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Abstract- The key issue of extreme-value theory is
the estimation of a parameter v, known as extreme-
value index. In this paper we review several
extreme-value index estimators, ranging from the
oldest ones to the most recent developments.
Moreover, a smoothing procedure of these
estimators are presented. A simulation study i
conducted in order to compare the behaviour of the
estimators and their smoothed alternatives. Maybe
the most prominent result of this study is that no
uniformly best estimator exist and that the
behaviour of estimators depends on the value of the
parameter vy itself. .

Index Terms- extreme value index; semi-
parametric estimation; smoothing modification.

1. INTRODUCTION

Extreme value theory is an issue of major
importance in many fields of application where
extreme values may appear and have detrimental
effects. Such fields range from hydrology (Smith
[31], Davison and Smith [8], Coles and Tawn
[5], Bardo and Tawn [2]) to insurance (Beirlant
et al. [3], Mikosch {25], McNeil [22], Rootzen
and Tajvidi [29]) and finance (Danielsson and de
Vries [6], McNeil [23] and [24], Embrechts et al.
{131.{14], Embrechts [12]). Actually, extreme
value theory is a blend of a variety of
applications and sophisticated mathematical
resuits on point processes and regular varying
functions. .

Aétually, extreme value theory is a blend of a
variety of applications and sophisticated
mathematical results on point processes and
regular varying functions.

The comerstone of extreme value theory is

Fisher-Tippet's theorem for limit laws for
maxima (Fisher and Tippet, [16]). According to
this. if the maximum value of a distribution
function (d.f') tends (in distribution) to a non-
degenerate d.f. then this limiting d.f. can only be
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In this paper we deal with the estimation of the
parameter (extreme-value index) y. Particularly,
in section 2 several existing estimaiors for y are
presented, while in section 3 a smoothing
method on specific estimators is given and
extended to other estimators, too. A simulation
comparison of the presented extreme-value index
estimators along  with their smoothing
altematives is analytically described in section 4.
Finallv, concluding remarks can be found in
section 5.

II. SEMI-PARAMETRIC EXTREME- VALUE INDEX
EsTRMATION

The most popular estimation approach in the
context of extreme value analysis is the so-called
‘Maximum Domain of Attraction Approach’
(Embrechts et al,, [13]), or Non-Parametric. In
the present context we prefer the term ‘semi-
paramerric’ since this term reflects the fact that
we make only partly assumptions about the
unknown d.f. F.

Here we are interested in the distribution of the
maximum (or minimum) value. According to the
Fisher-Tippet theorem, the limiting d.f of the
(normalized) maximum value (if it exists) is the
GEV df H0=Hmﬁ, So, without making any

assumptions about the unknown d.f F (apart
from some continuity conditions), extreme-value
theory provides us with a fairly sufficient tool for
describing the behaviour of extremes of the
distribution that the data in hand stem trom. The
only issuc that remains to be resolved is the
estimation of the parameters of the GEV df
O=(r.u,0).



The procedure followed in -practice is that we
assume that the asvmptotic approximation is
achieved for the largest k observations (where K
1s large but not as large as the sample size n),
which we subsequently use for the estimation of
the parameters. However, the choice of k is not
an easy task. On the contrary, it is a very
controversial issue. In this section, we give the
most prominent answers to the issue of
parameter estimation. We mainly concentrate to
the estimation of the shape parameter y (also
called tail index or extreme-value index), since
this is the parameter that determines the
behaviour of extremes. We describe the most
well-known proposals, ranging from the first
contributions, of 1975, in the area to very recent
modifications and new developments.

Pickands estimator (Pickands, [26]) is the first
suggested estimator for the parameter ¥ € R of
GEV df and is given by the formula
5, = L]_\-{XW‘ =X, (mrn) , where X = Xon
? 1n2 - X kn

2 ... 2 Xy are the descending order statistics of
the corresponding sample of observations. A

‘X(kIZ):n

particular charactenistic of Pickands estimator is .

the fact that the largest observation is not
explicitly used in the estimation. One can argue
that this makes sense since the largest
observation may add too much uncertainty. The
properties of Pickands estimator were mainly
explored by Dekkers and de Haan {10], who
proved, under certain conditions, weak and
strong consistency, as well as asymptotic
normality.

However, the most popular tail index estimator is
the Hill estimator, (Hill, {18]), which though is
restricted to the case y > 0. Hill estimator is
provided by the formula

K 1 ,
Yu= ;Zln"Yi;n - h‘&kfl:n-
i=]

Weak and strong consistency as well as
asymptotic normality of Hill estimator hold
under the assumption of i.i.d. data (Embrechts et
al, [13]). Though the Hill estimator has the
apparent disadvantage that is restricted to the
case y>0, it has been widely used m practice and
extensively studied by statisticians. Its popularity
is partly due to its simplicity and partly due to
the fact that in most of the cases where extreme-
value analysis is called for, we have long-tailed
d.fs (e y>0).
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The popularity of Hill estimator made a tempting
problem to try to extend the Hill estimator to the
general case y € R. Such an attempt, led Beirlant
et al. {4] to the so-called adapted Hill
estimator, which is applicable for any v in the
range of real numbers:

. 14 .
Yttt = ;‘Zln(Ui)‘ln(Uk.l) » where

=1
1<
J=

Another estimator that can be considered as an
adaptation of Hill estimator, in order to obtain
consistency for all y € R, has been proposed by
Dekkers et al. [10,{11]. This is the Moment
estimator, given by

Ay -l
Pr=M +1-1 1= B4)") where
2\ M,
My _]l;t%l(hxtn ~BX ) =12

Weak and strong consistency, as well as
asymptotic normality of the Moment estimator
have been proven by Dekkers et al. [10],[11].

One of the approaches concerning Hill’s
derivation is the ‘QQ-plot’ approach (Beirlant et
al., [4]). A more precise estimator, under this
approach, has been suggested by Kratz and
Resnick [20], who derived the following
estimator of y:

k i k
) _;m“ {gmxﬁ_—kln.\’,,}

,z,.: lnk+1 (,,,hlkﬂ)

The authors proved weak consistency and
asymptotic normality of QQ-estimator (under
conditions similar to the ones imposed for the
Hill estimator). However, “the asvmptotic
variance of qg-estimator is twice the asymptotic
variance of Hill estimator, while similar
conclusions are drawn from simulations of small
samples.

Concentrating on cases where ¥ > 0, the main
disadvantage of Hill estimator is that it can be
severely biased, depending on the 2™ order
behaviour of the underlving d.f. F. Based on an
asvmptotic 2™ order expansion of the df F,
Danielsson et al. [7] proposed the Moments

P



) _‘_{__ . They proved

Ratio estimator : - =
2 M,

that ? wr has lower asymptotic square bias than

the Hill estimator (when evaluated at the same

threshold, ie. for the same k), though the

convergence rates are the same.

An estimator related to the Moment estimator
74 15 Peng’s estimator, suggested by
Deheuvels et al. [9]:

5y -1
5 M, +l_l[l_(‘wl)} .

Temom, T2 T T,

This estimator has been designed to somewhat
reduce the bias of the moment 'estimator.
Another related estimator suggested by the same

authors is the W estimator:
2y~
3 =1_l(1_££1_)_] , where
2\ L

L

k .
%Z(‘Yl:n = qul):n)j J=1.2.

i=1
As Deheuvels et al. [9] mentioned, 7, is
consistent for any "y e® (under the usual
sonditions), while 7. is consistent only for
¥ <1/2. Moreover, under appropriate conditions
on F and k(n), 7, is asymptotically normal
Normality holds for 7, only for y <1/4.

The aforementioned estimators share some
jommon desirable properties, such as weak
sonsistency and asvmptotic normality (though
hese properties mav hold under slightly
lifferent, ‘unverifiable i any case, conditions).
On the other hand, simulation studies or
wplications on real data can end up in large
litferences among these estimators. In any case,
here is no “uniformly best’ estimator. Of course,
{ill, Pickands and Moment estimators are the
nost popular ones. This could be partly due to
he fact that they are the oldest ones. Actually,
nost of the rest Have been introduced as
dternatives to Hill, Pickands or Moment
:stimator and some of them have been proven to
»e superior in some cases only. In the literature,
here are several comparison studies of extreme-
ralue index estimators (either theoretically or via
Jonte-Carlo methods), such as Deheuvels et al.
9] and Rosen and Weissman [30]. Still, these
tudies are confined to a small number of
stimators.
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[l SMOOTHING PROCEDURES FOR SEMI-
PARAMETRIC EXTREME-VALUE INDEX
ESTIMATORS

One of the most serious objections one could
raise against the aforementioned semi-parametric
estimators is their sensitivity towards the choice
of k (number of upper order statistics used in the
estimation). The well-known phenomenon of
bias-variance trade off tums out to be
unresolved, and choosing k seems to be more of
an art than a science. In this paper we present an
approach aiming to confront this issue.

An exploratory way to subjectively choose the
number k is based on the plot of the estimator
7(k) versus k. A stable region of the plot

indicates a valid value for the estimator. The
search for a stable region in the plot is a standard
but problematic and ill-defined practice. The
need for a stable region results from adapting
theoretical limit theorems which are proved
subject to the conditions that (n) — « but also

k(n)/n— 0. But, since extreme events by

definition are rare, there is only little data (few
observations) that can be utilised and this
inevitably involves an added large statistical
uncertainty. A possible solution would be to
smooth ‘somehow’ the estimates with respect to
the choice of k (i.e. make it more insensitive to
the choice of k), leading to a more stable plot and
a more reliable estimate of . Such a method was
proposed by Resnick and Starica [27], [28] for
smoothing Hill and Moment estimators,
respectively.

Resnick and Stiricd [27] proposed a simple
averaging technique that reduces the volatility of
the Hill-plot. The smoothing procedure consists
of averaging the Hill estimator values
corresponding  to different values of order
statistics p. The formula of the proposed
averaged-Hill estimator is :

k
— DY Pulp)
k —[ku] F%‘, 4

where u<l, and [x] the smallest integer greater
than or equal to x.

avy y(k) =

The authors proved that through averaging, the
variance of the Hill estimator can be
considerably reduced and the volatlitv of the
plot tamed. The smoothing techniques make no
(additional)  unrealisic  or  uncheckable
assumptions and are always available to
complement the Hill plot. Obviously, when
considerable  bias is present, the averaging



technique offers no improvement. They derived
the adequacy (consistency and asvimptotic
normality) of the averaged-Hill estimator, as well
as its improvement over Hill estimator (smaller
asvmptotic variance). Since the asvmplotic
variance is a decreasing function of u, one would
like to choose u as big as possible to ensure the
maximum decrease of the variance. However.
the choice of u is limited by the sample size. Due
to the averaging, the larger the u, the fewer the
points one gets on the plot of averaged Hill.
Therefore, an equilibrium should be reached
between variance reduction and a comfortable
number of points on the plot.

Resnick and Stérick (28] afso applied therr tdea
of smoothing to the more general Moment
estimator 7. The formula of the proposed
averaged-moment estimator is :

L S

k-l fon

In practice, the authors suggest to take u=0.3 or
u=0.5 depending on the sample size (the smaller
the sample size the larger u should be).

avy ulk) =

In this case the consequent reduction in
asymptotic variance is not so profound. The
authors actually showed that through averaging
(using the above formula), the variance of the
moment estimator can be considerably reduced
only in the case y <0. In the case y >0 the

simple moment estimator tums out to be
superior. For y ~ 0 the two moment estimators

(simple and averaged) are almost equivalent.
These conclusions hold asymptotically, and have
been shown via a graphical comparison.

IV. SIMULATION COMPARISON OF EXTREME-
VALUE INDEX ESTIMATORS

A. Details of Simulation Studv

In this section, we try to investigate and
compare, via Monte Carlo methods, the
performance of the extreme-value index
estimators introduced. as well as the performance
of the modifications suggested previously. Apart
trom the standard form of estimators, we apply
to all these the averaging procedure presented in
section III. Resnick and Staricd [27], [28]
suggested (and proved the adequacy and good
properties of) this procedure only in the context
of Hill and moment estimator. We apply the
procedure to other extreme-value index
estimators, so as to empirically evaluate its effect
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on these estimators. In addition, apart from these
mean-averaged estimators, we apply analogously
a median-averaging procedure to our estimators.

The distributions used in the simulation study,
range from distributions with finite upper
endpoint (y<0), such as in Beta, Uniform) 1o long-
tatled distributions (3=0, such as Gamma,
Normal, Log-Normal, Exponential and Weibull
or p>0, such as Burr, Fréchet, Log-Gamma,
Log-Logistic, Parcto). From ecach of these
distributions, 1000 samples were generated of
moderate size (n=100) and 500 samples of large
size (n=1000), based on which the performance
of the estimators is examined. In our study, the
performance of any estimator of y, is evaluated
in terms of the bias, standard error and root mean
square error of the estimator based on k upper
order statistics (where k ranges from 1 up to
sample size). The root mean square error (rmse),
being a combination of standard deviation and
bias, is essentially the basis for comparisons of
estimators.

B. Discussion of Simulation Results

Before proceeding to the discussion of the
results, 1t should be noted that the performance
of the estimators did not seem to remain stable
for data stemming from different distributions.
For this reason, in the sequel we provide the

main findings of the simulation study
distinguishing for each different class of
distributions.
e Fory>0

For large sample sizes Moment-Ratio seems to
be the most preferable estimator. It is usuaily the
best estimator, in terms of minimum rmse. Even
in cases that other estimators outperform it, it is
one of the bests, while in no case does it display
very unsatisfactory performance. It is interesting
to note that the W estimator tends to be
appropriate for distributions with extreme-value
index y larger than 1, though for smaller values
of y its performance can be very unsatisfactory.
So, it may be risky to use this estimator, since in
real-life applications the value of y is unknown.
For small samples (in our case n=100), Hill
estimator turns out to be the best choice, while
Moment-Ratio and Moment estimators can also
be regarded as safe options. Among averaging
procedures, only the mean averaging of Pickands
estimator is  effective. However, the
improvement is not large enough to out-beat the
other standard estimators.



e  Fory=0

This class contains a wide range of distributions.
Consequently there is not a uniformlv superior
estimator. However, by examining more
carefully the simulation results one could deduce
that Peng's is the most preferable estimator of the
extreme-value index. Moment and (surprisingly)
Moment-Ratio  also  display an  adequate
behaviour. The usefulness of averaging
procedures in these cases should also be stressed
out. These procedures have an obvious profitable
impact on Pickands estimator, so that mean-
averaged Pickands estimator can also be
regarded as an adequate estimator of y.

s  Fory<0

This class contains upper-bounded distributions.
Though the shape of distributions differs a lot
from the distributions with y=0, the behaviour of
extreme-value index estimators in these two
classes of d.f's displays great analogies. Here,
Moment and Peng's estimators are undeniably
the most preferable estimators and the beneficial
effect of both mean and median averaging
procedures is even more evident. Moreover, as
we deviate from zero (and positive) values of y,
the inadequacy of estimators such as Hill
Moment-Ratio and so on, is more clear.

V. DiscussioN

The comparison (via simulation) of semi-
parametric estimation methods for the extreme-
value index and some smoothing alternatives has
been the central issue of this paper. The
simulation studv conducted led to some verv
interesting results. The first is“that, as one could
naturally expect, the performance of estimators
on a specific data-set depends on the distribution
of the data. So, there is not a uniformly best
estimator. Nevertheless, by looking more
carefully at the results, some general conclusions
may be reached. More specifically, in cases of
long-tailed data (with an infinite upper end-
point) Moment and Moment-Ratio estimators
scem o estimate more satisfactorily the non-
negative extreme-value index y. However, when
it comes to upper-bounded distributions
(characterized by a negative value of y) Peng's
and Moment estimators are more preferable. As
far as the impact ol smoothing (averaging)
procedures is concerned, we deduce’ that it 1s
cilective (improving the performance of standard
estimators) in cases where the true value of
extreme-value index is non-positive. Particularly,
mean-averaging procedures improve greatly the
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pertormance of Pickunds estimator (in case of
zero y), while median-averaging of Moment and
Peng's also leads to improved estimators (for y
negative).

The dependence of estimators’ performance on
the distribution of data in hand can be
alternatively scen as dependence on the true
value of the index itself. So, before proceeding to
the use of any estimation formula it would be
usetul if’ we could get an idea ahout the range of
values where the true y lies in. This can be
achieved graphically via QQ and mean excess
plots. Alternatively, there exist statistical tests
which tests such hypothesis. See, for example,
Hosking [19], Hasofer and Wang [17], Alves and
Gomes [1] and Marohn [21].

Moreover, it should be pointed out that among
the averaged estimators used in the simulation
study only the mean-averaged Hill and Moment
estimators have been theoretically explored by
Resnick and Staricd {27], [28]. As we have seen,
the median averaging procedure has also
displaved some interesting  effectiveness,
implying that it may be worthy to be also studied
theoretically (with special emphasis on Moment
and Peng's estimators). The same holds for the
mean-averaged Pickands estimator.
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