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Abstract

We provide a simple necessary and sufficient condition for when a multiproduct
demand system can be generated from a discrete choice model with unit demands.
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1 Introduction

In a variety of economic settings the decision problem facing agents is one of discrete

choice. For example, in markets for durable goods such as cars or refrigerators, each

consumer who makes a purchase typically buys one unit of one of the products on offer

(or buys nothing). If vi is a consumer’s valuation for product i and pi is its price, then the

rational consumer will buy the product with the best value for money given her preferences,

i.e., the highest (vi − pi) if that is positive, and will otherwise buy nothing. By specifying
a probability distribution for the vector of valuations within the population of consumers,

one can derive aggregate multi-product demand as a function of the vector of prices. Such

a demand system necessarily involves products being substitutes, but otherwise appears to

permit rich possibilities of behaviour.1

∗Both authors at All Souls College, University of Oxford. Thanks for helpful comments are due to two
referees, as well as to Simon Anderson, Sonia Jaffe, Howard Smith and Glen Weyl. Contact information
for corresponding author: john.vickers@economics.ox.ac.uk, tel: +44 (0)1865 279300.

1For example, Hotelling (1932, section 2) provides an early example of a discrete choice demand system.
This example exhibits Edgeworth’s Paradox, in which an increase in the unit cost of a product (as a result
of imposing a new tax, say) causes a multiproduct monopolist to reduce all of its prices.
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In this paper we investigate which aggregate demand functions have discrete choice

micro-foundations. With a single product, any (bounded) downward-sloping aggregate

demand function can be generated by a population of unit-demand consumers–the demand

function can simply be interpreted as the fraction of consumers who are willing to pay

the specified price for their unit. With more than one product, though, the answer is less

obvious. We show that discrete choice foundations for an aggregate demand system (which

is bounded and exhibits the usual Slutsky symmetry property) exist if and only if all mixed

partial derivatives (with respect to prices) of the total quantity demanded are negative.

Thus there is a simple test for whether a given demand system is consistent with discrete

choice.

Early contributions to the theory and econometrics of discrete choice are surveyed by

McFadden (1980), who developed the modern economics of discrete choice analysis in a

variety of applications including choices of education and residential location. Relation-

ships between discrete choice models and demand systems for differentiated products are

explored in chapter 3 (and elsewhere) of the classic analysis by Anderson, de Palma and

Thisse (1992). In particular, their Theorem 3.1 states necessary and sufficient properties

of demand functions that ensure these demands are consistent with discrete choice. Their

result presumes that consumers must buy one option or another, so that total demand

always sums to one. In most situations of interest, however, consumers have, and use, the

option to buy nothing, and we provide a result in the same spirit as Anderson et al., but

which allows for this. Indeed, the way that total demand varies with prices is the key to

our analysis.

More recently, Jaffe and Weyl (2010) show how a linear demand system cannot be gen-

erated from (continuous) discrete choice foundations when there are at least two products

and buyers can consume an outside option.2 Jaffe and Kominers (2012) extend this analysis

to show how (continuous) discrete choice cannot induce a demand system where demand

for each product is additively separable in its own price. The analysis in the present paper

sets those contributions in a wider context.

2Strictly speaking, they show that linear demand does not have discrete choice foundations where the
valuations are continuously distributed (so a density exists). In section 3.2 we show how linear demand
is often consistent with a discrete choice model in which the support of valuations does not have full
dimension.
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The next section states a preliminary result, which is not specific to discrete choice, that

individual product demands can be derived from the total demand function. The main

section then derives necessary and sufficient conditions for the total demand function to

be consistent with discrete choice, which are then illustrated by way of some applications

and extensions.

2 A preliminary result

Suppose there are n products, with associated price vector p = (p1, ..., pn), where the

aggregate demand for product i = 1, ..., n is given by qi(p) ≥ 0. We only consider prices
in the non-negative orthant Rn+, and we assume quasi-linear preferences, so that demand

qi is the derivative of an indirect utility function CS(p): q
i(p) ≡ −∂CS(p)/∂pi, where

CS(·) is convex and decreasing in p. For simplicity, suppose that demand functions are
differentiable, in which case we have Slutsky symmetry:

∂qi(p)

∂pj
≡ ∂qj(p)

∂pi
for i 6= j . (1)

Given the demand system q(p), define Q(p) ≡ ∑n
i=1 q

i(p) to be the total quantity of all

products demanded with the price vector p. We make the innocuous assumptions that

Q(0) > 0 and that Q(p)→ 0 as all prices pi simultaneously tend to infinity.

A result which is useful in the “sufficiency” part of the following analysis, and perhaps

of interest in its own right, is the following.3

Lemma 1 Suppose the demand system satisfies (1). Then the demand for product i, qi(p),

satisfies

qi(p) = −
∫ ∞

0

∂

∂pi
Q(p1 + t, ..., pn + t)dt , (2)

where Q ≡∑i q
i is total demand.

Proof. We need to show that

qi(p) = −
∫ ∞

0

∂

∂pi
Q(p1 + t, ..., pn + t)dt = −

∫ ∞

0

n∑

j=1

∂qj

∂pi
(p1 + t, ..., pn + t)dt .

3Expression (2) remains valid if Q is continuous and piecewise-differentiable. (Typically, demand is not
differentiable at choke prices which make a product’s demand fall to zero.)
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But (1) implies that the right-hand side above is equal to

−
∫ ∞

0

n∑

j=1

∂qi

∂pj
(p1 + t, ..., pn + t)dt = −

∫ ∞

0

d

dt
qi(p1 + t, ..., pn + t)dt = q

i(p)

as required.

Lemma 1, which is true regardless of whether demand is consistent with discrete choice,

implies that the total demand function Q(·) summarises all information about the demands
for individual products, which can be recovered from total demand via the procedure (2).4

3 Which demand systems are consistent with discrete

choice?

We wish to understand which restrictions on q(p) are implied if this demand system can

be generated by the simplest discrete choice model. By “discrete choice model” we mean,

first, that any individual consumer wishes to buy a single unit of one product (or to buy

nothing). In particular, a consumer gains no extra utility from buying more than one

product or from buying more than one unit of a product. Specifically and furthermore5,

the discrete choice model assumes that a consumer has a valuation vi for a unit of product i

(where valuations can be negative), where the vector of valuations v = (v1, ..., vn) is drawn

from a joint cumulative distribution function (CDF), denoted G(v), and if she makes a

purchase she buys the product which offers the greatest net surplus vi − pi. If she buys
nothing she obtains a deterministic payoff of zero.6 Faced with price vector p, the type-v

consumer in this discrete choice problem will therefore

choose product i if vi − pi ≥ max
j 6=i
{0, vj − pj} . (3)

4For instance, if total demand is additively separable in prices, it follows from (2) that demand for a
particular product depends only on its own price. If total demand depends only on the sum of prices, so
does the demand for each product.

5As we discuss and illustrate in section 3.3 there are settings where consumers buy one unit of one
product if they buy at all, but where (3) is not satsified (e.g., because of search or transactions costs).
Such settings do not come within the discrete choice model as we have defined it.

6The following analysis applies equally to the situation where the consumer’s outside option, say v0,
is stochastic, and a consumer buys product with the highest value of (vi − pi) provided this is above v0.
However, one can just subtract v0 from each vi to return to our set-up with a deterministic outside option
of zero.
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The demand for product i, qi(p), is then the measure of consumers who satisfy (3). For

most of our discussion we suppose that the distribution for v is continuous–i.e., there is

a density function g(·) which generates G(·)–which ensures that only a measure-zero set
of consumers have a “tie” in (3) and the demand system is well-defined and continuous in

prices p. (At various points we also discuss situations where the support of valuations does

not have full dimensional support in Rn, although in such cases demand is still continuous

in p.) With the choice procedure (3) a consumer buys nothing if and only if v ≤ p, and

so the proportion of consumers who buy nothing with price vector p is just G(p). Figure

1 depicts the pattern of demand with two products, where consumers are partitioned into

three regions: those who buy product 1, those who buy product 2, and those who buy

neither.

-

6
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�
�
�
��

p10

p2

v1

v2

buy product 1

buy product 2

buy nothing

Figure 1: Pattern of demand in discrete choice model

3.1 Necessity

Any demand system arising out of the procedure (3) involves gross substitutes (i.e., cross-

price effects are non-negative), since the right-hand side of (3) decreases with pj. (This can

be seen from Figure 1 in the case with two products.) That is to say, a necessary condition

for the demand system to be consistent with discrete choice is that qi(p) weakly increases

with pj for all j 6= i.
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A second restriction on the demand system q(·) if it is to be consistent with discrete
choice is that demand qi must weakly decrease if all prices increase by the same additive

factor. Intuitively, if the price vector increases from (p1, ..., pn) to (p1 + t, ..., pn + t), no

consumer will switch from buying one product to buying another, but some may switch

from buying product i to buying nothing. (Again, this is clear from Figure 1.) Regardless

of whether it is consistent with discrete choice, as shown in the proof of Lemma 1, any

demand system which satisfies (1) satisfies

d

dt
qi(p1 + t, ..., pn + t)

∣∣∣∣
t=0

=
∂

∂pi
Q(p) ,

where Q ≡
∑

j q
j is total demand. Therefore, a necessary condition for the demand system

to be consistent with discrete choice is that total demand Q weakly decreases with each

price pi.
7

More generally, for a demand system consistent with discrete choice it must be that

total demand Q and the CDF G are related by

G(p) ≡ 1−Q(p) , (4)

so that 1−Q has the properties of a joint CDF.8 This is the crucial step in our argument.
If a demand system is generated by a discrete choice framework with CDF for valuations

G, then G(p), which is the proportion of consumers who buy nothing at price vector p in

the discrete choice framework, must be equal to 1 minus the proportion of consumers who

buy something, i.e., 1 − Q(p). Thus, given any demand system q(p), one can derive the

unique underlying distribution of valuations which could generate this demand via discrete

choice–if such microfoundations are possible–using (4).9

7Outside the class of demand systems consistent with discrete choice, it is possible to have total demand
increase with a price. For example, consider a two-product demand system where qi(p1, p2) = ai−bipi+cpj .
To be consistent with a concave utility function, we require that b1b2 > c

2. However, it is still possible that
bi < c for one product, in which case total output q

1 + q2 increases with pi. More generally, by choosing
the units for how products are measured appropriately–by measuring apples in terms of the number of
apples and oranges in terms of tons of oranges, say–any demand system with substitutes can be modified
so that “total output” increases in a price.

8The “1” in (4) simply reflects a normalization of the measure of all consumers to be 1. The analysis
could trivially be extended to allow the total measure of consumers to be N , say, in which case total
demand Q is bounded by N rather than 1.

9More precisely, the CDF for valuations is uniquely determined for p ≥ 0. As discussed in the proof of
Lemma 2, there is some freedom to choose the distribution when some valuations are negative.
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If G is a CDF with density function g, then

G(p) ≡
∫ p1

−∞

· · ·
∫ pn

−∞

g(v)dv1...dvn . (5)

Expression (5) implies that all mixed partial derivatives of G (i.e., which do not involve

any “∂pi” more than once), if they exist, must be non-negative, and the density g can be

recovered from G via the partial derivative

g(p) ≡ ∂n

∂p1...∂pn
G(p) . (6)

Since total demand Q satisfies (4), the following necessary conditions on Q are immediate:

Proposition 1 Suppose that the demand system q(p) is consistent with discrete choice.

Then:

(i) total demand Q(p) ≡
∑n

i=1 qi(p) is continuous at p = 0;

(ii) at any price where Q is sufficiently differentiable, for any 1 ≤ k ≤ n and collection of
k distinct elements from {1, ..., n} denoted i1, ..., ik we have

∂k

∂pi1 ...∂pik
Q(p) ≤ 0 ,

and the corresponding density function for valuations is

g(p) = − ∂n

∂p1...∂pn
Q(p) .

Proposition 1(ii) implies results derived in earlier papers. If n ≥ 2 then in any region
where total demand Q is linear in prices the valuation density must vanish, confirming the

result in Jaffe and Weyl (2010). More generally, consider any region where demand for

each product is additively separable in its own price, so that ∂2qi/∂pi∂pj ≡ 0 for j 6= i. It
follows that the full cross-derivative ∂nqi/∂p1...∂pn is zero for each demand function q

i, and

so the same is true for total demand Q. Again, the density g must vanish in this region,

confirming the result derived by Jaffe and Kominers (2012).10

10A similar argument implies that the density vanishes in any region in which demand functions are
additively separable in any non-trivial partition of prices. If n ≥ 2 and each demand function qi can be
written in the form Ai(·) +Bi(·), where Ai is a function of some non-empty strict subset of prices and Bi
is a function of the remaining prices, then again ∂n

∂p1...∂pn
Q(p) = 0 and the density vanishes.
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However, the fact that the implied density for valuations is zero in all (or almost all) of

R
n
+ does not mean that the demand system cannot arise from discrete choice. For instance,

in section 3.2 we will see that any (smooth and bounded) demand system without cross-

price effects, so that qi is a function only of its own price pi, is consistent with discrete

choice, although the density will be zero within Rn+ and no consumer has positive valuation

for all n products. We will also see that a linear demand system can be consistent with

discrete choice if we allow the support of valuations not to have full dimension in Rn.

Part (i) of Proposition 1 rules out commonly used demand functions which have a

discontinuity at p = 0. For example, demand which results from homothetic preferences

(such as CES preferences) is inconsistent with a discrete choice model. In more detail,

suppose the gross utility of the “representative consumer” is homothetic in quantities. It

follows that net consumer surplus, CS(p), takes the form CS(p) = V (P (p)), where P (p)

is a concave and homogeneous degree 1 function of prices and V (P ) is a decreasing convex

function of the scalar price index P . Then the demand functions are

qi(p) = X(P (p))
∂P (p)

∂pi
, (7)

where X(P ) ≡ −V ′(P ). However, the function ∂P (p)/∂pi is homogenous degree zero, and
such functions cannot be continuous at p = 0 (unless they are constant). In sum, any

demand system based on a representative consumer with homothetic preferences is not

consistent with discrete choice, due to its behaviour when prices are close to zero.11

As a final illustration of the use of Proposition 1, consider the demand system whereby

total demand takes the form Q(p1, p2, p3) = (1− p1)(1− p2)(1− p3) for prices 0 ≤ pi ≤ 1.12

Here, total demand decreases with each price, as required to be consistent with discrete

choice, and the corresponding density for valuations from (6) is equal to 1. However, this

demand system cannot be consistent with discrete choice since the second cross-partial

11In some contexts it is natural to bound prices away from zero, for instance because of production costs.
It is then possible for a homothetic demand system to be consistent with discrete choice in this region,
although many such demand systems also appear to violate the partial derivative conditions even when
bounded away from zero. A two-product CES demand system which is consistent with discrete choice in
the region p1, p2 ≥ 1 has qi(p1, p2) =

√
pj/(pi(1 + p1p2)), which takes the form (7) with P =

√
p1p2 and

X(P ) = 2/
√
1 + P 2. One can verify that total output q1 + q2 decreases with each pi and has a negative

cross-partial derivative when p1, p2 ≥ 1. The analysis in section 3.2 then shows this demand system is
consistent with discrete choice in this region.
12The corresponding individual product demands can be calculated from Lemma 1.
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derivatives, ∂2Q/∂pi∂pj, are all negative.

Remark on the interpretation of Proposition 1: In the context of discrete choice 1 − Q(p)
can be interpreted as demand for the outside option of buying nothing–which we may

label as notional ‘product 0’, which by assumption always gives zero consumer surplus–as

a function of the prices p1, ..., pn of the n actual products. In those terms Proposition 1

is a statement about demand for product 0, and Lemma 1 shows how demand for each

product can be derived from demand for product 0. Given that the sum of demands for

products 0 to n is by construction equal to one in the discrete choice setting, the method

used to derive Lemma 1 also yields that, for any i, demand for each product (including

notional product 0) can be derived from demand qi(p) for product i. In particular, when
∑n

j=0 q
j(p) ≡ 1, demand for product i can be expressed in terms of the demand function

q1(p) for (say) product 1 6= i by

qi(p0, p1, ..., pn) = −
∫ ∞

0

d

dt
qi(p0 + t, p1, p2 + t, ..., pn + t)dt

=

∫ ∞

0

∂

∂p1
qi(p0 + t, p1, p2 + t, ..., pn + t)dt

=

∫ ∞

0

∂

∂pi
q1(p0 + t, p1, p2 + t, ..., pn + t)dt .

The second equality uses the fact that 0 =
∑n

j=0 ∂q
j(p)/∂pi =

∑n
j=0 ∂q

i(p)/∂pj when

demands sum to one. So for any demand system consistent with discrete choice, knowing

the demand function for any one product implies the demand functions for all products.

This observation is useful in relating Proposition 1 to Theorem 3.1 of Anderson et al.

(1992), which was highlighted in the Introduction. For a setting where product demands

sum to one, that theorem states, among other things, that consistency with discrete choice

requires that all mixed partial derivatives of demand for each product qi(p) which do not

involve its own price pi be non-negative. Proposition 1 accords with this, but is simpler

to state, being just about total demand (equivalently demand for notional product 0)

rather than demand for each of n products. Thus it would appear that, with demands by

assumption always adding to one, Theorem 3.1 in Anderson et al. (1992) could likewise be

stated in terms of demand for a single product rather than all.
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3.2 Sufficiency

In this section we show, in broad terms, how the necessary conditions outlined in Propo-

sition 1 are also sufficient for the demand system to be consistent with a discrete choice

framework. Since we consider only non-negative prices, formula (4) for the candidate CDF

for underlying valuations is also defined only on the non-negative orthant Rn+. Because of

this, and since we wish to allow for negative valuations, we need to understand when a

function G defined only on Rn+ can be extended to create a valid CDF defined on the whole

space Rn.13

Lemma 2 Suppose G is a sufficiently differentiable function defined on Rn+ which satisfies

G(0, ..., 0) = 0, G(∞, ...,∞) = 1, and for any 1 ≤ k ≤ n and collection of k distinct

elements from {1, ..., n} denoted i1, ..., ik we have

∂k

∂pi1 ...∂pik
G(p) ≥ 0 . (8)

Then G(·) is part of a valid CDF for a continuous distribution on Rn.

Proof. Setting k = 1 in (8) implies that G is increasing in each argument, and so G lies

in the interval [0, 1] throughout Rn+. The density g in the region R
n
+ must be given by (6),

which from (8) is non-negative.

There are many ways to choose a distribution for v outside Rn+ which yield the same

CDF G when restricted to Rn+. One way to do so is as follows:

(i) If v ∈ Rn+, set Ĝ(v) = G(v).
(ii) If any component of v is strictly below −1, set Ĝ(v) = 0.
(iii) The remaining case is where v is such that a non-empty subset S ⊂ {1, ..., n} of
products have valuations in the interval [−1, 0), while remaining products have valuations
in [0,∞). In this case we define

Ĝ(v) =

(
∏

i∈S

(1 + vi)

)

G(v+) , (9)

13Note that in the following construction the extended density is discontinuous as we cross a plane
vi ≡ 0, but that doesn’t matter for the argument. One could adjust the argument to make the extended
density continuous, if desired.
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where v+ is the vector v with all negative components replaced by zero (i.e., the ith

component of v+ is vi if vi ≥ 0 and 0 otherwise).
One can check that Ĝ lies in the interval [0, 1] throughout Rn, is zero when any vi

is below −1, is continuous throughout Rn, and is weakly increasing throughout Rn. By
differentiating (9), one sees that the density corresponding to Ĝ at a point v such that k < n

components of v labelled i1, ..., ik are non-negative, while all the remaining components lie

in [−1, 0), is
ĝ(v) =

∂n

∂p1...∂pn
Ĝ(p) =

∂k

∂pi1 ...∂pik
G(v+) . (10)

From (8), this is non-negative as required.

Define the extended density ĝ by (i) ĝ(v) = ∂n

∂p1...∂pn
G(v) if each vi ≥ 0, (ii) ĝ(v) = 0 if

any vi < −1, and (iii) ĝ(v) is given by (10) otherwise. Since Ĝ(v) = 0 if any component
vi = −1, it follows that

Ĝ(p) =

∫ p1

−1

· · ·
∫ pn

−1

∂n

∂p1...∂pn
Ĝ(p)dv1...dvn =

∫ p1

−1

· · ·
∫ pn

−1

ĝ(v)dv1...dvn .

In particular for p ∈ Rn+ we have

G(p) =

∫ p1

−1

· · ·
∫ pn

−1

ĝ(v)dv1...dvn ,

and so G defined on Rn+ is indeed part of a valid CDF. (In particular, the extended density

ĝ integrates to 1.)

Now consider a demand system q(p) which satisfies the required Slutsky symmetry

condition (1) such that total demand Q is differentiable throughout Rn+. It follows that Q

is bounded in the neighborhood of p = 0, and without loss of generality we can therefore

normalize demand so that Q(0) = 1. Suppose that G(p) ≡ 1−Q(p) satisfies the conditions
in Lemma 2, i.e., that all the mixed partial derivatives of Q are non-positive. It follows

that G is part of a valid CDF for valuations v. By construction, the total demand function

which results from the discrete choice model with CDF G is precisely Q. Because the two

demand systems–our original q(p) and the demand system implemented by the discrete

choice model with CDF G–have the same total demand, Lemma 1 implies that the two

demand systems are the same. In particular, q(p) has discrete choice micro-foundations.

We summarise this discussion in the following:

11



Proposition 2 Suppose q(p) is a demand system which satisfies (1) such that total demand

Q(p) ≡
∑n

i=1 q
i(p) is sufficiently differentiable throughout Rn+, and for any 1 ≤ k ≤ n and

collection of k distinct elements from {1, ..., n} denoted i1, ..., ik we have

∂k

∂pi1 ...∂pik
Q(p) ≤ 0 .

Then this demand system can be generated by discrete choice.

A demand system which satisfies the conditions for Proposition 2 must therefore involve

gross substitutes, since demands from a discrete choice model do so. This can be seen

directly as follows. Since Q is differentiable, we can differentiate both sides of (2) with

respect to pj, where j 6= i. This implies that a condition which ensures ∂qi/∂pj ≥ 0 is that
total demand satisfies ∂2Q/∂pi∂pj ≤ 0 as required by Proposition 2.
Note that any smooth demand system which has no cross-price effects satisfies the

conditions of Proposition 2, although the corresponding density g is zero throughout the

positive orthant Rn+. The construction used in Lemma 2 finds a density for valuations

which is only positive if only one valuation vi is positive. To illustrate, suppose there are

two products with independent linear demand functions qi(pi) =
1
2
(1 − pi) (and qi = 0 if

pi ≥ 1). Then one can check this demand system results from a discrete choice model with
density g(v) = 1

2
if 0 ≤ vi ≤ 1 and −1 ≤ vj ≤ 0 and j 6= i (and g(v) = 0 otherwise).

Proposition 2 applies to demand systems which are differentiable throughout Rn+, and

characterized valid total demand functions in terms of the mixed partial derivatives. This

result applies most naturally to demand systems where demand is positive throughout Rn+.

However, the more fundamental property is that the total demand function Q is such that

1 − Q is a valid, but not necessarily differentiable, CDF. In the two-variable case, the

condition for G(v1, v2) for to be a valid CDF is that it is weakly increasing in v1 and v2 and

the difference G(vH1 , v2)−G(vL1 , v2) is weakly increasing in v2 (where vH1 > vL2 ), so that G
is increasing and supermodular, i.e., that Q = 1−G is decreasing and submodular.
To illustrate this more general case, consider the continuous and piecewise-linear de-

mand system depicted on Figure 2.14 Total demand can be calculated and the candidate

14This demand system corresponds to a representative consumer with quadratic gross utility given by
u(q1, q2) =

3

4
(q1 + q2)− 3

8
(q2
1
+ q2

2
+ q1q2).
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CDF G = 1 − Q then derived, as shown on the figure. One can check that this G is in-

creasing and supermodular, and so this demand system is consistent with discrete choice.

Indeed, the required distribution of valuations is that v is equally likely to lie on any of

the four bold line segments which make up the boundary of the “kite” shape on the figure,

and on any line segment valuations are uniformly distributed.
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Figure 2: A linear demand system

Conversely, when total demand is not always differentiable but otherwise satisfies the

conditions of Proposition 2, the demand system may not be consistent with discrete choice,

and so it is not enough just to check locally that the relevant partial derivatives of Q are

non-positive. To illustrate, consider the two-product example where Q(p1, p2) = 1−p1p2 if
p1p2 ≤ 1 (and otherwise Q = 0).15 The function Q is weakly decreasing in both prices and
satisfies ∂2Q/∂p1∂p2 = −1 whenQ > 0. If this demand system was consistent with discrete
choice, the associated CDF for valuations would have to be G(p1, p2) = min{p1p2, 1}.
However, this G is not a valid CDF (unless prices are restricted to lie in the square [0, 1]2),

since it does not satisfy the increasing differences property (e.g., here G(2, p2) − G(1, p2)
decreases with p2 in the range

1
2
≤ p2 ≤ 1).

15Again, Lemma 1 can be used to generate the corresponding individual product demand functions.
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4 Applications and extensions

We now consider some examples and extensions of the discrete choice model, and related

examples that do not accord with it.

Total demand is a completely monotonic function of an additively separable function of

prices: A rich class of demand systems consistent with discrete choice has 1 − Q(p) =
Z(σ(p)) as a completely monotonic function of a sum σ(p) ≡

∑n
i=1 αi(pi) of positive,

decreasing functions of price, one for each product.16 (A function Z : (0,∞) → R is said

to be completely monotonic if for all k the kth derivative, denoted Z(k), has the sign of

(−1)k. For our purposes it suffices that this condition holds for k ≤ n.) Then

∂k

∂p1...∂pk
Q(p) = −Z(k)(σ)

k∏

i=1

α′i(pi) < 0 (11)

because Z(k) and the product of the α′i terms both have the sign of (−1)k so (11) is negative.
Proposition 2 then implies that a distribution of valuations can be found which generates

this total demand via discrete choice.

The Logit demand system, perhaps the most familiar model of discrete choice, belongs

to this class.17 This demand system has

qi(p) =
1 + n

n
· e−pi/µ

1 +
∑

j e
−pj/µ

for some parameter µ > 0. (Demands are normalized by the factor 1+n
n
to satisfy our

convention that Q = 1 when p = 0.) Here, 1−Q(p) = Z(σ(p)), where Z(σ) = 1− 1+n
n

σ
1+σ

and σ(p) =
∑

i e
−pi/µ. Also in this class is the case of discrete choice where valuations

vi are independently distributed and non-negative. With Gi(vi) as the CDF of vi we can

write 1−Q(p) =∏n
i=1Gi(pi) as Z(σ(p)), where Z(σ) = e

−σ and σ(p) = −∑n
i=1 logGi(pi).

(In either case, one can check that Z(σ) is completely monotonic.)

16So that Q(0) = 1 and Q(∞) = 0, suppose that each αi satisfies αi(∞) = 0, while Z(Σαi(0)) = 0 and
Z(0) = 1.
17See, for example, Anderson et al. (1992, section 7.4). The usual micro-foundations for this demand

system has consumer valuations–including the value of the outside option–being independent extreme
value variables. In particular, the value of the outside option is stochastic. Anderson et al. (1992, section
7.4) also present the demand system when product valuations are independent extreme value variables but
the outside option has a deterministic value of zero, but this is algebraically messier.
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Completely monotonic functions can be used more generally to extend a given discrete

choice model to a wider family. For if Q(p) satisfies the conditions of Proposition 2, then

so does Q̂(p) = 1− ζ(Q(p)) where ζ is a completely monotonic function with ζ(0) = 1 and
ζ(1) = 0. (One can check that any kth order mixed partial derivative of Q̂(p) is a sum of

negative terms.)

Consumer search: We have defined the discrete choice model by condition (3) that the

consumer will buy the product with the highest vi− pi ≥ 0, which accords with consumers
being able to learn their valuations costlessly. However, the discrete choice model can be

used also to analyze some (but not all) settings with search costs, as the following two-

product example illustrates. Suppose that the valuation for product i has independent

CDF Gi(vi) (where both valuations are always non-negative), that the consumer knows

both prices and can observe v1 costlessly but that she has to pay search cost s, with

independent CDF F (s), to learn v2.

Assume first that there is free recall, so that the consumer can costlessly return to

buy product 1 if she investigates but doesn’t end up buying product 2. In this case, the

consumer will buy nothing if both (a) v1 < p1 and (b) either v2 < p2 or s > V (p2) ≡
∫∞
p2
(v2 − p2)dG2(v2). Therefore the proportion who buy nothing is

1−Q(p1, p2) = G1(p1)[1− F (V (p2))(1−G2(p2))] . (12)

Denoting the square-bracketed term in (12) by G̃2(p2), we have G̃
′
2(p2) > 0 and 1−Q(p) =

G1(p1)G̃2(p2) satisfies the conditions of the discrete choice model.
18 In short, this model

with search costs has a counterpart without them that is consistent with discrete choice.

But that is not the case with costly recall. Suppose that a consumer who investigates

product 2 must pay a positive search cost to revisit product 1. Then Q = 1 when p1 = 0

and p2 = ∞ because all consumers buy product 1 without searching further. But Q < 1

when p1 = 0 and p2 > 0 but is small enough that F (V (p2)) > 0. This is because some

consumers with low s and low v1 will investigate product 2 only to find that v2 < p2, and

when v1 is below the re-visiting cost they will not wish to return to buy product 1 either.

18Since the joint CDF for the valuations in the corresponding discrete choice model is G(p1, p2) =
G1(p1)G̃2(p2), the distribution for v1 is unchanged from the search model, while the distribution of the
valuation for the second product is shifted downwards (since G̃2 ≥ G2), reflecting the cost needed to
discover this valuation.
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Therefore, Q is not monotonic in p2 and the discrete choice model does not apply. To

illustrate most starkly, suppose there are no search costs but the consumer cannot return

to buy product 1 if she does not purchase it immediately. She will then buy product 1 if

v1−p1 ≥ V (p2), and otherwise she buys product 2 if v2 ≥ p2. Thus, she buys nothing with
probability

1−Q(p1, p2) = G1(p1 + V (p2))G2(p2) .

Then Q must sometimes increase with p2 when p1 = 0, since Q tends to 1 as p2 becomes

large, and this is inconsistent with a discrete choice model.

Extending discrete choice to allow consumers to buy several products: An extension of

the standard discrete choice model allows consumers to buy several products, rather than

having to choose just one. The question then arises when this extended notion of discrete

choice conforms with the basic one described at the start of section 3. To examine this issue

briefly, suppose for simplicity there are two products, that vi is a consumer’s valuation for

product i = 1, 2 on its own, while her valuation for the bundle of both products is v1+v2−z
for some constant z ≥ 0. Here, z reflects an intrinsic “disutility” from joint consumption,

reflecting an assumption that the products are partial substitutes. (The usual model of

discrete choice is the limiting case of this when z →∞.) The pattern of demand given the
pair of prices (p1, p2) is shown in Figure 3.

19

If F (v1, v2) is the CDF for (v1, v2), then total demand with prices (p1, p2) is

Q = 1− F (p1, p2) + {1− F (p1 + z,∞)− F (∞, p2 + z) + F (p1 + z, p2 + z)} .

(Here, the term in brackets {·} is the fraction of consumers who buy both products.) Then
Q decreases with each price pi, as needed to be consistent with the usual discrete choice

model with single-product demand. The cross-partial derivative is

∂2Q

∂p1∂p2
= f(p1 + z, p2 + z)− f(p1, p2) ,

where f is the density function for valuations (v1, v2). Thus, if the above expression is

always negative–which is the case, for instance, if f decreases with (v1, v2)–the demand

19This figure is taken from Armstrong (2013). Gentzkow (2007) empirically investigates a related discrete
choice model in which some consumers purchase two items.
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system induced by this extended discrete choice model is consistent with another basic

discrete choice model in which consumers buy at most one product.

-

6

�
�
��

-

6

p1 p1 + z

p2 + z

p2

v1

v2

buy only 1

buy bothbuy only 2

buy nothing

Figure 3: Pattern of demand when products are partial substitutes

Extending discrete choice to allow consumers to buy multiple units of their chosen product:

The final extension we examine allows consumers to buy their chosen product in continuous

quantities, although as in the basic discrete choice model each consumer buys at most one

product.20 Specifically, suppose that all consumers have the same demand for a given

product, and each consumer has demand xi(pi) if she buys product i with price pi. Let

si(pi) be the consumer surplus function which corresponds to xi(pi). Consumers incur

idiosyncratic additive shocks to their surplus vector (e.g., in their “transport costs” to

reach a product), denoted τ = (τ 1, ..., τn), and the type-τ consumer chooses the buy the

product with the highest value of si(pi)−τ i (or buys nothing if τ i ≥ si(pi) for all products).
Let X i(s) be the fraction of consumers who choose product i when the surplus vector is

s = (s1, ..., sn).

As in any discrete choice problem of this form, X i increases with si and decreases with

20See Hanemann (1984) for an early investigation of this demand model. Anderson et al. (1987) show
CES demand can be generated from a demand system in which a consumer buys just one product but has
downward-sloping demand for the chosen product.
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any other sj. Aggregate demand for product i is

qi(p) = X i(s(p))xi(pi) ,

and so total demand is

Q(p) =

n∑

i=1

X i(s(p))xi(pi) .

It follows that
∂Q

∂pi
= X ix′i − xi

∑

j

∂Xj

∂si
xj , (13)

which we claim is ambiguous in sign.

To see this, consider the symmetric two-product case with X1 = ξ(δ) an increasing

function of the surplus difference δ ≡ s(p1)− s(p2) and X2 = ξ(−δ). Instances of this are
the Hotelling model where ξ(δ) = max{1

2
[1+ δ

t
], 0} where t < 1 is a transport cost, and the

logit formulation with ξ(δ) = 1
1+e−δ

. Suppose that demand for the chosen product takes

the exponential form, so that s(p) = x(p) = e−p. Then from (13) we have

∂Q

∂p1
= x′1ξ − x1(x1 − x2)ξ′ = −x1(ξ + δξ′) (14)

and
∂2Q

∂p1∂p2
= −x1x2(2ξ′ + δξ′′) . (15)

In the Hotelling model with prices such that |δ| < t, (14) implies
∂Q

∂p1
= −x1

(
1

2
+
δ

t

)
.

So when δ ≈ −t we have ∂Q
∂p1

≈ x1
2
> 0 and there is inconsistency with the basic discrete

choice model. Increasing the high price, p1, reduces demand from the few consumers who

continue to buy that product but causes others to switch to product 2, of which they buy

substantially more.

With the logit formulation we have ξ′ = ξ(1− ξ) > 0, so from (14)

∂Q

∂p1
= −x1[1 + δ(1− ξ)]ξ < 0

because δ > −1. Expression (15) implies that the cross-partial of Q is
∂2Q

∂p1∂p2
= −x1x2[2 + δ(1− 2ξ)]ξ′ < 0 .

Therefore, this demand system with logit shocks to consumer surplus and exponential

demand for the chosen product is consistent with the basic discrete choice model.
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5 Conclusion

Propositions 1 and 2 together show that, assuming that total demand is differentiable and

bounded, the necessary and sufficient condition for consistency with the discrete choice

model is that all mixed partial derivatives of total demand be non-positive. (More funda-

mentally, without requiring differentiability the condition is that 1−Q exhibits the required
properties of a joint CDF.) This is a strong form of product substitutability.

We have focused on the basic discrete choice model where each consumer buys one

unit of one product, specifically the product with highest (vi − pi), or else nothing. But
in a setting with consumer search and free recall, where consumers do not always buy the

product with the highest (vi − pi), was shown to be equivalent to a basic discrete choice
model that by definition meets the condition. We also showed that situations in which

consumers could buy a unit of more than one product, or could buy several units of their

chosen product, was sometimes equivalent to the basic unit-choice setting. So the analysis

of the basic discrete choice model has more general application.

We have also focused on those situations in which linear prices are used. However, even

if an aggregate demand system is consistent with discrete choice with linear prices, it may

exhibit very different properties when more ornate tariffs are employed. For instance, when

facing unit-demand consumers, a seller can never benefit from the use of two-part tariffs,

nonlinear pricing or bundling, while if the seller faced a single consumer with the same

aggregate demand it will usually prefer to use a two-part tariff instead of linear prices.
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