached. In this regard Arrow et al. (2014:155-156) states 
that “In an optimal growth model (e.g., the Ramsey model), the consumption rate of 
discount will equal the marginal product of capital along an optimal consumption path. 
[] But what if society is not on an optimal consumption path? In this case, theory tells us 
that we need to calculate the social opportunity cost of capital.” 

In a dynamic world, society is unlikely to ever be on the optimal consumption path, 
but it will strive to move towards it. It is the role of Cost Benefit Analysis (CBA) to 
evaluate public investment projects to determine whether they would be welfare 
enhancing or not. Opinions diverge of how to account for the social opportunity cost of 
capital in CBA10, which also depends on the style of CBA being employed (choice of 
numeraire). This complex question needs not be settled for the purposes of the 
arguments to be made here, however, as long as it could be said that the estimated social 
opportunity cost of capital would be a positive, monotonic function of the monetary 
opportunity cost of capital. 

As the main concern of Arrow et al. (2014), in both of its parts, was the impact of 
uncertainty on discount rates, the discount rates suggested are taken to be certainty 
equivalents11. Let’s assume, along with Arrow et al. (2014:146, footnote 2), that we can 
“ignore uncertainty in the stream of benefits and costs associated with a project, 
effectively assuming that these have been converted to certainty-equivalents,” while 
adding to this that the techniques of CBA will have been used to adjust such flows for 
any market distortions present. 

                                                 
10

 For the opinion of this author, written before the discovery reported on in this paper, see Szekeres (2011) “Discounting in Cost-
Benefit Analysis.” 
11

 The discussion of certainty equivalents in the second part of Arrow et al. (2014) is framed in the context of risk neutrality.  
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How should project analysis use the alternative welfare discount rate ρt and the 
social opportunity cost of capital Rt? If a given project has investment costs of I in year 
0 and benefits B in year t, then, for it to be economically feasible, it must have positive 
ENPVs at both discount rates: 

 0t 
IeB

t  (13) 

 0t 
IeB

tR  (14) 

If a project failed to meet condition (13), then investing in it would be welfare 
reducing, as evaluated by the welfare function, and should therefore be rejected. This 
step could be called valuation, as it only depends on the welfare function.  

If a project failed to meet condition (14), then investing in it would also be welfare 
reducing, even if it met condition (13), because the opportunity cost of the project 
would be higher than its benefits, and therefore it should be rejected. For such projects it 
will be true that 

 
t

t

t  t

tR

t
e

eI

e

B
  (15) 

In such cases, welfare would be enhanced by diverting investment cost I to the 
capital markets, as amount I would compound to a value higher than B by year t. 
Checking for compliance with (14) could be called (opportunity cost) discounting, and 
is a required step in CBA, for it attributes the correct opportunity cost of capital to the 
project, thereby ensuring that the ENPV computed is a true measure of the welfare 
surplus generated by the project.12 Notice that (14) and (15) are equivalent, the only 
difference being that in (14) present values are compared, whereas in (15) the time 
preference discounted future values are compared. In this comparison, valuation only 
provides a scaling factor that does not affect the outcome of the comparison, and for this 
reason it could be omitted, just like in (14).  

The decision rule to be adopted in project analysis is that for projects to be 
accepted, they should have a positive ENPV when discounted at the higher of ρt and Rt. 

This paper has not addressed the first part of Arrow et al. (2014), so its conclusion 
that ρt declines as a function of time is assumed to hold. However Rt does not decline as 
a function of time, as shown in the preceding Sections. It is generally assumed that that 
ρt < Rt.13 This difference would become ever more pronounced with the passage of time 
if the former declined and the latter did not. Therefore, Rt will be the higher of the two. 

                                                 
12

 Many writers on this topic have complained that this step short-changes future generations and have proposed that valuation 
replace opportunity cost discounting. But valuation is present in the denominators of (15). Even those who argue that ρt should equal 
zero for ethical reasons should prefer that those alive in year t have IetR, rather than just B. Rejecting inefficient projects does not 
necessarily increase present day consumption at the expense of that of future generations. If amount I is not taken for the project at 
hand, but is left in the capital markets, wealth at time t will increase by IetR, rather than just by B. As Gary S. Becker et al. (2010:18) 
stated, “Future generations would not thank us for investing in a low-return project.” 
13

 Were it not the case, it would signal that society should no longer increase its investments, but should consume more in the 
present, except for projects with returns sufficiently exceeding Rt. 
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As project analysis should use the higher of these discount rates, only Rt is relevant 
in practice. As Rt is not declining, DDRs have no role in the analysis of public projects.  

5. Conclusions 

The literature supporting DDRs was given impetus by Weitzman’s (1998) assertion 
that, in the presence of stochastic but perfectly auto-correlated interest rates, certainty 
equivalent discount rates would be a declining function of time and tend to the lowest 
possible interest rate. This paper has shown that this result was due to the use of time 
reversed negative compounding instead of discounting to compute EPVs. Using 
discounting instead, the proper conclusion of the Weitzman (1998) model is that 
certainty equivalent discount rates are an increasing function of time and tend to the 
highest possible rate.  

This conclusion is contingent on the assumption of perfect auto-correlation of 
stochastic interest rates. If there is no correlation, then the term structure of interest rates 
will be flat, meaning that certainty equivalent discount rates will be constant. Because 
the empirical evidence for the requisite auto-correlation is not sufficiently robust, the 
conclusion that certainty equivalent discount rates should be growing cannot be asserted 
with confidence, but that they should not be declining can. 

For a public sector project to be welfare enhancing, it is not enough for it to 
generate future benefits that are valued at least as highly, in welfare terms, as its present 
investment costs, but must also yield a return that is superior to what its investment 
costs could earn in the capital markets, provided that the comparison has been made 
using the adjustments required to take market imperfections and non-market welfare 
impacts into account. This is so because the option of investing in the capital markets 
exists, and if that option yielded greater future benefits than the project being analyzed, 
then accepting the project would reduce welfare from what it could otherwise be. 

As the discount rate used to compare welfare values is likely to be below that which 
measures the opportunity cost of capital (otherwise consumption should be increased at 
the expense of investments), it is latter that should be used as a hurdle discount rate in 
project analysis. As this has been shown not to be a declining function of time, it can be 
concluded that governments should not use DDRs in project analysis. 
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