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1.  INTRODUCTION 

 A problem common to researchers is that of selecting a model among several 

competing alternatives. Model selection procedures have been an attractive field for 

research and various criteria have been proposed (see, for example, Weisberg, 1985,  

Linhart and Zuchini, 1986, Burnham and Anderson, 1998 and Cook and Weisberg, 

1999), especially for nested models. In assessing the quality of a fitted model the 

researcher must keep in mind two different and, in many cases competing, issues: the 

goodness of fit and the usefulness of the model for prediction.  

In trying to decide which of two competing models to use one must discern 

between two lines of thought. The first pertains to viewing the problem as a “best-fitting” 

model determination problem in the sense that a model is sought which is closest to the 

observed data. This, being the most common approach in regression model selection, 

considers some measure of the adequacy of the model to describe existing observations 

for constructing a model selection procedure. The second approach is entirely different 

from the first in that it takes account of the predictive adequacy of a model and aims at 

comparing it with that of an alternative model, thus leading to a comparative model 

evaluation test. (In the case of nested models this would correspond to a model 

specification test in the sense of MacKinnon (1983) and Royston and Thompson (1995)).  

While the statistical literature abounds in model selection procedures based on the 

descriptive ability of the competing models, it appears to be rather scant in compative 

evaluation tests based on the predictive ability of the models despite the fact that 

evaluating the forecasting potential of a model before this can be used for planning and 

decision making is of great importance. Some predictive approaches have been 

considered in various Bayesian contexts (see, for example, Gelfand and Dey, 1994, Laud 

and Ibrahim, 1995, Ibrahim and Laud, 1996). From a classical viewpoint, however, 

assessing the predictive abilities of contending models and using them for comparative 

evaluation appears to be a rather ignored issue. Such approaches have been considered by 

Geisser (1975), Snee (1977), Butler and Rothman (1980), Xekalaki and Katti (1984), 

Psarakis (1993), West and Cho (1995), West (1996), and Greenberg and Parks (1997), 

among others. The procedures proposed are based on some criteria which are evaluated 
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for all the competing models. The "selection" of the "best" model is based on optimizing 

the appropriate criterion. 

Xekalaki and Katti (1984) introduced an evaluation scheme of a sequential nature, 

based on the idea of scoring rules for rating the predictive behaviour of competing 

models in which the researcher's subjectivity plays an important role. Its effect is 

reflected through the rules according to which the performance of the model is scored 

and rated. 

 In this paper, an evaluation method is suggested which is again based on the use 

of a scoring rule but is free of the element of subjectivity. A scoring rule is suggested to 

rate the behaviour of a linear forecasting model for each of a series of n points in time. A 

final rating which embodies the step by step scores is then used as a statistic for testing 

the predictive adequacy of the model. This leads to a procedure for selecting between 

non-nested models, based on testing the hypothesis that the two models have the same 

forecasting potential. This procedure is somewhat different from the existing methods in 

the sense that it aims at selecting one of two competing models on the basis of their 

predictive performance and not of their descriptive ability. Further, it is shown that the 

theoretical setup of the new procedure, appropriately modified, can form the framework 

for the development of a model selection procedure based on the comparison of the 

descriptive potential of the competing models.  

The plan of the paper is as follows: In section 2, a statistic is proposed for 

comparing the predictive ability of two competing models. It is shown that its distribution 

is a generalized form of the F distribution which is obtained as a limiting case of the 

former. Properties of the derived distribution are also examined. Section 3 considers this 

statistic for constructing a test of the hypothesis that two models are equivalent in their 

predictive ability thus introducing a procedure for model selection on the basis of the 

predictive abilities of the competing models. The procedure is illustrated by a real data 

application. Simulation results concerning the ability of the procedure to identify the 

model with the best predictive ability are also given. Section 4 proposes the use of a 

statistic of a similar nature for testing whether two models are equivalent in their 

descriptive ability leading to a goodness of fit model selection procedure for non-nested 

models.  Simulation results reflecting the behaviour of the new procedure are reported. 
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Section 5 examines the robustness of the procedure when using an estimate of the 

correlation between the prediction errors or the residuals of the two models. Finally, 

concluding remarks and a short discussion are given in section 6. 

 

 

2. THE CORRELATED GAMMA RATIO DISTRIBUTION 

 

2.1 RATING THE PREDICTIVE PERFORMANCE OF REGRESSION MODELS 

 

Consider the linear model  

... 2, 1, 0,tttt =   += ,εβXY   

where Yt is an 1t ×  vector of observations on the dependent random variable, Xt  is an 

mt ×  matrix of known coefficients ( )0, ≠′  > tt XXm0 ,  β  is an m×1 vector of 

regression coefficients and εt  is an 1t ×  vector of  normal error random variables with 

E(εt)=0 and V(εt)=σ2
It. Here It is the tt ×  identity matrix. Therefore, a prediction for 

the value of the dependent random variable for time t+1 will be given by the statistic 

t

0'

1t

0

1tY βX ˆˆ
++ =

, 

where tt

1

ttt )( YX'XX'β −=ˆ is the least squares estimator of β at time t and 0

1t+X   is an 

1m ×  vector  of  values  of  the  regressors  at  time  t +1, t = 0, 1, 2, ... Obviously,   
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Y
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are of dimension m1t ×+  and 11t ×+  respectively, where ... 2, 1, 0,    t1,t1t =+=+ . 

The predictive behaviour of the model would naturally be evaluated by a measure  

that  would  be  based on a statistic reflecting the degree of agreement of the observed 

actual value 0

1tY +
ˆ  to the predicted value  0

1tY +
ˆ .  Such a statistic may be the statistic 1tr + , 

where  
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Obviously, 1tr +  is merely an estimate of the standardized distance between the 

predicted and the observed value of the dependent random variable when σ2
 is estimated 

on the basis of the preceding t  observations available at time t. 2

tS  is given by  

m)/('S ttt

2

t −= ee  

where 

tttt βXYe ˆ−=
 

i.e.,    ... 2, 1, 0,   t,
m)(

)()(
S

t

tttttt2

t =
−

−′−
=

βXYβXY ˆˆ
,      

So, a score based on 1tr +  can provide a measure of the predictive adequacy of the model 

for each of a series of n points in time. Then, as a final rating of the model one can 

consider the average of these scores, or any other summary statistic that can be regarded 

as reflecting the forecasting potential of the model. 

In the sequel, we consider using 2

ir as a scoring rule to rate the performance of the model 

at time t for a series of n points in time, (t =1, 2, ..., n) and we define  

    nrR
n

1t

2

tn ∑
=

=             (2) 

the average of the squared recursive residuals, to be the final rating of the model. 

It has been shown (Brown et al., 1975, Kendall et al., 1983) that if εt is a vector of 

normal error variables with Ε(εt)=0 and V(εt)=σ2 
It , the quantities  

( )
... 2, 1, 0,   t,
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YY
w
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=

+
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+

++
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XXXX

ˆ
     

are   independently   and   identically   distributed    normal variables with mean  0  and  

variance  σ2
.  Then, according to Kotlarski's (1966) characterization of the normal 

distribution by the t distribution, the quantities t1t1t swr ++ = ,  t = 0, 1, 2, ... constitute a 

sequence of  independent  t  variables with mt −  degrees of freedom, t = 0, 1, 2, ... . 

Hence, by the assumptions of the model considered and for large 0 , the variables rt+1,     
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t = 0, 1, 2, ... constitute a sequence of approximately standard  normal  variables which 

are mutually independent. This implies that  

∑
=

=
n

1t

2

tn rnR  

is a chi-square variable with n degrees of  freedom.  (Psarakis and Panaretos, 1990). 

Consider now A and B to be two competing linear models that have been used for 

prediction purposes for a number nA and nB  of years, respectively.  Then, a decision on 

whether model A is equivalent to model B would naturally be based on the ratio of the 

average scores of the two models as given by the statistic 

B

n

A

n

n,n

B

A

BA R

R
R =                  (3) 

where A

nA
R , 

B

nB
R ,  are given  by  (2) for n = nA and n = nB and refer to model A and 

model B, respectively. 

For large A

0 , B

0  the distribution of the rating ratio statistic 
BA n,nR can be 

approximated  by that of an F variable with nA and nB degrees of freedom whenever the 

ratings of the two models are independent. Hence, values of 
BA n,nR in the right tail of the 

F distribution with nA and nB degrees  of freedom will indicate a higher performance by 

model A. However, under the model selection setting, the assumption of independence 

does not seem to be  satisfied. Determining the exact distribution of  
BA n,nR  in the case of 

dependent ratings would, therefore, be desirable as in practice data on ratings are often 

matched. (In the latter case, n.nn BA == ) As shown in the sequel, this is a generalized 

form of the F distribution. 

 

2.2 DETERMINING THE DISTRIBUTION OF THE RATING RATIO 

STATISTIC 

 

Kotlarski (1964) has shown that, under certain conditions, the quotient X/Y, 

where X,Y are positive valued random variables not necessarily independent, follows the 

F distribution. According to him, a necessary and sufficient condition for the ratio of two 

variables to follow an F distribution can be established through the form of the Mellin 
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transform of their joint distribution. In particular, Kotlarski has shown that for a 

distribution function F(x, y) to belong to the set of joint distribution functions of two not 

necessarily independent positive valued random variables X and Y, whose quotient  X/Y 

follows the F distribution with parameters p1  and  p2,  is necessary and sufficient that  its  

Mellin transform 

∫ ∫
∞ ∞

=
0 0

vu y)dF(x,yxv)h(u,

 

 satisfies the condition  ( ).))Γ(pΓ(pu)u)Γ(pΓ(pu)h(u, 2121 −+=−   

As shown in the Appendix, the Mellin transform of the joint distribution of  A

nR , 

B

nR  is  

    ( ) ( )
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++++−

=
0i

2i2kvuk2
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vu,h                                     (4) 

and does not satisfy Kotlarski's condition. Hence, the distribution of the rating ratio 

statistic B

n

A

nnn, RRR = cannot be of the F form. As shown in the sequel, it is distributed 

according to a more general form of distribution which leads to the F distribution as a 

limiting case.  

To specify the distribution of the test statistic, consider the random variables 

A

ii rX = , B

ii rY = , i =1, 2, ..., n obtained from relationship (1), for model A and model B, 

respectively. Each of the variables Xi, Yi follows the standard normal distribution. The 

joint distribution is therefore the bivariate standard normal distribution with a correlation 

coefficient denoted by ρ. Under these conditions, the joint distribution of the random 

variables 

A

n
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X
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B

n

n
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2

i

R
n

Y

Y ==
∑

=
 

is  Kibble's (1941) bivariate Gamma distribution as defined by the probability density 

function  
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for k=n/2 . Here  (xI
k

 is the modified Bessel function of the first kind of order k given 

by  

                                           ( ) ( ) ( )∑
∞

=

+

+++






=

0i

2ik

k
1kiΓ 1iΓ

1

2

x
xI .                       (6) 

(see Abramowitz and Stegun, 1974) 

Substituting (6) in (5) we can rewrite the joint probability density function of 

Kibble's bivariate Gamma distribution as 
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It is known that for any dependent random variables X, Y the distribution 

function of X/YZ =  is given by  

( ) ( ) ( ) ( )∫
∞

=≤=≤=
0

YZ dy yf  yYzyXPzX/YPzF , 

where )(FU ⋅  and )(f U ⋅  denote the distribution function and the probability density 

function of a random variable U, respectively. Then, the density function of the quotient 

X/YZ = can be written as 

∫∫
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In fact, the integral in the expression of (z)fX/Y  is a gamma integral and hence one 

obtains 
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Furthermore, it holds that 
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with  (n)α  denoting the ascending factorial. 

Letting  α=2k,  m=i , n=2 we have 

( )
( ) ( )

( )

( )kk,B

2

12k
2

kiΓkΓ
2i2kΓ i

2i 





 +

=
+

+
 . 

Substituting in  (6) we obtain 
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. 
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 The density function in (8) defines the distribution of the quotient X/Y when the joint 

distribution of (X,Y) is Kibble's bivariate gamma. In the sequel, we refer to this  

distribution  as the correlated gamma - ratio (CGR) distribution with parameters ρ 

and  k. This distribution does not appear to have been studied and used in the literature. 

In our search, we only found that Izawa (1965) was led to a reparameterized form of this 

distribution. In order to apply it later, we have derived its percentage points. A sample of 

them is provided in the Appendix for p=0.0(0.1)0.9.  

One can see that in the case where X and Y are independent, whence ρ=0, the 

probability density function of the quotient X/Y takes the form 

( ) ( ) ( ) 2k1k

YX z1z
kk,B

1
zf

−− += . 

This is the probability density function of the Beta type II distribution and, because of the 

relationship of the F distribution with the Beta type II distribution, it is an F distribution 

with 2k and 2k degrees of freedom. In the next section properties of the CGR distribution 

will be examined. 

 

2.3 PROPERTIES OF THE CORRELATED GAMMA RATIO DISTRIBUTION 

 

The moments of the CGR distribution can be found using its relationship to 

Kibble's bivariate Gamma distribution and, in particular, through its Mellin transform as 

given by (4) since the r-th simple moment of the GCR distribution can be written as 

                                              r)h(r,)YE(X)E(Z rrr −== − .                                    (9) 

Using this result, we obtain, after tedious algebraic manipulation  

    
1k

1k)ρ(1
E(Z)E(X/Y)

2

−
−+−

== ,   k>1       (10) 

and 

=Var(Z)
2)(k1)(k

)ρ2)(11)(k2(k)ρ4)(1(5k
2

222

−−
−−−+−−

,   k>2 . 

(The proofs of these results can be found in the Appendix). 

Note that if ρ=0, i.e. X and Y are uncorrelated, the expected value and the 

variance reduce to the expected value and the variance of a F distribution with 2k and 2k 
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degrees of freedom, respectively. The expected value does not exist for values of k ≤ 1.  

Moreover, the expected value is always greater than 1 and tends to 1 as k tends to 

infinity.  

Also, as k increases the variance of Z decreases. This shows that, for the CGR 

distribution, as the value of k increases the expected value tends to 1 and the variance 

tends to 0, i.e. the distribution is more concentrated towards the value 1. In general, the 

distribution tends to a degenerate distribution at 1, as k increases. The same is true when 

ρ2
 tends to 1 in absolute value. This should be expected since a unit correlation implies a 

perfect agreement between X and Y and thus a unit value for their ratio. 

 For small values of k, the CGR distribution is very skewed to the left and has a 

large coefficient of kurtosis. As the value of k increases, the distribution tends to become 

symmetric. The same is true whenever the value of the parameter ρ2
 is near 1. The 

skewness decreases with ρ2
. This can be seen in Figures 1 through to 3 in the Appendix 

where the probability density function of the CGR distribution is depicted for various 

values of ρ and k. 

 It is interesting to note that because of the symmetry of Kibble's bivariate Gamma 

distribution, if Z follows the CGR distribution, the same is true for 1/Z. 

 In the sequel, it is shown that a limiting case of the CGR distribution is the t 

distribution. 

Let Z follow the CGR distribution with density function given by (3). Consider 

the variable  

1Z

1Z

ρ1

ρ
T

2 +
−

−
= . 

Then,  
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ρ
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−
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We have, therefore, for the probability density function of T that  
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where  
22 ρ1

ρ
t

ρ1

ρ
−
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−

− . 

Taking the limit as ρ → 1 we obtain 

( ) ( ) ( ) 2

12k
2

2k1

T
1ρ

t1
kk,B

2
tflim

+
−

−

→
+= ,    - ∞ < t < + ∞ . 

But, this is the probability density function of the t distribution. Hence it was shown that 

the t-distribution arises as a limiting case of the CGR distribution.  

 

 

3.  COMPARING THE PREDICTIVE ABILITY OF TWO LINEAR 

MODELS 

 

 Consider now the problem of comparing the predictive ability of two competing 

models, say A and B, that have been used for prediction purposes for nA and nB years, 

respectively. The dependent variable is denoted by Y. Denote by 
A0

1tY +
ˆ  and 

B0

1tY +
ˆ the one 

step ahead predicted values of Y obtained by models A and B respectively at times 

n ..., 2, 1, 0,t =  on the basis of the first tA

0

A

t +=  and tB

0

B

t +=  observations, where 

A

0 , B

0  denote the numbers of observations used at time t=0 for estimating the regression 

coefficients of the models. Obviously A

A

0

A

n nn =+≡  and B

B

0

B

n nn =+≡ . Let A

1tw + , 

B

1tw +  denote the prediction errors corresponding to models A and B. As noted before, the 
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quantities A

1tw +  and B

1tw + , n ..., 2, 1, 0,t =  are independently and identically distributed 

normal random variables with means 0 and variances 2

Aσ and 2

Bσ , respectively. Both of 

these quantities are linear combinations of the first A

t  and B

t  observations on Y, 

respectively which, under the null hypothesis of the equivalence of the models in their 

predictive ability, are independently and identically normally distributed variables. 

Therefore, under the null hypothesis, any linear combination of A

1tw +  and B

1tw + , 

... 1, 0,t =  will be a normal variable which in turn implies that the joint distribution of 

A

A

1t /σw +  and B

A

1t /σw +  is a bivariate standard normal distribution with some correlation 

coefficient denoted by ρ and so is the joint distribution of A

1tr +  and B

1tr +  for large A

0  and 

B

0 , respectively. Then, the statistics A

nnR , B

nnR  jointly follow Kibble’s bivariate gamma 

distribution and hence their ratio has the CGR distribution with parameters ρ and n/2 as 

defined by (5).  

In the sequel, the performance of the new statistic is examined via simulation and 

a real data application is provided. 

 

3.1 THE PERFORMANCE OF THE PROPOSED TEST 

 

 A small simulation experiment was carried out in order to examine the 

performance of the new criterion. Samples of given sample size n were simulated from an 

assumed model.  The experiment concerned classical trend models in classical time series 

analysis. So, data were generated from a linear trend model and the null hypothesis that 

the predictive ability of the linear trend model is equivalent to that of some alternative 

models was tested. Two alternative models were considered: the exponential trend model 

111 εtβαlnY ++=  and the quadratic trend model 2

2

22 εtβαY ++= , where ε1, ε2 denote 

the respective normal error terms. The values used for the coefficients were 

10β  5,α 11 == , while the variance for the error term was 1σ 2 = . For each sample size, a 

number k of observations were used for building the model before starting obtaining 

predictions. Several different values were used, corresponding to different proportions of 

values kept for prediction purposes. 5000 replications were used for each sample size. 
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The parameter ρ was estimated as the correlation coefficient of the standardized residuals 

of the predictions of the two competing models. In the next section the robustness of this 

approach is examined. 

From the results reported in Table 1, one can see that the test performs very well 

for distinguishing the linear model from the polynomial model. For the exponential 

model, the performance of the test improves when more observations are used. This is a 

consequence of the fact that the exponential model can be very close to a linear one by 

appropriately selecting the parameters. However, when more data are collected, the 

curvature of the exponential model can produce significant differences. The entries of 

Table 1 are the mean p-values calculated from the replications considered and the 

proportions of times the equivalence hypothesis was rejected. 

Table 1 about here 

 

The test performs well when the models are non-nested. For nested models, the 

model with added components seldom performs worse than the simpler model. 

Moreover, since the added variables may have a coefficient close to 0, the differences can 

be very small, and almost non-detectable. In order to check this, a simulation was run on 

data generated from an exponential trend model with a moderate curvature. As was 

expected, in testing the exponential model against a linear one, the null hypothesis of 

equivalence was rejected in all cases.  Further investigation is needed for determining the 

difference that it is detectable via the new procedure. 

 

3.2 AN APPLICATION TO CROP-YIELD DATA 

 

For the purpose of illustrating the procedure described in this section, a problem 

presented in Xekalaki and Katti (1984) is re-examined. The problem referred to the 

selection of a linear model among several competing ones that were used by the United 

States Department of Agriculture (USDA) to predict the corn yield for 10 Crop Reporting 

Districts (CRD 10, 20, …, 100), based on several sets of real data for the State of Iowa 

for the years 1956 to 1980. The competing models use information about the weather 

conditions (e.g. temperature, rainfall, etc) for the previous time periods as well general 
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trend factors for predicting the crop yield. (Linardis (1998), presents a detailed 

description of the models).  

The aim of the application is to compare the predictability of these models for 

every district, using the CGR distribution. Table 2 gives the estimated correlations 

between the standardized residuals of the predictions for the two models used by the 

USDA, for each crop reporting district.   

To compare the two crop yield models we need to test a hypothesis of the form: 

H0: model A is equivalent to model B,    

versus 

H1: the two models are not equivalent. 

Rejection of the null hypothesis indicates that one of the models performs better. 

In performing the test one can employ a one sided alternative, in a manner similar to that 

used when testing for equality of variances via the F-test. However, when rejecting the 

null hypothesis, the value of the test statistic can indicate which of the models is the 

“best”. For a two sided alternative, the test statistic must be inverted if its value is less 

than one. 

The values of the ratios 
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for the data, and the results of the test procedure are reported in Τable 2. One can see 

from Table 3 that, for six districts, the models are equivalent. Model A performs better in 

3 cases while only in one case model B is superior. 

 

Table 2 about here 

 

The method presented in this section to compare the predictive ability of two linear 

models differs from those based on the notion of nesting in that the two models may have 

completely different sets of independent variables. Moreover, the selection of the ‘best’ 
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model takes into account random variability and is not deterministic, as for example in 

the case where only the value of the statistic would be used. 

 

4.  MODEL SELECTION FOR NON-NESTED MODELS IN THE 

CLASSICAL REGRESSION FRAMEWORK 

 

4.1 THE PROBLEM OF ΜODEL SELECTION BASED ON THE DESCRIPTIVE 

ABILITY 

 

Let us now consider to the possibility of developing a procedure leading to the 

selection of a model as a result of comparing the descriptive potentials of two competing 

models. 

 The aim is to be able to select a model that is closest to the mechanism that 

produced the observed data among several competing models that provide a satisfactory 

fit. The literature abounds in model selection criteria constructed on the basis of goodness 

of fit considerations. A common element to all these procedures is that they are not based 

on probabilistic arguments, i.e. model selection is based on deterministic criteria that 

ignore random fluctuations. (See, for example, the review by Hocking, 1980). The 

equivalence of two models has not been tested, except through asymptotic results based 

on the change in likelihood. This fact can be seen in the classical regression model, 

where the addition of a new variable improves the coefficient of determination even in 

the case of a totally inadequate variable. Whether this improvement indicates a 

statistically significant contribution of the new variable to the coefficient of 

determination is not known. 

 Comparing nested models has attracted much interest and a variety of procedures 

for selecting the most appropriate model have been proposed in the literature.  The case 

of non-nested models has received much less attention in the statistical literature. In fact, 

econometricians appear to be more concerned with non-nested models, since the majority 

of related publications has appeared in econometric journals. The reason is that in 

econometrics a difference in model assumptions can lead to entirely different models 

(e.g. a linear trend versus an exponential trend). 
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Two models are non-nested when they have separate parametric families and 

none can be obtained from the other as a limiting case. Hoel (1947), initiated the 

discussion about non-nested models. For detailed reviews the interested reader is referred 

to Mc Aleer (1987, 1995), White (1983). Mc Aleer (1995) also provides an extensive 

literature on econometric applications of non-nested models classified with respect to the 

subject, the type of models considered and the methodology used.  

A first obvious procedure would be to set up a comprehensive model that includes 

both of the competing models as special cases and subsequently apply standard 

loglikelihood tests.  If the likelihood functions of two competing models are denoted by 

L0 and L1 respectively, the enlarged model can be of the form L0
θ
 L1

1-θ
 or of the form         

θL0 + (1-θ) L1 .  The former was suggested by Cox (1962) and Atkinson (1970), while 

the latter which considers a mixture setting was discussed by Davidson and MacKinnon 

(1981) and McKinnon (1983). Both models have the major advantage of leading to an 

estimation procedure as well to significance testing. Estimation is usually not a problem 

since the mixture setting is quite useful. But, in many cases, the sample evidence may 

indicate that both models are as plausible or they may call for the rejection of both 

models failing thus to lead to some conclusive result. The idea has been further exploited 

by Royston and Thompson (1995). 

Alternative procedures are based on the Bayesian paradigm and use the posterior 

odds for selecting the model that is better supported by the data. The dependence of the 

results on the chosen prior distribution is the main disadvantage of such procedures.  

Cox (1961) proposed a test statistic based on the Neyman-Pearson likelihood ratio 

principle, further developed for regression models by Pesaran (1974). The approach was 

further investigated by Pace and Salvan (1990). Other test procedures are described by 

Mc Aleer (1995) and include tests constructed for specific models and information 

criteria. 

Usually, the hypotheses in testing for non-nested regression models take the form  

 I)σN(0,~u,uXbY:H 2

00000 +=  

 I)σN(0,~u,uZbY:H 2

11111 += . 
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Note that in comparing non-linear regression models, two models are considered 

to be non-nested if at least one of the columns of each of the regressor matrices cannot be 

expressed as a linear combination of the columns of the other. 

 

4.2 A NEW TEST STATISTIC FOR COMPARING THE DESCRIPTIVE 

ABILITY OF TWO MODELS 

 

 Consider two competing models, say A and B, and denote the dependent random 

variable by Y. The problem of comparing two models A and B on the basis of their 

descriptive ability is equivalent to that of comparing the goodness of fit of two normal 

distributions, namely ( )2

AA σ,µN~Y  or ( )2

BB σ,µN~Y . This requires a null hypothesis 

formulation different from the one that is usually considered by many authors. In 

particular, one would want to test the null hypothesis that the two models are equivalent 

against the alternative that they are not equivalent. By contrast, the usual null hypothesis 

in model selection for non-nested models has been that one model is valid against an 

alternative hypothesis that another model is valid. Hence, the testing hypothesis 

procedure leads to the selection of one of the models.  

The mean of the dependent variable can be expressed as usual, as a linear function 

of the independent variables. The purpose is to examine whether the two models fit the 

data “equally satisfactorily”. Note that the models are not assumed to be non-nested and, 

therefore, models with entirely different regressors can be considered. 

Suppose that the two competing models A and B have been used for nA and nB 

years respectively. The dependent variable is again denoted by Y. According to whether 

model A or model B is used and for n ..., 2, 1,i = , let 
A

iY and 
B

iY  denote the fitted values 

using the first 1-tA

0

A

t +=  and 1-tB

0

B

t +=  observations, where A

0 , B

0  denote the 

numbers of observations used at time t=1 for estimating the regression coefficients of the 

models. Obviously, A

A

0

A

n nn =+≡  and B

B

0

B

n nn =+≡ . Let 
A

ii

A

i YYe −=  and 

B

ii

B

i YYe −= , n ..., 2, 1,i =  denote the corresponding residuals. By the assumptions of 

the regression models considered, these residuals follow normal distributions with zero 

means and variances 2

Aσ  and 2

Bσ , respectively. All of these residuals are linear 
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combinations of the first A

t  and B

t  observations on Y which, under the hypothesis of 

the equivalence of the two models in their descriptive ability, are independently and 

identically distributed normal variables with zero means and variances equal to, say, σ2
. 

Therefore, any linear combination of A

ie  and B

ie  will be a normal variable. Hence, under 

the null hypothesis each of the pairs ( )σe  σ,e
B

i

A

i //  follows a bivariate standard normal 

distribution with a correlation parameter equal to, say, ρ. Thus, the quantities  

( )
2

n
2A

ii

A
nσ

1i

YY

T

∑
=

−

=   and  

( )
2

n
2B

ii

B
nσ

1i

YY

T

∑
=

−

=  

follow jointly Kibble's bivariate gamma distribution. Their ratio, given by  

( )

( )∑

∑

=
−

=
−

==
n

2B

ii

n
2A

ii

B

A

1i

YY

1i

YY

T

T
T , 

follows the CGR distribution with parameters ρ and n/2 as  shown in section 2.  

One can see that the statistic T is the ratio of the sums of the squared residuals 

corresponding to the two models. Consider the null hypothesis that the two models are 

equivalent versus the alternative hypothesis that model A provides a better fit.  

Obviously, values of the statistic at the right tail of the GCR distribution will call for the 

rejection of the null hypothesis. 

It would be interesting to examine the relationship of the procedure described 

above to the classical ones based on the coefficient of determination defined by  

( )

( )∑

∑

=
−

=
−

−=
n

2

i

n
2

ii

2

1i

YY

1i

YY

1R . 

As is well known (e.g. Draper and Smith, 1981), the coefficient of determination 

follows a  Beta type I distribution. Therefore, the quantity  
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( )

( )∑

∑

=
−

=
−

=−=
n

2

i

n
2

ii

2

1i

YY

1i

YY

R1φ  

also follows a Beta distribution with interchanged parameters. Note that the statisticφ  is 

always less than 1. The pertinence of the statisticφ to the statistic T defined above in the 

context of the problem of comparing the linear model against the constant model 

becomes obvious taking into account the following points. The beta form of the 

distribution of the statistic φ  is deduced on the basis of the independence of the statistics 

( )∑
=

−
n

2

ii

1i

YY  and ( )∑
=

−
n

2

i

1i

YY and the fact that each of them is gamma distributed. (For 

a proof of the independence the reader is referred to Rao and Toutenbourg, 1997). It is 

also known that the Beta type II distribution arises as the distribution of the random 

variable Y=X/(1-X), when X follows the Beta type I distribution. Hence, the statistic T is 

of a nature similar to that of the coefficient of determination but with the additional 

advantage that it takes account of the dependence between the competing models. In the 

paper by Miller (1984) and the discussion that followed, the fact that the F-test is used for 

selecting the variables to enter or to remove in stepwise algorithms was strongly 

criticized. The reason was that these tests (known as F-change tests) assume 

independence, which seems to be a rather arbitrary and unlikely to be fulfilled 

assumption.  The test proposed in this paper clearly deals with the dependence between 

the two statistics.  

As is known, if one model is nested in another, the coefficient of determination of 

the extended model is always greater than the coefficient of determination of the initial 

one. Therefore, in the case of two competing models A and B, the ratio of the φ statistics 

associated with the two models leads to the statistic T defined above, since the 

denominators common to both models vanish. Thus, the proposed statistic T measures 

the relative improvement of the complement of the coefficient of determination for the 

two competing models.  
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 It becomes obvious from the above that the CGR distribution takes into 

consideration the dependence between the two models, and especially of the dependence 

between the residuals of the models for the same value of the response variable.  

 

4.3 A SIMULATION EXPERIMENT 

 

 A simulation experiment was carried out in order to study the behaviour of the 

proposed procedure. Samples of the specific sample sizes were generated from a simple 

model of the form 111 εβXαY ++= , where ε1 denotes the error term. The values 

considered for the coefficients were 10β 5,α 11 == , while that of the variance of the 

error term was 1σ 2 = . The explanatory random variable X was generated from a N(5,3) 

distribution. For each sample size, half of the observations were kept for building the 

model and the rest for prediction purposes. 5000 replications were used for each sample 

size. 

Three alternative models were considered, namely 222 εβ
X

1αY ++= , 

33

2

3 εβXαY ++=  and 4424 εβXαY ++= , where εi , denotes the error term of model i 

and )σN(0,~ε 2

i ,  i =1, ..., 4.  One can see that the models are not nested. In addition, 

the third model contains a different variable as an explanatory variable. In order to get a 

better insight into the ability of the proposed procedure to select the true model, the 

variable X2 was set equal to the true value of  X plus a noise term generated from a 

normal distribution with a zero mean and variance equal to 0.5. In this case, the resulting 

variable, X2, is quite close to X. The results reported in Table 3, reveal that as the sample 

size increases the use of the CGR distribution provides a powerful tool for model 

selection even in the case where the alternative model is quite close to the true one. The 

entries of the table are the proportions of times the null hypothesis that the two models 

are equivalent was rejected at a level of significance equal to 5%.  

 

Table 3 about here 
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5. ROBUSTNESS OF THE PROCEDURE WITH REGARD TO THE 

USE OF AN ESTIMATE OF ρ 

 

 In both of the model selection procedures described above, the value of the 

parameter ρ is estimated from the data as the sample correlation between the standardized 

residuals or prediction errors of the two competing models. As is well known, the sample 

correlation coefficient is only asymptotically unbiased as an estimator of ρ and coincides 

with maximum likelihood estimator of ρ under normality (see, e.g. Giri, 1996). In order 

to examine the implication of using an estimate of ρ, we calculated an approximate 

confidence interval for the correlation coefficient using the method based on Fisher’s 

transformation. 

 Suppose that the observed correlation takes the value r. Then, Fisher’s 

transformation is calculated as 









−
+

=
r1

r1
0.5lnz . 

A 95% confidence interval for z can be calculated by 
3n

1
1.96z

−
± , where n is the 

sample size on which the correlation has been estimated. Thus a 95% confidence interval 

for the population correlation coefficient is ( ) 







+
−

+
−

=
1)exp(2z

1)exp(2z
  ,

1)exp(2z

1)exp(2zρ ,ρ
U

U

L

L
UL , 

where zU,  zL are the lower and upper limits of the confidence interval for z. 

 A simulation experiment was conducted for investigating this issue. A linear trend 

model was tested against a quadratic trend model, using the experimental setup described 

in section 3.1. For each replication, the p-value of the test was calculated for the lower 

limit of ρ, the estimated value of ρ and the upper limit of ρ. The convention was used that 

if the upper limit exceeded 1, the limit was set equal to 1 and similarly for the lower 

limit. The results showed that the change in the mean p-value based on 10000 

replications was usually small, and in particular, not greater than 0.05 ±  (Table 4). This 

indicates that the error committed due to the use of an estimate of ρ, is not crucial for the 

decision. However, a warning must be given for p-values close to the significance level, 

as small perturbations can result in misleading decisions.  
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 Another interesting feature is that when the two models are equivalent, the 

correlation coefficient is quite high. On the other hand, when the models differ, the  

correlation coefficient is low. The confidence intervals considered above are bounded in 

the admissible values and this explains the great asymmetry in the values of Table 4 for 

values near 0. Further investigation with p-values close to other values (different from 0 

or 1) revealed a similar behaviour. 

Table 4 about here 

 

6. DISCUSSION 

 

 In this paper model selection procedures have been proposed in a hypothesis 

testing framework. The appealing feature of these procedures is that they can detect 

whether the improvement provided by a model is attributed to random fluctuations. They 

can be used for selecting a model either on the basis of its goodness of fit or on the basis 

of its predictive ability. These two issues are rather contradictory in practice as 

parsimonious models with a satisfactory descriptive ability can lead to poor predictors of 

future observations. 

 The theory beyond the derivation of the CGR distribution allows for constructing 

test statistics for several other purposes. Since the distribution can naturally be derived 

from standard normal theory, the asymptotic normality of many procedures seems to be a 

start for developing similar comparative procedures. 

 The fact that the distribution arises as the ratio of two dependent random variables  

allows for constructing comparison procedures. For example, the traditional chi-square 

for goodness of fit is based on a large sample normal approximation of binomial 

probabilities. Model selection procedures between alternative models can be derived in a 

similar manner. This enhances the application potential of the defined distribution to 

other fields. 

 Finally, in this paper exact hypothesis testing is introduced. This procedure can be 

extended so as to yield stepwise methodologies since it provides the exact distribution 

under the null hypothesis when adding or removing variables.  
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The sequential nature of both procedures developed in this paper implies their 

applicability to time series data. 
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Table 1.  

 

Proportions of times the null hypothesis that the linear trend model is equivalent to 

an exponential (respectively a quadratic) trend model was rejected and the 

associated mean p-values (simulation results). 
 

  Alternative models 

  Exponential Quadratic 

n     k mean  

p-value 

proportion of 

rejections 

mean  

p-value 

proportion of 

rejections 

40   10 0.124 0.415 0.014 0.927 

40   15 0.134 0.396 0.017 0.896 

40   20 0.155 0.327 0.025 0.853 

40   25 0.183 0.274 0.038 0.759 

40   30 0.198 0.285 0.054 0.663 

      

80   20 0.078 0.556 0.000 0.999 

80   30 0.104 0.454 0.001 0.998 

80   40 0.128 0.367 0.002 0.995 

80   50 0.157 0.307 0.006 0.973 

80   60 0.190 0.232 0.016 0.920 

      

120   30 0.066 0.594 0.000 0.999 

120   45 0.092 0.494 0.000 0.999 

120   60 0.122 0.380 0.000 0.999 

120   75 0.163 0.288 0.001 0.996 

120   90 0.206 0.194 0.006 0.978 

      

160   40 0.061 0.631 0.000 0.999 

160   60 0.088 0.511 0.000 0.999 

160   80 0.121 0.387 0.000 0.999 

160 100 0.147 0.326 0.000 0.999 

160 120 0.194 0.219 0.002 0.995 
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Table 2. 

 

Results of testing the predictive equivalence of models A and B on the crop yield 

data of the 10 reporting districts the state of Iowa (n=24).  

 

 Sums of squared 

recursive residuals 

     

 

 

model A 

(n A

nR ) 

model B 

(n B

nR ) 

ρ Rn,n 
-1

nn,R  p-value model to be 

selected 

(“best”model) 

CRD 10 58.844 92.798 0.803  1.577 0.0355 model A 

CRD 20 58.681 59.595 0.908  1.015 0.4656 “equivalent” 

CRD 30 24.638 35.354 0.885  1.434 0.0337 model A 

CRD 40 69.677 66.691 0.449 1.044    0.453 “equivalent” 

CRD 50 49.005 51.028 0.620  1.041   0.45 “equivalent” 

CRD 60 55.949 32.789 0.155 1.706  0.0963 model B 

CRD 70 39.933 49.012 0.561  1.227   0.275 “equivalent” 

CRD 80 57.396 52.232 0.796 1.098    0.353 “equivalent” 

CRD 90 61.461 41.810 0.669 1.470    0.1068 “equivalent” 

CRD 100 46.515 73.943 0.593  1.589 0.0868 model A 
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Table 3. 

 

Proportions of times the null hypothesis that the two models are equivalent was 

rejected at the 5% level of significance (simulation results) 

 

 Alternative model 

Sample size 
222 εβ

X

1αY ++=  33

2

3 εβXαY ++=  4424 εβXαY ++=
 

20 0.547 0.928 0.209 

30 0.727 0.984 0.278 

50 0.908 1.000 0.398 

100 0.994 1.000 0.619 

200 1.000 1.000 0.873 

250 1.000 1.000 0.931 

500 1.000 1.000 0.997 

1000 1.000 1.000 1.000 
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Table 4.  

The mean p-value of testing the equivalence of a linear trend model to a quadratic 

trend model when the upper (respectively the lower) limit of a 95% confidence 

interval for the correlation coefficient is used 

 

n k lower limit 

ρL 

estimated 

value of ρ 

upper limit  

ρU 

40 10 0.010 0.014 0.014 

40 15 0.011 0.017 0.018 

40 20 0.014 0.025 0.027 

40 25 0.018 0.038 0.043 

40 30 0.021 0.054 0.069 

     

80 20 0.000 0.000 0.000 

80 30 0.000 0.001 0.000 

80 40 0.001 0.002 0.002 

80 50 0.003 0.006 0.006 

80 60 0.008 0.016 0.017 

     

120 30 0.000 0.000 0.000 

120 45 0.000 0.000 0.000 

120 60 0.000 0.000 0.000 

120 75 0.000 0.001 0.001 

120 90 0.003 0.006 0.006 

     

160 40 0.000 0.000 0.000 

160 60 0.000 0.000 0.000 

160 80 0.000 0.000 0.000 

160 100 0.000 0.000 0.000 

160 120 0.001 0.002 0.001 
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APPENDIX I 

• The Mellin Transform of the Correlated Gamma-Ratio Distribution 

• The moments of the Correlated Gamma Ratio distribution 
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The Mellin Transform of the Correlated Gamma-Ratio Distribution 

 

According to Kotlarski (1964), a necessary and sufficient condition for the ratio 

of two variables to follow a F distribution can be established through the form of the 

Mellin transform of their joint distribution. In particular, Kotlarski (1964) has shown that 

if Ψ is the set of joint distribution functions F(x,y) of two not necessarily independent 

positive valued random variables X and Y, whose quotient  X/Y follows the F 

distribution with parameters p1 and  p2 ,  then the following result holds. 

Theorem 1 (Kotlarski (1964)): For a distribution function F(x,y) to belong to the 

set  Ψ it is necessary and sufficient that  its  Mellin transform ∫ ∫
∞ ∞

=
0 0

vu y)F(x, dyxv)h(u,   

satisfies the condition  
)Γ(p

u)Γ(p

)Γ(p

u)Γ(p
u)h(u,

2

2

1

1 −+
=− .   

In the sequel is shown that the Mellin transform of the joint distribution of A

nR  

and B

nR  defined in section 2.1 does not satisfy Kottlarski’s condition for the distribution 

of their ratio to be of the F form. 

For our problem, consider the random variables A

ii rX = , B

ii rY = , n ..., 2, 1,i =  

obtained from (1) for model A and model B, respectively. Each of the variables Xi, Yi 

follows the standard normal distribution. The joint distribution is therefore the bivariate 

standard normal distribution with a correlation coefficient denoted by ρ. Under these 

conditions, the joint distribution of the random variables 

A

n

n

1i

2

i

R
n

X

X ==
∑

=   and 
B

n

n

1i

2

i

R
n

Y

Y ==
∑

=
 

is  Kibble’s (1941) bivariate Gamma distribution as defined by the probability density 

function  

( )
( )

( )( )
( ) 











−−
= −

−

+
−−−−

21k

ρ1

yx

2

1k

2

1k

ρ1

xy2ρ
Iexy

ρ1kΓ
ρ

yx,f
2

. 

Here  (x)Ik  is the modified Bessel function of the first kind of order k given by  
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( ) ( ) ( )∑
∞

=

+

+++






=

0i

2ik

k
1kiΓ 1iΓ

1

2

x
xI . 

(see Abramowitz and Stegun, 1974) 

Combining the last two relationships, the joint probability density function of Kibble’s 

bivariate Gamma distribution can be rewritten as 

( )
( )

( )( ) ( ) ( )∑
∞

=

−+−+−+
−

+
−−−

++







−−

=
0i

1ik1ik12ik

ρ1

yx

2

1k

kiΓ 1iΓ
yx

ρ1

ρ
e

ρ1kΓ
ρ

yx,f
2

. 

To determine whether an F form can be deduced for the distribution of nn,R , one 

needs to examine if Kotlarski’s theorem applies for the joint distribution of A

nR  and B

nR . 

  For Kibble’s bivariate Gamma distribution, the Mellin transformation is given as 

 ( ) ( )vu YXEvu,h =  

( )
( ) ( ) ( ) ( )∑ ∫∫

∞

=

∞ ∞
−+++−+−

+
−−

++







−

−
=

0i 0 0

1ikvi1kuρ1

yx2i

2

k2

dydx  yxe
kiΓ 1iΓ

1

ρ1

ρ
kΓ
ρ1 2

. 

The double integral in the right hand side term is a double gamma integral. Hence, after 

algebraic manipulation one can find that the Mellin transform can be written as 

 ( ) ( )
( )

( ) ( )
( )∑

∞

=

+++−

+
++++−

=
0i

2i2kvuk2

ikΓi!

ikvΓ ikuΓρ
kΓ

ρ1
vu,h  

 

( )
( )

( ) ( )
( )

( )( ) ( )( )

( )
∑

∞

=

++ ++++−
=

0i

2i

i

ii

kvu2

i!

ρ
k

vkuk

kΓ
vkΓukΓ

kΓ
ρ1

. 

The sum in the second term is a hypergeometric series and thus the Mellin transform can 

be written  as 

( ) ( )
( )

( )
( ) ( ) ( )2

12

kvu2 ρk;; vku,kFρ1
kΓ

vkΓ
kΓ

ukΓ
vu,h ++−

++
=

++
 

where 

( ) ( ) ( )

( )
∑

∞

=

=
0r

r

r

rr

12
r!

z

c

ba
zc;b;a,F  

denotes the hypergeometric series (see, Abramowitz and Stegun, 1974). 
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One can see that the Mellin transform of Kibble’s distribution does not satisfy the 

conditions of Theorem 1. Hence, the quotient B

n

A

n /RR  does not follow the F distribution 

when A

nR  and B

nR are dependent. 

 

The moments of the Correlated Gamma Ratio distribution 

 

The moments of a random variable Z which has the CGR distribution are related 

to the Mellin transform of the Bivariate Kibble’s distribution by the formula 

r)h(r,)YE(X)E(Z rrr −== −  

Setting r=1,  we obtain 







Y

X
E  which is the first simple moment of the CGR distribution.  

So, we have that 

( ) )ρk;1;k1,(kFρ1
Γ(k)Γ(k)

1)1)Γ(kΓ(k

Y

X
E 2

12

k2 −+−
−+

=







.  (A.1) 

From Abramowitz and Stegun (1974), (relation 15.2.18, p. 558), we have that 

z)c;1;b(a,Fz)b(1z)c;b;1,(aFa)(cz)c;b;(a,Fb)a(c 121212 +−+−−=−− . (A.2) 

Using (A.2) with α=k+1, b=k-1, z=ρ2
 and c=k we obtain 

)ρk;k;1,(kF  )ρ1)(1(k)ρk;1;k(k,F)ρk;1;k1,(kFk  2

12

22

12

2

12 +−−+−=−+ .        (A.3) 

Also, from relation (15.2.18) of Abramowitz and Stegun (1974) it holds that 

a1212
z)(1

1
z)b;a;(b,Fz)b;b;(a,F

−
== .   (A.4) 

Substituting (A.4) in (A.3) we obtain  

[ ]1)(k)ρ(1
)ρk(1

1
)ρk;1;k1,(kF 2

k2

2

12 −+−
−

=−+ . 

Substituting back to (A.1) yields 

1k

1k)ρ(1
E(Z)

Y

X
E

2

−
−+−

==







,   k>1. 

For the derivation of the variance we need to calculate the second moment ( )2ZE . 

Again, using (4) we can write  
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( ) ( ) )ρk;2;k2,(kFρ1
Γ(k)Γ(k)

2)2)Γ(kΓ(k

Y

X
EZE 2

12

k2

2

2 −+−
−+

=

















= . (A.5) 

Clearly, this is quite complicated. A recurrence relation is needed for 

)ρk;2;k2,(kF 2

12 −+ . Using (A.2) successively we find that 

b)a(c

z)c;1;b(a,Fz)b(1z)c;b;1,(aFa)(c
z)c;b;(a,F 1212

12 −−
+−−−−

=  

         

z)c;1;b1,(aF
1)ba1)(cba(c

a)z)(c2b(1

z)c;b;2,(aF
1)bab)(ca(c

1)aa)(c(c
  

12

12

+−
−−−+−−

−−
 +

−
+−−−−

+−−
=

 

             z)c;2;b(a,F
1)bab)(ca(c

z)1)(1b(b
       12

2

+
−−−−−

−+
+ .                                (A.6) 

Substituting α=k+2, b=k-2, z=ρ2
 and c=k and using (A.4), we obtain 

)ρk;2;k(k,F
1)k(k

2
)ρk;2;k2,(kF 2

12

2

12 −
−

=−+  

                                  )ρk;1;k1,(kF
1)1)(k(k

)ρ2)(14(k
)ρk;k;2,(kF

1)k(k

)ρ1)(12)(k(k 2

12

2
2

12

22

−+
+−
−−

++
+

−−−
+  

                                  

[ ]1)(k)ρ(1
)ρk(1

1

1)1)(k(k

)ρ2)(14(k
+

)ρ(1

1

1)k(k

)ρ1)(12)(k(k

)ρ(1

1

1)k(k

2

2

k2

2

2k2

22

2k2

−+−
−+−

−−

−+
−−−

+
−−

=
+−

 

 

Then, substituting in (A.5) we obtain  

( ) =−+−
−−

+
=




















)ρk;2;k2,(kFρ1
2)1)(k(k

1)k(k

Y

X
E 2

12

k2

2

 

1
2)1)(k(k

)ρ2)(14(k)ρ6(1 222

+
−−

−−+−
=  . 

Note that the second moment does not exist for k<2.  

The variance of the CGR distribution is, therefore 
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[ ] =−= 22 E(Z))E(ZVar(Z) 1
2)1)(k(k

)ρ2)(14(k)ρ6(1 222

+
−−

−−+−
-

2
2

1k

1k)ρ(1








−

−+−
 

 

  = 
2)(k1)(k

)ρ2)(11)(k2(k)ρ4)(1(5k
2

222

−−
−−−+−−

,   for  k>2. 

It is hard to derive closed form expressions but it is relatively easy to obtain the moments 

numerically using recurrence relation (A.2) for the hypergeometric function. Note that 

programming languages supporting recursion can be very helpful.  

 The coefficient of variation is 

.   
1)2)(k(k)ρ2)(1(k1))(kρ2)(12(k

)ρ4)(1(5k1))(kρ2)(12(k
 

          
1)(k)ρ(1

2)(k

)ρ2)(11)(k2(k)ρ4)(1(5k

CV(Z)

2222

222

2

222

−−+−−+−−−
−−+−−−

=

−+−

−
−−−+−−

=

 

 

It can be seen that for k>4 the coefficient of variation is smaller than 1. Moreover, as the 

value of k increases the coefficient tends to be very small. 
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APPENDIX II 

Percentage points of the Correlated Gamma Ratio distribution 
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Percentage points of the Correlated Gamma Ratio distribution for α=0.1                    

( ) ( ) 0.90 α-1=

z

0

dt
2

12k

t

2

1t

2ρ
1

2k
t11kt

kk,B

k
2ρ1

=

+
−


























+
−−+−






 −

∫  

 

           ρ 

k 

 

0.0 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

 

0.7 

 

0.8 

 

0.9 

1 9 8.93 8.72 8.36 7.85 7.2 6.4 5.45 4.33 3.02 

2 4.11 4.08 4.01 3.88 3.71 3.48 3.2 2.85 2.44 1.93 

3 3.055 3.04 3.00 2.92 2.81 2.67 2.49 2.27 2.00 1.66 

4 2.59 2.58 2.55 2.49 2.41 2.3 2.17 2.00 1.8 1.53 

5 2.32 2.31 2.29 2.24 2.18 2.09 1.98 1.84 1.67 1.46 

6 2.15 2.14 2.12 2.08 2.02 1.95 1.85 1.74 1.59 1.41 

7 2.02 2.01 2.00 1.96 1.91 1.85 1.76 1.66 1.54 1.37 

8 1.93 1.92 1.90 1.87 1.83 1.77 1.70 1.61 1.49 1.34 

9 1.85 1.846 1.83 1.80 1.76 1.71 1.64 1.56 1.455 1.315 

10 1.79 1.785 1.775 1.75 1.71 1.665 1.6 1.525 1.425 1.295 

11 1.745 1.74 1.725 1.705 1.67 1.62 1.565 1.49 1.4 1.277 

12 1.705 1.70 1.685 1.665 1.63 1.59 1.535 1.465 1.38 1.265 

13 1.665 1.664 1.65 1.63 1.60 1.56 1.51 1.44 1.36 1.253 

14 1.635 1.63 1.62 1.6 1.57 1.53 1.485 1.423 1.345 1.24 

15 1.605 1.604 1.59 1.575 1.546 1.51 1.465 1.405 1.33 1.31 

16 1.585 1.58 1.57 1.55 1.525 1.49 1.445 1.39 1.32 1.225 

17 1.56 1.553 1.546 1.53 1.505 1.471 1.43 1.376 1.307 1.216 

18 1.54 1.535 1.525 1.510 1.486 1.455 1.415 1.364 1.297 1.207 

19 1.52 1.519 1.51 1.495 1.471 1.44 1.402 1.351 1.287 1.203 

20 1.505 1.504 1.495 1.48 1.456 1.426 1.39 1.341 1.28 1.197 

21 1.49 1.489 1.48 1.465 1.44 1.415 1.377 1.331 1.274 1.193 

22 1.475 1.474 1.466 1.451 1.43 1.404 1.379 1.323 1.353 1.187 

23 1.465 1.460 1.455 1.440 1.567 1.391 1.358 1.315 1.259 1.183 

24 1.454 1.450 1.442 1.428 1.408 1.382 1.35 1.306 1.252 1.178 

25 1.442 1.44 1.432 1.418 1.4 1.374 1.34 1.3 1.246 1.174 

26 1.432 1.43 1.422 1.408 1.39 1.366 1.344 1.292 1.240 1.17 

27 1.422 1.42 1.412 1.4 1.382 1.356 1.326 1.286 1.238 1.166 

28 1.412 1.410 1.402 1.39 1.372 1.35 1.32 1.28 1.23 1.163 

29 1.404 1.402 1.394 1.382 1.366 1.342 1.312 1.274 1.226 1.16 

30 1.396 1.394 1.386 1.375 1.358 1.336 1.306 1.27 1.222 1.157 

40 1.333 1.332 1.326 1.316 1.302 1.284 1.259 1.228 1.189 1.134 

50 1.293 1.291 1.287 1.279 1.267 1.249 1.229 1.203 1.168 1.119 

60 1.265 1.264 1.259 1.252 1.24 1.226 1.207 1.183 1.152  
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Percentage points of the Correlated Gamma Ratio distribution for α=0.05                    

( ) ( ) 950. α-1=

z

0

dt
2

1k2

ρ
tk

k

k
ρ

 =

+
−


























+
−−+−







 −

∫ t

2

1t

2
1

2k
11t

B

21

k,
 

 

           ρ 

k 

 

0.0 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

 

0.7 

 

0.8 

 

0.9 

1 19 18.80 18.3 17.4 16.27 14.73 12.84 10.60 8.02 5.04 

2 6.39 6.34 6.20 5.97 5.64 5.22 4.7 4.07 3.34 2.46 

3 4.284 4.26 4.18 4.04 3.85 3.61 3.31 2.945 2.51 1.97 

4 3.44 3.42 3.36 3.27 3.145 2.96 2.74 2.48 2.16 1.76 

5 2.98 2.96 2.92 2.84 2.74 2.6 2.43 2.22 1.965 1.64 

6 2.687 2.675 2.65 2.57 2.485 2.37 2.23 2.06 1.835 1.56 

7 2.49 2.47 2.44 2.39 2.31 2.21 2.09 1.935 1.75 1.51 

8 2.335 2.325 2.29 2.25 2.18 2.1 1.985 1.85 1.675 1.46 

9 2.22 2.21 2.19 2.14 2.18 2 1.95 1.775 1.63 1.427 

10 2.125 2.115 2.095 2.055 2 1.93 1.837 1.725 1.585 1.4 

11 2.05 2.04 2.02 1.983 1.935 1.87 1.783 1.677 1.55 1.375 

12 1.983 1.977 1.955 1.925 1.876 1.815 1.735 1.635 1.515 1.355 

13 1.93 1.922 1.905 1.875 1.83 1.775 1.697 1.605 1.49 1.338 

14 1.884 1.876 1.86 1.83 1.787 1.733 1.663 1.577 1.47 1.324 

15 1.843 1.835 1.82 1.794 1.752 1.7 1.63 1.552 1.453 1.31 

16 1.805 1.798 1.783 1.757 1.72 1.675 1.61 1.527 1.427 1.297 

17 1.775 1.767 1.753 1.727 1.697 1.644 1.582 1.508 1.414 1.287 

18 1.745 1.74 1.723 1.697 1.667 1.620 1.563 1.493 1.397 1.277 

19 1.717 1.711 1.697 1.678 1.644 1.59 1.543 1.472 1.387 1.27 

20 1.695 1.69 1.676 1.653 1.624 1.576 1.527 1.46 1.375 1.262 

21 1.672 1.667 1.654 1.633 1.604 1.564 1.511 1.447 1.362 1.254 

22 1.654 1.647 1.635 1.613 1.584 1.549 1.498 1.434 1.353 1.247 

23 1.633 1.629 1.617 1.597 1.567 1.531 1.484 1.424 1.344 1.242 

24 1.615 1.612 1.6 1.581 1.553 1.516 1.469 1.412 1.336 1.236 

25 1.6 1.596 1.585 1.566 1.54 1.504 1.458 1.401 1.328 1.229 

26 1.585 1.581 1.57 1.552 1.526 1.491 1.447 1.390 1.320 1.224 

27 1.57 1.566 1.558 1.54 1.514 1.48 1.437 1.383 1.314 1.22 

28 1.558 1.556 1.544 1.528 1.502 1.47 1.426 1.374 1.307 1.215 

29 1.546 1.543 1.532 1.516 1.492 1.459 1.418 1.367 1.302 1.211 

30 1.534 1.531 1.522 1.505 1.482 1.45 1.41 1.359 1.296 1.207 

40 1.447 1.445 1.437 1.423 1.404 1.378 1.346 1.303 1.249 1.175 

50 1.391 1.390 1.382 1.37 1.355 1.332 1.304 1.267 1.22 1.156 

60 1.353 1.35 1.345 1.334 1.319 1.299 1.274 1.241 1.199  
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Percentage points of the Correlated Gamma Ratio distribution for α=0.01                    

( ) ( ) 990. α-1=

z

0

dt
2

1k2

ρ
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∫ t

2

1t

2
1

2k
11t

B

21

k,
 

 

           ρ 

k 

 

0.0 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

 

0.7 

 

0.8 

 

0.9 

1 99 98.10 95.2 90.3 83.5 74.8 64.1 51.7 36.7 20.4 

2 15.98 15.84 15.42 14.71 13.72 12.45 10.90 9.05 6.91 4.45 

3 8.47 8.40 8.20 7.87 7.40 6.8 6.05 5.17 4.13 2.91 

4 6.03 5.99 5.86 5.64 5.34 4.95 4.47 3.89 3.2 2.38 

5 4.85 4.82 4.73 4.57 4.34 4.05 3.69 3.25 2.73 2.11 

6 4.155 4.13 4.06 3.93 3.75 3.52 3.23 2.88 2.46 1.94 

7 3.7 3.68 3.62 3.51 3.36 3.16 2.92 2.62 2.27 1.83 

8 3.37 3.36 3.30 3.21 3.08 2.91 2.7 2.45 2.14 1.75 

9 3.13 3.12 3.07 2.99 2.87 2.72 2.53 2.31 2.03 1.68 

10 2.94 2.93 2.88 2.81 2.705 2.565 2.405 2.2 1.95 1.63 

11 2.785 2.775 2.735 2.67 2.575 2.45 2.3 2.11 1.88 1.59 

12 2.66 2.65 2.61 2.55 2.465 2.35 2.21 2.04 1.825 1.555 

13 2.555 2.545 2.51 2.455 2.375 2.27 2.135 1.975 1.78 1.525 

14 2.465 2.455 2.425 2.37 2.295 2.195 2.075 1.925 1.74 1.497 

15 2.39 2.38 2.35 2.3 2.23 2.135 2.025 1.88 1.705 1.475 

16 2.32 2.31 2.285 2.235 2.17 2.08 1.975 1.84 1.675 1.46 

17 2.26 2.25 2.225 2.18 2.117 2.035 1.935 1.805 1.645 1.437 

18 2.208 2.195 2.172 2.13 2.07 1.99 1.895 1.773 1.62 1.418 

19 2.16 2.15 2.127 2.086 2.03 1.955 1.86 1.744 1.599 1.41 

20 2.115 2.105 2.085 2.046 1.994 1.92 1.83 1.72 1.58 1.395 

21 2.075 2.07 2.049 2.01 1.956 1.89 1.801 1.695 1.56 1.384 

22 2.04 2.034 2.01 1.976 1.925 1.86 1.775 1.675 1.544 1.374 

23 2.005 2 1.98 1.946 1.897 1.835 1.754 1.654 1.53 1.364 

24 1.978 1.972 1.952 1.918 1.872 1.810 1.732 1.634 1.512 1.352 

25 1.95 1.944 1.924 1.892 1.848 1.788 1.712 1.618 1.5 1.344 

26 1.924 1.918 1.90 1.868 1.824 1.766 1.694 1.602 1.488 1.336 

27 1.9 1.894 1.876 1.846 1.804 1.748 1.676 1.588 1.476 1.328 

28 1.878 1.872 1.854 1.826 1.784 1.73 1.66 1.574 1.464 1.32 

29 1.856 1.852 1.834 1.806 1.766 1.712 1.645 1.561 1.455 1.314 

30 1.838 1.832 1.816 1.788 1.748 1.696 1.632 1.55 1.446 1.308 

40 1.69 1.685 1.672 1.65 1.619 1.578 1.525 1.458 1.374 1.259 

50 1.597 1.594 1.583 1.565 1.538 1.502 1.456 1.4 1.327 1.229 

60 1.536 1.532 1.522 1.506 1.48 1.449 1.409 1.359 1.294 - 
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APPENDIX III 

The Probability density function of the Correlated Gamma Ratio 

distribution  
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