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Abstract 

 

 

Studies which are based on Coe and Helpman (1995) and use weighted foreign R&D variables 

to estimate channel-specific R&D spillovers disregard the interaction between international 

R&D spillovers and other unobserved common spillovers and shocks. Using a panel of 50 

economies from 1970-2011, we find that disregarding this interaction leads to inconsistent 

estimates whenever knowledge spillovers and other unobserved effects are correlated with 

foreign and domestic R&D. When this interaction is modeled, estimates are consistent; 

however, they confound foreign and domestic R&D effects with unobserved effects. Thus, the 

coefficient of a weighted foreign R&D variable cannot capture genuine channel-specific R&D 

spillovers.  
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1. Introduction 

 

In the past three decades there has been a great deal of research into the estimation of the 

empirical significance of international R&D spillovers at the country level. A large number of 

these studies are mainly based on the endogenous economic growth theory, which states that 

technological development and productivity growth can be achieved by the spread of 

technology through international trade driven by profit-seeking firms, that is, a situation where 

the recipient countries employ technology as an intermediate input in order to develop a larger 

range of inputs or inputs of a higher quality (Romer, 1990; Grossman and Helpman, 1991; 

Aghion and Howitt, 1992). International R&D spillovers therefore occur when investment in the 

development of new inputs increases the levels of R&D investment and reduces future R&D 

costs across nations, and today’s improvement of the available domestic and foreign products 
allows future innovators to improve the quality of these products, insofar as they can do that at a 

faster rate when the initial quality of such products is higher, which, in turn, increases the 

productivity of intermediate inputs, such as R&D (Coe et al. 2009).  

The first empirical study which applied these theoretical concepts was done by Coe and 

Helpman (1995) (hereafter CH). In it, they investigate how countries may benefit from imports, 

in accordance with the technological knowledge of their trade partners and their own degree of 

openness. Towards that end, CH introduce a domestic and a weighted foreign R&D capital 

stock variables in a Total Factor Productivity (TFP) function,
1
 in a way that the country-specific 

foreign R&D capital stock measure takes into account trade-based technology transfers from all 

the countries in the sample. This measurement is therefore based on the weighted average of the 

domestic R&D from country partners where bilateral imports are used as weights. CH find, first, 

that knowledge spillovers and returns to domestic R&D, which are estimated through the 

coefficient of the foreign and domestic R&D variables respectively, are statistically significant 

in determining cross-country productivity; second, that the more open the economy, the larger 

the effect of knowledge spillovers; and third, that the returns to domestic R&D are larger for the 

G7 countries, whereas knowledge spillovers are larger for the smaller advanced economies.  

Other empirical studies, which follow the CH framework but employ channels of 

knowledge diffusion different from trade and/or use different weighting schemes for the foreign 

R&D variable, likewise claim that returns to domestic R&D and international R&D spillovers 

explain productivity and can be accurately estimated through the coefficients of variables for 

domestic and weighted foreign R&D, respectively.
2
 

Two assumptions at the core of these empirical studies support their conclusions: first, that 

the CH framework assumes error cross-section independence, which implies that the interplay 

between international R&D spillovers and other unobserved common spillovers and shocks 

does not cause contemporaneous correlation across countries;
3
 and second, a weighted foreign 

R&D variable is imposed in order to only detect channel-specific R&D spillovers. This effect is 

assumed not to arise from the interaction between unobserved spillovers and shocks, whose 

impact is uncorrelated with R&D and productivity, but merely from this weighted variable. 

 We, on the other hand, would argue that in any economic environment, the R&D 

spillovers which spread through a specific channel and which are unobserved may be mixed 

with knowledge spillovers transferred through other channels, along with other unobserved 

micro and macroeconomic spillovers and shocks which are associated with productivity and 

R&D. We therefore assert that the abovementioned spillover variable does not sufficiently 

address this interaction between R&D spillovers and other unobservable effects. That is because 
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it is assumed that its coefficient successfully captures genuine channel-specific R&D spillovers, 

without clarifying how this sort of variable could separate this effect from other unobserved 

common effects. In such a situation, the estimate of a foreign R&D variable might represent 

other aspects. 

Furthermore, if this variable is employed without regarding the interaction between R&D 

spillovers and other unobserved effects, and if all these unobservables are correlated with the 

variables of the model as sources of cross-section dependence, then the consistency of the 

foreign and domestic R&D estimates could be affected. In fact, even if the interplay between 

unobserved effects is taken into account, the spillover variable will not necessarily serve to 

capture genuine R&D spillovers.    

In order to study these concerns, the present article contributes to the existing literature on 

international R&D spillovers according to the following features: First, we study the empirical 

results of introducing a weighted foreign R&D variable in the CH framework without 

accounting for the interaction between international R&D spillovers diffused by any channel 

and other unobserved heterogeneous spillovers and shocks, which are common across countries, 

may jointly occur as sources of cross-section dependence and might be correlated with the 

variables of the model. Second, we examine the estimates of the domestic and weighted foreign 

R&D variables in a multifactor error structure where we regard the interaction between 

international knowledge spillovers and other weak and/or strong unobservables detected in the 

error term, and compare its results with those of the CH approach. 

Third, we employ several estimators in static and dynamic models to study the long-term 

effects of the R&D variables on productivity according to the CH approach and the multifactor 

framework, although we mainly rely on the results of the set of dynamic models that account for 

unobservables, because they can be regarded as complementary when dealing with several 

econometric issues, which we document in the paper. We use a weighted foreign R&D variable 

in line with Lichtenberg and van Pottelsberghe de la Potterie (1998, hereafter LP), which will 

account for knowledge transmission through trade from all countries of the sample.
4
 Fourth, for 

the purpose of gauging the reliability of the estimates at the aggregate level, this study allows 

technology parameters to differ across countries. It employs a sample of 50 emerging and 

advanced economies from 1970-2011 which explains several contemporary, heterogeneous 

cross-country interdependencies.  

Our results suggest that first, trade-related R&D spillovers cannot be estimated through the 

coefficient of an imposed spillover variable in the CH approach. This is because introducing this 

variable while ignoring the interaction between unobservables, which may be correlated with 

the covariates, leads to seriously biased and inconsistent estimates. Second, when the interplay 

between international R&D spillovers spread by any channel and other unobserved effects is 

regarded in a multifactor error structure, significant foreign and domestic R&D estimates 

become consistent and not seriously biased in most cases. However, most of them are larger 

than those from a CH specification, since they are subject to weak residual cross-section 

dependence, which indicates that the estimates are capturing the effect of unobservables in 

addition to the direct effect of the R&D variables.  

In this case trade-related knowledge spillovers cannot be identified. Therefore, nothing 

ensures that the coefficient of a spillover variable captures genuine R&D spillovers. Instead, it 

might be capturing other data cross-section dependencies. Moreover, contrary to the CH 

approach, returns to R&D are not independent of their associated spillovers and shocks. In fact, 

domestic R&D estimates can also be affected by the unobserved effects associated with the 

weighted foreign R&D variable. 
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These findings are of a crucial relevance for developing countries because they indicate 

that the identification and measurement of the international R&D spillovers spread by trade or 

any other specific channel must be done in a more suitable empirical framework where we can 

account for the interplay between this effect, R&D spillovers transferred by other channels and 

other unobserved common spillovers and shocks that may be sources of error cross-section 

dependence. Otherwise, empirical studies may yield inaccurate information for economic 

analysis and R&D policies of developing countries.  

Studies by Belitz and Molders (2013) and Ertur and Musolesi (2013) have analyzed the 

effect of the domestic and foreign R&D (weighted by different schemes) on productivity in 

order to account for unobservables in a multifactor error structure. However, these studies 

neither address the abovementioned issues nor discuss the importance of identifying channel-

specific R&D spillovers when regarding other unobserved effects. 

 In its empirical spirit the present study is closest to that of Eberhardt et al. (2013), which 

deals with some of the above issues. They analyze the effect of R&D on value added for 12 

industries across 10 advanced countries, accounting for unobservables, and find that the 

approach of Griliches (1979), which ignores unobserved effects, yields sizable and significant 

R&D estimates, although it is misspecified due to residual cross-section dependence. When 

unobservables are regarded in a multifactor error structure, the R&D estimates are consistent, 

but fall in magnitude and significance. This evidence shows that R&D and spillovers are 

indivisible when estimating private returns to R&D. 

Further, Eberhardt et al. (2013) claim to find that weighted R&D variables capture broader 

cross-sectional dependence than solely genuine R&D spillovers. However, they do not provide 

any empirical evidence to show the circumstances under which this occurs, and do not include 

this sort of variable in any of their empirical specifications to analyze its coefficient. They only 

estimate the effect of domestic R&D stock, labor and capital stock on value added by regarding 

the presence of unobservables in a multifactor framework, and claim this approach is more 

appropriate than using a spillover variable to model unobserved effects. By contrast, our 

estimates at the country level of a weighted foreign R&D variable when unobservables have 

been accounted for clearly demonstrate that they capture the effect of several sources of cross-

section dependence than only pure R&D spillovers.  

The rest of this paper is organized as follows: Section 2 reviews the Coe and Helpman 

model. Section 3 introduces a multifactor error structure for international R&D spillovers and 

other unobserved common effects. Section 4 presents the estimation methodology. Section 5 

describes the data and introduces a cross-section dependence and unit root tests. Section 6 

shows the results, which we discuss in Section 7. Section 8 presents our conclusions.   

 

2. The Coe and Helpman Model 

 

The simplest empirical model proposed by CH, which is based on the theories of innovation-

driven endogenous technological change, can be written as follows: 

 

 𝑡𝑓𝑝𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖1𝑅𝑖𝑡𝑑 + 𝛽𝑖2𝑅𝑖𝑡𝑓 + 𝑢𝑖𝑡 (1) 

 

where 𝑡𝑓𝑝𝑖𝑡, 𝑅𝑖𝑡𝑑  and 𝑅𝑖𝑡𝑓  are the logarithmic variables of total factor productivity,
5
 domestic 

R&D capital stock and foreign R&D capital stock respectively. These regressors are specific to 

country 𝑖 at time 𝑡 for 𝑖 = 1, … , 𝑁, and 𝑡 = 1, … , 𝑇. 𝛼𝑖 is a constant term which accounts for 

country-specific effects. We include the error term 𝑢𝑖𝑡 in (1) according to a panel data setting. 
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According to (1), domestic R&D contributes to the availability and/or quality of inputs of a 

country, while foreign R&D represents the R&D capital stock from the rest of the world which 

is available for a specific country through international trade. More importantly, international 

R&D spillovers, which are spread through trade, are assumed to be captured by the coefficient 

of the foreign R&D 𝛽𝑖2, because they arise from the transmission of the R&D capital stock by  

bilateral trade from foreign countries to the home country 𝑖. The coefficient of the domestic 

R&D 𝛽𝑖1 is assumed to show the contribution of domestic R&D, separately from knowledge 

spillovers.  

As stated by CH, a convenient way to represent the foreign R&D capital stock is to 

aggregate the R&D capital stocks of foreign countries in 𝑅𝑖𝑡𝑓  as follows: 

 

 𝑅𝑖𝑡𝑓 = ∑ 𝑤𝑖𝑐,𝑡𝑅𝑐𝑡𝑑𝑖≠𝑐  (2) 

 

where 𝑤𝑖𝑐,𝑡 are weights of the cumulative R&D expenditures of the country 𝑖’s foreign trading 
partners 𝑐, which are defined by bilateral imports and are allowed to vary over time. This 

specification points to the fact that the domestic economy will benefit more from the 

international knowledge spillovers which arise from bilateral trade when the domestic R&D of 

their partners is large. 

The weighting scheme suggested by CH is the import-share-weighted average of the 

domestic R&D capital stock of trade partners.
6
  Some studies on international knowledge 

spillovers at the country level have suggested alternative weighting schemes, such as bilateral 

imports multiplied by the R&D/GDP ratio of foreign countries (LP), technological proximity 

(Guellec and van Pottelsberghe de la Potterie, 2004), technological proximity and shares of 

patent citations  (Lee, 2006), and equal weights (Keller, 1998). They have likewise proposed 

other channels of transmission of R&D, such as inward and outward FDI (van Pottelsberghe de 

la Potterie and Lichtenberg, 2001), exports (Funk, 2001), migration of students (Park, 2004), 

and the transfer of information technology (Zhu and Jeon, 2007). 

It is worth noting that two additional assumptions characterize the CH approach: first, the 

model (1) for the analysis of international R&D diffusion is subject to error cross-section 

independence, that is, there are no contemporary interdependencies across countries caused by 

the interaction between international R&D spillovers spread by any channel and other 

unobserved spillovers and shocks which are detected in the error term; and second, a spillover 

variable, such as that defined in (2), is imposed in equation (1) in order to capture R&D 

spillovers which spread across borders through only one channel, such as trade. It is assumed 

that these spillovers do not arise from unobservables, which remain neutral to TFP and R&D, 

but solely arise from the spillover variable. 

From our standpoint, these assumptions might be restrictive when dealing with unobserved 

effects. This is because a spillover variable may not take account of the fact that international 

R&D spillovers which spread through a specific channel (trade in the case of CH) are likely to 

arise together with a variety of other unobserved common effects, such as R&D spillovers 

which are transmitted through other channels, pecuniary R&D spillovers,
7
 linkage and 

measurement spillovers and, in general, micro and macroeconomic spillovers and shocks which 

may be correlated with TFP and R&D. Moreover, it is not clear how the coefficient of this 

variable can distinguish between channel-specific R&D spillovers and other unobservables. To 

first assume cross-section independence and then impose a spillover variable might not be 

appropriate for estimating channel-specific knowledge spillovers. Under these circumstances, 

the coefficient of a spillover variable might be capturing other effects than R&D spillovers. 
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We further believe that even if a spillover variable is incorporated alongside a domestic 

R&D variable in the CH framework, the consistency of the foreign and domestic R&D 

estimates might be seriously affected if the interplay between unobserved effects, which may be 

correlated with the variables of the model, is not properly taken into account as a source of error 

cross-section dependence. In fact, if we account for international R&D spillovers spread by any 

channel and other weak and/or strong unobservables, which are sources of cross-section 

dependence that might arise together, nothing would ensure that estimates of a spillover variable 

can capture genuine R&D spillovers even if the estimates of the model are consistent.  

To explain the above, we will now show how the interaction between unobserved effects 

may bring about error cross-section dependence. 

 

3. The Multifactor Error Structure for International R&D Spillovers and Other 

Unobserved Common Spillovers and Shocks 

 

According to Pesaran (2006), Chudik et al. (2011), Chudik and Pesaran (2013a) and other recent 

investigations on macroeconometric panel time series models, one of the ways to deal with the 

error cross-section dependence caused by unobservables is to use a multifactor error structure in 

which sources of cross-section dependence are assumed to be represented by a few unobserved 

common factors that affect all the observations and can be found in the error term. Applying this 

approach, we can therefore write an extension of (1) which accounts for international R&D 

spillovers and other unobserved spillovers and shocks which might arise together: 

 

 𝑡𝑓𝑝𝑖𝑡 = 𝛽1𝑅𝑖𝑡𝑑 + 𝛽2𝑅𝑖𝑡𝑓 + 𝑢𝑖𝑡 ,      𝑢𝑖𝑡 = 𝛾𝑖1𝑓1𝑡 + ⋯ + 𝛾𝑖𝑚𝑓𝑚𝑡 + 𝜀𝑖𝑡 = 𝜸𝑖′𝒇𝑡 + 𝜀𝑖𝑡 (3) 

 

where each 𝑓𝑗𝑡, for 𝑗 = 1, … , 𝑚, is a single unobserved common factor that affects all cross-

sectional units, although in different degrees, depending on the magnitude of its 𝑗𝑡ℎ 

heterogeneous factor loading, 𝛾𝑖𝑗. 𝜸𝑖 is a 𝑚 1 vector of factor loadings, and 𝒇𝑡 a 𝑚  1 vector 

of unobserved common factors. 𝜀𝑖𝑡 are the idiosyncratic errors.  

Factors 𝑓𝑗𝑡 represent two categories of shocks and spillovers: (i) at the macroeconomic 

level, such as aggregate financial shocks, real shocks, global R&D and technology spillovers, or 

structural changes; and (ii),at the microeconomic level, such as local spillovers which arise from 

industrial activity and domestic technology development, local consumption and income effects, 

socioeconomic networks, and geographic proximity. Among the examples of positive and 

negative unobserved common shocks and spillovers in the time frame we analyze there are 

international R&D spillovers which spread through any bilateral or multilateral channel (such as 

trade, FDI, or migration), the oil crisis of the 1970s, the financial crisis in Latin America during 

the 1980s, the standardization of the Internet Protocol Suite (TCP/IP), the downfall of 

communism, the global financial crisis of 2008, and the emergence of China and India as major 

global economies during the 21th century 

Such spillovers and shocks are common because they affect all countries, although their 

impact is heterogeneous. In extreme cases, they may either affect all countries with a strong 

heterogeneous impact, or have a weak effect (or no effect at all) on a subset of countries. 

Observed common factors (such as the prices of commodities) or deterministics (intercepts or 

seasonal dummies) are omitted in (3) for the purpose of brevity (i.e. 𝛼𝑖 = 0), even though they 

may be easily included. Now, when we place the factors in 𝑢𝑖𝑡 into the 𝑡𝑓𝑝𝑖𝑡 function in (3), it 

yields the extended model: 
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 𝑡𝑓𝑝𝑖𝑡 = 𝛽𝑖1𝑅𝑖𝑡𝑑 + 𝛽𝑖2𝑅𝑖𝑡𝑓 + 𝛾𝑖1𝑓1𝑡 + ⋯ + 𝛾𝑖𝑚𝑓𝑚𝑡 + 𝜀𝑖𝑡 (4) 

 

or more compactly: 

 

 𝑡𝑓𝑝𝑖𝑡 = 𝛽𝑖1𝑅𝑖𝑡𝑑 + 𝛽𝑖2𝑅𝑖𝑡𝑓 + 𝜸𝑖′𝒇𝑡 + 𝜀𝑖𝑡 (5) 

 

It can easily be seen from (4) and (5) that shocks and spillovers are now present as unobserved 

factors that determine TFP. Now let us show the possible consequences of introducing a 

spillover variable 𝑅𝑖𝑡𝑓  in this framework by allowing the correlation between the individual 

specific regressors, 𝑅𝑖𝑡𝑑  and 𝑅𝑖𝑡𝑓 , and the error term  𝑢𝑖𝑡, on the assumption that the first two can 

be determined by the impact of their associated unobserved factors: 

 

 

 
𝑅𝑖𝑡𝑑 = Г𝑑𝑖1𝑓1𝑡 + ⋯ + Г𝑑𝑖𝑚𝑓𝑚𝑡 + 𝑣𝑖𝑡 = 𝜞𝑖𝒅′𝒇𝑡 + 𝑣𝑖𝑡 (6) 

 

 𝑅𝑖𝑡𝑓 = Г𝑓𝑖1𝑓1𝑡 + ⋯ + Г𝑓𝑖𝑚𝑓𝑚𝑡 + 𝑠𝑖𝑡 = 𝜞𝑖𝒇′𝒇𝑡 + 𝑠𝑖𝑡 (7) 

 

where factor loadings Г𝑑 and Г𝑓 represent the magnitude at which factors are correlated with 𝑅𝑖𝑡𝑑  and 𝑅𝑖𝑡𝑓 , respectively. 𝜞𝑖𝒅 and 𝜞𝑖𝒇 are 𝑚 1 invertible matrices of factor loadings, and 𝑣𝑖𝑡 and 𝑠𝑖𝑡 are idiosyncratic components of 𝑅𝑖𝑡𝑑  and 𝑅𝑖𝑡𝑓 , respectively,  which are assumed to be 

distributed independently of the innovations ɛ𝑖𝑡. 

Now, if we add (6) and (7), define the result in terms of the shocks 𝒇𝑡, and introduce this 

into (5) where we can factorize 𝑅𝑖𝑡𝑑  and 𝑅𝑖𝑡𝑓 , we obtain:  

 

 𝑡𝑓𝑝𝑖𝑡 = [𝛽𝑖1 + 𝜸𝑖′ (𝜞𝑖𝒅′ + 𝜞𝑖𝒇′)−1] 𝑅𝑖𝑡𝑑 + [𝛽𝑖2 + 𝜸𝑖′ (𝜞𝑖𝒅′ + 𝜞𝑖𝒇′)−1] 𝑅𝑖𝑡𝑓 + 𝜙𝑖𝑡 ,     (8) 

 

where the coefficients of 𝑅𝑖𝑡𝑑  and 𝑅𝑖𝑡𝑓  are subject to the magnitude of the impact of the 

unobserved common effects, and where 𝜙𝑖𝑡 = −𝜸𝑖′ (𝜞𝑖𝒅′ + 𝜞𝑖𝒇′)−1 (𝑣𝑖𝑡 + 𝑠𝑖𝑡) + 𝜀𝑖𝑡. From (8) 

we can see, first, that the coefficient of the foreign R&D variable 𝑅𝑖𝑡𝑓  confounds the effect of 

this variable 𝛽𝑖2, and that of international R&D spillovers and other weak and/or strong 

unobserved common spillovers and shocks, represented by 𝜸𝑖′ (𝜞𝑖𝒅′ + 𝜞𝑖𝒇′)−1
. This shows that 

when the effect of a mixture of unobservables is accounted for, channel-specific knowledge 

spillovers cannot be identified through the coefficient of a spillover variable. Second, the 

coefficient of the domestic R&D variable represents a combination of returns to domestic R&D 𝛽𝑖1 and the effect of shocks and spillovers associated with the domestic R&D regressor through 𝜞𝑖𝒅′
, which shows that the two might not be separate. However, the introduction of the weighted 

foreign R&D variable and the effect of its associated shocks 𝜞𝑖𝒇′
 could affect the coefficient of 

the domestic R&D regressor and therefore the results of the model.  

Based on Chudik et al. (2011), we represent the magnitude of the impact of shocks through 

the factor loadings as follows: 
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 lim𝑁→∞ 𝑁−𝛼 ∑ |𝛾𝑖𝑗|𝑁
𝑖=1 = 𝐾 < ∞ (9) 

 

where 𝐾 is a fixed positive constant that does not depend on the number of countries, 𝑁. Given 

(9), factors are said to be weak if 𝛼 = 0, semi-weak if 0 < 𝛼 < 1/2, and semi-strong if 1/2 < 𝛼 < 1. For these sorts of factors we can say that the multifactor error structure is cross-

sectionally weakly dependent at a given point in time 𝑡 ∈ 𝑇, where 𝑇 is an ordered time set, if 𝛼 < 1. In this case, weak, semi-weak and semi-strong factors may produce estimates of the 

domestic and foreign R&D which are not seriously biased and whose consistency and 

asymptotic normality are not affected. These factors may only affect a subset of countries of the 

whole sample and the number of affected economies rises less than the total countries of the 

sample.  

On the other hand, factors are strong if 𝛼 = 1 in (9), so that the multifactor error structure 

is cross-sectionally strongly dependent at a given point in time 𝑡 ∈ 𝑇 if and only if there exists 

at least one strong factor.
8
 In that case, it is possible that the factors may be correlated with the 

domestic and foreign R&D, in such a way that the models yield seriously biased and 

inconsistent estimates. Chudik and Pesaran (2013b) characterize the strong factors as those 

which reflect the pervasive effect of error cross-section dependence in the sense that they affect 

all countries in the sample and their effect is persistent even if 𝑁 tends to infinite. Furthermore, 

if unobserved weak and strong common factors are disregarded, and if these factors are 

correlated with the variables of the model, then the consistency of the estimates may also be 

severely affected. 

 

4. Estimation Methodology 

 

In order to address the above concerns, we employ a variety of estimators for the CH model 

defined in (1), which ignores unobservables, and the multifactor error structure in (4),which 

accounts for unobserved common effects (including an intercept, i.e. 𝛼𝑖 ≠ 0). This estimation 

strategy helps us to analyze the coefficients of the domestic R&D and weighted foreign R&D 

variables under different empirical assumptions, and provides useful information for a 

comparison of the results of different empirical approaches. 

The first set of estimators is used in static models on the following assumptions: first, the 

estimators restrict homogeneity in the technology parameters and (i) assume error cross-section 

independence (in line with CH), such as pooled OLS (POLS), first difference (FD), and two-

way fixed effects (2FE); or (ii) allow for error cross-section dependence (i.e. account for 

unobservables), such as the Pesaran (2006) Common Correlated Effects (CCE) pooled estimator 

(CCEP) with strictly exogenous regressors.
9
 Second, estimators which allow for the 

technological heterogeneity of slopes and (i) assume error cross-section independence such as 

the mean group (MG) estimator and the cross-sectionally demeaned MG (CDMG) estimator; or 

(ii), allow for error cross-section dependence such as the heterogeneous CCE (CCEMG)with 

strictly exogenous regressors.
10

 In contrast to the estimators which disregard unobserved 

spillovers and shocks, the CCE approach includes cross-section averages of variables in a 

common factor framework as proxies for unobserved common factors,
11

 so long as the weights 

of these averages satisfy certain granularity and normalization conditions.
12

 

In this case, (4) becomes: 

 

 𝑡𝑓𝑝𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖1𝑅𝑖𝑡𝑑 + 𝛽𝑖2𝑅𝑖𝑡𝑓 + 𝝍𝑖′𝒛̅𝑡 + 𝜀𝑖𝑡   (10) 
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where 𝒛̅𝑡 = (𝑡𝑓𝑝̅̅ ̅̅̅𝑡, 𝒙̅𝑡′ )′ are the cross-section averages of the TFP and the domestic and foreign 

R&D variables, which are represented by 𝒙𝑖𝑡 = (𝑅𝑖𝑡𝑑 , 𝑅𝑖𝑡𝑓 )′. 
We also apply our empirical analysis to dynamic models by using a second set of 

estimators. Three models are employed in this case (the first two in an ECM representation) 

where we estimate the long-run effects of the domestic and foreign R&D variables on TFP:13 (i) 

the traditional autoregressive distributed lag (ARDL), (ii) the cross-sectional ARDL (CS-

ARDL) with heterogeneous technology parameters and the weakly exogenous regressors (aka 

dynamic CCEMG) found in Chudik and Pesaran (2013a); and (iii), the heterogeneous cross-

sectional distributed lag (CS-DLMG) approach of Chudik et al. (2013), which does not include 

lags of the dependent variable. The first model is the traditional ARDL approach, which is used 

to obtain the long-run estimates of the domestic and foreign R&D variables in a dynamic setup 

of the CH framework. The model is defined as follows:  

 

 𝑡𝑓𝑝𝑖𝑡 = 𝛼𝑖 + ∑ 𝜑𝑖𝑙𝑡𝑝𝑓𝑖,𝑡−𝑙𝑝
𝑙=1 + ∑ 𝜷𝑖𝑙′ 𝒙𝑖,𝑡−𝑙𝑝

𝑙=0 + 𝑢𝑖𝑡  (11) 

 

where 𝜷𝑖𝑜′ = (𝛽𝑖1,0, 𝛽𝑖2,0) for 𝑙 = 0 in (11), in accordance with the coefficients of the domestic 

and foreign R&D in (10). 𝑝 = 1 to 3 lags are considered for the ARDL model in order to 

include sufficiently long lags, given the time period of the sample, and to fully account for the 

short-run dynamics and thus derive the long-term coefficients, assuming that there is a single 

long-run relation between the dependent variable and the independent variables.14 The ARDL 

model in (11) can also be written in an ECM representation, as follows: 

 

 ∆𝑡𝑓𝑝𝑖𝑡 = 𝛼𝑖 − 𝜆𝑖(𝑡𝑓𝑝𝑖,𝑡−1 − 𝜽𝑖𝒙𝑖,𝑡−1) + ∑ 𝜙𝑖𝑙∆𝑡𝑓𝑝𝑖,𝑡−𝑙𝑝−1
𝑙=1 + ∑ 𝝅𝑖𝑙′ ∆𝒙𝑖,𝑡−𝑙𝑝−1

𝑙=0 + 𝑢𝑖𝑡  (12) 

 

where ∆𝑡𝑓𝑝𝑖𝑡 = 𝑡𝑓𝑝𝑖𝑡 − 𝑡𝑓𝑝𝑖𝑡−1, ∆𝒙𝑖𝑡 = 𝒙𝑖𝑡 − 𝒙𝑖𝑡−1, 𝜆𝑖 = 1 − ∑ 𝜑𝑖𝑙𝑝𝑙=1 , 𝜙𝑖𝑙 = − ∑ 𝜑𝑖𝑘𝑝𝑘=𝑙+1  

for 1 ≤ 𝑙 ≤ 𝑝 − 1, 𝜽𝑖 = (∑ 𝜷𝑖𝑙𝑝𝑙=1 ) 𝜆𝑖⁄ , 𝝅𝑖0 = 𝜷𝑖0, and 𝝅𝑖𝑙 = − ∑ 𝜷𝑖𝑘𝑝𝑘=𝑙+1  for 1 ≤ 𝑙 ≤ 𝑝 − 1. 

Estimations are carried out according to (12) by employing the POLS, 2FE and MG estimators 

(all estimators assume error cross-section independence in line with CH).  

As reported by Chudik et al. (2013), the ARDL structure is valid regardless of whether the 

independent variables are exogenous or endogenous, or characterized as order one, I(1), or order 

zero, I(0), processes. In fact, long-term estimates of 𝜽𝑖 (which can be arrived at through the 

estimates of the short-term coefficients 𝜷𝑖𝑙 and 𝜑𝑖𝑙) may be consistent when common factors 

are serially uncorrelated and when they are uncorrelated with the regressors. This favors 

consistent estimation, especially when there is reverse causality, i.e. when past values for 

productivity may determine current domestic and foreign R&D capital stocks. We can also state 

that the ARDL models in an ECM representation are convenient because we can estimate the 

mean of the coefficients of the error correction term, denoted by 𝜆𝑖𝑙, in order to study the long-

run cointegration of covariates as well as analyze the speed of convergence towards the long-

term equilibrium of steady state. 

It is worth noting that this approach has some drawbacks. First, there could be a large 

sampling uncertainty due to the restricted time dimension of the panel and the slow speed of 

convergence towards the long-term. Second, as Pesaran and Smith (1995) have shown, under a 
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random coefficient model which characterizes heterogeneous dynamic panel data models, 

pooled OLS estimators are no longer consistent. Third, the ARDL model requires an appropriate 

choice of lag orders to obtain proper long-run estimates.  

The second model is the CS-ARDL approach which allows for heterogeneous technology 

coefficients and, in contrast to the traditional ARDL model, includes cross-section averages in a 

dynamic multifactor framework as proxies for R&D spillovers spread by any channel and other 

unobservables. The CS-ARDL models can be expressed as follows: 

 

 𝑡𝑓𝑝𝑖𝑡 = 𝛼𝑖 + ∑ 𝜑𝑖𝑙𝑡𝑝𝑓𝑖,𝑡−𝑙𝑝
𝑙=1 + ∑ 𝜷𝑖𝑙′ 𝒙𝑖,𝑡−𝑙𝑝

𝑙=0 + ∑ 𝝍𝑖𝑙′ 𝒛̅𝑡−𝑙3
𝑙=0 + 𝑒𝑖𝑡 

  (13) 

 

 

where 𝒛̅𝑡−𝑙 = (𝑡𝑓𝑝̅̅ ̅̅̅𝑡−𝑙 , 𝒙̅𝑡−𝑙′ )′ are the contemporaneous and lagged cross-section averages of the 

dependent and independent variables, which are chosen on the basis of the rule of thumb 𝑇1/3.  

The present study allows for up to 𝑇1/3 = 411/3 ≈ 3 lagged cross-section averages of each 

variable,  independently of the number of the lags of the variables of (13),  for which 𝑝 = 1, 2 

and 3 lags are included where a maximum number of unobserved factors (which might be 

small) is assumed. 𝑒𝑖𝑡 is determined by Chudik and Pesaran (2013b) on the basis of three 

aspects: (i) an idiosyncratic term 𝜀𝑖𝑡, (ii) an error component due to the approximation of 

unobserved common factors based on large 𝑁 relationships, and (iii) an error component that is 

explained by the truncation of a possibly infinite polynomial distributed lag function. As can be 

seen, lagged cross-section averages allow for the possibility that unobserved common spillovers 

and shocks may react to lags. An ECM representation of this model can be easily written as 

follows: 

 

 

∆𝑡𝑓𝑝𝑖𝑡 = 𝛼𝑖 − 𝜆𝑖(𝑡𝑓𝑝𝑖,𝑡−1 − 𝜽𝑖𝒙𝑖,𝑡−1) + ∑ 𝜙𝑖𝑙∆𝑡𝑓𝑝𝑖,𝑡−𝑙𝑝−1
𝑙=1 + ∑ 𝝅𝑖𝑙′ ∆𝒙𝑖,𝑡−𝑙𝑝−1

𝑙=0  

+ ∑ 𝝍𝑖𝑙′ 𝒛̅𝑡−𝑙3
𝑙=0 + 𝑒𝑖𝑡 

 (14) 

 

However, this approach has been formulated only for stationary panels and is subject to 

sampling uncertainty when the time period is not large enough.  

The third dynamic panel data model is the CS-DLMG approach proposed by Chudik et al. 

(2013), which allows for the heterogeneity of technology coefficients and unobserved effects. 

This approach can be obtained by subtracting ∑ 𝜑𝑖𝑙𝑡𝑝𝑓𝑖,𝑡−𝑙𝑝𝑙=1  from both sides of (13), 

factorizing 𝐴𝑖(𝐿) = (1 − ∑ 𝜑𝑖𝑙𝐿𝑙𝑝𝑙=1 ) and then dividing the whole equation by this expression, 

in order to arrive at the following equation: 

 

 𝑡𝑓𝑝𝑖𝑡 = 𝜚𝑖 + 𝜭̇𝑖′𝒙𝑖𝑡 + ∑ 𝜹𝑖𝑙′ ∆𝒙𝑖,𝑡−𝑙 +𝑝−1
𝑙=0 𝜔𝑖,𝑡𝑓𝑝𝑡𝑓𝑝̅̅ ̅̅̅𝑡 + ∑ 𝝎𝑖,𝑥𝑙′ 𝒙̅𝑡−𝑙3

𝑙=0 + 𝑒̃𝑖𝑡 (15) 

 

where 𝑒̃𝑖𝑡 = 𝐴𝑖(𝐿)−1𝑒𝑖𝑡, 𝜚𝑖 = 𝐴𝑖(𝐿)−1𝛼𝑖, 𝜽̇𝑖 = 𝐴𝑖(𝐿)−1 ∑ 𝜷𝑖𝑙𝑝𝑙=0 , 𝛅𝑖𝑙 = 𝐴𝑖(𝐿)−1𝝇𝑖𝑙, 𝝇𝑖𝑙 =− ∑ 𝜷𝑖𝑘𝑝𝑘=𝑙+1  for 0 ≤ 𝑙 ≤ 𝑝 − 1, and 𝑡𝑓𝑝̅̅ ̅̅̅𝑡 and  𝒙̅𝑡 are cross-section averages of TFP and the 

R&D variables respectively, where we allow for lagged cross-section averages of 𝒙̅𝑡 only. The 
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loadings 𝜔𝑖,𝑡𝑓𝑝 and 𝝎𝑖,𝑥𝑙 are different from those of (13) (such as 𝝍𝑖𝑙) because they 

contain 𝐴𝑖(𝐿)−1. Here, the CS-DLMG models are estimated by adding three lagged cross-

section averages. The present study takes advantage of the fact that 𝜽̇𝑖 can be consistently 

estimated directly by the CCE approach, and only requires a selection of a truncation lag, in 

contrast to the ARDL approach, which depends on a correct specification of the lags order. In 

addition, the 𝑝 = 1, 2 and 3 lags of the regressors are included.  

Once cross-section averages are included in the model, it is possible to obtain robust 

estimates even when the time period is short. They are also robust to the presence of 

nonstationary variables and factors (regardless of the number of unobserved factors), weak 

cross-section dependence, serial correlation or breaks in the idiosyncratic errors and serial 

correlation in unobserved factors. However, the CS-DLMG does not properly tackle the 

problem of the feedback effects from lagged values of the TFP on the domestic and foreign 

R&D, so long-term estimates are consistent only in the absence of this problem. Furthermore, 

estimates for small samples are only consistent so long as the roots of 𝐴𝑖(𝐿) fall strictly outside 

the unit circle.
15

 

The present study has followed Chudik et al. (2013) in the sense that we use the CS-DLMG 

and the CS-ARDL estimators as complementary when dealing with several econometric 

questions and to obtain robust results. However, we mainly rely on the results of the CS-ARDL 

model in an ECM specification, because the cointegration of variables in the long-term can be 

easily observed and this model deals with a variety of problems which characterize R&D capital 

stock and unobserved common effects: the lagged effects of R&D and unobserved spillovers 

and shocks associated with the TFP and R&D variables, and the feedback effects of past 

productivity values on the R&D regressors. 

 

5. Data, and Cross-Section Dependence and Unit Root Tests 

 

The data set contains aggregate data from 1970 to 2011 for 50 advanced and emerging countries 

for an unbalanced panel with 𝑁𝑚𝑖𝑛 = 20 and  𝑇𝑚𝑖𝑛 = 20. The data sources and the 

methodologies employed to construct the variables are included in the Appendix. Information 

on the data set is reported in Table 1. There are 2042 observations for the TFP, 1873 for the 

domestic R&D capital stock and 2056 for the LP weighted foreign R&D capital stock, whose 

weights allow for knowledge transmission through trade from all the countries of the sample.  

 

<<INSERT TABLE 1 HERE>> 

 

An online supplement to the present paper includes: first, plots of all the series; second, 

Stata routines; third, the results of CCEMG static and dynamic models, based on two setups of a 

LP weighted variable in accordance with the knowledge flows from (i), 23 OECD countries plus 

BRICs;
16

 and (ii), all the OECD countries of the sample plus BRICs. Fourth, the results of the 

CCEMG models, based on a CH weighted foreign R&D variable in accordance with the three 

weighting configurations used for the LP R&D variable. Table 2 presents descriptive statistics 

for the variables. Here, the foreign R&D capital stock exhibits the highest average growth rate, 

whereas the TFP growth shows the lowest.  

 

<<INSERT TABLE 2 HERE>> 
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The test that is implemented to analyze the cross-section dependence of residuals from the 

abovementioned models is the cross-section dependence (CD) test of Pesaran (2015). This study 

shows that the implicit null hypothesis of the CD test proposed by Pesaran (2004), who 

examines estimates of pair-wise error correlations, is the weak cross-section dependence of 

errors in the panel regression compared with the alternative of strong error cross-section 

dependence. Moreover, to investigate the stationarity of variables and the residuals from static 

models, we employ the second generation panel unit root test of Pesaran (2007) which allows 

for cross-section dependence across observations.
17

 The null hypothesis for this test is that all 

panels contain unit roots across units, which is tested at a 5% level of significance. In general, 

this test yields unit root in all variables in levels.
18

 We also provide the Root Mean Squared 

Error (RMSE) in the results. 

 

6. Results 

 

6.1. Static Econometric Models 

 

Table 3 contains the results of the static models. Across models, the coefficients of domestic 

R&D are larger than those of the foreign R&D (except for the POLS and the CCEMG (i) 

estimates). More important, all the models with homogeneous slopes (except POLS) yield 

positive and statistically significant estimates of the domestic R&D at the 1% level, which range 

from 0.060 to 0.075, whereas the domestic R&D estimates from the MG and CDMG models 

vary between 0.039 and 0.061, all being statistically significant at the 10% level. Moreover, 

models which are restricted to homogeneous coefficients of the foreign R&D fall between 0.000 

and 0.060, all being statistically significant at the 1% level except for the estimate from the first 

difference model. The MG and CDMG estimates of foreign R&D range from 0.025 to 0.031, 

where the foreign R&D estimate from the MG model is significant at the 10% level.  

 

<<INSERT TABLE 3 HERE>> 

 

On the basis of these results, we can state that even though the majority of the estimates of 

models where the interaction between unobservables is not modeled seem economically 

reliable, they are seriously misspecified for two reasons. First, the large CD statistic reflects a 

very high degree of residual cross-section dependence, so that the R&D estimates may be 

seriously biased and inconsistent (except for the POLS model); and second, all models have 

nonstationary residuals. Further, the CCEP model, which accounts for unobserved effects and is 

restricted to homogeneity in slopes, is also misspecified due to these two problems. 

CCEMG estimates which account for heterogeneous technology parameters and the 

interaction between unobserved spillovers and shocks are also shown in Table 3 and follow two 

different setups: (i) a specification without a time trend; and (ii), a model in which a time trend 

is included. As can be seen, all coefficients of the domestic and foreign R&D variables are 

statistically significant and range from 0.054-0.090 to 0.057-0.061 respectively. The CCEMG 

models are not misspecified, since they have stationary and weak cross-sectional dependent 

residuals. Further, the estimates of the domestic and foreign R&D from the second CCEMG 

model and the foreign R&D coefficients from the first CCEMG model are larger than those in 

the misspecified pooled and MG models. As a result, we choose both CCEMG models; 

although the second CCEMG model is preferred because the former yields larger estimates and 

the RMSE is lower. 
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We also estimate CCEMG models which include spillover variables based on other 

weighting schemes. When we include LP foreign R&D variables which allow for knowledge 

dissemination from all OECD countries plus BRICs and from 23 OECD countries plus BRICs, 

the residuals have a low degree of cross-section dependence and are stationary, so that estimates 

are consistent and not seriously biased. The results are similar when a CH spillover variable that 

is based on the same weighting schemes is incorporated, so long as a time trend is excluded 

from the models. On the other hand, when a time trend is incorporated, specifications which 

include a CH foreign R&D variable with the three proposed weighting configurations are 

misspecified, due to strong residual cross-section dependence. Therefore, such estimates are 

seriously biased and inconsistent. The same happens when we include a CH variable which 

allows for knowledge diffusion from all the countries of the sample, and exclude a time trend 

(all these additional results are presented in section 3 of the online supplement). 

 

6.2. Dynamic Econometric Models 

 

Table 4 shows the results of the dynamic ARDL-POLS, 2FE and MG models where error cross-

section independence is assumed and each model is estimated with 𝑝 = 1, 2 and 3 lags. The 

coefficients of domestic and foreign R&D from the dynamic POLS range from -0.013 to 0.008 

and from -0.003 to 0.022 respectively, all being statistically insignificant. Estimates of the 

domestic and foreign R&D from the dynamic 2FE fall from -0114 to 0.005 and from 0.031 to 

0.077, respectively, and are significant only for the specification with one lag. Meanwhile, the 

MG-ARDL estimates of the domestic R&D range from 0.025 to 0.060 and the coefficients of 

the foreign R&D fall from 0.007 to 0.024 where the domestic R&D coefficients are statistically 

significant for one and two lags. As can be seen, despite the fact that the variables are 

cointegrated at 1% in the long-term in all models, these dynamic models show a poor 

performance due to the strong cross-sectional dependence of residuals and, in the case of the 

ARDL-POLS and 2FE models, probably due to the erroneous pooling of the slopes of dynamic 

heterogeneous dynamic panels, as noted by Pesaran and Smith (1995). In consequence, none of 

the models has been chosen.  

 

<<INSERT TABLE 4 HERE>> 

 

The results of the CS-ARDL models, which regard the interaction between unobserved 

effects and include 𝑝 = 1, 2 and 3 lags and a time trend, are shown in Table 5 column (i). 

Estimates of the domestic and foreign R&D variables range from 0.023 to 0.055 and from 0.070 

to 0.083 respectively. Foreign R&D estimates are statistically significant at the 5% level, while 

the only domestic R&D estimate that is significant (at the 10% level) is that from the model 

with two lags. None of these models is misspecified, thanks to the fact that there is a low degree 

of residual cross-section correlation and the variables are cointegrated at 1% in the long-run. 

However, only the CS-ARDL specification which includes two lags obtains significant 

coefficients for both domestic and foreign R&D. It may be possible that the CS-ARDL models 

with one and three lags do not capture statistically significant domestic R&D estimates because 

of limitations on the time data, especially in the case of countries for which the data does not 

stretch beyond thirty years.  

 

<<INSERT TABLE 5 HERE>> 
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The CS-ARDL (ii) model, which is a more flexible specification, has been estimated with 

one and two lags of variables and includes only two lagged cross-section averages and a time 

trend. As can be seen, the domestic and foreign R&D coefficients, which range from 0.066 to 

0.085 and from 0.065 to 0.079 respectively, are significant at 5%. Moreover, these models are 

not misspecified, thanks to the low degree of the cross-section dependence of residuals and 

cointegration at 1%. These results indicate that if there were more observations or more 

flexibility in the addition of lags, then the CS-ARDL model might be more likely to yield 

positive and significant estimates. However, this flexibility has a cost, since the use of only two 

lagged cross-section averages may not be a suitable way to deal with the problem of reverse 

causality.  

The results of the CS-DLMG models which account for unobservables and include one, 

two and three lags of the independent variables and a time trend suggest that all the domestic 

R&D estimates, which vary between 0.071 and 0.109, are significant at the 1% level, while the 

foreign R&D slopes are only significant at 1% for the specification with two and three lags and 

at 5% for one lag, falling from 0.052 to 0.080. Further, the reason why the CS-DLMG models 

are not misspecified is the low levels of residual cross-section dependence. Therefore, they do 

not yield seriously biased and inconsistent domestic R&D and foreign R&D estimates so long 

as feedback effects are not present. Although the RMSE of the CS-DLMG models is larger than 

that of the CS-ARDL models the Monte Carlo experiments in Tables 4 and 8 of Chudik et al. 

(2013) show that for samples lower than 100 cross-section and time observations, and in the 

absence of feedback effects, the CS-DLMG estimator is more efficient and has more power than 

the CS-ARDL model, even when the RMSE of the former is larger.  

However, due to the characteristics of the R&D capital stock, we give priority to those 

dynamic models that account for feedback effects, although both the CS-ARDL and the CS-

DLMG models yield complementary results. The CS-ARDL models indicate that it is possible 

to obtain consistent, positive, significant and not seriously biased estimates of domestic and 

foreign R&D, while the CS-DLMG models show that, with more complete data, these results 

may be more significant and the magnitude larger. Therefore, dynamic models which are not 

misspecified and yield significant estimates of both R&D variables are chosen. We can also see 

that (i), long-run cointegration is achieved at the 1% level across CS-ARDL models; (ii) the 

speed of cointegration is higher, compared to the traditional ARDL models; and (iii), the 

majority of significant domestic and foreign R&D estimates from Table 5 are more sizable than 

those from the standard ARDL models.  

Similar results can be derived from models that include different weighing schemes for LP 

and CH spillover variables, except for those where a weighted CH foreign R&D variable with 

information on knowledge transmission from all countries has been incorporated. In that case, 

the CS-ARDL and CS-DLMG models are not as complementary as the models which include 

other spillover variables, insofar as most of the domestic R&D coefficients from the CS-ARDL 

models are insignificant and low (even for those which include 2 lagged cross-section averages), 

while the opposite happens with the CS-DLMG models. Therefore, under certain weighting 

configurations, the inclusion of the CH variable in the model may affect the domestic R&D 

estimates (the results are shown in section 4 of the online supplement). 

 

7. Discussion 

 

The empirical findings from the static and dynamic models reported in Tables 3 and 4 suggest 

that the CH framework ignores strong residual cross-section dependence due to unobserved 

effects, which may be correlated with the foreign and domestic R&D variables and lead to 
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biased and inconsistent estimates. We can therefore infer that trade-related R&D spillovers 

cannot be estimated through the coefficient of a weighted foreign R&D variable whenever the 

CH approach does not account for the interaction between R&D spillovers transferred by any 

channel and other unobserved economic effects. In addition to these findings, Table 3 shows 

that a model that pools coefficients across countries and accounts for unobserved effects might 

not properly address a possible source of misspecification.  

The results in Tables 3 and 5 and the online supplement show that several static and 

dynamic models which account for unobservables as sources of cross-section dependence and 

allow for heterogeneous technology coefficients yield favorable results for the weighted foreign 

R&D and domestic R&D estimates. However, that does not mean that those estimates represent 

large and genuine channel-specific R&D spillovers and returns to domestic R&D, respectively. 

Instead, as we anticipated in equation (8), those estimates embody a mixture of the effects of 

R&D variables and unobservables. This can easily be seen in the low degree of residual cross-

section dependence which characterizes those estimates. The fact that, in most cases, domestic 

and foreign R&D estimates when unobserved effects are accounted for are more sizable 

compared to those of a CH specification corroborates these findings.  

We can draw two conclusions from these results: first, when a weighted foreign R&D 

variable is intended to capture trade-related R&D spillovers in a situation where the interplay 

between R&D spillovers transferred by any channel and other unobserved common spillovers 

and shocks has been accounted for, its coefficient fails to capture pure channel-specific R&D 

spillovers because they cannot be separated from the effects of unobservables and at the same 

time be identified through the coefficient of the spillover regressor. In this case, the coefficient 

of a spillover variable might represent information about other factors which we cannot 

distinguish here. This problem is more pervasive for the estimates of the static models where a 

CH foreign R&D variable has been included, because the coefficient of this variable is subject 

to a high degree of residual cross-section dependence. 

Second, the estimates of the domestic R&D variable yield a mix of returns to domestic 

R&D and the effect of spillovers and shocks associated with this variable, showing that they are 

not independent of each other, in contrast to the CH approach. However, the inclusion of a 

weighted foreign R&D variable and the effect of its associated shocks may have affected the 

magnitude of the domestic R&D estimates, as we predicted in equation (8). In fact, additional 

results of the static and dynamic CCEMG models, which incorporate a weighted CH foreign 

R&D variable which allows for knowledge diffusion from all the countries of the sample, show 

drastic changes in the domestic R&D estimates compared to the estimates of other models. 

 

8. Conclusion 

The approach of Coe and Helpman (1995), which has been widely employed to estimate 

channel-specific R&D spillovers and aggregate returns to domestic R&D in studies of  

international R&D spillovers, rests on two assumptions: (i) that the interplay between R&D 

spillovers transferred by any channel and other unobserved common spillovers and shocks does 

not bring about error cross-section dependence; and (ii) a weighted foreign R&D variable 

should be imposed to capture genuine channel-specific R&D spillovers, where it is assumed that 

these spillovers do not arise from unobservables, which remain neutral to TFP and R&D, but 

only arise from the spillover variable. 

Yet, the CH framework does not clarify how a spillover variable can technically separate 

knowledge flows from other unobserved common effects, and how its coefficient can capture 

genuine channel-specific R&D spillovers: it forgets that this sort of effect might arise together 
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with other unobserved effects common across countries as sources of cross-section dependence. 

The coefficient of a spillover variable in this case might represent other sorts of effects, different 

from pure R&D spillovers. By contrast, we have found that disregarding the interaction between 

R&D spillovers and other unobserved effects yields inconsistent domestic and weighted foreign 

R&D estimates since unobservables may be strongly cross-sectionally correlated with the 

variables of the model.  

There is also no empirical justification for introducing a weighted foreign R&D variable 

when the simultaneous effect of unobserved spillovers and shocks is regarded. In the first place, 

since this variable cannot successfully separate R&D spillovers from unobservables, its 

coefficient fails to capture genuine channel-specific knowledge spillovers; and in the second, 

the estimates of the domestic R&D, which yield a mix of returns to domestic R&D and 

unobserved factors associated with domestic R&D, are affected by the unobserved effects which 

are associated with the weighted foreign R&D variable. 

In accordance with these findings, the use of a weighted foreign R&D regressor might not 

be suitable for estimating channel-specific R&D spillovers within the abovementioned 

scenarios. Therefore, more research needs to be done on new approaches which estimate trade-

related and channel-specific R&D spillovers in general in an empirical framework which would 

account for the interplay between this effect, R&D spillovers transferred by other channels, and 

other unobserved common macro and microeconomic spillovers and shocks associated with 

productivity and R&D. Identifying the effect of R&D spillovers from other unobserved effects 

is essential for drafting sound policies for R&D adoption in developing countries. 

We agree with Keller (2010) when he writes about the importance of distinguishing the 

effects of knowledge spillovers from those of other possibly unobserved effects in analyzing 

technology spillovers from vertical FDI (which can easily be applied to trade and other channels 

of transmission of knowledge): “it will be crucial to separate true technology spillovers from 
arms-length technology transactions, linkage effects, and measurement spillovers associated 

with vertical FDI, because the case for public policy intervention rests with the former, not the 

latter.” 
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Notes

                                                           
1
 In the present paper, the term “total factor productivity” is equivalent to “productivity.”  

2
 A brief review of this literature is discussed in section 1 of the online supplement. 

3
 Hereafter I will use the terms “unobserved common spillovers and shocks,” “unobserved 

common factors,” “unobserved common effects,” “unobservables” and similar words 
interchangeably. 
4
 We present additional results in an online supplement using both a LP and a CH weighted 

foreign R&D variable with several weighting configurations. 
5
CH define TFP as log 𝑌 − 𝜉 log 𝐾 − (1 − 𝜉) log 𝐿, where 𝑌 is the GDP, 𝐾 the capital stock, 𝐿 

the available labor force, and 𝜉 is the share of capital in GDP. In the context of the present 

article, however, TFP is defined differently (see the appendix for more details).  
6
 CH argue that equation (1) may not capture the role of international trade because the weights 

are fractions that add up to one so that they do not properly show the level of imports. 

Therefore, they propose another model where they multiply the foreign R&D variable and the 

level of imports as a measure of openness. However, in the present paper an openness variable 

does not interact with the foreign R&D variable. Instead, I follow the basic framework found in 

the literature because this will be sufficient to show the implications of disregarding the 

interaction between R&D spillovers and other unobserved spillovers and shocks in the CH 

specification. 
7
 According to Hall et al. (2009), R&D pecuniary spillovers arise through transactions between 

firms which produce new or improved intermediate goods at prices which reflect less than the 

total value of the progress incorporated.  
8
 According to Chudik and Pesaran (2013b) the overall exponent α can be defined as 𝛼 =𝑚𝑎𝑥(𝛼1, … , 𝛼𝑚). 

9
 In accordance with Engle et al. (1983), a process that is weakly exogenous is characterized by 

(i) a reparametrization of the parameters of interest and (ii) a (classical) sequential cut condition. 

This validates the idea of making inference conditional on the regressors; however, it is worth 

noting that Granger causal feedback effects may implicitly arise at some point. A process that is 

strictly exogenous, on the other hand, is characterized by weak exogeneity plus Granger 

noncausality from a dependent variable onto the regressors (the latter is essential to validate 

forecasting the independent variables and then forecast the dependent variable conditional on 

leads of regressors), i.e. there are no Granger causal feedbacks.  
10

 Even though we account for the impact of the interplay between unobserved common effects 

using the CCE estimator, this approach does not allow us to study the specific nature of each of 

those unobserved effects. For an accurate estimate of channel-specific R&D spillovers, more 

research on this aspect needs to be done. 
11

 This is because cross-section averages pool information on markets, i.e. they pool the past and 

current views of economic agents on the constitution of covariates. Further, Pesaran and Tosetti 

(2011) state that the effects of temporal and spatial correlations due to spatial and/or unobserved 

common factors are eliminated by the addition of cross-section averages. 
12

 The CCE approach to static models has several econometric advantages. First, it does not 

require prior knowledge of the number of unobserved common factors (Pesaran 2006); second, 

CCE estimates are consistent even when there is serial correlation in errors (Coakley et al. 

2006); third, it is consistent and asymptotically normal when the idiosyncratic errors are 

characterized by a spatial process (Pesaran and Tosetti 2011) and when errors are subject to a 

finite number of unobserved strong effects and an infinite number of weak and/or semi-strong 

unobserved common effects so long as that certain conditions on the factor loadings are satisfied 
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(Chudik et al. 2011); fourth, the CCE estimator with either stationary or nonstationary factors 

has a similar asymptotic distribution when they are cointegrated, and even the latter could be 

noncointegrated (Kapetanios et al. 2011); and fifth, it can be extended to unbalanced panels 

(Chudik and Pesaran 2013b). 
13

 Short-run estimates will be available upon request. 
14

 In this model we assume that lags are the same across variables and countries because, as 

stated in Chudik et al. (2013), this helps to reduce the adverse effects of the selection of data 

which may be subject to the use of lag order selection procedures, such as the Akaike or 

Schwarz criteria.  
15

In this case, the coefficients 𝛅𝑖𝑙 are exponentially decaying due to 𝐴𝑖(𝐿). 
16

Brazil, Russia, India and China. 
17

 However, Pesaran et al. (2013) demonstrate that the Pesaran (2007) unit root test shows size 

distortions if there is more than one common factor. Consequently, it would be desirable in 

future empirical studies to implement either of the second generation unit root tests proposed by 

Pesaran et al. (2013), which have been designed to account for multiple unobserved common 

factors, even though no Stata routine has been developed so far: namely, the CIPS unit root test 

in the presence of multifactor error structure, or alternatively, the CSB Sargan-Bhargava test, 

augmented with cross-sectional averages, which has a better performance for smaller samples in 𝑇.  
18

 Results of the implementation of this test on variables are presented in the online supplement. 

Results of this test on the residuals of static models are available upon request. 
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# Country TFP Coverage Rd Coverage Rf Coverage # Country TFP Coverage Rd Coverage Rf Coverage

1 Argentina 42 1970-2011 42 1970-2011 42 1970-2011 26 Italy 42 1970-2011 42 1970-2011 42 1970-2011

2 Australia 42 1970-2011 38 1973-2010 42 1970-2011 27 Japan 42 1970-2011 42 1970-2011 42 1970-2011

3 Austria 42 1970-2011 42 1970-2011 42 1970-2011 28 Korea 42 1970-2011 42 1970-2011 42 1970-2011

4 Brazil 42 1970-2011 38 1973-2010 42 1970-2011 29 Malaysia 42 1970-2011 24 1988-2011 42 1970-2011

5 Bulgaria 42 1970-2011 32 1980-2011 42 1970-2011 30 Mexico 42 1970-2011 42 1970-2011 42 1970-2011

6 Canada 42 1970-2011 42 1970-2011 42 1970-2011 31 Netherlands 42 1970-2011 42 1970-2011 42 1970-2011

7 Chile 42 1970-2011 32 1979-2010 42 1970-2011 32 New Zealand 42 1970-2011 40 1972-2011 42 1970-2011

8 China 42 1970-2011 24 1988-2011 42 1970-2011 33 Norway 42 1970-2011 42 1970-2011 42 1970-2011

9 Colombia 42 1970-2011 41 1971-2011 42 1970-2011 34 Panama 42 1970-2011 25 1986-2010 42 1970-2011

10 Costa Rica 42 1970-2011 38 1974-2011 42 1970-2011 35 Peru 42 1970-2011 34 1971-2004 42 1970-2011

11 Cyprus 42 1970-2011 32 1980-2011 42 1970-2011 36 Philippines 42 1970-2011 38 1970-2007 42 1970-2011

12 Denmark 42 1970-2011 39 1973-2011 42 1970-2011 37 Poland 42 1970-2011 27 1985-2011 42 1970-2011

13 Ecuador 42 1970-2011 39 1970-2008 42 1970-2011 38 Portugal 42 1970-2011 42 1970-2011 42 1970-2011

14 Egypt 42 1970-2011 39 1973-2011 42 1970-2011 39 Romania 24 1988-2011 23 1989-2011 42 1970-2011

15 Estonia 22 1990-2011 20 1992-2011 20 1992-2011 40 Russia 22 1990-2011 22 1990-2011 20 1992-2011

16 Finland 42 1970-2011 42 1970-2011 42 1970-2011 41 Singapore 42 1970-2011 42 1970-2011 42 1970-2011

17 France 42 1970-2011 42 1970-2011 42 1970-2011 42 Spain 42 1970-2011 42 1970-2011 42 1970-2011

18 Germany 42 1970-2011 41 1971-2011 42 1970-2011 43 Sweden 42 1970-2011 42 1970-2011 42 1970-2011

19 Greece 42 1970-2011 38 1970-2007 42 1970-2011 44 Switzerland 42 1970-2011 39 1970-2008 42 1970-2011

20 Hungary 42 1970-2011 42 1970-2011 42 1970-2011 45 Thailand 42 1970-2011 40 1970-2009 42 1970-2011

21 Iceland 42 1970-2011 40 1970-2009 42 1970-2011 46 Turkey 42 1970-2011 42 1970-2011 42 1970-2011

22 India 42 1970-2011 38 1970-2007 42 1970-2011 47 United Kingdom 42 1970-2011 42 1970-2011 42 1970-2011

23 Indonesia 42 1970-2011 38 1972-2009 42 1970-2011 48 United States 42 1970-2011 42 1970-2011 42 1970-2011

24 Ireland 42 1970-2011 42 1970-2011 42 1970-2011 49 Uruguay 42 1970-2011 41 1970-2010 42 1970-2011

25 Israel 42 1970-2011 42 1970-2011 42 1970-2011 50 Venezuela 42 1970-2011 31 1970-2000 42 1970-2011

2042 1873 2056Total Obs

TABLE 1

Notes:  Variables: Log Total Factor Productivity (TFP), Log Domestic R&D (Rd) and Log Foreign R&D (Rf) capital stocks. All monetary variables are 

expressed in constant millions of US dollars of 2005 based on purchasing power parity (PPP). Definitions of these variables in the appendix.

Sample description
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VARIABLES Mean Median SD Minimum Maximum

Levels

Total Factor Productivity 0.96 0.97 0.14 0.57 1.60

Domestic R&D Capital Stock (million PPP 

constant 2005 dollars) 70858.70 9109.51 218128.50 48.66 2220345.00

Foreign R&D Capital Stock (million PPP 

constant 2005 dollars) 9325.21 3062.48 16401.86 4.45 174997.40

Logarithms

Log Total Factor Productivity -0.05 -0.03 0.14 -0.56 0.47

Log Domestic R&D Capital Stock (million 

PPP constant 2005 dollars) 9.20 9.12 2.06 3.88 14.61

Log Foreign R&D Capital Stock (million 

PPP constant 2005 dollars) 7.99 8.03 1.63 1.49 12.07

Growth

Δ Total Factor Productivity 0.00 0.01 0.03 -0.25 0.19

Δ Domestic R&D Capital Stock (million 
PPP constant 2005 dollars) 0.04 0.04 0.06 -0.16 0.34

Δ Foreign R&D Capital Stock (million PPP 
constant 2005 dollars) 0.07 0.06 0.17 -1.09 3.09

TABLE 2

Notes:  These descriptive statistics refer to the sample of N = 50 countries from 1970 to 2011.

Summary statistics
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Estimators POLS 2FE FD CCEP MG CDMG

(i) (ii)

TFP dependent variable

Independent variables

Rd -0.015*** 0.075*** 0.060*** 0.071*** 0.039* 0.061* 0.054** 0.090***

std errors (0.003) (0.005) (0.015) (0.009) (0.020) (0.036) (0.023) (0.021)

Rf 0.021*** 0.060*** 0.000 0.037*** 0.031* 0.025 0.057*** 0.061***

std errors (0.005) (0.008) (0.010) (0.009) (0.017) (0.026) (0.016) (0.016)

CD-test -0.28 119.82† 183.45† 28.1† 13.00† 3.63† -0.21 -0.59

Order of Integration I(1) I(1) I(1) I(1) I(1) I(1) I(0) I(0)

RMSE 0.142 0.094 0.029 0.045 0.058 0.066 0.035 0.032

NXT 1871 1871 1821 1871 1871 1871 1871 1871

N 50 50 50 50 50 50 50 50

CCEMG

TABLE 3

Notes:  log total factor productivity (TFP) is the dependent variable. log domestic R&D capital stock (Rd) and log foreign R&D 

capital stock defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (Rf) (allowing for knowledge diffusion from all 

countries of the sample) are the independent variables. A constant term is included but not reported. Estimators: 1) POLS Pooled 

OLS (augmented with T-1 year dummies). 2) 2FE: Two-way fixed effects (augmented with T-1 year dummies and N-1 country 

dummies). 3) FD: First Differences (augmented with T-2 year dummies because when differencing, a dummy for a year is 

dropped to avoid perfect multicollinearity). 4) CCEP: Pooled Pesaran (2006) augmented with common country dummies and 

cross-section averages, 5) MG: Mean Group. 6) CDMG: Cross-sectionally demeaned MG. 7) CMG: Common Correlated Effects 

MG Pesaran (2006) augmented with cross-section averages is presented in two versions: (i) without a time trend, and (ii) 

including a time trend. White heteroskedasticity-robust standard errors are reported in parentheses. Levels of significance are 

represented by * 10%, ** 5% and *** 1%. Diagnostics: (evaluated at the 5% level of significance, full results of the following 

tests are available on request): 1) CD test: The Pesaran (2015) test which is based on Pesaran (2004), for which Ho: Cross-

section weak dependence of the residuals. 2) CIPS test: The Pesaran (2007) test evaluates the order of integration of the residuals 

where I(0): stationary, I(1): nonstationary. The root mean squared error (RMSE), NXT number of country-time observations and 

N number of countries are also included. † indicates that the null hypothesis of weak cross-section dependence of the residuals at 
the 5% level is rejected.                                                                                                                                                         

Static panel data models
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Estimators POLS 2FE MG

1 lag 2 lags 3 lags 1 lag 2 lags 3 lags 1 lag 2 lags 3 lags

TFP dependent variable

Independent variables

Rd -0.013 -0.001 0.008 -0.114*** -0.015 0.005 0.025 0.059** 0.060*

std errors (0.011) (0.011) (0.010) (0.043) (0.036) (0.036) (0.030) (0.029) (0.032)

Rf 0.022 0.007 -0.003 0.077* 0.053 0.031 0.024 -0.004 -0.007

std errors (0.014) (0.014) (0.013) (0.045) (0.037) (0.034) (0.028) (0.029) (0.031)

Cointegration coefficients -0.058*** -0.054*** -0.056*** -0.057*** -0.069*** -0.070*** -0.235*** -0.298*** -0.345***

std errors (0.005) (0.005) (0.005) (0.008) (0.008) (0.008) (0.020) (0.025) (0.033)

CD-test 156.35† 122.15† 122.02† 148.78† 115.62† 117.05† 19.26† 16.52† 14.49†
RMSE 0.028 0.027 0.026 0.028 0.027 0.026 0.023 0.021 0.019

NXT 1821 1771 1721 1821 1771 1721 1821 1771 1721

N 50 50 50 50 50 50 50 50 50

TABLE 4

Notes:  log total factor productivity (TFP) is the dependent variable. log domestic R&D capital stock (Rd)  and log foreign R&D capital stock defined by 

Lichtenberg and van Pottelsberghe de la Potterie (1998) (Rf) (allowing for knowledge flows from all the countries of the sample) are the independent 

variables. A constant term is included but not reported. Long run estimates and cointegration coefficients are reported. The estimators for autoregressive 

distributed lagged (ARDL) panel data specifications, which are represented by a Error Correction Model (ECM), are the following: 1) Dynamic ARDL 

POLS Pooled OLS (augmented with T-1 year dummies). 2) Dynamic ARDL 2FE: Two-way fixed effects (augmented with T-1 year dummies and N-1 

country dummies). 3) Dynamic ARDL MG: Mean Group. White heteroskedasticity-robust standard errors are reported in parentheses. The POLS, 2FE and 

MG models are augmented with p=1, 2 and 3 lagged covariates. Levels of significance are represented by * 10%, ** 5% and *** 1%. Diagnostics: See 

Table 3, except for the CIPS test.                                                                                                                                                                                

Dynamic ARDL panel data models assuming cross-section independence of errors, in a ECM representation
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Estimators CS-ARDL (ECM) CS-DLMG

(i)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

TFP dependent variable

Independent variables

Rd 0.023 0.055* 0.050 0.066** 0.085** 0.071*** 0.096*** 0.109***

std errors (0.029) (0.029) (0.037) (0.032) (0.035) (0.018) (0.028) (0.035)

Rf 0.083** 0.070** 0.082** 0.079** 0.065** 0.052** 0.068*** 0.080***

std errors (0.033) (0.031) (0.037) (0.033) (0.033) (0.021) (0.024) (0.028)

Cointegration coefficients -0.436*** -0.528*** -0.626*** -0.395*** -0.469***

std errors (0.040) (0.057) (0.077) (0.032) (0.046)

CD-test -1.61 0.35 0.70 -1.34 0.34 -1.64 -0.90 -0.30

RMSE 0.013 0.011 0.013 0.015 0.013 0.021 0.018 0.017

NXT 1720 1640 1579 1791 1735 1758 1741 1687

N 48 45 43 50 48 50 50 48

Notes: log total factor productivity (TFP) is the dependent variable. log domestic R&D capital stock (Rd)  and log foreign R&D capital stock 

defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (Rf) (allowing for R&D transmission from all the countries of the sample) 

are the independent variables. A constant term is included but not reported. Long run estimates and cointegration coefficients are reported. 

The estimators for autoregressive distributed lagged (ARDL) panel data specifications, which are represented by a Error Correction Model 

(ECM), are the following: 1) Dynamic cross-sectional ARDL Chudik and Pesaran (2013a) (CS-ARDL-i) (augmented with three lags of the 

cross-sectional averages of the dependent and independent variables). 2) Dynamic cross-sectional ARDL (CS-ARDL-ii) (augmented with two 

lags of the cross-sectional averages of the dependent and independent variables).  3) Cross-sectional DL Chudik et al. (2013) Mean Group: 

CS-DLMG (augmented with three lags of the cross-sectional averages of the independent variables). White heteroskedasticity-robust standard 

errors are reported in parentheses. All models include a time trend. CS-ARDL (i) models are augmented with p=1, 2 and 3 lagged dependent 

and independent variables. CS-ARDL (ii) models are augmented with p=1 and 2 lags. CS-DLMG models are augmented with p=1, 2 and 3 

lagged independent variables. Levels of significance are represented by * 10%, ** 5% and *** 1%. Diagnostics: See Table 3, except for the 

CIPS test.                                                                                                                                                                                       

TABLE 5

(ii)

Dynamic panel data models accounting for cross-section dependence of errors, in a ECM representation
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Appendix 

Data for TFP at constant national prices (2005=1) have been taken from the Penn World Table 

(PWT) 8.0 which, according to Inklaar and Timmer (2013), can be regarded as a measure of 

productivity growth in the following equation: 

 

 𝑅𝑇𝐹𝑃𝑡,𝑡−1𝑁𝐴 ≡ 𝑅𝐺𝐷𝑃𝑡𝑁𝐴𝑅𝐺𝐷𝑃𝑡−1𝑁𝐴 𝑄𝑡,𝑡−1𝑇⁄  (A.1) 

 

where RTFP and RGDP are the Total Factor Productivity and the GDP, respectively, both based 

on constant national prices. 𝑄𝑡,𝑡−1𝑇  is the Törnqvist quantity index of factor inputs. To construct 

RTFP, labor shares and depreciation rates of the capital stock vary across countries and over 

time. Further, initial capital stock starts from a capital/output ratio.  

The Domestic R&D Capital Stock (𝑅𝑖𝑡𝑑 ) is defined at constant PPPs of 2005 in millions of 

US dollars. This is constructed using the perpetual inventory method proposed by Klenow and 

Rodriguez-Clare (1997), where the initial observation starts in the same way as the 

capital/output ratio. This is as follows: 

 

 (𝑅𝑑 𝑌)⁄ 𝑖0 = (𝑅𝑒𝑥 𝑌)⁄ 𝑖 (⁄ 𝛿𝑅𝑑 + 𝑔𝑖) (A.2) 

 

where (𝑅𝑑 𝑌)⁄ 𝑖0 is the ratio of the domestic R&D capital stock to GDP in the initial period 0 in 

country i, (𝑅𝑒𝑥 𝑌)⁄  is the average Gross Expenditure on R&D (GERD) to GDP, divided by the 

sum of (i), the domestic R&D capital stock rate of depreciation 𝛿𝑅𝑑, which is set as 0.15, 

following Griliches (1998); and (ii), an estimate of the average growth rate of the GDP of 

country 𝑖 from 1981-1990 𝑔𝑖 (for a country whose GDP series begins in 1990, the average 

growth is measured by starting at some point between 1990 and 2000). To find the initial 

domestic R&D capital stock, the equation (A.2) is multiplied by the initial GDP. Next, the 

following equation is used to complete the rest of the series:   

 

 𝑅𝑖𝑡𝑑 = (1 − 𝛿𝑅)𝑅𝑖,𝑡−1𝑑 + 𝑅𝑒𝑥𝑖𝑡 (A.3) 

 

where 𝑅𝑖𝑡𝑑  is the domestic R&D capital stock and 𝑅𝑒𝑥𝑖𝑡 the GERD. 

To construct these series, I take data on GERD as a percentage of GDP from four different 

sources in the following order: (i) The UNESCO Institute for Statistics on Science, Technology 

and Innovation Database from 1996-2010. (ii) The UNESCO Statistical Yearbook (1999) from 

1980-1995 (and for some countries to 1996). This source defines GERD as a percentage of 

GNP. Therefore, to convert it to a percentage of GDP, it has been multiplied by the Ratio of 

GNP to GDP (divided by 100) from the PWT 7.1. (iii), The OECD Main Science and 

Technology Indicators Statistics database from 1980-2011. (iv) Lederman and Saenz (2005), 

which includes information on GERD as a percentage of GDP from different series of the 

UNESCO Statistical Yearbook. I take data from this source from 1970-2005.  

In the case of Finland, Greece, Iceland, Ireland, Portugal, Singapore, Sweden, Thailand, the 

United Kingdom and Uruguay, we have taken data for the period before 1970 from the fourth 

source to linearly interpolate them with post-1970 data to complete the data series from 1970 

onwards. Once this was done, pre-1970 observations were dropped. The data collection is 

summarized in Tables D1 and D2 in the online supplement. Missing data have been linearly 

interpolated according to the data availability of each country. Initial data on GERD as a 
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percentage of GDP were used to obtain the first observations for Domestic R&D capital stock. I 

multiplied this by the output-side real GDP at chained 2005 PPPs in millions of US dollars, a 

measure of the production possibilities of an economy, from the PWT 8.0. With this I obtained 

the PPP Converted Expenditure on R&D (GERD) at 2005 constant prices in millions of US 

dollars, and I used it to construct the rest of the Domestic R&D capital stock series. 

The weighted Foreign R&D Capital Stock (Rf) is defined by Lichtenberg and van 

Pottelsberghe de la Potterie (1998) as follows: 

 

 𝑅𝑖𝑡𝑓 = ∑ (𝑀𝑖𝑐 𝑌𝑐⁄ )𝑡 𝑅𝑐𝑡𝑑𝑖≠𝑐  (A.4) 

 

where 𝑀𝑖𝑐 is country i’s imports of goods and services from country 𝑐, 𝑌𝑐 is the GDP in country 𝑐 and 𝑅𝑐𝑡𝑑  is the domestic R&D capital stock. Data for 𝑀𝑖𝑐 were taken from the bilateral imports 

on a c.i.f. basis in US current dollars from the IMF Direction of Trade Statistics (DOTS). To get 

data for 𝑌𝑐, I multiplied the GDP at current national prices in local currency times the exchange 

rate of national currency per USD at the market value, both from the PWT8.0. As a result, the 

foreign R&D capital stock is defined at constant PPPs of 2005 in millions of US dollars. 

Foreign R&D capital stock is also measured according to Coe and Helpman (1995) as 

follows: 

 

 𝑅𝑖𝑡𝑓−𝐶𝐻 = ∑ 𝑤𝑖𝑐,𝑡  𝑅𝑐𝑡𝑑𝑖≠𝑐  (A.5) 

 

where 𝑤𝑖𝑐,𝑡 = (𝑀𝑖𝑐/ ∑ 𝑀𝑖𝑐𝑖≠𝑐 )𝑡 and ∑ 𝑤𝑖𝑐,𝑡 = 1𝑖≠𝑐 . 

 

 

 

 

 

 


