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Abstract

We consider the role of the nonlinear commuting cost function in determina-

tion of the equilibrium commuting pattern where all agents are mobile. Previ-

ous literature has considered only linear commuting cost, where in equilibrium,

all workers are indi¤erent about their workplace location. We show that this

no longer holds for nonlinear commuting cost. The equilibrium commuting

pattern is completely determined by the concavity or convexity of commuting

cost as a function of distance. We show that a monocentric equilibrium ex-

ists when the ratio of the �rm agglomeration externality to commuting cost is

su¢ciently high. Finally, we �nd empirical evidence of both long and short

commutes in equilibrium, implying that the commuting cost function is likely

concave.
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1 Introduction

How does the local labor market interact with commuting cost to produce the equi-

librium commuting pattern? In a model with identical commuters, can cross-

commuting, where one commuter�s path to their job strictly contains another com-

muter�s path, occur in equilibrium? In fact, Fujita and Thisse (2013, p. 201) state

that �in any spatial equilibrium con�guration, cross-commuting does not occur.� We

show in this paper that when commuting cost is strictly concave in distance, cross-

commuting is an equilibrium phenomenon.

For an empirical viewpoint, consider the 242 municipalities in Tokyo Metropolitan

Area consisting of Saitama, Chiba, Tokyo, and Kanagawa prefectures. If we regress

the municipal yearly wage in the manufacturing sector in 2012 on a quadratic function

of distance from Tokyo Station, we have:

wage = �0:0294 � distance2 + 1:49 � distance+ 429

(�2:26) (1:29) (18:8)

(t-statistics in parentheses)

That is, the wage is decreasing and concave in the distance. This is in accord with the

�ndings of Timothy and Wheaton (2001), where the wage is increasing and concave

in commuting time in Boston and Minneapolis St. Paul in 1990. We will attempt to

explain these phenomena using a simple theoretical model.

In general, the urban labor market interacts with commuting in interesting ways.

For instance, the wage arbitrage condition says that no one can gain by changing her

workplace location, given her residence location. In the literature, this statement is

further specialized to mean that each worker is indi¤erent to her workplace. It is

known that in order to satisfy this condition, one has to assume a linear commuting

cost, as in the previous literature such as Ogawa and Fujita (1980), Fujita and Ogawa

(1982), and Lucas and Rossi-Hansberg (2002).1 If the commuting cost is nonlinear,

the wage arbitrage condition does not hold, and hence, given her residence location,

each worker strictly prefers the one particular location of their workplace that max-

1Although Lucas and Rossi-Hansberg use a time cost of commuting that is exponential in com-

muting distance, by taking logarithms of their equations, for example (3.3) and (3.4), we obtain a

linear wage no-arbitrage equality.
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imizes her utility relative to other workplaces. In this case, there is no guarantee

that each worker can �nd a workplace so that the urban spatial labor market clears.

Nevertheless, we show in this paper that when the commuting cost is either strictly

convex or strictly concave in distance, the urban spatial labor market clears. Our

paper extends the literature in that we allow the commuting cost to be nonlinear in

distance and derive the equilibrium commuting pattern explicitly.

To be precise, our theoretical conclusions are as follows. If the commuting cost

function is increasing and convex in distance, then the equilibrium commuting pattern

is exclusively parallel, where every worker commutes the same distance2 and there is

no cross commuting. If the commuting cost function is increasing and concave in

distance, then the equilibrium commuting pattern is exclusively cross commuting.

Our next task in this work is to investigate whether cross commuting occurs in the

real world. More precisely, using commuter �ow data from Tokyo, we will empirically

test whether the actual commuting pattern is cross commuting or parallel commuting.

We �nd that cross commuting is prevalent.

Our main purpose here is to investigate commuting patterns as a function of com-

muting cost, accounting for interactions with the labor market. Hence we simplify

other aspects of our urban model. We leave to future work non-monocentric equi-

librium urban patterns as well as the investigation of equilibrium under commuting

cost functions that are neither convex nor concave. Analyses of these issues involve

solving complex systems of equations, and likely require computer simulations rather

than an analytical solution for tractability reasons.

The remainder of the paper is organized as follows. Section 2 gives our model,

Section 3 presents our theoretical results, whereas Section 4 presents the empirics.

An Appendix contains proofs of the results.

2For simplicity of this statement, we implicitly assume that the numbers of �rms and consumers

are the same and their quantity of land use is the same. Our model is more general than this.
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2 The model

2.1 Preliminaries

We build on Ogawa and Fujita (1980) by extending the model to nonlinear commuting

cost.3 In particular, we consider a city on a line. The equilibrium con�guration is

endogenous, but we give conditions su¢cient for it to be monocentric.4 The locations

of �rms and workers are denoted by y and x, respectively. The exogenous mass of

workers is N , whereas the exogenous mass of �rms is M . There is one unit of land

available at every location, so this is an example of a linear city. Let composite

consumption good be denoted by z and let s denote quantity of land, sw for workers

and sf for �rms. The wage paid by a �rm at location y is denoted w(y). The rent

paid per unit by a consumer at location x is denoted by r(x), whereas the rent paid

per unit by a �rm at location y is denoted by r(y).

The commuting cost for a consumer living at x but working at y is T (jx� yj) =

t � �(jx� yj), where t is the commuting cost parameter, �(0) = 0 and �(�) is twice

continuously di¤erentiable with �0 > 0. It represents the generalized cost of commut-

ing between x and y, consisting of both the pecuniary and time costs of commuting.

On the one hand, the pecuniary cost of commuting involves train fares and gasoline

prices and is normally increasing and concave in distance due to the presence of �xed

costs, for example the cost of a car or the cost of getting to a train station. On the

other hand, the time cost of commuting involves the opportunity cost of time and

fatigue from a long commute.5 Thus, from the perspective of non-pecuniary costs,

the commuting cost function is increasing and convex, especially when commuting

time is prohibitively long. Therefore, the functional form of the generalized cost of

commuting is unknown and subject to empirics.

To keep the model tractable and our focus on commuting cost, as is common in

3Although Ogawa and Fujita (1980) allow endogenous lot sizes for �rms in a technical sense, since

output of each �rm is assumed to be constant and there is a �xed coe¢cient production technology

in land and labor, in fact the land and labor demand of �rms are �xed.
4If �rms and workers are spatially integrated, then the only possible spatial equilibrium is where

each worker commutes distance 0. In that case, the equilibrium and model are not very interesting

for the purpose of analyzing commuting patterns.
5An exception is Fujita-sensei, who does most of his research on trains.
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this literature, we shall assume that factors are inelastic in supply and demand. This

will be made precise below.

2.2 Consumers

Each worker supplies 1 unit of labor inelastically, and will demand sw units of land

inelastically. To obtain this from primitives, we assume that the utility function has

the following form:

U(z; s) =

(
z if s � sw

�1 otherwise

The budget constraint faced by a consumer who lives at x but works at y is:

w(y) = z + r(x)s+ T (jx� yj)

Therefore, if the price of land is positive, the quantity of land consumed by a worker

at x is sw, whereas the consumption of composite good as well as the utility level of

a worker living at x but working at y is z(x; y):

z(x; y) = w(y)� r(x)sw � T (jx� yj)

A worker residing at x and working at y has indirect utility

V (x; y) = z(x; y) = w(y)� r(x)sw � T (jx� yj) (1)

2.3 Producers

Turning to the production side, let Q be �rm output and let l be labor input. Recall

that sf is �rm land use. The function A(y) is the �rm externality, which is increasing

in access to all other �rms in the business district. It is speci�ed as

A(y) = � � 

Z 1

�1

h (y0 � y)m(y0)dy0 (2)

where h � 0 is continuous and increasing, m(y0) is the endogenous measure of �rms

at location y0,  is an exogenous parameter representing the strength of the �rm

agglomeration externality, and � will be the maximum amount that can be produced.

Firms will demand N
M
units of labor inelastically and sf units of land inelastically.
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To derive this from primitives, the production function of a �rm located at y is given

by:

Q(l; s; y) =

(
A(y) if l � N

M
and s � sf

0 otherwise

The pro�t of a �rm locating at y is therefore given by

�(y) = A(y)� w(y)l � r(y)s (3)

Therefore, if wages and rents are positive, �rms will demand labor l = N
M
and land

s = sf . Then the indirect pro�t of a �rm locating at y is given by

�(y) = A(y)�
N

M
w(y)� r(y)sf = � (4)

where � � 0 represents the equilibrium pro�t of every �rm, since �rms are free to

choose their locations.

In what follows, we determine the endogenous variables: wages, land use, land

rent, and the commuting pattern.

2.4 Commuting pattern functions and spatial equilibrium

If x and y in the commuting cost function are additively separable (conditional on the

sign of the di¤erence), for example T (x� y) = t � jx� yj as in the previous literature,

then the wage arbitrage condition is met, namely V (x; y) is constant in y for each x.

Hence, it is not di¢cult to show existence of a spatial equilibrium. However, once the

transport cost function is slightly di¤erent from linear, which is very likely in the real

world, then we can no longer rely on the wage arbitrage condition. In this paper, we

explore spatial equilibrium when the transport cost is nonlinear in distance. In our

framework, indirect utility V (x; y) is given in equation (1). For reference, we shall

call the equilibrium indirect utility level V . Let y = f(x) be the commuting pattern

function indicating that all workers living at x commute to �rms locating at y.6

At equilibrium, we do not require that indirect utility V is constant for all x and

y, but rather:

V =
M

N

�
A(f(x))� �� r(f(x))sf

�
� r(x)sw � T (jx� f(x)j); 8x 2 R

6Implicit in this de�nition is the idea that all consumers at one location commute to the same

work location. In fact, this will hold in equilibrium.
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and

V � w(y)� r(x)sw � T (jx� yj); 8x; y 2 R

The densities of �rms and consumers with respect to location will be given by

m(y) and n(x), respectively. The transfer to absentee landlords, who are endowed

with all of the land but obtain utility only from consumption commodity is denoted

by R � 0.

De�nition 1 An allocation is a list of �ve measurable functions and a scalar:

fn(x);m(y); z(x); f(x); A(y);Rg, where the �rst three functions all have domain

R and range R+, the fourth and �fth functions have domain R and range R, whereas

R � 0.

De�nition 2 An allocation fn(x);m(y); z(x); f(x); A(y);Rg is called feasible if:

(i)
R1
�1
m(y)dy =M;

R1
�1
n(x)dx = N

(ii) m(y)sf + n(y)sw � 1 a.s. y 2 R

(iii)
R1
�1
A(y)m(y)dy =

R1
�1
[z(x) + T (jx� f(x)j)]n(x)dx+R

(iv) N
M

R
C
m(y)dy =

R
fx2Rjf(x)2Cg

n(x)dx for all Lebesgue measurable C � R

(v) A(y) = � � 
R1
�1
h (jy0 � yj)m(y0)dy0 a.s. y 2 R

The �rst condition represents population balance, the second condition represents

material balance in land, the third condition represents material balance in consump-

tion good, the fourth condition represents material balance in labor, whereas the last

condition says that the externality is correct given the distribution of �rms.

De�nition 3 A spatial equilibrium is a feasible allocation

fn(x);m(y); z(x); f(x); A(y);Rg and a price system fw(y); r(x)g, where w and r

are both measurable functions from R to R+, satisfying the following conditions:

(vi) For almost every x 2 R where n(x) > 0, f(x) solves:

z(x) = max
y
w(y)� r(x)sw � T (jx� yj) +

1

N

Z 1

�1

�(y0)m(y0)dy0

(vii) n(x) > 0 if and only if z(x) = supx02R z(x
0) � 0

(viii) m(y) > 0 if and only if �(y) = A(y)�w(y)N
M
� r(y)sf = supy02R�(y

0) � 0

(ix)
R1
�1
r(x)dx = R � 0
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The �rst condition represents consumer optimization over workplaces, the second

represents consumer optimization over residential location, the third condition rep-

resents producer optimization over locations, whereas the last condition represents

absentee landlord rent collection. For tractability and determinacy reasons, we as-

sume that the consumers own the �rms.

De�nition 4 We say that a spatial equilibrium fn(x);m(y); z(x); f(x); A(y); Rg, fw(y); r(x)g

is symmetric if all of its component functions (excluding R) are symmetric around 0.

We say that a symmetric spatial equilibrium fn(x);m(y); z(x); f(x); A(y)g, fw(y); r(x)g

is monocentric if there exists b 2 R+ such that m(y) > 0 only if jyj � b, and

n(x) > 0 only if jxj > b.

Assuming a symmetric monocentric con�guration m(y) = 1=sf , we compute the

derivatives of A for future use:

A0(y) = �


sf
[h (b+ y)� h (b� y)] Q 0 for y R 0

A00(y) = �


sf
[h0 (b+ y) + h0 (b� y)] < 0

De�nition 5 We say that a symmetric monocentric spatial equilibrium

fn(x);m(y); z(x); f(x); A(y); Rg, fw(y); r(x)g features parallel commuting if

for almost all x; x0 2 R+ with n(x); n(x
0) > 0 and x0 > x, then f(x0) > f(x). We say

that a symmetric monocentric spatial equilibrium fn(x);m(y); z(x); f(x); A(y); Rg,

fw(y); r(x)g features cross commuting if for almost all x; x0 2 R+ with n(x); n(x
0) >

0 and x0 > x, f(x) > f(x0).

3 Analysis of equilibrium

We distinguish two cases: commuting cost is convex and commuting cost is concave.

First, we perform preliminary calculations that are common to our analysis of both

cases to reduce repetition.
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3.1 Preliminaries

De�ne R =
R1
�1
r(x)dx. From the material balance condition for consumption good,

let

z(x) = z =
1

N

�
2

sf

Z b

0

A(y)dy �
2

sw

Z B

b

T (x� f(x))dx�R

�
(5)

Eventually, we must and shall specify z and R in terms only of parameters. Next,

we provide informal intuition for the correlation between the second derivative of the

commuting cost function and the commuting pattern.

Each worker residing at x chooses the best location y(� x) of a �rm. The

consumer optimization problem is speci�ed as:

z = max
y
w(y)� r(x)sw � T (x� y) +

1

N

Z 1

�1

�(y0)m(y0)dy0 (6)

with the �rst order condition:

w0(y) = �T 0(x� y) = �T 0(f�1(y)� y) (7)

Since the RHS is negative, the wage gradient w0(y) is always negative. That is, the

wage monotonically decreases from the city center y = 0. The higher wage near the

city center o¤sets longer commute.

Proposition 6 If the transport cost function is increasing and convex, then parallel

commuting is an equilibrium commuting pattern. If the transport cost function is

increasing and concave, then cross commuting is an equilibrium commuting pattern.

Proof. Since

w00(y)� T 00(f�1(y)� y) = �T 00(f�1(y)� y)(f�10(y)� 1)� T 00(f�1(y)� y)

= �T 00(f�1(y)� y)f�10(y)

the second-order condition is

�T 00(f�1(y)� y)f�10(y) < 0 (8)

If (8) is met for all y, y = f(x) is the global maximizer for every worker at residence

x.
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If f�10(y) > 0, then the second-order condition (8) is satis�ed only if the transport

cost function is strictly convex in distance. On the other hand, if f�10(y) < 0, then

(8) is satis�ed only if the transport cost is strictly concave.

Intuition for Proposition 6 is as follows. The horizontal axis is the location of the

worker�s job, y, whereas the vertical axis is in dollars. De�ne

z(y;x) = w(y)� r(x)sw � T (x� y) +
1

N

Z 1

�1

�(y0)m(y0)dy0

so that
@z(y;x)

@y
= w0(y) + T 0(x� y)

We have graphed @z(y;x)
@y

in Figure 1. This curve must be downward sloping according

to the second order condition. The �rst order condition (7) tells us that where this

curve crosses the horizontal axis at y� is the solution to the worker�s optimization

problem for given residence x. In the case where T is convex, when we increase x, for

each given y, T 0 rises. Hence the @z(y;x)
@y

curve shifts up, represented by the red curve,

and the new optimal job location y�+ must be to the right of y
�. In other words,

if we look at workers more distant from the �rms, they will pay higher commuting

cost. The marginal commuting cost is increasing in distance, so they will choose a job

location closer to the residences even though wages are lower. In the case where T is

concave, when we increase x, for each given y, T 0 falls. Hence the @z(y;x)
@y

curve shifts

down, represented by the green curve, and the new optimal job location y�� must be

to the left of y�. In other words, if we look at workers more distant from the �rms,

they will pay higher commuting cost. The marginal commuting cost is decreasing in

distance, so they will choose a job location farther from the residences where wages

are higher.

Due to the inelastic demand for land, the commuting pattern function will be

linear in both cases described above.

Set b = Msf
2
, B = Msf

2
+ Nsw

2
, m(y) = 1

sf
for y � b, m(y) = 0 for y > b, n(x) = 0

for x � b, n(x) = 1
sw
for b < x � B, n(x) = 0 for x > B. A(y) is de�ned by equation

(2) for this density m.
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3.2 Convex commuting cost

A monocentric equilibrium exists if the ratio 
t
of the �rm agglomeration externality

to the commuting cost is su¢ciently large:

Proposition 7 If T 00 > 0, for su¢ciently large 
t
, there exists a symmetric monocen-

tric equilibrium with only parallel commuting. Moreover, this is the only symmetric

monocentric equilibrium allocation.

The proof is in the Appendix. We can see from the proof that the sign of

Msf � Nsw coincides with the signs of the second derivatives of w (y) and r(x) in

the case of T 00 > 0. Since the business district is much smaller than the residential

district in reality, Nsw > Msf holds, and hence the wage and the residential land

rent are decreasing and concave in the distance from the city center. Otherwise, they

are decreasing and convex. On the other hand, business land rent is not necessarily

decreasing in distance from the city center.

In order to understand these conditions further, we specify functional forms as

follows: A(y) = � � 
R b
�b
(y � y1)

2 dy and T (jx� yj) = t (x� y)2. Then, special-

izing the calculations in the Appendix to this example, one su¢cient condition for

monocentric spatial equilibrium can be written as

�w(x) = (B � x)2 t� (B � b)2 t�
b (x� b) (Bx� 2bx+ bB) t

(B � b)2
+
M2 (x2 � b2) 

N
� 0

Since �w00(x) > 0, �w(x) is convex. Because �w(b) = 0, this condition is �w0(b) �

0, namely

t �
b (B � b)M2

(B2 � 2bB + 2b2)N
(9)

The second su¢cient condition for equilibrium can be written as

�z(y) � �N
�
b
�
B2 + y2

�
� b2 (B + 2y)�By2 + b3

�
t+M2b2 (B � b)  � 0

Because �z00(y) > 0, �z(y) is convex. Since the minimizer of �z(y) is negative, this

condition is �z(0) � 0, namely

t �
b (B � b)M2

(B2 � bB + b2)N
(10)
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The RHS of (9) is larger than that of (10). In fact, we have shown that the condition

su¢cient for a monocentric spatial equilibrium is given by (10). It exists when

the commuting cost t is small and the face-to-face communication cost  is large.

Substituting b = Msf
2
and B = Msf+Nsw

2
into the RHS of (10), it can shown that the

RHS is increasing inM and decreasing inN . Thus, a monocentric spatial equilibrium

exists if the number of �rms is large and the number of workers is small. Whereas

the former acts as an agglomeration force for �rms, the latter acts as a dispersion

force for workers.

3.3 Concave commuting cost

Proposition 8 If T 00 < 0, for su¢ciently large 
t
, there exists a symmetric mono-

centric equilibrium with only cross commuting. Moreover, this is the only symmetric

monocentric equilibrium allocation.

The proof is in the Appendix. The wage is decreasing and concave in the distance

from the city center and the residential land rent is decreasing and convex in the

distance from the city center. On the other hand, business land rent is not necessarily

decreasing in distance from the city center.

3.4 Land rent

Proposition 9 The equilibrium residential land rent is concave under convex trans-

port cost, whereas it is convex under concave transport cost.

According to the empirical literature such as McMillen (1996), the actual residen-

tial land rent is decreasing and convex in the distance from the city center. Therefore,

we conjecture that generalized transport costs of commuting are concave in distance

and the commuting pattern is cross commuting. This is to be tested statistically in

section 4.

We know that A0(y) < 0 since the access to all �rms decreases from the city center

and that w0(y) < 0 from (7). Hence, r0f (y) can be positive or negative. That is,

while the residential land rent monotonically decreases in the distance from the city

center, the business land rent can be non-monotonic.
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4 Empirics

In order to test whether parallel commuting or cross commuting is dominant, we

employ commuter �ows from the 2010 Population Census in Japan. We extract an

origin-destination matrix of 12 municipalities located along the Chuo Line commuter

railroad out of 62 total municipalities in Tokyo prefecture. In Figure 2, the 3 light

brown municipalities are in the central city whereas the 9 light green municipalities

are suburbs of the central city.

Since we are interested in commuting �ows from the suburbs to the central city,

distinguish between the 9 suburbs (S) and 3 central city municipalities (C). We

have constructed a S � C = 9 � 3 matrix of commuter �ows, whose elements are

denoted by cij. The 9 suburban municipalities and the 3 central city municipalities

are sorted according to the distance from Tokyo station. Roughly speaking, parallel

(respectively, cross) commuting is dominant if the elements near the diagonal, for

example c11, c21, c83 and c93, are larger (respectively, smaller) than those far from the

diagonal, for example c13, c23, c81 and c91. In order to examine this, we conduct a

test of Kendall�s � c statistic; see Kendall and Gibbons (1990). The test statistic is:

� c =
q (P �Q)

(q � 1)W 2

and the average standard error is

ASE =
2q

(q � 1)W 2

"
SX

i=1

CX

j=1

cij (Cij �Dij)
2 �

1

W
(P �Q)2

# 1

2

where

q = minfS;Cg; W =

SX

i=1

CX

j=1

cij

P =

SX

i=1

CX

j=1

cijCij; Q =

SX

i=1

CX

j=1

cijDij

Cij =
SX

h<i

CX

k<j

chk +
SX

h>i

CX

k>j

chk; Dij =
SX

h<i

CX

k>j

chk +
SX

h>i

CX

k>j

chk

It is known that � c=ASE is standard normally distributed (Götaş and ·I̧sçi, 2011;

Kendall and Gibbons, 1990).
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Using the commuter �ow data, we �nd that � c = �0:0136 and ASE = 0:00259.

Since � c=ASE = �5:26, � c is negative and signi�cantly di¤erent from zero, implying

that cross commuting is dominant in the Chuo Line.7 That is, there are many short-

distance commutes between nearby municipalities and many long-distance commutes

between distant municipalities as compared to intermediate-distance commutes. This

test also suggests that the transport cost in commuting is increasing and concave in

distance, possibly due to the presence of a �xed cost for infrastructure.

5 Conclusion

We have examined equilibrium of a rather standard model, similar to the previous

literature with the exception that we allow general convex or concave commuting cost

as a function of distance. We have shown that a monocentric equilibrium exists if

the ratio of the �rm agglomeration externality to the commuting cost is su¢ciently

large. Moreover, when commuting cost is convex, we have the following properties

of equilibrium: residential land rent and business district wages are decreasing and

concave in distance to the CBD, and there is exclusively parallel commuting. When

commuting cost is concave, we have the following: residential land rent is decreas-

ing and convex in distance to the CBD, business district wages are decreasing and

concave in distance to the CBD, and there is exclusively cross commuting. The

empirical evidence is broadly consistent with a concave commuting cost function and

cross commuting, in contrast with the statement of Fujita and Thisse cited in the

introduction.

Further work should focus on analyzing the model with even more general com-

muting cost functions, especially those that are neither globally convex nor concave.

As a preview, consider a more realistic commuting cost function that is concave for

shorter distances but convex for longer distances, with exactly one in�ection point at

an intermediate distance. Our conjecture is that there will be cross commuting for

shorter distances but parallel commuting for longer distances, with a discontinuity

in the commuting pattern function at the in�ection point, but rents and wages are

7Using data from 1995, we have obtained almost the same result: � c = �0:0149, ASE = 0:00228,

and � c=ASE = �6:54.
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continuous everywhere but not necessarily di¤erentiable everywhere.

Appendix

Proof of Proposition 7
We focus on locations in R+; the prices and allocations for the other locations are

de�ned symmetrically. The technique of proof that equilibrium exists is guess and

verify. Set b = Msf
2
, B =

Msf
2
+ Nsw

2
, m(y) = 1

sf
for y � b, m(y) = 0 for y > b,

n(x) = 0 for x � b, n(x) = 1
sw
for b < x � B, n(x) = 0 for x > B. A(y) is de�ned

by equation (2) for this density m. For b < x � B, de�ne

f(x) =
Msf
Nsw

(x� b) (11)

The function f is arbitrary otherwise. Hence, for 0 � y � b,

f�1(y) =
Nsw
Msf

y + b (12)

For x > B, de�ne r(x) = 0.

There are two cases to consider:

(i) Nsw 6= Msf . We shall �nd an explicit expression for equilibrium rent on the

portion of the city where consumers live. This involves integrating (7), plugging

back into equation (6) to eliminate w(y), and solving for r(x) using the fact that rent

must be 0 at the boundary of the city. The details are as follows:

Integrating (7), we obtain

w(y) = �

Z
T 0(f�1(y)� y)dy

= �
Msf

Nsw �Msf
T

�
Nsw �Msf

Msf
y + b

�
+ Ca

= �
b

B � 2b
T
�
f�1(y)� y

�
+ Ca (13)

where Ca is the constant of integration.
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From (6) and (13),

r(x) =
1

sw
[w(y)� T (x� y)� z]

=
1

sw

�
�

b

B � 2b
T
�
f�1(y)� y

�
+ Ca � T (x� y)� z

�

=
1

sw

�
�
B � b

B � 2b
T (x� f(x)) + Ca � z

�

Setting Cb =
1

sw
(Ca � z) ,

= �
N

2 (B � 2b)
T (x� f(x)) + Cb (14)

Since r(B) = 0, (14) leads to

Cb =
N

2 (B � 2b)
T (B � b)

Plugging Cb into (14) yields our ultimate expression for rent (17) below.

(ii) Nsw =Msf . We have

w(y) = �

Z
T 0(f�1(y)� y)dy

= �

Z
T 0
�
Nsw
Msf

y + b� y

�
dy

= �

Z
T 0 (b) dy

= �T 0 (b) y + Cc (15)

where Cc is again a constant of integration. From (6) and (15),

r(x) =
1

sw
[w(y)� T (x� y)� z]

=
1

sw
[�T 0 (b) y + Cc � T (x� y)� z]

=
1

sw

�
�T 0 (b)

Msf
Nsw

(x� b) + Cc � T (B � b)� z

�

=
1

sw
[�T 0 (b) x+ Cd]

where Cd = bT 0 (b) + Cc � T (B � b)� z. Since r(B) = 0, we obtain

r(x) =
1

sw
T 0 (b) (B � x) (16)
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Having analyzed both cases, we can summarize as follows:

For b < x � B, de�ne

r(x) =

(
N

2(B�2b)
[T (B � b)� T (x� f(x))] if Nsw 6=Msf

N
2(B�b)

T 0 (b) (B � x) if Nsw =Msf
(17)

Let Rw = 2

Z B

b

r(x)dx

For 0 � y � b, de�ne

w(y) = z + r(f�1(y))sw + T (f
�1(y)� y) (18)

Using the pro�t function (4) and the fact that the rent for consumers and producers

must be equal at b,

For 0 � y � b, de�ne

r(y) =
1

sf

�
A(y)� A (b) +

N

M
[w (b)� w(y)]

�
+ C1 (19)

where

C1 �

(
N

2(B�2b)
[T (B � b)� T (b)] if Nsw 6=Msf

N
2
T 0 (b) if Nsw =Msf

(20)

is a function of only exogenous parameters.

(i) If we substitute (13) into (19), we have

r(y) =
1

sf

�
A(y)� A (b) +

N

M

�
w (b) +

b

B � 2b
T
�
f�1(y)� y

�
� Ca

��
+ C1

=
1

sf

�
A(y) +

N

M

b

B � 2b
T
�
f�1(y)� y

��
+ C2

Using the fact that r(y) = r(x) evaluated at y = x = b,

C2 � �
N

2 (B � 2b)
T (b)�

M

2b
A (b)

(ii) If we substitute (15) into (19), we get

r(y) =
1

sf

�
A(y)� A (b) +

N

M
[w (b) + T 0 (b) y � Cc]

�
+ C1

=
M

2b

�
A(y) +

N

M
T 0 (b) y

�
+ C2
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Using the fact that r(y) = r(x) evaluated at y = x = b,

C2 � �
M

2b
A (b)

Hence,

r(y) =

(
M
2b

�
A(y)� A (b) + N

M
b

B�2b
[T (f�1(y)� y)� T (b)]

�
if Nsw 6=Msf

M
2b

�
A(y)� A (b) + N

M
T 0 (b) y

�
if Nsw =Msf

(21)

Let

Rf = 2

Z b

0

r(y)dy

Then R = Rf +Rw, a function of only exogenous parameters. So z can be found as

only a function of exogenous parameters by plugging R into (5). In addition, w(y)

(0 � y � b) is a function of only exogenous variables by using (18).

Notice that (4) and (19) imply that pro�ts are constant on 0 � y � b, namely

�(y) = � = A (b)�
N

M
w (b)� sfC1 (22)

Hence,

For 0 � y � b, de�ne

w(y) =
M

N

�
A(y)� �� r(y)sf

�

To show that this represents an equilibrium, we must verify that � � 0, z � 0, that

no consumer wishes to move to [0; b], and that no �rm wants to move to (b;1).

In the case of T 00 > 0 and Nsw 6=Msf ,8 the total land rent is

R = Rf +Rw = 2

Z b

0

r(y)dy + 2

Z B

b

r(x)dx

=
M

b

Z b

0

A(y)� A (b) +
N

M

b

B � 2b

�
T
�
f�1(y)� y

�
� T (b)

�
dy

+
N

B � 2b

Z B

b

[T (B � b)� T (x� f(x))] dx

=
M

b

Z b

0

A(y)� A (b) dy +
N

B � 2b

Z B

b

[T (x� f(x))� T (b)]
b

B � b
dx

+
N

B � 2b

Z B

b

[T (B � b)� T (x� f(x))] dx

=
M

b

Z b

0

A(y)� A (b) dy �
N

B � b

Z B

b

T (x� f(x)) dx+Ng

8The case Nsw =Msf is similar.
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where dy = Msf
Nsw

dx = b
B�b

dx and

g �
1

B � 2b
[(B � b)T (B � b)� bT (b)]

which is positive for all b 6= B=2. So (5) can be rewritten as

z =
1

N

�
M

b

Z b

0

A(y)dy �
N

B � b

Z B

b

T (x� f(x))dx�R

�

=
1

N

"
M
b

R b
0
A(y)dy � N

B�b

R B
b
T (x� f(x))dx� M

b

R b
0
A(y)� A (b) dy

+ N
B�b

R B
b
T (x� f(x)) dx�Ng

#

=
M

N
A (b)� g

The condition for spatial equilibrium is z � 0 or

MA (b) � Ng (23)

(i) First, we show that no �rm will want to move to the residential area. Suppose

a �rm deviates from the business district y 2 [0; b] to the residential district x 2 (b; B].

We compute the wage w(x) that makes a worker indi¤erent if she resides at x1 2 [b; B]

but shifts her workplace from y 2 [0; b] to x 2 [b; B]. We focus on the case: x � x1.

The case x > x1 can be ruled out because a worker residing at x1 = x� � must pay

higher land rent than a worker residing at x1 = x+� for all � > 0 due to negative rent

gradient r(x) in the residential district. That is, the latter worker always achieves

a higher utility level, since compared to the former, their wages are the same, their

land rent is lower, and their commuting cost is the same. So if a consumer residing

at x1 = x � � is happier, so is a consumer residing at x1 = x + �. Hence we focus

only on the case: x1 2 [x;B].

If she works at y = f(x1) 2 [0; b], in equilibrium her consumption of composite

good is the same as the consumer who lives at B:

zb = w(f(x1))� r(x1)sw � T (x1 � f(x1)) +
1

N

Z 1

�1

�(y0)m(y0)dy0

= w(b)� T (B � b) +
1

N

Z 1

�1

�(y0)m(y0)dy0

from (6). On the other hand, if she works at x 2 [b; B], her consumption of composite

good is

za = w(x)� r(x1)sw � T (x1 � x) +
1

N

Z 1

�1

�(y0)m(y0)dy0
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In order to guarantee equal utility, these two consumptions should be the same zb =

za. That is, the wage o¤ered by a �rm at location x for a worker at location x1

should be

w(x) = w(b)� T (B � b) + r(x1)sw + T (x1 � x)

Then, the pro�t of a �rm relocating from y to x and paying this wage w(x) for a

worker living at x1 is

�(x; x1) = A(x)�
N

M
w(x)� r(x)sf

= A(x)�
N

M
[w(b)� T (B � b) + r(x1)sw + T (x1 � x)]� r(x)sf (24)

For equilibrium, this pro�t does not exceed �, which was obtained before relocation:

�(x; x1) � �; 8b � x � x1 � B (25)

We have
@�(x; x1)

@x1
=
N

M
[T 0 (x1 � f(x1))� T

0 (x1 � x)] > 0

because x1 � f(x1) > x1 � x and T 00 (x) > 0. This implies x1 = B is the maximizer

of �(x; x1). Hence, the no-deviation condition (25) is replaced with

�(x;B) � �; 8x 2 (b; B] (26)

which can be rewritten as

M
N
[A(b)� A (x)] + [T (B � x)� T (B � b)] + b

B�2b
[T (b)� T (x� f(x))] � 0 if Nsw 6=Msf

M
N
[A(b)� A(x)] + [T (B � x)� T (B � b)] + b

B�b
T 0 (b) (b� x) � 0 if Nsw =Msf

(27)

for all x 2 (b; B] by using (17) and (24). Observe that the term in the �rst brack-

ets is positive, whereas those in the second and third brackets are negative from

sgn [T (b)� T (x� f(x))] = �sgn (B � 2b). Condition (27) is rewritten as



t
� max

y; y1
F1(x; sf ; sw;M;N), where

F1(x; sf ; sw;M;N) �

8
>>>>>><
>>>>>>:

Nsf
M

Msf

Nsw�Msf

h

�(x�f(x))��
�

Msf

2

�i

��
�

Nsw
2
+
Msf

2
�x
�

+�(Nsw
2
)

R

Msf
2

�

Msf
2

h(x�y0)�h
�

Msf

2
�y0

�

dy0

if Nsw 6=Msf

Nsf
M

Msf

Nsw

h

�T 0
�

Msf

2

��

Msf

2
�x
�i

��
�

Nsw
2
+
Msf

2
�x
�

+�(Nsw
2
)

R

Msf
2

�

Msf
2

h(x�y0)�h
�

Msf

2
�y0

�

dy0

if Nsw =Msf
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and G1 is �nite and di¤erentiable with respect to x 2 (b; B]. Condition (27) is stricter

than condition (23) because plugging x = B into (27) yields

M [A(b)� A (B)] � Ng

where A (B) > 0.

(ii) Second, we consider no deviation condition of a worker. Suppose a worker

deviates to from the residential district x 2 [b; B] to the business district y 2 [0; b).

The consumption of composite good before deviation was

zb(y) = w(y)� r(f
�1(y))sw � T

�
f�1(y)� y

�
+
1

N

Z 1

�1

�(y0)m(y0)dy0

On the other hand, the consumption of composite good after deviation is

za(y; y1) = w(y)� r(y1)sw � T (jy � y1j) +
1

N

Z 1

�1

�(y0)m(y0)dy0

Let y1 = y�1 be the maximizer of za(y; y1). For a symmetric monocentric spatial

equilibrium, the consumption of composite good before deviation is not smaller than

that after deviation. That is,

zb(y) � za(y; y
�
1); 8y 2 [0; b) (28)

or

min
y1
[r(y1)sw + T (jy � y1j)]� r(f

�1(y))sw � T
�
f�1(y)� y

�
(29)

for all y 2 [0; b). Condition (29) is rewritten as



t
� max

y; y1
F2(y; y1; sf ; sw;M;N),

where F2(y; y1; sf ; sw;M;N)

�

8
>>>>>><
>>>>>>:

s2
f

sw

Nsw
Nsw�Msf

h

�
�

Msf

2

�

+�(Nsw
2
)��(f�1(y1)�y1)

i

��(jy�y1j)�
Msf

Nsw�Msf
�(f�1(y)�y)

R

Msf
2

�

Msf
2

h
�

Msf

2
�y0

�

�h(jy0�y1j)dy0

if Nsw 6=Msf

sf
sw

�Nsw
Msf

�
�

Msf

2

�

y1+�
0

�

Msf

2

��

Msf

2
+Nsw

2
�f�1(y)

�

��(jy�y1j)+�(f�1(y)�y)

R

Msf
2

�

Msf
2

h
�

Msf

2
�y0

�

�h(jy0�y1j)dy0

if Nsw =Msf

Hence, the su¢cient conditions for a symmetric monocentric spatial equilibrium is

given by (27) and (29).
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Next, we show that there is no cross commuting in any symmetric, monocentric

equilibrium. Thus, the equilibrium speci�ed above is the only one.

In equilibrium, for a worker residing at x to weakly prefer commuting to y instead

of ey, the following should hold:

w (y)� T (jx� yj) � w (ey)� T (jx� eyj)

In equilibrium, for a worker residing at ex to weakly prefer commuting to ey instead of
y, the following should hold:

w (y)� T (jex� yj) � w (ey)� T (jex� eyj)

Hence,

'(x) = T (jex� yj) + T (jx� eyj)� T (jx� yj)� T (jex� eyj) � 0 (30)

should hold for all x.

Suppose that there is cross commuting. Then for some ey < y � x < ex, we have

'0(x) = T 0 (x� ey)� T 0 (x� y)

This is positive because x � ey > x � y and T 00(x) > 0. We also get '(ex) = 0, and
thus '(x) < 0 for all x < ex, which contradicts '(x) � 0.
Hence there is only parallel commuting at a symmetric, monocentric equilibrium.

Thus, we conclude that the only such equilibrium is the one we have speci�ed.

Proof of Proposition 8
Similar to the previous proof, we focus on locations in R+. The technique of

proof that equilibrium exists is guess and verify. For b < x � B, de�ne

f(x) =
Msf
Nsw

(B � x)

The function f is arbitrary otherwise. Hence, for 0 � y � b,

f�1(y) = B �
Nsw
Msf

y

For x > B, de�ne r(x) = 0.
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Integrating (7), we obtain:

w(y) = �

Z
T 0(f�1(y)� y)dy

= �

Z
T 0
�
B �

B

b
y

�
dy

=
b

B
T
�
f�1(y)� y

�
+ Ca (31)

where once again Ca is a constant of integration.

From (6) and (31),

r(x) =
1

sw
[w(y)� T (x� y)� z]

=
1

sw

�
�
B � b

B
T (x� f(x)) + Ca � z

�

Setting Cb =
1

sw
(Ca � z)

= �
N

2B
T (x� f(x)) + Cb (32)

Observe that the residential land rent is decreasing and convex in x.

Since r(B) = 0 in (32), we get

Cb =
N

2B
T (B)

Plugging Cb into (32) yields our �nal expression for rent (33):

For b < x � B, de�ne

r(x) =
N

2B
[T (B)� T (x� f(x))] (33)

Using the pro�t function and the fact that the rent for consumers and producers must

be equal at b,

For 0 � y � b, de�ne

r(y) =
1

sf

�
A(y)� A (b) +

N

M
[w (b)� w(y)]

�
+
N

2B
T (B) (34)

If we substitute (31) into (34), we obtain

r(y) =
1

sf

�
A(y)� A (b) +

N

M

�
w (b)�

b

B
T
�
f�1(y)� y

�
� Ca

��
+
N

2B
T (B)
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Using r(y) = r(x) evaluated at y = x = b, we obtain

r(y) =
M

2b
[A(y)� A (b)]�

N

2B

�
T
�
f�1(y)� y

�
� T (B)

�
(35)

Then R = Rf +Rw, a function of only exogenous parameters. So z can be found as

only a function of exogenous parameters by plugging R into (5). In addition, w(y)

(0 � y � b) is a function of only exogenous variables by using (18).

Notice that (4) and (35) imply that pro�ts are constant on 0 � y � b, namely

�(y) = � = A (b)�
N

M
w (b)�

Nb

MB
T (B)

Hence,

For 0 � y � b, de�ne

w(y) =
M

N

�
A(y)� �� r(y)sf

�

To show that this represents an equilibrium, we must verify that � � 0, z � 0, that

no consumer wishes to move to [0; b], and that no �rm wants to move to (b;1).

As in the previous proof, we verify that what we have constructed is an equilib-

rium. In the case of T 00 < 0, the total land rent is

Rf +Rw = 2

Z b

0

r(y)dy + 2

Z B

b

r(x)dx

=

Z b

0

M

b
[A(y)� A (b)] dy +

N

B � b

Z B

b

[T (B)� T (x� f(x))] dx

So (5) can be rewritten as

z =
1

N

�
M

b

Z b

0

A(y)dy �
N

B � b

Z B

b

T (x� f(x))dx�R

�

=
M

N
A (b)� T (B)

The condition for spatial equilibrium is then given by

MA (b) � NT (B) (36)

which is similar to (23).

(i) First, we seek no deviation condition of a �rm. Suppose a �rm deviates to from

y 2 [0; b] to x 2 (b; B]. We compute the wage w(x) that makes a worker indi¤erent
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if she residing at x1 2 [b; B] shifts her workplace from y 2 [0; b] to x 2 [x1; B]. As

before, we can focus on the interval of x1 2 [x;B].

If she works at y = f(x1), her consumption of composite good is

zb = w(f(x1))� r(x1)sw � T (x1 � f(x1)) = w(0)� T (B) +
1

N

Z 1

�1

�(y0)m(y0)dy0

On the other hand ,if she works at x, her consumption of composite good is

za = w(x)� r(x1)sw � T (x1 � x) +
1

N

Z 1

�1

�(y0)m(y0)dy0

Because zb = za for equal utility, the wage o¤ered by a �rm at location x for a worker

at location x1 should satisfy

w(x; x1) = w(0)� T (B) + r(x1)sw + T (x1 � x)

The pro�t of a �rm relocating from y to x is

�(x; x1) = A(x)�
N

M
w(x; x1)� r(x)sf

= A(x)�
N

M
[w(0)� T (B) + r(x1)sw + T (x1 � x)]� r(x)sf

The no-deviation condition is given by

�(x; x1) � �; 8b � x; x1 � B

We have
@�(x; x1)

@x1
=
N

M
[T 0 (x1 � f(x1))� T

0 (x1 � x)] > 0

because x1 � f(x1) > x1 � x and T 00 (x) > 0. This implies x1 = B is the minimizer

of �(x; x1). Hence, the no-deviation condition (25) is replaced with

�(x;B) � �; 8x 2 (b; B] (37)

We have

�(x;B) = A(x)�
N

M
[w(0)� T (B) + T (B � x)]� r(x)sf

= A(x)� A(0) +
Nb

MB
[T (x� f(x))� T (B)] + � +

N

M
[T (B)� T (B � x)]
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Then, (37) can be rewritten as

M

N
[A(0)� A (x)] + [T (B � x)� T (B)] +

b

B
[T (B)� T (x� f(x))] � 0 (38)

for all x 2 (b; B]. This is rewritten as



t
� max

y; y1
G1(x; sf ; sw;M;N)

where G1(x; sf ; sw;M;N)

�
Nsf
M

Nsw
Nsw+Msf

�
�
Nsw
2
+

Msf
2

�
+

Msf
Nsw+Msf

� (x� f(x))� �
�
Nsw
2
+

Msf
2
� x

�

RMsf=2

�Msf=2
�h (jy0j) + h (x� y0) dy0

and G1 is �nite and di¤erentiable with respect to x 2 (b; B].

If we plug x = B into (38), we get

M [A(0)� A (B)]�NT (B) � 0

which is stricter than the previous condition (36).

(ii) Second, we consider no deviation condition of a worker. Suppose a worker

deviates to from x 2 [b; B] to y1 2 [0; b). The consumption of composite good before

deviation was

zb(y) = w(y)� r(f
�1(y))sw � T

�
f�1(y)� y

�

On the other hand, the consumption of composite good after deviation is

za(y; y1) = w(y)� r(y1)sw � T (jy � y1j)

Let y1 = y�1 be the maximizer of za(y; y1). For a symmetric monocentric spatial

equilibrium, the consumption of composite good before deviation is not smaller than

that after deviation. That is,

zb(y) � za(y; y
�
1); 8y 2 [0; b)

or

min
y1
[r(y1)sw + T (jy � y1j)]� r(f

�1(y))sw � T
�
f�1(y)� y

�
� 0 (39)

for all y 2 [0; b). This is rewritten as



t
� max

y; y1
G2(y; y1; sf ; sw;M;N)

where G2(y; y1; sf ; sw;M;N)

�
s2f
sw

Msf
Nsw+Msf

� (f�1(y)� y) + Nsw
Nsw+Msf

� (f�1(y1)� y1)� � (jy � y1j)
RMsf=2

�Msf=2
�h (jy0 � y1j) + h (Msf=2� y0) dy0
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and G2 is �nite and di¤erentiable with respect to y, y1 2 [0; b).

Hence, the conditions for a symmetric monocentric spatial equilibrium is given by

(38) and (39).

Next, we show that there is no cross commuting in any symmetric, monocentric

equilibrium. Thus, the equilibrium speci�ed above is the only one.

In equilibrium, for a worker residing at x to prefer commuting to y instead of ey,
the following should hold:

w (y)� T (jx� yj) � w (ey)� T (jx� eyj)

In equilibrium, for a worker residing at ex to prefer commuting to ey instead of y, the
following should hold:

w (y)� T (jex� yj) � w (ey)� T (jex� eyj)

Hence,

'(x) = T (jex� yj) + T (jx� eyj)� T (jx� yj)� T (jex� eyj) � 0 (40)

should hold for all x.

Suppose that there is parallel commuting. Then for some y < ey � x < ex, we
have

'0(x) = T 0 (x� ey)� T 0 (x� y) > 0

because x� ey < x� y and T 00(x) < 0. We also have '(ex) = 0, and thus '(x) < 0 for
all x < ex, which contradicts '(x) � 0.
Hence there is only cross commuting at a symmetric, monocentric equilibrium.

Thus, we conclude that the only such equilibrium is the one we have speci�ed.
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Figure 1:  Determination of the commuting pattern 
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