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1 Introduction

Modeling the term structure of interest rates using risk factors is a vast and expanding research

frontier in financial economics; see Piazzesi (2010), Gürkaynak and Wright (2012), Duffee

(2013) and Diebold and Rudebusch (2013) for extensive reviews. A large number of papers

have focused on modeling yield dynamics and sought to produce satisfactory forecasting results,

such as Nelson and Siegel (1987), Dai and Singleton (2003), Diebold and Li (2006), Christensen,

Diebold and Rudebusch (2011) and Dewachter and Iania (2012), among others. A major strand

of this yield forecasting literature has been inspired by the seminal contribution of Nelson and

Siegel (1987), who extract three linear factors that capture most of the variation in bond

yield data. The Nelson and Siegel (1987) (NS) approach has an appealing structure that is

parsimonious, flexible, and allows for an easy interpretation of the estimated factors. Diebold

and Li (2006) extend the proposed Nelson-Siegel model to a dynamic version, and provide

improved predictive power in modeling the yield curve. Joslin, Singleton and Zhu (2011) and

Duffee (2013) conclude that, in the absence of restrictions in factor dynamics, forecasts from

models which impose no-arbitrage restrictions are equivalent to forecasts from unrestricted,

reduced-form econometric models.1 This observation can generalize to reduced-form estimation

with Nelson-Siegel restrictions, where principal component estimates are replaced with NS

factors.2

In this paper we build upon previous work and propose a dynamic Nelson-Siegel model with

several novel features. Firstly, we extend related work by accommodating structural change

in our term structure model and incorporating additional financial information. The global

financial crisis was an abrupt nonlinear shock that highlighted the importance of financial

market for macroeconomic activity and bond yields more generally. Our macro-finance model

combines standard Nelson-Siegel factors with macroeconomic and financial factors estimated

by a large vector autoregressive (VAR) system with time-varying coefficients and volatility.

1See also Joslin, Le and Singleton (2013), who extend the irrelevance proposition of cross-sectional (no-
arbitrage) restrictions of Joslin, Singleton and Zhu (2011) to higher order state dynamics.

2Nevertheless we test the robustness of core results to the no-arbitrage restrictions.
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The time-varying setup is conducted by the application of Bayesian econometric techniques.

Building on, and extending, Koop and Korobilis (2013) we develop an efficient Bayesian model

that allows us to estimate large systems with many variables.

Secondly, following a large literature we include macro risk factors in our reduced-form

specification.3 The seminal work of Ang and Piazzesi (2003) uses inflation, the output gap and

three latent factors to model yields.4 Other authors consider the dynamics of the term structure

augmented with information on exchange rates or survey data; see Anderson, Hammond and

Ramezani (2010), Duffee (2014) and Kim and Orphanides (2012). Dewachter and Iania (2012)

and Dewachter, Iania and Lyrio (2014) successfully model yield dynamics using standard macro

factors plus three additional financial factors: liquidity risk, credit risk and risk premium factors.

This innovative approach can be extended to incorporate a more substantial range of macro-

finance risk factors with modeling techniques that seek to distill large datasets.

Lastly, following Koop and Korobilis (2012) we employ Dynamic Model Averaging (DMA)

methods in order to determine in a data-based way which macro risks are relevant for the yield

curve at different points in time. That is, we use DMA in order to choose, at each point in time,

between three models: i) one with three Nelson-Siegel (NS) factors only; ii) NS factors plus

three key macroeconomic indicators; and iii) NS factors augmented using up to 15 macro and

financial factors.5 DMA allows us to assign probabilities for each of the models at each point

in time and thus dynamically implement averaging over time. Model averaging methods have

been shown to reduce the total forecast risk associated with using only a single ‘best’ model;

see Avramov (2002), Cremers (2002) and Elliott and Timmermann (2008).

We use our model to empirically examine U.S. term structure dynamics using monthly obser-

3See for instance Ang and Piazzesi (2003), Bernanke, Reinhart and Sack (2004), Diebold, Rudebusch and
Aruoba (2006), Hördahl, Tristani and Vestin (2006), Bianchi, Mumtaz and Surico (2009), Smith and Taylor
(2009), Bekaert, Cho and Moreno (2010) and Joslin, Priebsch and Singleton (2014).

4The important roles of macro variables, such as price inflation and indicators of real activity, are particularly
emphasized in this paper: the authors show that macro factors can explain up to 85% of the variation in bond
yields.

5Our third macro-finance model is like a ‘kitchen sink’ model which fully accounts for, and extends, the point
of Dewachter and Iania (2012) and Dewachter, Iania and Lyrio (2014) that financial factors are important for
modeling yields, whilst allowing for much more information to be incorporated in the spirit of Ludvigson and
Ng (2009).
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vations from 1971 to 2013. Our empirical evidence indicates an extended macro-finance model

is helpful in modeling yield factor dynamics especially in recession periods. We shed light on

the apparent trade-off between incorporating stochastic volatility and fitting the cross-section

of yields in affine term structure models.6 We find that our approach has useful empirical

properties in yield forecasting, as it is robust to parameter and model uncertainty as well as

potential structural breaks. We compare the forecast performance of our approach to a basic

dynamic Nelson-Siegel model and several variations, and show that the gains in predictabil-

ity is due to the ensemble of salient features – time-varying parameters, stochastic volatility

and dynamic model averaging. Our extended macro-finance model forecasts better than the

benchmarks, especially at short horizons based upon Diebold and Mariano (1995) tests and

predictive likelihood. Using only conditional information, our approach to modeling the yield

curve provides us with successful term premium alternatives to full-sample estimates of Kim

and Wright (2005), Wright (2011) and Bauer, Rudebusch and Wu (2014), which reveals plau-

sible expectations of investors in real time. Our estimated term premia shows a significant

‘flight-to-quality’ demand in the global financial crisis, which distinguishes this crisis from the

previous recessions. A predictable element estimated from our proposed model has strong in-

sample and out-of-sample predictability in terms of future excess bond returns using Clark and

West (2007). Moreover, the predictability is of economic value, based upon the methodology

of Campbell and Thompson (2008).

This paper is structured as follows. Section 2 describes the estimation method and our

framework for modeling bond yield dynamics. Section 3 describes the data, discusses the eco-

nomic implications of NS factor movements and displays the performance and second moment

properties of NS-DMA yield forecasts. Robustness checks with arbitrage-free restrictions are

as well present in Section 3. Section 4 evaluates the predictability of NS-DMA for the excess

6Anh and Joslin (2013) indicate no-arbitrage affine term structure models with stochastic volatility perform
poorly in replicating term premia dynamics in the data, because the no-arbitrage assumption provides strong
over-identifying constraints. Creal and Wu (2015) also suggest that in the no-arbitrage framework with constant
parameters, the benefit in fitting volatility is at the expense of fitting the cross-section of yields. Our empirical
results show that the potential evolution of model parameters needs to be taken into account, so less flexible
state dynamics may not be correctly specified to capture the abnormal dynamics of yield factors in recession
periods.
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bond returns and the economic value of the predictability. Section 4 also shows the implied

term premia of NS-DMA has informative economic implications. Section 5 concludes.

2 Methods

2.1 The Nelson-Siegel Restrictions

Following Nelson and Siegel (1987) and Diebold and Li (2006) we assume that three factors

summarize most of the information in the term structure of interest rates. Let yt (τ) denote

yields at maturity τ , then the factor model we use is of the form:7

yt (τ) = LNS
t +

1 − e−τλNS

τλNS
SNS

t +

(
1 − e−τλNS

τλNS
− e−τλNS

)
CNS

t + εt (τ) , (2.1)

where LNS
t is the “Level” factor, SNS

t is the “Slope” factor, CNS
t is the “Curvature” factor and

εt(τ) is the error term. In the formulation above, λNS is a parameter that controls the shapes of

loadings for the NS factors; following Diebold and Li (2006) and Bianchi, Mumtaz and Surico

(2009), we set λNS = 0.0609. For estimation purposes, we can rewrite the equation (2.1) in the

equivalent compact form,

yt(τ) = B(τ)F NS
t + εt(τ),

where F NS
t =

[
LNS

t , SNS
t , CNS

t

]′
is the vector of three NS factors, B(τ) is the loading vector

and εt(τ) is the error term.

The Nelson-Siegel restrictions are in fact restrictions on the risk-neutral dynamics. Feunou,

Fontaine and Le (2014) show that the NS model is the continuous time limit of their near

arbitrage-free class with a unit root under the risk-neutral measure. Joslin, Singleton and

Zhu (2011) show that no-arbitrage cross-sectional restrictions cannot improve out-of-sample

forecasts. In light of their findings, we specify the cross-sectional loadings with NS restrictions

7This is an asymptotically flat approximating function, and Siegel and Nelson (1988) demonstrate that this
property is appropriate if forward rates have finite limiting values.
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and focus on time-series variation of yield factors, in order to improve the forecast performance.

The NS restrictions also imply a setup of Unspanned Macro Risk, if the time series (physical)

dynamics of factors, without imposing any restrictions, are augmented with macro-finance

information. In this setup, the macro variables only affect the unobserved NS factors and do

not interact directly with the observed yields, so that they are unspanned by the yields. In

other words, a ‘knife-edge’ restriction is imposed on the coefficients of macro variables in the

pricing dynamics, while the physical dynamics are left unconstrained, see Joslin, Priebsch and

Singleton (2014) for details.

2.2 Yield Factor Dynamics

In our first step, we use a simple ordinary least squares (OLS) to extract three NS factors.

We assume these factors are observed without errors, which is a standard assumption in term

structure modeling. The interpretation of the Nelson-Siegel factors are of considerable empirical

importance. The Level factor LNS
t is identified as the factor that is loaded evenly by the yields

of all maturities. The Slope factor SNS
t is equivalent to the spread between short- and a

long-term bond yields, and its movements are captured by placing more weights on shorter

maturities. The Curvature factor CNS
t captures changes that have their largest impact on

medium-term maturities, and therefore medium-term maturities load more heavily on this

factor. In particular, using the setting λNS = 0.0609, the CNS
t has the largest impact on the

bond at 30-month maturity, see Diebold and Li (2006).8

An important novel aspect of our methodology is in modeling the factor dynamics in the

second step. Following Bianchi, Mumtaz and Surico (2009), the extracted Nelson-Siegel factors

augmented with macroeconomic variables follow a time-varying parameter vector autoregression

8Further discussion of these factors can be found in Appendix B.
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(TVP-VAR) of order p of the form




F NS
t

Mt




= ct + B1t




F NS
t−1

Mt−1




+ · · · + Bpt




F NS
t−p

Mt−p




+ vt, (2.2)

where ct are time-varying intercepts, Bit are matrices of time-varying autoregressive coefficients

for i = 1, ..., p, Mt is a vector of macro-finance risk factors, and vt is the error term. Following

Coroneo, Giannone and Modugno (2014) and Joslin, Priebsch and Singleton (2014), we do not

impose any restrictions on the above VAR system.

For the purpose of econometric estimation, we work with a more compact form of Eq. (2.2).

We can show that the p-lag TVP-VAR can be written as

zt = Xtβt + vt, (2.3)

where zt =
[
LNS

t , SNS
t , CNS

t , M ′
t

]′
, Mt is an q × 1 vector of macro-finance factors, Xt = In ⊗

[
z′

t−1, ..., z′
t−p

]
for n = q + 3, βt =

[
ct, vec (B1t)

′ , · · · , vec (Bpt)
′
]′

is a vector summarizing all

VAR coefficients, vt ∼ N (0, Σt) with Σt an n × n covariance matrix. This regression-type

equation is completed by describing the law of motion of the time-varying parameters βt and

Σt. For βt we follow the standard practice in the literature from Bianchi, Mumtaz and Surico

(2009) and consider random walk evolution for our VAR coefficients of the form,

βt+1 = βt + µt, (2.4)

based upon a prior β0 discussed below, and µt ∼ N (0, Qt). Following Koop and Korobilis

(2013) we set Qt = (Λ−1 − 1) cov (βt−1|Dt−1) where Dt−1 denotes all the available data at time

t − 1 and scalar Λ ∈ (0, 1] is a ‘forgetting factor’ discounting older observations.

The covariance matrix Σt evolves according to a Wishart matrix discount process (Prado
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and West (2010)) of the form:

Σt ∼ iW (St, nt) , (2.5)

nt = δnt−1 + 1, (2.6)

ntSt = (nt − 1)St−1 + f
(
v

′

tvt

)
, (2.7)

where nt and St are the degrees of freedom and scale matrix, respectively, of the inverse Wishart

distribution, δ is a ‘decay factor’ discounting older observations, and f
(
v

′

tvt

)
is a specific

function of the squared residuals of our model and explained in the Appendix A.1.

Therefore, we have specified a VAR with drifting coefficients and stochastic volatility which

allows to model structural instabilities and regime changes in the joint dynamics of the NS fac-

tors and the macroeconomic and financial factors. When conducting Bayesian inference Markov

Chain Monte Carlo for example needs to be employed, which can be computationally demand-

ing especially in a recursive forecasting context. Here we extend the methodology of Koop and

Korobilis (2013) and conduct an efficient estimation scheme to provide accurate results while

largely speeding up the estimation procedure. We use what is known as a ‘forgetting factor’

or ‘decay factor’ to discount the previous information when updating the parameter estimates;

detailed information of our empirical methodology can be found in Appendix A.1.

2.3 Model Selection

2.3.1 Uncertainty about Macro-Finance Factors

The previous subsection describes the specification of a single time-varying parameter Nelson-

Siegel model. In this paper we argue that the possible set of risk factors, relevant for char-

acterizing the evolution of the yield curve, can change over time. In this case we are faced

with multiple models. In that respect we focus on Eq. (2.3) and we work with three different

specifications: small, medium, and large. The small-size (NS) model only contains the three

yield factors extracted from the Nelson-Siegel model and zero macro variable, i.e. q = 0 in Eq.
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(2.3). The middle-size (NS + macro) model includes, in addition to the Nelson-Siegel factors,

Federal Fund Rate, CPI and Industrial Production, so q = 3. The large (NS + macro-finance)

model includes q = 15 macroeconomic and financial variables.

Having three models M(i) = 1, 2, 3, in our model space, we use the recursive nature of the

Kalman filter to chose to forecast with a different model at each point in time. That is, for

each t we chose the optimal M(i) which maximizes the probability/weight

π
(i)
t = f

(
MT RUE

t−1 = M(i)|Y t−1
)

under the regularity conditions
∑K

i=1 πi
t = 1 and πi

t ∈ [0, 1], and where MT RUE
t−1 is the ‘true’

model at time t−1. We estimate these model weights in a recursive manner, in the spirit of the

Kalman filtering approach. We follow Koop and Korobilis (2013) and define a linear forgetting

prediction step

π
(i)
t|t−1 =

(
π

(i)
t−1|t−1

)α

∑K
i=1

[
µ
(
π

(i)
t−1|t−1

)α] (2.8)

and the updating step

π
(i)
t|t ∝ π

(i)
t|t−1p

(i) (zt|zt−1) . (2.9)

where the quantity p(i) (zt|zt−1) is the time t predictive likelihood of model i, using information

up to time t − 1. This quantity is readily available from the Kalman filter and it provides an

out-of-sample measure of fit for each model which allows us to construct model probabilities.

Finally, 0 < α ≤ 1 is a decay factor which allows to discount exponentially past forecasting

performance, that is, it allows to give exponentially higher weight to most recent observations;

see Koop and Korobilis (2013) for more information. When α → 0 then we have the case of

averaging using equal weights for each model, while when α = 1 the predictive likelihood of

each observation has the same weight which is basically equivalent to recursively implementing
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static Bayesian Model Averaging. For all other values between (0, 1) Dynamic Model Averaging

occurs.

2.3.2 Prior Selection

We define a Minnesota prior for our VAR, which will guarantee some degree of shrinkage that

could prevent overfitting of our larger models. This prior is of the form β0 ∼ N
(
0, V MIN

)

where V MIN is a diagonal matrix with element V MIN
i given by

V MIN
i =





γ/r2, for coefficients on lag r where r = 1, ..., p

α, for the intercept

, (2.10)

where p is the lag length and α = 1. The prior covariance matrix controls the degree of shrinkage

on the VAR coefficients. To be more specific, the larger the prior parameter γ is, the more

flexible the estimated coefficients are and, hence, the lower the intensity of shrinkage towards

zero. As the degree of the shrinkage can directly affect the forecasting results, we allow for

a wide grid for the reasonable candidate values of γ: [10−10, 10−6, 0.001, 0.005, 0.01, 0.05, 0.1].

The best prior γ is selected dynamically according to the forecasting accuracy each value in the

grid generates. That is, following Koop and Korobilis (2013) we select γ for each of the three

models M (i) = 1, 2, 3 and for each time period. Details of this Dyanmic Prior Selection (DPS)

procedure can also be found in the Appendix A.2.

In this paper we also need to calibrate some other free parameters: the NS factor parameter

λNS in Eq. (2.1), forgetting factors Λ in Eq. (A.3), α in Eq. (A.5), and decay factor δ in Eq.

(A.2). We have already mentioned that following Diebold and Li (2006), Bianchi, Mumtaz and

Surico (2009) and Van Dijk et al. (2014) we set λNS = 0.0609. Regarding the forgetting factors

and the decay factor, we may need some more discussion. Intuitively, these parameters control

the persistence of previous information. When these parameters are fixed at 1, our time-varying

parameter model will become the fixed parameter model. However, as discussed in Koop and

Korobilis (2013), too small values may induce sudden changes to outliers, so the state space
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system is not stable and the results will not be robust. Another reason to calibrate high values

for these factors is due to the persistence of bond yields; low values for free parameters will

weaken the bond yield predictions. Hence, we choose relatively high values (less than 1) to

ensure stability while still allowing for flexibility: The Λ, α and δ are set to 0.99, 0.99 and 0.95,

respectively.

3 Data and Results

This study uses the smoothed yields provided from the US Federal Reserve by Gürkaynak,

Sack and Wright (2007). We also include 3- and 6-month Treasury Bills (Secondary Market

Rate). The empirical analysis focuses on yields with maturities of 3, 6, 12, 24, 36, 48, 60, 72,

84, 96, 108 and 120 months. The key macroeconomic and financial variables that enter our

Dynamic Model Averaging model are obtained from St. Louis Federal Reserve Economic Data

(FRED). These include inflation, real activity indicators, monetary policy tools, as well as the

stock market, exchange rate, house prices and other financial market indicators; the details

can be found in Data Appendix. The full sample is from November 1971 to November 2013

and we use end of the month yield data. The 1, 3, 6 and 12 months ahead predictions are

produced with a training sample of 38 observations from the start of our sample, up to and

including December 1974. We present the yields’ descriptive statistics in Table 1. As expected

the mean of yields increase with maturity, consistent with the existence of a risk premium for

long maturities. Yields have high autocorrelation which declines with lag length and increases

with maturity. The short end of the yield curve is more volatile than the long end.

Different numbers of macro-finance variables are selected for the three VARs entering our

DMA. As mentioned above, the small-size VAR (NS) does not include any macro or financial

variables, but only the Nelson-Siegel factors. The middle-size VAR (NS + macro) includes

Federal Fund Rate, inflation and Industrial Production, which are also used in related lit-

erature such as Ang and Piazzesi (2003) and Diebold, Rudebusch and Aruoba (2006). The

large VAR (NS + macro-finance) includes all 15 macro and financial variables, which should
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comprehensively include the information the market players are able to acquire.

Table 1: Descriptive Statistics of Bond Yields

Mean Std. Dev. Minimum Maximum ρ̂(1) ρ̂(12) ρ̂(30)

3 5.154 3.341 0.010 16.300 0.987 0.815 0.533

6 5.284 3.320 0.040 15.520 0.988 0.827 0.557

12 5.675 3.440 0.123 16.110 0.987 0.842 0.599

24 5.910 3.355 0.188 15.782 0.988 0.858 0.648

36 6.102 3.259 0.306 15.575 0.989 0.868 0.677

48 6.266 3.161 0.454 15.350 0.990 0.873 0.695

60 6.411 3.067 0.627 15.178 0.990 0.876 0.707

72 6.539 2.980 0.815 15.061 0.990 0.877 0.714

84 6.653 2.902 1.007 14.987 0.990 0.878 0.718

96 6.754 2.833 1.197 14.940 0.990 0.878 0.721

108 6.843 2.772 1.380 14.911 0.990 0.878 0.722

120 6.920 2.720 1.552 14.892 0.990 0.877 0.723

Level 7.437 2.379 2.631 14.347 0.989 0.866 0.700

Slope -2.277 1.940 -5.824 4.522 0.954 0.492 -0.114

Curvature -1.424 3.222 -8.948 5.282 0.903 0.634 0.369

Notes: This table presents descriptive statistics for monthly yields at 3- to 120-month maturity, and for the yield
curve Level, Slope and Curvature factors extracted from the Nelson-Siegel model. The sample period is 1971:11–
2013:11. We use following abbreviations. Std. Dev.: Standard Deviation; ρ̂(k): Sample Autocorrelation for
Lag k.

3.1 Evidence on Parameter Instability

In this section we seek to validate the use of time-varying parameter methods. There is a vast

selection of different tests of parameter instabilities and structural breaks in the literature from

both a frequentist and a Bayesian perspective; see for example Chow (1960), Quandt (1960),

Nyblom (1989), Andrews (1993), Andrews and Ploberger (1994), Hanson (2002) and Rossi

(2005). McCulloch (2007) suggests a likelihood-based approach to test parameter instabilities in

a TVP model, but the limiting distribution of the test statistics may not be standard and hence
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the critical values need to be bootstrapped. In the spirit of McCulloch (2007), we construct a

likelihood-based test on the VAR system of the factor dynamics, using the 1983-2013 sample.

We bootstrap 5000 samples to recover the test statistics following Feng and McCulloch (1996).

Based on our test, the null hypothesis that the coefficients of the VAR are constant over time is

rejected at 1% significance level, which means employing the TVP-VAR model is appropriate.

However, all the tests mentioned above are in-sample tests and fail to provide evidence

concerning out-of-sample instabilities. Therefore, instead of explicitly specifying a test of pa-

rameter instability we follow a different strategy. First, note that in the case of our model

specified in Section 2, the constant parameter Nelson-Siegel model can be obtained as a spe-

cial case of our proposed time-varying specification, that is it is nested.9 Since our ultimate

purpose is to obtain optimal forecasts of the yield curve, “testing” for parameter instability

can conveniently boil down to a comparison of predictability between the TVP-VAR and a

constant parameter VAR. We employ the test proposed by Diebold and Mariano (1995) and

evaluate the predictability of competing models across four forecast horizons (h = 1, 3, 6, 12

months) and at all twelve of our maturities. The p-values of the tests are reported in Table

2, which correspond to the test of the null hypothesis that the competing TVP-VAR model

has equal expected square prediction error relative to the benchmark forecasting model con-

stant parameter VAR (i.e. Diebold and Li (2006)), against the alternative hypothesis that the

competing TVP-VAR forecasting model has a lower expected square prediction error than the

benchmark forecasting model. Table 2 indicates the TVP-VAR consistently outperforms the

constant parameter VAR. The test statistic rejects the null for most of the maturities, and

especially at longer forecast horizons, so the time-varying parameter model should be preferred

as it can provide more robust estimates.

9In particular, as Koop and Korobilis (2013) show, by setting the forgetting and decay factors Λ = δ = 1,
then βt and Σt remain constant over the sample t = 1, ..., T .
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Table 2: Parameter Instability Test

P-Values: TVP-VAR vs. VAR

Maturity 3 6 12 24 36 48 60 72 84 96 108 120

h = 1 0.02 0.00 0.54 0.14 0.02 0.00 0.00 0.00 0.01 0.08 0.33 0.68

h = 3 0.03 0.01 0.13 0.04 0.01 0.01 0.00 0.01 0.02 0.05 0.13 0.28

h = 6 0.00 0.00 0.04 0.02 0.01 0.01 0.01 0.01 0.02 0.04 0.08 0.16

h = 12 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03

Notes: 1. This table reports the statistical significance for the relative forecasting performance, based on
the Diebold and Mariano (1995) test. We conduct 1, 3, 9 and 12 months ahead forecasts for bond yields at
maturities ranging from 3 months to 120 months. The predictive period is between 1983:10 and 2013:11.
2. Statistical significance for the relative MSFE statistics is based on the p-value for the Diebold and Mariano
(1995) statistic; the statistic corresponds to the test of the null hypothesis that the competing TVP-VAR model
has equal expected square prediction error relative to the benchmark forecasting model constant parameter
VAR (i.e. Diebold and Li (2006)), against the alternative hypothesis that the competing forecasting model has
a lower expected square prediction error than the benchmark forecasting model.

To highlight the importance of the TVP feature, we set out the persistence of the physical

factor dynamics over time in Figure 1. This can be be examined by considering the behavior of

the eigenvalues. We can detect significant changes in all eigenvalues, which reflects indispensable

changes in the persistence of pricing factors over time. The first eigenvalue is relatively more

stable than the other two, while there is a clear rising trend for the third eigenvalue. Moreover,

we find that the second and third eigenvalues have important changes in near recession periods,

which is connected to the shifting dynamics of Slope and Curvature factors.
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Figure 1: Time-Varying Persistence of Physical Dynamics

Notes: The graph shows the largest three eigenvalues of the physical dynamics in the TVP model. The shaded
areas are recession periods according to the NBER Recession Indicators.

3.2 Model Dynamics

In our Bayesian empirical analysis of the factor dynamics, we begin by selecting priors with

Dynamic Prior Selection (DPS), then the best prior will be selected for each of the three VAR

models. Next we update the model weights with Dynamic Model Averaging (DMA), and finally

we update on the parameters using a Bayesian Kalman filter.

In the DPS step, we find that the best prior γ value in Eq. (2.10) is stable, i.e. fixed at

0.1, for all three VAR models, given the forgetting factor α = 0.99. To ensure robustness,

we decrease the values of α, as it controls the persistence of probabilities.10 As α decreases

the results do not change substantially: the best γ values is typically 0.1 for all three sizes

10In Appendix C, Figure 14 shows the prior selection results with different values of the forgetting factor.

15



of models. The evidence concludes that a relatively flexible and consistent prior can generate

more accurate yield forecasts. For simplicity and tractability, we fix the value at γ = 0.1,

and therefore the DPS procedure could be skipped in the following analysis. In fact, we find

that holding γ constant at 0.1 slightly improves the forecasts, though the comparison of the

forecasting results will not be reported in this paper due to limited space.

Graphical evidence of the usefulness of our approach is provided by Figure 2, which sets

out the weights of the small, medium and large VAR models used in DMA. Interestingly our

updating procedure implies we should use more macro-finance information in particular time

periods. The following empirical observations are of economic importance.

Firstly, during recession periods, the approach tends to use more macro-finance information

to generate forecasts. For instance, immediately before the financial crisis, the probability of

the large-size (macro-finance) model rose steeply and then stayed at a high level throughout

the whole crisis period, as indicated by the higher weights for the small NS model in Figure

2. In times of acute economic stress, macroeconomic and financial risk factors become more

relevant for modeling yields, which is closely related to the ‘financial accelerator’ argument by

Bernanke, Gertler and Gilchrist (1996).11 The macro-finance model also displays considerable

variability in importance, as displayed by the volatility of the probabilities in Figure 2.

Secondly, the small-size NS model generally has relatively high probability in the DMA

except during recession periods. This is consistent with the viewpoint that only information

from the bond market is used in pricing and predicting bond yields. It explains the effectiveness,

at least during non-recession periods, of parsimonious yield curve models, such as Dai and

Singleton (2003) and Diebold and Li (2006).

Thirdly, the probability of the medium-size (NS + macro) model is comparable to the small-

size model since 1980s. This is consistent with the idea that macro variables are important

11This may also be explained by the construction in Fontaine and Garcia (2012): In the financial crisis,
the arbitrageurs that use bond-market information only are capital-constrained and hence have funding stress,
whereas the agents concerning more about macroeconomy and the whole financial condition, for example,
the government, step in and drive the market. Hu, Pan and Wang (2013) have a related argument that the
arbitrageurs help align the yields across maturities in normal periods but the pricing errors can be persistently
high when arbitrage capital is low. These conjectures need to be confirmed with further evidence.

16



in determining yields since the start of ‘Great Moderation’, due to an active central bank, see

Ang and Piazzesi (2003) and Bianchi, Mumtaz and Surico (2009).

Lastly, it seems that there is a slightly upward trend for the large macro-finance VAR since

1970, which implies that the agents tend to incorporate more and more macro and financial

information when making investment decisions. This feature is consistent with the observation

in Altavilla, Giacomini and Ragusa (2014) that the original version of the dynamic NS model

without macro information has weaker predictive power in recent years.

Figure 2: Model Weights for NS, NS plus Macro and NS plus Macro-Finance VAR Models

Notes:

1. This figure sets out the time-varying probabilities of our three models in our Dynamic
Model Averaging (DMA) approach. The probabilities for DMA are updated from a Kalman
filter based on the predictive accuracy, see Eq. (A.6); the probabilities/weights of the VAR
models sum up to 1. These updated estimates are smoothed using a 6-month moving average.
2. The three models are as follows. The small VAR contains the Nelson-Siegel (NS) factors.
The medium VAR contains NS plus macro factors. The large VAR contains NS plus macro-
finance factors.
3. The shaded areas the recession periods based on NBER Recession Indicators.
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3.3 Forecasting Performance

As mentioned above, we use a NS-DMA model to predict the yields in a two-step estimation

procedure. The first stage is using the Kalman filter to generate predictions of the three

Nelson-Siegel yield factors with macro variables, using DMA. That is we use Eq. (2.3) with

the predicted βt+1 to forecast our factors. The second stage is forecasting the yields with the

predicted NS factors and the fixed NS loadings. The macro variables are not directly used to

predict the yields in the second step, due to the consideration of Unspanned macro risks. The

point forecasts of NS-DMA are compared to the realized yields across all maturities, and we also

compute the predictive log-likelihood of forecasting models to evaluate the density forecasts.

In terms of density forecasts, the comparison exercise using predictive likelihoods is similar to

Geweke and Amisano (2010). The predictive duration is from 1983:10 to the 2013:11. Figure

3 displays the 3 months ahead forecasts of yields with 95% error bands against the realized

values, generated by the NS-DMA model.

To better evaluate the predictive performance of NS factors and hence yields, we have

the following seven benchmark models to compare with NS-DMA/DMS: Random Walk (RW)

model, recursive estimations of factor dynamics using standard VAR following Diebold and Li

(2006) (DL), 10-year rolling-window VAR estimations (DL-R10), recursive VAR estimations

with three macro variables (DL-M), recursive estimations of standard VAR with macro prin-

cipal components following Stock and Watson (2002) (DL-SW), time-varying parameter VAR

estimations of factor dynamics without macro information (TVP) and time-varying parameter

VAR estimations of factor dynamics with three macro variables (TVP-M).

The Random Walk (RW) model generates future yield predictions using the current infor-

mation of the yields, as the current yield factors are the unbiased estimators of the future factor

forecasts. The RW model is a challenging benchmark, as Duffee (2002) remarks it is hard for

term structure models to beat it. This may be because yields are highly persistent and have

a mean-reverting property. DL is the two-step forecasting model proposed by Diebold and Li

(2006), which recursively estimates the factor dynamics using a standard VAR. In other words,
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Figure 3: DMA Forecasts of Yields

Notes: These are 3 months ahead forecasts (95% error band) for yields against realized values with maturities
6, 36, 60 and 120 months, from early 1975 to late 2013. The forecasts are two-step forecasting using NS-DMA,
which can be summarized by Eq. (2.1), (2.3) and (2.4).
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DL estimates the VAR model of factors recursively with historical data, extending through all

the following periods. We have four variations of the DL model: 10-year rolling-window estima-

tions (DL-R10); recursive estimations with three macro variables of Fed Fund Rate, Inflation

and Industrial Production (DL-M); and recursive estimations with three principal components

of our whole macro-finance dataset (DL-SW). In the DL-SW model, three macro principal com-

ponents are drawn using the method proposed by Stock and Watson (2002) to augment DL.

Lastly, we include two extensions of DL using a time-varying parameter VAR without macro

information and a time-varying parameter VAR with three macro variables to characterize the

factor dynamics, denoted TVP and TVP-M, respectively; the latter has a similar model struc-

ture as in Bianchi, Mumtaz and Surico (2009), but here it is estimated in two steps with a

fast algorithm proposed by Koop and Korobilis (2013). This obviates the need to employ the

time-consuming Markov Chain Monte Carlo (MCMC) algorithm.

3.3.1 Point Forecasts

Table 3 and 4 display the 1-period and 3-period ahead Mean Squared Forecasting Error (MSFE)

Performance of all forecasting models.12 The core empirical results are very encouraging. As

can be seen in Table 3 and 4, our preferred NS-DMA approach consistently outperforms the

benchmark model. That is to say, the NS-DMA has a lower MSFE than the RW for nine of

twelve maturities in the one-month ahead forecasts in Table 3.

Even at relatively long forecast horizons, the NS-DMA also performs better than the RW in

average.13 In the one-year long-term forecasts, without any further information, the NS-DMA

performance is comparable to the RW. Therefore, our NS-DMA approach seems to better re-

flects the true dynamics of the yield factors by properly characterizing the nonlinear evolution

of yield factors. In terms of density forecasts, the log-likelihood of NS-DMA is systematically

the highest among all forecasting models, see Table 3. Among all models, NS-DMA is the only

one comparable to, or better than, the RW. The DMS, TVP-M and the original DL have rea-

12More forecasting results are shown in Appendix C.
13See Appendix C for these details.
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Table 3: One-Month Ahead Relative MSFE of Term Structure Models

MA NS-DMA DMS TVP TVP-M DL DL-R10 DL-M DL-SW

3 0.706† 0.781 0.747 0.710 0.848 1.085 0.885 1.417

6 0.818† 0.927 0.894 0.908 1.068 1.313 1.130 1.668

12 0.971† 1.031 0.983 1.011 0.930 0.897 0.979 1.547

24 1.000† 1.075 1.044 1.060 1.064 1.105 1.103 1.461

36 0.977† 1.039 1.032 1.026 1.123 1.223 1.144 1.237

48 0.965† 1.008 1.016 1.002 1.130 1.266 1.143 1.099

60 0.965† 0.996 1.011 0.997 1.116 1.273 1.129 1.051

72 0.971† 0.998 1.015 1.006 1.096 1.259 1.114 1.055

84 0.982† 1.008 1.026 1.024 1.074 1.226 1.098 1.090

96 0.996† 1.023 1.040 1.046 1.052 1.173 1.083 1.139

108 1.009† 1.038 1.055 1.068 1.031 1.108 1.068 1.183

120 1.020† 1.050 1.065 1.084 1.015 1.043 1.053 1.214

Mean 0.964† 1.009 1.008 1.010 1.053 1.162 1.083 1.237

Notes: 1. This table shows 1-month ahead forecasts of bond yields with maturities ranging from 3 months to
120 months. The predictive duration is from 1983:10 to 2013:11.
2. We report the ratio of each models Mean Squared Forecast Errors (MSFE) relative to Random Walk MSFE,
and the preferred values are in bold. The dagger (†) indicates, in terms of the sum of predictive log-likelihood,
the model has the preferred value among all models at certain maturities (or in total), see Geweke and Amisano
(2010) for details.
3. In this table, we use following abbreviations. MA: Maturity (Months); MSFE: Mean Squared Forecasting
Error; Mean: Averaged MSFE across all sample maturities. In our proposed Nelson-Siegel (NS) framework,
DMA (Dynamic Model Averaging) averages all the models with probabilities in each step, while DMS

(Dynamic Model Selection) chooses the best model with the highest probability at any point in time. TVP:
a time-varying parameter model without macro information; TVP-M: a time-varying parameter model with
three macro variables: fund rate, inflation and industrial production, similar to Bianchi Mumtaz and Surico
(2009) but estimated with a fast algorithm without the need of MCMC; DL: Diebold and Li (2006) model, i.e.
constant coefficient Vector Autoregressive model with recursive (expanding) estimations; DL-R10: Diebold
and Li (2006) estimates based 10-year rolling windows; DL-M: factor dynamics in Diebold and Li (2006)
are augmented with three macro variables: fund rate, inflation and industrial production, using recursive
estimations; DL-SW: factor dynamics in Diebold and Li (2006) are augmented with with three principal
components (see Stock and Watson (2002)) of our macro/finance data, using recursive estimations; RW:
Random Walk.
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Table 4: Three-Month Ahead Relative MSFE of Term Structure Models

MA NS-DMA DMS TVP TVP-M DL DL-R10 DL-M DL-SW

3 0.765† 0.873 0.864 0.845 1.105 1.514 1.070 1.795

6 0.863† 0.976 0.976 0.997 1.305 1.646 1.283 1.907

12 0.931† 1.003 0.997 1.019 1.131 1.231 1.119 1.727

24 0.988† 1.046 1.062 1.068 1.255 1.390 1.249 1.537

36 1.002† 1.044 1.073 1.060 1.295 1.482 1.292 1.358

48 1.006† 1.037 1.069 1.049 1.294 1.528 1.293 1.246

60 1.006† 1.032 1.063 1.043 1.269 1.539 1.272 1.196

72 1.005† 1.030 1.057 1.041 1.233 1.525 1.239 1.189

84 1.002† 1.029 1.053 1.044 1.190 1.488 1.201 1.207

96 0.999† 1.031 1.050 1.049 1.146 1.431 1.160 1.238

108 0.996† 1.033 1.049 1.055 1.102 1.360 1.120 1.272

120 0.994† 1.035 1.048 1.061 1.062 1.283 1.083 1.302

Mean 0.969† 1.018 1.035 1.032 1.205 1.449 1.205 1.405

Notes: 1. This table shows 3-month ahead forecasts of bond yields with maturities ranging from 3 months to
120 months. The predictive duration is from 1983:10 to 2013:11.
2. We report the ratio of each models Mean Squared Forecast Errors (MSFE) relative to Random Walk MSFE,
and the preferred values are in bold. The dagger (†) indicates, in terms of the sum of predictive log-likelihood,
the model has the preferred value among all models at certain maturities (or in total), see Geweke and Amisano
(2010) for details.
3. In this table, we use following abbreviations. MA: Maturity (Months); MSFE: Mean Squared Forecasting
Error; Mean: Averaged MSFE across all sample maturities. In our proposed Nelson-Siegel (NS) framework,
DMA (Dynamic Model Averaging) averages all the models with probabilities in each step, while DMS (Dynamic
Model Selection) chooses the best model with the highest probability at any point in time. TVP: a time-
varying parameter model without macro information; TVP-M: a time-varying parameter model with three
macro variables: fund rate, inflation and industrial production, similar to Bianchi Mumtaz and Surico (2009)
but estimated with a fast algorithm without the need of MCMC; DL: Diebold and Li (2006) model, i.e. constant
coefficient Vector Autoregressive model with recursive (expanding) estimations; DL-R10: Diebold and Li (2006)
estimates based 10-year rolling windows; DL-M: factor dynamics in Diebold and Li (2006) are augmented with
three macro variables: fund rate, inflation and industrial production, using recursive estimations; DL-SW:
factor dynamics in Diebold and Li (2006) are augmented with with three principal components (see Stock and
Watson (2002)) of our macro/finance data, using recursive estimations; RW: Random Walk.

22



sonable forecasting power among the remaining models, especially the DMS and TVP-M which

have flexible time-varying parameter settings and incorporates some useful macroeconomic and

financial information. It is worth noting that the rolling-window forecasts perform much less

favorably, as rolling-window models discard some potentially helpful information that is not

included in the windows. Hence, our TVP specification is always preferred in this sense.

In addition, the predictability of DL-SW is not satisfactory. As a variable shrinkage method,

the macro principal components alone cannot provide useful information in terms of yield

forecasting, since the method fails to exclude irrelevant information in a time-varying manner.

Hence this result indicates the relative advantages of NS-DMA as a variable shrinkage method

in forecasting.

Remarks on Predictive Gains Since the pricing dynamics are constrained by the NS

restrictions, we conclude that the predictive gains are purely from the physical dynamics when

taking parameter and model uncertainty into account. Here we would like to highlight different

sources of predictive gains. As mentioned in the last section, the last four columns in Table 3 or 4

set out the predictive performance of constant-parameter models without stochastic volatility,

which perform consistently worse than TVP models, no matter whether we include macro

information or not. In contrast, our TVP models with stochastic volatility in the third and

fourth columns provide significant gains in predictive performance, as they put more weights on

the current observations and hence are robust to parameter uncertainty and structural changes.

Moreover, introducing an extra layer of model uncertainty is also essential in improving forecast

performance. It helps us properly incorporate macro-finance information in a time-varying

manner, which is related to the ‘scapegoat theory’ by Bacchetta and Van Wincoop (2004).

From the first two columns, we find further improvement over the TVP models if we allow for

both parameter and model uncertainty. Hence, we believe that the ensemble of these salient

features – time-varying parameters, stochastic volatility and model averaging/selection, is the

key to properly incorporate macro-finance information and hence can provide significant gains

in predictability.
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To formalize the above arguments, we conduct a statistical test to evaluate the out-of-

sample forecasting performance. In Table 5, we performs the test proposed by Diebold and

Mariano (1995), in order to evaluate the forecasting performance of NS-DMA relative to DL,

TVP-M and Random Walk, respectively. The Diebold and Mariano (1995) statistics are used

by Diebold and Li (2006) and Altavilla, Giacomini and Ragusa (2014). The relative MSFE is

shown at forecasting horizons of 1, 3, 6 and 12 months, i.e., h = 1, 3, 6, 12. It shows that the

NS-DMA clearly outperforms the DL and TVP-M, though it only has statistical significance

relative to the RW at shorter maturities. It implies the short rate forecasts of the NS-DMA

are satisfactory. In general, the predictive performance of NS-DMA in some medium-term

maturities is weaker than in other maturities, implying that some additional information may

be needed to better capture the movements of the hump-shape Curvature factor.
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Table 5: MSFE from NS-DMA Relative to Other Models

NS-DMA vs. DL NS-DMA vs. TVP-M NS-DMA vs. RW

Maturity h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

3 0.833*** 0.693*** 0.653*** 0.843*** 0.995 0.906* 0.860* 0.790** 0.706*** 0.765*** 0.871* 1.028

6 0.766*** 0.661*** 0.655*** 0.846*** 0.901** 0.865** 0.845** 0.800** 0.818** 0.863** 0.947 1.054

12 1.045 0.824** 0.743*** 0.866*** 0.961** 0.914** 0.897* 0.847** 0.971 0.931* 0.969 1.031

24 0.939** 0.788*** 0.735*** 0.849*** 0.943*** 0.925** 0.927* 0.890* 1.000 0.988 1.025 1.055

36 0.870*** 0.774*** 0.733*** 0.845*** 0.952*** 0.945** 0.952 0.918 0.977 1.002 1.038 1.063

48 0.854*** 0.777*** 0.740*** 0.842*** 0.963** 0.959* 0.967 0.934 0.965 1.006 1.038 1.061

60 0.864*** 0.793*** 0.754*** 0.844*** 0.967** 0.965* 0.973 0.939 0.965 1.006 1.032 1.054

72 0.886*** 0.815*** 0.773*** 0.846*** 0.965** 0.965* 0.971 0.936 0.971 1.005 1.021 1.048

84 0.914*** 0.842*** 0.794*** 0.849*** 0.959** 0.960* 0.965 0.928 0.982 1.002 1.009 1.041

96 0.947** 0.872** 0.819** 0.851*** 0.951** 0.953** 0.955 0.918 0.996 0.999 0.997 1.032

108 0.978* 0.904** 0.845** 0.854*** 0.945*** 0.944** 0.946 0.907 1.009 0.996 0.987 1.019

120 1.004 0.936 0.872* 0.860*** 0.941*** 0.937*** 0.937 0.897 1.020 0.994 0.978 1.007

Notes: 1. This table reports MSFE-based statistics of NS-DMA forecasts of bond yields at maturities ranging from 3 months to 120 months, relative
to the forecasts of Diebold and Li (2006) (DL), TVP-M (similar to Bianchi Mumtaz and Surico (2009)) or Random Walk (RW). The predictive period
is between 1983:10 and 2013:11.
2. Statistical significance for the relative MSFE statistics is based on the p-value for the Diebold and Mariano (1995) statistic; the statistic corresponds
to the test of the null hypothesis that the competing NS-DMA model has equal expected square prediction error relative to the benchmark forecasting
model (DL, TVP-M or RW) against the alternative hypothesis that the competing forecasting model has a lower expected square prediction error than
the benchmark forecasting model. *, ** and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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One interesting observation about the NS-DMA is that at a long forecasting horizon (12-

month ahead), the forecasts of long-end of the term structure are relatively better than the

shorter-term bonds, and it is the opposite for a short forecasting horizon (1-month ahead).

The following may explain the above observation. Generally, the long-term yields have lower

volatility so the forecasts are stable. On the other hand, the short yields are anchored by the

policy rates in a short period, so the forecasts of short yields in short horizon are vary accurate;

however, without further information, the forecasts of short yields at a longer forecasting horizon

are weaker, because the monetary policy target may change in the long run. In comparing our

results to the existing literature, Diebold and Li (2006) beat a random walk using Diebold-

Mariano test at 12-month forecasting horizons and for shorter maturities. However, Diebold

and Rudebusch (2013) and Altavilla, Giacomini and Ragusa (2014) imply reduced ability of

NS models to beat RW in recent years. We consistently improve upon DL across all horizons

and maturities, which is confirmed by Relative MSFE, predictive log-likelihoods and Diebold-

Mariano test.

Predictive Performance over Time To display the how the superior performance of our

our method arises, Figure 4 shows the 6-month ahead Squared Forecasting Errors of DMA, DL

and RW across the predictive period. It is clear that the DMA significantly and consistently

outperforms the DL across all maturities and the RW at shorter maturities. It seems benchmark

models perform much worse in near recession periods, while NS-DMA has stable performance

due to its robustness to parameter and model uncertainty.

Note that all the models in this section are estimated via a two-step method, of which the

first step is applying NS model, so the previous comparison is based on the NS framework.

We do not include the type of Affine Term Structure Models (ATSM) such as in Ang and

Piazzesi (2003) and Ang, Dong and Piazzesi (2007) for comparison for the following reasons.

Theoretically, these models can be used for forecasting. However in practice, as indicated in

Ang and Piazzesi (2003), the likelihood function is flat and hence the identification is very time-

consuming, even though with additional restrictions in parameters. In addition, we perform
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Figure 4: Squared Forecasting Error for Yields of 3-, 12-, 60- and 120-Month Maturities

Notes: 1. These are 6 months ahead Squared Forecasting Errors for predicted yields from early 1983 to late
2013. From top left clockwise we have maturities of 3, 12, 60 and 120 months. The models present here are
DMA (solid), Diebold-Li (dashed and dotted) and RW (dashed).
2. The first two graphs show the errors for yields of maturities 3 and 12 months, in which the DMA
significantly outperforms the DL and RW.
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out-of-sample forecasts at a long horizon with a relatively small training sample, so we may

fail to identify the parameters at some points when estimating the model recursively. The

reason may be that the economic structure is changing over time and if we include the data

before and after a structural change, the likelihood function might be even flatter. Besides, the

restrictions are not time-varying, so the identification may be infeasible when facing a changing

economic structure. Moreover, the forecast performance of ATSM are close to or even weaker

than the ordinary NS model, see for example Christensen, Diebold and Rudebusch (2011),

Duffee (2011a) and Joslin, Singleton and Zhu (2011). Indeed, the out-of-sample performance

of ATSM-type models can be quite weak so they are not suitable as benchmark models.

3.3.2 Density Forecasts and Time-Varying Volatility

It has been indicated by Bianchi, Mumtaz and Surico (2009) that homoskedasticity is a frequent

and potentially inappropriate assumption in much of the macro-finance literature. Cieslak and

Povala (2015) show that stochastic volatility can have a non-trivial influence on the conditional

distribution of interest rates. Piazzesi (2010) indicates that fat tails in the distribution of the

bond factors can be modeled by specifying an appropriate time-varying volatility. The dynamics

of the bond yields therefore exhibit a heavy-tailed property in the unconditional distribution,

as the conditional volatility is higher when the yields deviate more from the unconditional

mean. The property of asymmetry/skewness is also implied by the yields dynamics due to the

evolution of the innovation variances.

Our model relaxes the unrealistic homoskedasticity assumption and hence provides favorable

density forecast performance, which is consistent with the evidence of Hautsch and Yang (2012).

The cumulative sum of predictive log-likelihood displayed in Figure 5 shows the preferred

predictive density of NS-DMA over DL across all maturities, especially for short rates. Hence,

the NS-DMA should be preferred, as the important and realistic feature of stochastic volatility

cannot be characterized by ordinary constant parameter models.

The NS-DMA not only provides more sensible results in terms of density forecasts, but also

captures the desirable evolutionary dynamics of the economic structure. Figure 6 shows the
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Figure 5: Cumulative Sum of Predictive Log-Likelihood of 3-, 12-, 60- or 120-Month Maturities

Notes: These are 1-month ahead cumulative sum of predictive log-likelihood for predicted yields from early
1975 to late 2013. From top left clockwise we have maturities of 3, 12, 60 and 120 months. The models
present here are DMA (solid), DMS (dotted) and Diebold-Li (dashed). A higher log-likelihood implies
improved density predictability.

time-varying second moments of 3 months ahead forecasts from the NS-DMA model. The figure

displays a distinct time variation feature in the volatility evolution. The stable declining path of

the volatility before the financial crisis matches the conclusions of Bianchi, Mumtaz and Surico

(2009), in which they regarded the observation as the ‘Great Moderation’ of term structure.

We can observe that the yields with longer maturities have lower volatilities. This feature is not

intuitive. Theoretically, the long yield movements are mainly driven by three components: the

expected future (real) short yields, future inflation expectations and the term premia. On the

one hand, inflation expectations, depending on the current state of economic information, can
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change flexibly and frequently in a short time, so is the expected future short yields. On the

other hand, term premia is also very volatile. Therefore, summing up the movements of these

three components, the variance of long yields should be larger than the short yields; but the

empirical result implies the opposite. As indicated in Duffee (2011b), the reason causing this

result is that the factor driving up the expected future short yields or inflation expectations

may drive down the term premia, so offsetting the variations of these components.

Figure 6: Time-Varying Second Moment

Notes: These are time-varying second moments of 3 months ahead forecasts for bonds at maturities 6, 36, 60
and 120 months, from early 1975 to late 2013. The variance of NS factors is estimated from Eq. (A.2), and
then the variances of yield forecasts generated by each candidate model in the NS-DMA, can be easily
calculated as linear combinations of factor variances.

From the perspective of time dimension, the volatilities of yields (especially shorter-term)

are high in the 1980s, while the bond yield level is also relatively high. The high volatiities are
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due to large forecast variances of forecast models as well as a high degree of forecast dispersion

in forecasts. It is clear that the volatilities are declining during the Great Moderation, and

therefore the variances of bond forecasts are rather small between 1990 and 2007, except during

the 2004-05 episode of ‘Greenspan’s Conundrum’. In around 2009, the volatilities surge to a

high level since the 1990’s, although the short yields stay at a relatively low level (restricted

by zero lower bound) among all periods. Even after the financial crisis, ambiguity in yield

forecasts still exists as the volatilities remain at a relatively high level.

3.3.3 Robustness: Do We Need Strict Arbitrage-Free Restrictions?

As we have discussed in Section 2, we impose NS restrictions on the pricing dynamics and leave

the physical dynamics unconstrained. By allowing for parameter and model uncertainty in the

physical dynamics, we are able to acquire significant predictive gains. The sources of these

gains are also revealed in the last section.

Our NS-DMA approach does not explicitly impose ‘hard’ arbitrage-free restrictions.14 The

reason is that our focus here is not on the dynamic structure of market price of risks, as Duffee

(2014) indicates that the no-arbitrage restrictions are unimportant if a model aims to pin down

physical dynamics but not equivalent-martingale dynamics that specify the pricing of risk. In

order to capture robust expectations of investors, we aim to improve forecasts of the interest

rate term structure, and Joslin, Singleton and Zhu (2011) show that no-arbitrage cross-sectional

restrictions are irrelevant to out-of-sample forecasts if the factor dynamics are unrestricted.15

To ensure the robustness of our NS-DMA approach, we extend the three-factor arbitrage-

free Nelson-Siegel model proposed by Christensen, Diebold and Rudebusch (2011) and evaluate

the forecast performance of the arbitrage-free version of NS-DMA.16 The forecast performances

14From a theoretical perspective, Filipović (1999) and Björk and Christensen (1999) show that the Nelson-
Siegel family does not impose the restrictions necessary to eliminate opportunities for riskless arbitrage. From
a practical perspective, our implementation allows all bond yields to be priced with errors, which naturally
breaks their original assumptions of the Nelson-Siegel family in their papers. Therefore, the potential loss of
not imposing arbitrage-free restrictions may be mitigated.

15In practice, the arbitrage-free restrictions are not important in terms of forecasting in models assuming
bond yields are priced with errors, see for example, Coroneo, Nyholm and Vidova-Koleva (2011) and Carriero
and Giacomini (2011).

16The key difference between arbitrage-free NS-DMA and NS-DMA is an ‘yield-adjustment term’, which only

31



of two models are very close, which implies that the NS-DMA is almost arbitrage-free, which

is consistent with theoretical evidence in Feunou, Fontaine and Le (2014) and Krippner (2015)

that the NS models are near arbitrage-free. Hence, following Duffee (2014), we choose not to

impose arbitrage-free restrictions to avoid potential misspecification.

4 Dynamics of Term Premia

4.1 Expectation Hypothesis and Term Premium

Within our empirical framework we shall set out the formal modeling of the term premia, which

has been used to explain the failure of the Expectations Hypothesis and provides important

information for the conduct of monetary policy, see Gürkaynak and Wright (2012).17

Based on the weak form of the Expectation Hypothesis, the long-term yield is average of

expected future short term rates yt(τ)EH plus a constant Risk Premium, constantEH :

yt(τ) = yt(τ)EH + constantEH , (4.1)

where the Expectations Hypothesis (EH) consistent bond yield yt(τ)EH is given by:18

yt(τ)EH =
1

τ

τ−1∑

i=0

Etyt+i(1), (4.2)

where yt(τ) is the yield at time t for a bond of τ -period maturity. That is to say, the EH

consistent long yield is equal to the average of expected short yields Etyt+i(1).

The Expectation Hypothesis is closely related to the concept of excess holding period return.

depends on the maturity and factor volatility. See Christensen, Diebold and Rudebusch (2011) and Diebold
and Rudebusch (2013) for more details.

17A simple approach to modeling the term structure is the Expectations Hypothesis (EH) that expected future
short rates explain long rates. Campbell and Shiller (1991) indicates the empirical evidence fails to justify the
strong form of Expectations Hypothesis and the idea that long-term interest rate are simply determined by
the average of current and future expected short-term rates. However, EH could be resuscitated in weak form
allowing for a constant Term Premia, consistent with an upward sloping yield curve. But risk, and hence the
Term Premia, is unlikely to be constant while underlying variables are changing.

18The expectation here is under the physical measure. Our model can potentially be made arbitrage free, but
this is beyond the scope of this paper. For further discussion see Joslin, Priebsch and Singleton (2014)
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First, we define the holding period return as the return on buying an τ -year zero coupon bond

at time t and then selling it, as an (τ − m)-year zero coupon bond, at time t + m. This holding

period return is given by:

HPRt+m(τ, m) =
1

m
[pt+m(τ − m) − pt(τ)] (4.3)

where pt(τ) is the log price of τ -year zero coupon bond at time t and pt+m(τ − m) is the log

price of (τ − m)-year zero coupon bond at time t + m. The difference between holding period

return and the m-year continuously compounded short yield is the excess holding period return:

EXRt+m(τ, m) = HPRt+m(τ, m) − yt(m). (4.4)

If the weak form of the Expectation Hypothesis holds, then with some simple algebra, we can

prove that the expected excess holding period returns are the constant Risk Premia. In other

words, we should not be able to predict the excess returns in the future. However, Cochrane and

Piazzesi (2009) construct a test by regressing the excess bond returns on the forward rates, and

show that the forward rates have significant predictive power. The Expectation Hypothesis is

therefore rejected, implying that the term premium should be time-varying.19 The time-varying

term premium is therefore,

TPt(τ) = yt(τ) − yt(τ)EH . (4.5)

Alternatively, we can rewrite Eq. (4.5) by relating the term premium to the excess holding

period return:

TPt(τ) =
1

τ
Et

( τ−2∑

i=0

EXRt+1+i(τ, 1)
)
. (4.6)

By the linearity of expectation, we can write the 1-period ahead expected excess holding

19Similar evidence can be found in Duffee (2002), Cochrane and Piazzesi (2005), Sarno, Thornton and Valente
(2007), Tang and Xia (2007) and Gürkaynak and Wright (2012).
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period return as

Et

(
EXRt+1(τ, 1)

)
= −(τ − 1)Et TPt+1(τ − 1) + τ TPt(τ). (4.7)

Therefore, under the weak form of the Expectation Hypothesis, the expected excess holding

period return is a constant as we mentioned:

Et

(
EXREH

t+1(τ, 1)
)

= constantEH . (4.8)

In contrast, if the term premia is time-varying, then the predictability of excess holding period

return stems from an element xp
t that is orthognal to the EH term premia constantEH ,

Et

(
EXRt+1(τ, 1)

)
= constantEH + xp

t . (4.9)

If we have a model that can generate time-varying term premia, then it is straightforward to

obtain xp
t . We can simply use the results from Eq. (4.7) and subtract the expected excess

holding period returns from the mean. In the next section we use our estimates of the term

premia to model excess returns in the bond market.

4.2 Predictability of Excess Returns

The term premia is closely related to the real economy. The behavior of investors is influenced

by their future expectations, which can be reflected in the term premia. Harvey (1988) indicates

that agents tend to buy long-term assets in ‘good’ times in order to smooth their consumption

during the ‘bad’ time, and hence the long yields decline causing the negative term premia. It is

also noted in Kim (2009), risk-aversion could vary with the business cycle. Close to recessions,

agents tend to consider bonds an ‘insurance’ to maintain consumption levels in the downturn.

During the recession periods, the agents may have different expectations of the future, so they

may reallocate the assets frequently, and hence premia level is affected by the behavior of the
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agents.

Therefore, the decisions of the investors are governed by the expectations of future returns.

Particularly, an investor can select different strategies according to different forecasts, to max-

imize expected excess returns. Based on a weak form of the Expectation Hypothesis, the term

premia should be a constant; therefore an investor who favors the Expectation Hypothesis,

chooses the historical average of excess holding period returns of bonds as the future fore-

casts.20 In contrast, an investor makes different decisions in portfolio formation based upon

alternative Term Premia estimates.

Formally, we assume an investor forms the expectations of h-period (month) ahead excess

returns using the following model:

rt+h = αm + βmxt,m + ǫt+h, (4.10)

where rt+h is the excess bond return after h months, xt,m is the independent variable, ǫt+h is the

error term and αm and βm are parameters. Following Cochrane and Piazzesi (2005) and Duffee

(2011a), we calculate 3-, 6-, 9- and 12-month excess holding period returns of 2- to 10-year

bonds at time t as rt using Eq. (4.4).

For the Expectation Hypothesis investor, the model of h-period ahead forecasts is a re-

stricted version (β = 0)

r̄t+h = α̂m, (4.11)

where α̂m is the historical mean of excess bond returns up to and including time t.

For the investor using another forecasting model j, the forecast of future excess returns is

r̂j,t+h = α̂m + β̂mxt,m, (4.12)

where α̂m and β̂m are the ordinary least squares (OLS) estimates of αm and βm in Eq. (4.10).

We generate h-month-ahead out-of-sample forecasts of excess bond returns using a recursive

20The construction is similar to Thornton and Valente (2012) and Zhou and Zhu (2014).
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expanding estimation method. As we mentioned in the last section, we can calculate the

predictable element for each model by regressing the expected excess holding period return on

a constant using Eq. (4.9).21 The errors of the regressions are used as independent variables

xt,m, which can evaluate the predictability of different models and the robustness of Term Prmia

estimates.

To compare the predictive performance of our forecasting models against the EH bench-

mark, we have two groups of candidates. The first group includes the predictable elements

estimated from the smoothed NS-DMA (denoted NS-DMA*) conditional on the information of

the whole sample, as well as the models proposed by Bauer, Rudebusch and Wu (2014) and

Wright (2011).22 Specifically, we estimate the NS-DMA* by conducting backward smoothing

conditional on the information of the whole sample.23 That is, we consider in-sample forecasts

of excess returns r̂j,t+h where j = 1, 2, 3, based upon NS-DMA*, BRW and Wright. We then

consider the out-of-sample group, which includes the predictable elements estimated from the

NS-DMA and DL (Diebold and Li (2006)), and the recursively estimated forward rate fac-

tor proposed by Cochrane and Piazzesi (2005) (denoted CP);24 in this group we only use the

information up to and including time t to obtain the variables, so it is a true out-of-sample fore-

casting exercise. After obtaining the predictable elements estimated from the candidate term

structure models, each time we use one model-implied predictable element as the independent

variable when forecasting the excess returns. Therefore, in addition to the EH forecasts r̄t+h,

we have in total five kinds of excess return forecasts denoted as NS-DMA*, BRW, Wright,

NS-DMA, DL and CP.

If the Expectation Hypothesis holds, the implied term premia and the future excess returns

21In our recursive estimation, the implementation is equivalent to subtracting the calculated expected excess

holding period return from its historical mean.
22We use the whole sample to estimate the implied term premia of Bauer, Rudebusch and Wu (2014) (BRW)

and Wright (2011) because the maximum likelihood estimation of these two models may fail to converge with
subsamples. This is an in-sample forecasting as an extra layer of forward-looking information is introduced
when estimating the parameters. This may bring about more significant performance but may not correctly
reflect the true conditional expectations of investors as the information of realized expectations is contained.

23We use Rauch-Tung-Striebel (RTS) smoother, see Appendix A.3.
24Cochrane and Piazzesi (2005) show that the CP factor has significant predictive performance for the 1-year

holding period excess returns. The CP factor in our implementation is recursively constructed using one-year
yield and 2- to 10-year forward rates.
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should be constant. Hence the forecasting models based on Eq. (4.12) should not have higher

predictive power than the Expectation Hypothesis model Eq. (4.8). Otherwise, the expectation

of excess bond returns is time-varying, and the model-implied term premia at time t may provide

useful information in forecasting the excess bond returns at time t + 1 and forward.

We evaluate the forecasting performance of the models using out-of-sample R2, R2
OS, pro-

posed by Campbell and Thompson (2008),

R2
OS = 1 −

∑T
t=1(rt − r̂j,t)

2

∑T
t=1(rt − r̄t)2

(4.13)

where r̂j,t is the fitted value from a predictive regression model j estimated through period

t − h , and r̄t is the historical average return estimated through period t − h. If the R2
OS is

positive, then the predictive regression has lower average mean-squared prediction error than

the historical average return.25 Formally, we test the null hypothesis that R2
OS ≤ 0 against

the alternative hypothesis that R2
OS > 0. We employ the statistic developed by Clark and

West (2007) to evaluate the significance of the out-of-sample forecasts. Clark and West (2007)

adjust the statistic of Diebold and Mariano (1995), as the previous version has a nonstandard

distribution when comparing forecasts from nested models. When setting βt,m in Eq. (4.12) to

zero we have the historical mean model, so using the MSPE-adjusted statistic of Clark and West

(2007) is more appropriate here. To sum up, in this section we mainly discuss the statistical

evaluation, and we will proceed with the discussion about economic evaluation in the next

section.

4.3 Economic Value

The above evaluation of out-of-sample predictability does not consider the risk borne by an in-

vestor. It raises the issue of economic value of a forecasting model, as statistical significance does

25Clark and West (2006) indicate that the expected out-of-sample R2 under the null of unpredictability is
negative for series that are truly unpredictable, because in a finite sample the predictive regression will on
average have a higher mean squared prediction error as it must estimate an additional coefficient. In contrast,
the positive out-of-sample R2 can be interpreted as evidence for predictability.
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not measure its economic significance. This section evaluates whether the model predictability

is sufficiently large to be of economic value to risk averse investors. Following Campbell and

Thompson (2008), Welch and Goyal (2008), and Rapach, Strauss and Zhou (2009), we assume

each investor, who is small and hence with no market impact, chooses portfolio weights based

on the return forecasts. In this paper, we assume the investor only has two assets for selection:

the short-term (1-year) and long-term (2 to 10 years) bonds. We then calculate realized utility

gains for a mean-variance investor on a real-time basis.

To demonstrate the evaluation of the above strategies, we firstly discuss the case of an

Expectation Hypothesis (EH) investor. We can compute the average utility for the mean-

variance investor with relative risk aversion parameter γR who allocates his or her portfolio

monthly between the short-term and long-term bonds using forecasts of the excess returns based

on the historical average. This exercise requires the investor to forecast the variance of excess

returns. Following Campbell and Thompson (2008), we assume that the investor estimates the

variance σ̂2
t+1 using a 5-year rolling window using monthly data of excess annually returns. A

mean-variance investor who forecasts the excess bond returns using the historical average r̄t+1

will decide at the end of period t to allocate the following share of his or her portfolio to bonds

in period t + 1:

w0,t = (
1

γR

)(
r̄t+1

σ̂2
t+1

) (4.14)

where σ̂2
t+1 is the 5-year rolling-window estimate of the variance of excess returns.26

Over the out-of-sample period, the average of the realized utility of the investor is given by

v̂0 = µ̂0 − (
1

2
)γRσ̂2

0 (4.15)

where µ̂0 and σ̂2
0 are respectively the sample mean and variance of the excess holding period

26Following Campbell and Thompson (2008), Rapach, Strauss and Zhou (2009) and Thornton and Valente
(2012), we constrain the portfolio weight on bonds to lie between -100% and 200% each month, so in Eq. (4.14)
w0,t = −1 (w0,t = 2) if w0,t < −1 (w0,t > 2).
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returns on the benchmark portfolio of the EH investor, which is constructed using forecasts of

the excess returns based on the historical average.

Similarly, we can calculate the average utility for the same investor, when his or her decision

is made by using a model to forecast the excess bond returns. The share chosen by the investor

is

wj,t = (
1

γR

)(
r̂j,t+1

σ̂2
t+1

) (4.16)

where r̂j,t+1 is the excess return forecast from model j. The resulting realized average utility

level is

v̂j = µ̂j − (
1

2
)γRσ̂2

j (4.17)

where µ̂j and σ̂2
j are the sample mean and variance of the excess holding period returns on the

portfolio indexed by j. The investor forms the portfolio j using forecasts of the excess returns

of bonds according to the jth forecasting model.

We can compute the utility gain, or certainty equivalent return, as the difference between

v̂j in Eq. (4.17) and v̂0 Eq. (4.15)

∆ = v̂j − v̂0. (4.18)

The utility gain that is expressed in average annualized percentage return, can be interpreted

as the portfolio management fee that an investor would be willing to pay to have access to

the additional information available in a predictive model relative to the information in the

historical term premia alone. We report results for risk aversion parameters γR = 3 and

γR = 6; the results are qualitatively similar for other reasonably values (ranging from 1 to 10).
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4.4 In-Sample and Out-of-Sample Performance

In Table 6, we report the in-sample and out-of-sample performance of our excess return forecasts

and the utility gain ∆ for the 5-year bonds. The statistical and economic evaluations for the

in-sample group across maturities (2 to 10 years) are summarized in Figures 7 and 8, and where

the evaluations for the out-of-sample group are displayed in Figure 9 and 10.

In Table 6, we find that across all forecast horizons NS-DMA* produce higher out-of-sample

explanatory power and economic value than the other models. The R2
OS of NS-DMA* ranges

from 17% to 57% across four forecast horizons, and both the R2
OS and economic value increase

with forecast horizons. The economic value reaches 0.83% for the 5-year bond when γR = 6. In

general, the NS-DMA*, BRW and Wright have relatively higher predictive performance, which

makes sense as these three models are estimated with the whole sample; the information of

realized excess returns is included in their term premia estimates.27 In other words, the model-

implied term premia at time t estimated from these three models can potentially be distorted

by the realized information at time time t + 1 and forward, so the estimates may not fully

reflect the current expectations of agents at each point in time.

Conversely, the NS-DMA does not have the distortions as it does not include any information

in the future. Surprisingly, the NS-DMA with information up to time t, also has significant

forecasting performance, and economic value quantitatively similar to, or even higher than,

BRW and Wright. When the NS-DMA is compared with the CP factor or DL, the advantage

is more distinct as the out-of-sample performance of the CP or DL is even worse than the EH

benchmark. The results distinguish the robustness of NS-DMA* and NS-DMA in revealing the

term structure dynamics. Moreover, the excess return forecasts of NS-DMA significantly (at 1

% for 9- and 12-month forecasting horizons) outperform the Expectation Hypothesis model, the

economic value remains positive for all forecast horizons. The statistical significance implies

that the Expectation Hypothesis does not hold, which has been well indicated in the previous

27In fact, it is a ‘pseudo’ forecasting exercise to generate forecasts using these three models, as the full-sample
estimation of these models introduces an extra layer of forward-looking information. The reason we do this is
to provide benchmarks to evaluate the in-sample performance of the NS-DMA*, the out-of-sample performance
and the NS-DMA, and the economic significance of both models.
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Table 6: Predictive Results of 5-Year Bond Excess Returns

h = 12 h = 9

R2
OS ∆ (γR = 3) ∆ (γR = 6) R2

OS ∆ (γR = 3) ∆ (γR = 6)

In NS-DMA* 31.49*** 0.75 0.83 29.23*** 0.54 0.56

Sample Wright 18.66*** 0.21 0.24 17.91*** 0.12 0.14

BRW 18.46*** 0.14 0.16 17.66*** 0.08 0.10

Out of NS-DMA 4.70*** 0.15 0.15 5.64*** 0.09 0.08

Sample DL -3.44 – – -1.64 – –

CP -28.35 – – -21.76 – –

h = 6 h = 3

R2
OS ∆ (γR = 3) ∆ (γR = 6) R2

OS ∆ (γR = 3) ∆ (γR = 6)

In NS-DMA* 25.24*** 0.31 0.30 17.46*** 0.20 0.21

Sample Wright 14.83*** 0.07 0.07 7.68*** 0.04 0.03

BRW 14.59*** 0.05 0.05 7.57*** 0.04 0.03

Out of NS-DMA 3.58** 0.03 0.02 0.95* 0.02 0.01

Sample DL -1.33 – – 0.39 – –

CP -10.81 – – -13.12 – –

Notes: 1. The table reports the out-of-sample R2 statistics (unit %) for log excess bond returns (holding 3, 6,
9 and 12 months) on the 5-year long-term Treasury bonds over the forecast evaluation period from 1983:12 to
2013:11. The forecasting horizons (holding periods) are h = 3, 6, 9, 12 months, respectively.
2. Utility gain (∆) is the portfolio management fee (in annualized percentage return) that an investor with
mean-variance preferences would be willing to pay to have access to the forecasting model. The utility gain is
computed at two risk aversion levels, i.e., γR = 3, 6. Higher utility gain is preferred.
3. Statistical significance for the R2 statistic is based on the p-value for the Clark and West (2007) out-of-
sample MSPE-adjusted statistic; the statistic corresponds to the test of the null hypothesis that the competing
model has equal expected square prediction error relative to the benchmark forecasting model (historical mean)
against the alternative hypothesis that the competing forecasting model has a lower expected square prediction
error than the benchmark forecasting model. *, ** and *** indicate significance at the 10%, 5% and 1% levels,
respectively.
4. The in-sample group includes NS-DMA*, Wright and BRW, and the full-sample information is used to
estimate predictable elements in Eq. (4.9). The out-of-sample group includes NS-DMA, DL and CP, and the
information up to and including time t are used for estimation. CP factor is recursively constructed using
one-year yield and 2- to 10-year forward rates.

41



literature. Although the NS-DMA has both statistical power and economic value, the utility

gain from the predictability is not sufficiently large, especially for shorter forecast horizons. The

modest finding in economic value is consistent with Della Corte, Sarno and Thornton (2008).

For bond investors and practitioners, the EH still plays an important role in out-of-sample

forecasts of interest rate term structure, especially at short forecast horizons. However, the

EH cannot fully reflect the real-time expectations of agents when facing economic uncertainty

despite its conveniency.

To further elaborate on our results, Figures 7 and 8 provide a general summary for the

excess return forecasts of the in-sample group, across 9 bond maturities (from 2 to 10 years).

The NS-DMA* consistently outperforms the Wright and BRW models across maturities and

forecast horizons, both statistically and economically. The results suggest more robust full-

sample estimates of the term premia using the NS-DMA* model.
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Figure 7: Statistical Evaluation

Notes: These are the out-of-sample R2 statistics for bonds at maturities from 2 to 10 years. The predictive
duration is from 1983:10 to 2013:11. From top left clockwise we have forecast horizons/holding periods 3, 6, 9
and 12 months. The models present here are NS-DMA*, Wright and BRW. The statistics are consistently the
highest for the NS-DMA*.
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Figure 8: Economic Evaluation

Notes: These are the utility gain statistics ∆ (unit %) at risk averse level γR = 6. The investors can choose
one long-term bond as the risky asset from 9 maturities (2 to 10 years). The predictive duration is from
1983:10 to 2013:11. From top left clockwise we have forecast horizons/holding periods 3, 6, 9 and 12 months.
The models present here are NS-DMA*, Wright and BRW. The NS-DMA typically has the highest ∆.

Figure 9 and 10 summarize the statistical analysis and economic evaluation for the excess

return forecasts of the out-of-sample group, across 9 bond maturities (from 2 to 10 years).

In seems the recursively constructed CP factor has no predictability gains against the EH

benchmark. The NS-DMA has significantly positive out-of-sample R2, especially for longer

holding periods. The utility gain from the NS-DMA is not very significant when compared to

the full-sample estimates from NS-DMA*, because the realization of agents’ expectations may

be contaminated by the market disturbances. Although the NS-DMA may not provide large

economic gains for our constructed portfolio, it is useful in revealing the agents’ expectations in
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real time. The NS-DMA is more reliable than the unrealistic EH or other full-sample estimates,

as full-sample estimation unavoidably includes the information of realized expectations. In

particular, NS-DMA allows for parameter and model uncertainty and hence is robust to learning

and structural breaks, see Piazzesi and Schneider (2007) and Gürkaynak and Wright (2012).

Therefore, our adaptive term structure model can provide plausible estimates in reflecting

changes in investors’ conditional expectations concerning the future path of monetary policy

as well as the risk compensation the investors require.

Figure 9: Statistical Evaluation

Notes: 1. This figure shows the out-of-sample R2 statistics for bonds at maturities from 2 to 10 years. The
three models present here are NS-DMA, DL and CP.
2. The predictive duration is from 1983:10 to 2013:11. From top left clockwise we have forecast
horizons/holding periods 3, 6, 9 and 12 months.
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Figure 10: Economic Evaluation

Notes: 1. This figure shows the utility gain statistics ∆ (unit %) of the NS-DMA at risk averse level γR = 6.
The investors can choose one long-term bond as the risky asset from 9 maturities (2 to 10 years). The
economic value of the CP or DL is not calculated due to insignificant or negative out-of-sample R2.
2. The predictive duration is from 1983:10 to 2013:11. We have forecast horizons/holding periods 3, 6, 9 and
12 months.

4.5 Model-Implied Term Premia

In this section we set out a visual comparison of our term premium estimates. We plot the

NS-DMA time-varying Risk Premia from 1985 for a medium-term bond (maturity 36 months)

and a long-term bond (maturity 120 months) in Figure 11.28 For comparison, we also plot

the model-implied term premia estimated from other approaches proposed by Kim and Wright

(2005), Wright (2011) and Bauer, Rudebusch and Wu (2014).29

28The Risk Premia at other maturities show similar patterns because of their high correlations, but the results
are not displayed here for sake of brevity.

29The comparison between the NS-DMA term premia and recursively estimated term premia from dynamic
Nelson-Siegel is shown in Appendix D. The NS-DMA approach seems to be more robust than the constant-
parameter dynamic Nelson-Siegel model, as the dynamic Nelson-Siegel model proposed by Diebold and Li (2006)
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As it is shown in Figure 11, the NS-DMA seems to have captured the level and volatility of

the Risk Premium. The estimates from NS-DMA have a consistent trend with the estimates

of Kim and Wright (2005), Wright (2011) and Bauer, Rudebusch and Wu (2014), especially

at the medium-term maturity, where the degree of term premia correlation between NS-DMA

and Kim and Wright (2005) is 0.55 and the correlation between NS-DMA and Wright (2011)

(or Bauer, Rudebusch and Wu (2014)) is more than 0.70. In general the term premia shows

countercyclical pattern, as they rise in and around US recessions, except the estimates of Kim

and Wright (2005). The difference between the estimates of Kim and Wright (2005) (KW)

and other models is due to the estimated expectation of future short rate. As indicated in

Christensen and Rudebusch (2012), there could be potential inaccuracy in the KW measure,

because their factor dynamics tend to display much less persistence than the true process.

According to the observations here, future short rates from KW would be expected to revert to

their mean too quickly, and estimated risk-neutral rates would be too stable, so the KW term

premia has a relatively lower variance and may display an acyclical pattern.

tends to overestimate the future short rates and hence underestimate the term premia.
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Figure 11: Time-Varying Term Premia of 36-and 120-Month Bonds

Notes:

1. The top panel is the 36-month term premia and the bottom is the 120-month term premia. The EH
consistent 36- and 120-month and bond yields are estimated using Eq. (4.2); we then calculate the term
premia using Eq. (4.5).
2. In addition to NS-DMA, we use the whole sample to separately estimate two types of term premia
employing the methods proposed by Wright (2011) and Bauer, Rudebusch and Wu (2014). The Kim and
Wright (2005) term premia can be obtained from the Federal Reserve Board website.
3. Shaded areas are recession periods based on the NBER Recession Indicators. The unit is percentage.
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Among all measures considered, the NS-DMA term premia seems to be more sensitive to

changes in the economic environment, which can be seen more clearly from the lower panel in

Figure 11 of the long-term term premia. The reason is that expectations of the future short

rates and, hence, the term premia can change severely. Our empirical evidence shows that the

NS-DMA has good performance in forecasting the future short rates, by utilizing a time-varying

approach and appropriately including the information of macro-finance variables. For example,

the short rate was continuously decreasing from 1990 to 1993 so the expectation of future short

rates were also deceasing. Long rates were relatively stable in contrast, which leads to the

increasing Risk Premia that peaked in 1993.

Specifically, our measures seem to capture the ‘Greenspan’s Conundrum’ in 2005,30 as the

premia level fell substantially. The effects of three rounds of QE in recent years are also

captured. The top panel in Figure 11 shows that the QE significantly increases the premia

level, as the expected future short rates fall more sharply than the long rates. Between 2012

and early 2013, recession risk existed due to a fear of the rise in future short rates, which

is consistent with the low level of premia; it explains why QE was launched in that period.

Towards the end of 2013, the term premia was positive, consistent with the Fed tapering QE.

Note that the effects of QE for the 3-year bond is more significant than the 10-year bond,

because investors’ expectations of short rates for the long run tend to be relatively stable

and usually higher than 3%, according to the Blue Chip Financial Forecast survey data.31

Accurately estimating term premia can provide valuable information for facilitating a prudent

monetary policy, and NS-DMA estimates of the term premium are quite promising in serving

this objective.

Lastly, we can observe that a divergence between the estimates of NS-DMA and other

estimates from Wright (2011) and Bauer, Rudebusch and Wu (2014), lies in the financial crisis

period. Christensen, Lopez and Rudebusch (2010) indicate that during the financial crisis,

30Federal Reserve Chairman Alan Greenspan observed that long-term yields had trended lower despite the
fact that the Federal Open Market Committee’s target for the federal funds rate had risen. A variety of possible
explanations were considered implausible and, hence, he called it a ‘conundrum’.

31We thank Jonathan Wright for pointing this out and sharing the survey data.
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financial markets encountered intense selling pressure because of fears of credit and liquidity

risks. The surge in risk aversion creates increased global demand for safe and highly liquid

assets, for example, the nominal U.S. Treasury securities. This ‘flight-to-quality’ could lead to a

sharp decline in their yields and therefore result in downward pressure on term premia. Bauer,

Rudebusch and Wu (2014) argue, meanwhile, that the procyclical flight-to-quality pressure

could not completely offset the usually countercyclical pattern of risk. Based on our estimates,

we believe the flight-to-quality demand is evident and can suppress the countercyclical pattern.

This makes a distinction between the financial crisis and the previous recessions, as global

marketa are more unified than ever before and hence capital flows to a safe heaven.32

It is worth noting that the models of Wright (2011) and Bauer, Rudebusch and Wu (2014)

are estimated with the whole sample of data, so the estimates of current term premia implicitly

absorb the information from the future, which may be the potential reason for the divergence

between NS-DMA and the two models. Therefore, to evaluate the robustness of the ‘flight-to-

quality’ demand in financial crisis, we also use the full-sample estimates of the NS-DMA*.33

The smoothed estimates are plotted in Figure 12; the smoothed Term Premium estimates of

NS-DMA are less volatile and more consistent with the estimates of the other models, but the

’flight-to-quality’ demand is still obvious as shown in the top panel.

32The countercyclical patterns of term premia before recessions have been researched in previous literature,
such as Estrella and Mishkin (1998), Wright (2006), Kim (2009) and Wheelock and Wohar (2009), but the
behavior during recession of term premia is not thoroughly discussed. D’Agostino, Giannone and Surico (2006)
suggest that the term spread may become a weaker indicator of the real economy after the Great Moderation,
which potentially supports our conclusion that the ‘flight-to-quality’ demand can suppress the countercyclical
patterns of term premia.

33See Appendix A.3, the estimates of NS-DMA in Figure 11 reflect the expectations in real-time while the
NS-DMA* estimates from the Rauch-Tung-Striebel (RTS) smoother contain the information of realized expec-
tations.
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Figure 12: Time-Varying Term Premia of 36-and 120-Month Bonds with Smoothed NS-DMA

Notes:

1. The top panel is the 36-month term premia and the bottom is the 120-month term premia. The EH
consistent 36- and 120-month and bond yields are estimated using Eq. (4.2); we then calculate the term
premia using Eq. (4.5).
2. We plot the NS-DMA term premia estimated from the RTS smoother conditional on the information of the
whole sample. In addition to the smoothed estimates, we use the whole sample to separately estimate two
types of term premia employing the methods proposed by Wright (2011) and Bauer, Rudebusch and Wu
(2014). The Kim and Wright (2005) term premia can be obtained from the Federal Reserve Board website.
3. Shaded areas are recession periods based on the NBER Recession Indicators. The unit is percentage.
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5 Conclusion

The Nelson-Siegel approach of yield curve modeling has been extended by Diebold and Li

(2006), Diebold, Rudebusch and Aruoba (2006) and Bianchi, Mumtaz and Surico (2009). We

further extend the literature using a Dynamic Model Averaging approach (NS-DMA), in order

to characterize the nonlinear dynamics of yield factors, as Duffee (2002) suggests nonlinearity

can potential improve yield forecasts. The framework we propose generalizes some frontier

econometric techniques, and is augmented with many (unspanned) macro-finance factors as

in Dewachter and Iania (2012). The NS-DMA method significantly improves the predictive

accuracy and successfully identifies the dynamics of term premia, on grounds that it seems to

have appropriately incorporated the information in the macro-economy. We then explore the

predictive power of our term structure model regarding the future excess holding period returns.

Our approach allows for potential structural breaks and model uncertainty, and hence, our real-

time term premia forecasts are plausible and have both statistical power and economic value.

According to the empirical results, we specifically discuss some informative responses of bond

yields to monetary policy implementations in different periods, such as the Great Moderation

and the QE after the financial crisis. Moreover, a distinct ’flight-to-quality’ demand in the

financial crisis is revealed.

To correctly specify the interactions between the yield factors and macro variables, some

realistic assumptions are introduced to enhance our model, such as the settings of unspanned

macro risks and time-varying parameters; but these assumptions cause econometric challenges

in terms of model tractability. The challenges are addressed here by bringing in an efficient

estimation technique. The NS-DMA model is believed to be robust, as it is highly consistent

with the theoretical and empirical findings in the previous yield curve literature.

Future research could employ a one-step approach to provide forecasts with higher accuracy,

in which case a trade-off should be made between predictive accuracy and estimation efficiency.

Discussing the real part of the term structure is meaningful and desirable, but it is beyond the

scope of this paper and will be our further work.
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Data Appendix

Table 7: List of Yields and Macro-Finance Variables

Series ID Description

TB 3- and 6-month Treasury Bills (Secondary Market Rate) (NSA) [1]

ZCY Smoothed Zero-coupon Yield from Gürkaynak, Sack and Wright (2007) (NSA) [1]

IND Industrial Production Index [5]

CPI Consumer Price Index for All Urban Consumers: All Items Less Food & Energy [5]

FED Effective Federal Funds Rate, End of Month (NSA) [1]

SP S&P 500 Stock Price Index, End of Month (NSA) [5]

TCU Capacity Utilization: Total Industry [1]

M1 M1 Money Stock [5]

TCC Total Consumer Credit Owned and Securitized, Outstanding (End of Month) [5]

LL Loans and Leases in Bank Credit, All Commercial Banks [5]

DOE DOE Imported Crude Oil Refinery Acquisition Cost (NSA) [5]

MSP Median Sales Price for New Houses Sold in the United States (NSA) [5]

TWX Trade Weighted U.S. Dollar Index: Major Currencies (NSA) [1]

ED Eurodollar Spread: 3m Eurodollar Deposit Rate - 3m Treasury Bill Rate (NSA) [1]

WIL Wilshire 5000 Total Market Index (NSA) [5]

DYS Default Yield Spread: Moodys BAA-AAA (NSA) [1]

NFCI National Financial Conditions Index (NSA) [1]

Notes:

1. In square brackets [·] we have a code for data transformations used in this data set: [1] means original series is used; [5]
means log first-order difference is used to detrend and ensure stationarity. The series are seasonally adjusted except the ones
with NSA.
2. Data are obtained from St. Louis Federal Reserve Economic Data [http://research.stlouisfed.org/], spanning from
Nov. 1971 to Nov. 2013. The smoothed zero-coupon yield is available on the Federal Reserve Board website
[http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html/].
3. National Financial Conditions Index, provided by the Chicago Fed, is available on the website
[http://www.chicagofed.org/webpages/publications/nfci/].
4. The small-size VAR model includes no macro variables. The medium-size VAR model includes only three macro variables:
IND, CPI and FED. The large-size VAR model uses all the macro and financial variables in this data list.
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Appendix A Econometric Methods

A.1 Bayesian Kalman Filter with Forgetting Factor

We conduct the Kalman filter estimation for the state space model with Eq. (2.3) and Eq.

(2.4):

zt = Xtβt + vt,

βt+1 = βt + µt,

where zt is a n × 1 vector of variables, Xt = In ⊗
[
z′

t−1, ..., z′
t−p

]′
, βt are VAR coefficients,

vt ∼ N (0, Σt) with Σt an n × n covariance matrix, and µt ∼ N (0, Qt).

Given data at time t denoted as Dt = (zt, Xt) and all the data from time 1 to t denoted as

D1:t, the Bayesian solution to updating about the coefficients βt takes the form

p (βt|Dt) ∝ L (zt; βt, Xt, D1:t−1) p (βt|Dt−1) ,

p (βt|Dt−1) =
∫

℘
p (βt|D1:t−1, βt−1) p (βt−1|Dt−1) dβt,

where ℘ is the support of βt. The solution to this problem can be defined using a Bayesian gen-

eralization of the typical Kalman filter recursions. Given an initial condition β0 ∼ N (m0, Φ0)

we can define (cf. West and Harrison (1997))34:

1. Posterior at time t − 1

βt−1|Dt−1 ∼ N (mt−1, Φt−1) ,

2. Prior at time t

βt|Dt−1 ∼ N
(
mt|t−1, Φt|t−1

)
,

34For a parameter θ we use the notation θt|s to denote the value of parameter θt given data up to time s (i.e.
D1:s) for s > t or s < t. For the special case where s = t, I use the notation θt|t = θt
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where mt|t−1 = mt−1 and Φt|t−1 = Φt−1 + Qt.

3. Posterior at time t

βt|Dt ∼ N (mt, Φt) , (A.1)

where mt = mt|t−1+ Φt|t−1X
′
t(V

−1
t )′ṽt and Φt = Φt|t−1 − Φt|t−1X

′
t(V

−1
t )′XtΦ

′
t|t−1, with

ṽt = zt − Xtmt|t−1 the prediction error and Vt = XtΦt|t−1X
′
t + Σt its covariance matrix.

Following the discussion above, we need to find estimates for Σt and Qt in the formulas

above. We define the time t prior for Σt to be

Σt|Dt−1 ∼ iW (St−1, δnt−1) , (A.2)

while the posterior takes the form

Σt|Dt ∼ iW (St, nt) ,

where nt = δnt−1+1 and St = (1 − at) St−1+at

(
S0.5

t−1Σ
−0.5
t−1 vtv

′
tΣ

−0.5
t−1 S0.5

t−1

)
, with at = n−1

t . In this

formulation, vt is replaced with the one-step ahead prediction error ṽt|t−1 = zt − mt|t−1Xt. The

estimate for St is approximately equivalent numerically to the Exponentially Weighted Moving

Average (EWMA) filter St = δSt−1+(1 − δ) vtv
′
t. The parameter δ is the decay factor, where for

0 < δ < 1. In fact, Koop and Korobilis (2013) apply such a scheme directly to the covariance

matrix Σt, which results in a point estimate. In this case by applying variance discounting

methods to the scale matrix St, we are able to approximate the full posterior distribution of

Σt.

Regarding Qt, we use the forgetting factor approach in Koop and Korobilis (2013); see also

West and Harrison (1997) for a similar discounting approach. In this case Qt is set to be
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proportionate to the filtered covariance Φt−1 = cov (βt−1|Dt−1) and takes the following form

Qt =
(
Λ−1 − 1

)
Φt−1, (A.3)

for a given forgetting factor Λ.

The brief interpretation of forgetting factors is that they control how much ‘recent past’

information will be used. With the exponential decay for the forgetting factors, if it takes a

value of 0.99, the information 24 periods ago (two years for monthly data) receives around 80%

as much weight as the information of last period. If forgetting factor takes 0.95, then forecast

performance 24 periods ago receives only about 30% as much weight. The similar implication

holds for the decay factor.
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A.2 Probabilities for Dynamic Selection and Averaging

To obtain the desire probabilities for dynamic selection or averaging, we need updating at each

point in time. In papers such as Raftery, Kárnỳ and Ettler (2010) or Koop and Korobilis (2012)

the models are TVP regressions with different sets of explanatory variables. The analogous

result of the model prediction equation, when doing DMA or DPS, is

p(βt−1|z
t−1) =

K∑

k=1

p(β
(k)
t−1|Lt−1 = k, zt−1)Pr(Lt−1 = k|zt−1), (A.4)

where Lt−1 = k means the kth model35 is selected and p(β
(k)
t−1|Lt−1 = k, zt−1) is given by the

Kalman filter (Eq. A.1). To simplify notation, let π
(l)
t|s = Pr(Lt = l|zs).

Raftery, Kárnỳ and Ettler (2010) used an empirically sensible simplification that

π
(i)
t|t−1 =

(
π

(i)
t−1|t−1

)α

∑K
l=1

(
π

(l)
t|t

)α , (A.5)

where 0 < α ≤ 1. A forgetting factor is also employed here, of which the meaning is discussed

in the last section. The huge advantage of using the forgetting factor α is that it does not

require an MCMC algorithm to draw transitions between models or a simulation algorithm

over model space.

The model updating equation is

π
(i)
t|t =

π
(i)
t|t−1p

(i)(zt|z
t−1)

∑K
l=1 π

(l)
t|t−1p

(l)(zt|zt−1)
, (A.6)

where p(i)(zt|z
t−1) is the predictive likelihood. When proceeding with Dynamic Model Se-

lection, the model with the highest probability is the best model we would like to select.

Alternatively, we can conduct Dynamic Model Averaging, which average the predictions of all

models with respective probabilities.

35For example, the kth model in Dynamic Model Selection/Averaging, or the kth candidate γ value in Dynamic
Prier Selection.
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A.3 A Backward Smoother for the TVP-VAR

In Appendix A.1, the algorithm for estimating the VAR with time-varying parameters uses

only forward recursions, i.e. parameters at time t are updated as new data become available.

Such algorithm is very convenient when using the VAR for forecasting or real-time monetary

policy analysis. One can obtain more accurate estimates of βt by complementing the Kalman

filter with a smoothing algorithm. Smoothing algorithms are based on backward recursions

where information at time t + 1 or forward is used to update coefficients at time t. It becomes

obvious that such algorithms are not suitable for monetary policy in real-time, however they

can be used for ex-post analysis of monetary phenomena.

Here we can use a fixed-interval smoother, such as the RTS (Rauch-Tung-Striebel) smoother

developed by Rauch, Striebel and Tung (1965), which does not depend on the decay factors Λ

and δ thus providing a mimimum mean square estimator of βt without the need to optimize

with respect to the decay factors:

βt|T = E (βt|D1:T ) .

The solution to this optimization problem takes the following form (conditional on the infor-

mation at time T )

mt|T = mt|t + At

(
mt+1|T − mt+1|t

)
,

Φt|T = Φt|t + At

(
Φt+1|T − Φt+1|t

)
A′

t,

where At = Φt|tΦ
−1
t+1|t, and for t ‘running backwards’ from T − 1 to 1.

As well as smoothing the large parameter vector βt, one can obtain smoothed estimates

of the covariance matrix Σt. West and Harrison (1997) provide such a backward (smoothing)

algorithm. By iterating t from T − 1 to 1, we can estimate
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S−1
t|T = (1 − δ) S−1

t + δS−1
t+1|T ,

nt|T = (1 − δ) nt + δnt+1|T ,

in which case we can obtain Σt|T using

Σt|D1:T ∼ iW
(
St|T , nt|T

)
.
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Appendix B Interpretation of Factor Dynamics

We illustrate the factor dynamics in this section and try to shed light on the economic im-

plications of the latent factors. The extracted NS factors are shown in Figure 13. The Level

factor has a downward trend since the early 1980s. The Level factor also has greater persis-

tence compared with the other more volatile factors. The downward trend in the Level factor

is consistent with the descriptive statistics in Table 1 and the results of Koopman, Mallee and

Van der Wel (2010). The latter suggest a strong link between the Level factor and (expected)

inflation, as they share high persistence. Evans and Marshall (2007) also indicate that there

is a link between the level of yields and inflation with structural VAR evidence. In particular,

the Level factor fall significantly after the financial crisis, which may indicate that the market

had low inflation expectations. The Level factor rises in 2013, potentially associated with rising

inflation and the impact of the Fed’s Quantitative Easing (QE) pattern.

The Slope factor tends to fall sharply within recession periods, as indicated in Figure 13

by the shaded areas. Therefore, this factor could be closely related to real activity. The Slope

factor is often considered as a proxy for the term spread, see Diebold, Rudebusch and Aruoba

(2006). It can also be considered as a proxy for the stance of monetary policy, as the short end

is influenced by policy rates.36

Lastly, the Curvature factor is harder to interpret and Diebold and Rudebusch (2013) in-

dicate that this factor is less important than the other factors. On one hand, Litterman,

Scheinkman and Weiss (1991) link the Curvature factor to the volatility of the level factor, via

the argument of yield curve convexity, which can also be seen in Neftci (2004).37 On the other

hand, medium rates can be linked to expect short rates in the future, and therefore should

be linked to current and expected future policies, which may potentially contain useful macro

information missing in the first two factors.

36Recent research relates the Slope of term structure to news shocks on total factor productivity and asset-class
risk, see Kurmann and Otrok (2013) and Bansal, Connolly and Stivers (2014).

37Generally, higher convexity means higher price-volatility or risk, and vice versa.
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Figure 13: Nelson-Siegel Factor Dynamics

Notes: The graph shows the Nelson-Siegel Level, Slope and Curvature factors, which are drawn from Eq.
(2.1). The shaded areas are recession periods according to the NBER Recession Indicators.
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Appendix C Dynamic Prior Selection and Forecasting Results

Figure 14: DPS results

Notes: The above three graphs are the prior selection results given α = 0.99. The blue, green and red lines (i.e. the lines in
the left, middle and right) are the selections for the small, medium and large VAR models, respectively. The y-axis shows
the candidate prior values [10−10, 10−6, 0.001, 0.005, 0.01, 0.05, 0.1], and the x-axis indicates the time horizon from 1975.

Notes: The above three graphs are the prior selection results given α = 0.98.

Notes: The above three graphs are the prior selection results given α = 0.97.

Notes: The above three graphs are the prior selection results given α = 0.96.
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Table 8: Relative MSFE Performance of Term Structure Models

FH 6 12

Maturity DMA DMS TVP TVPM DL DLR10 DLM DLSW DMA DMS TVP TVPM DL DLR10 DLM DLSW

3 0.871† 0.976 0.974 1.012 1.332 1.703 1.405 1.908 0.98† 1.073 1.021 1.240 1.349 1.605 1.517 1.677

6 0.947† 1.051 1.053 1.120 1.446 1.796 1.514 1.999 1.034† 1.128 1.079 1.292 1.419 1.703 1.579 1.784

12 0.969† 1.072 1.057 1.080 1.304 1.501 1.322 1.825 1.025† 1.139 1.082 1.210 1.353 1.592 1.458 1.661

24 1.025† 1.109 1.106 1.105 1.393 1.623 1.407 1.707 1.075† 1.191 1.139 1.208 1.474 1.757 1.573 1.664

36 1.038† 1.107 1.110 1.090 1.416 1.685 1.427 1.574 1.091† 1.202 1.152 1.188 1.528 1.848 1.623 1.625

48 1.038† 1.097 1.101 1.073 1.403 1.709 1.414 1.481 1.087† 1.193 1.145 1.163 1.532 1.885 1.625 1.591

60 1.032† 1.085 1.088 1.060 1.368 1.702 1.381 1.432 1.070† 1.175 1.127 1.140 1.505 1.884 1.596 1.577

72 1.021† 1.073 1.076 1.051 1.322 1.673 1.336 1.417 1.049† 1.154 1.106 1.121 1.459 1.858 1.549 1.581

84 1.009† 1.063 1.064 1.046 1.270 1.627 1.286 1.422 1.025† 1.133 1.086 1.105 1.405 1.816 1.494 1.599

96 0.997† 1.055 1.056 1.044 1.218 1.568 1.236 1.438 1.003† 1.115 1.068 1.092 1.349 1.766 1.437 1.623

108 0.987† 1.048 1.049 1.043 1.167 1.502 1.187 1.458 0.983† 1.100 1.054 1.083 1.294 1.711 1.381 1.649

120 0.978† 1.043 1.045 1.044 1.122 1.433 1.142 1.477 0.966† 1.089 1.043 1.077 1.243 1.655 1.329 1.673

Mean 0.994† 1.067 1.067 1.067 1.323 1.632 1.348 1.607 1.035† 1.143 1.093 1.174 1.415 1.748 1.524 1.648

Notes: 1. This table shows 6-month and 12-month ahead forecasts of bond yields with maturities ranging from 3 months to 120 months. The predictive duration is
from early 1983 to the end of 2013.
2. The MSFE-based statistics relative to the RW are reported. The dagger (†) indicates, in terms of the sum of predictive log-likelihood, the model has the preferred
value among all models at certain maturities (or in total), see Geweke and Amisano (2010).
3. In this table, we use following abbreviations. MSFE: Mean Squared Forecasting Error; Mean: Averaged MAFE across all sample maturities. DMA (Dynamic
Model Averaging) averages all the models with probabilities in each step, while DMS (Dynamic Model Selection) chooses the best model with the highest probability
at any point in time. TVP-M: a time-varying parameter model with three macro variables: fund rate, inflation and industrial production, similar to Bianchi Mumtaz
and Surico (2009) but estimated with a fast algorithm without the need of MCMC; DL: Diebold and Li (2006) model, i.e. constant coefficient Vector Autoregressive
model with recursive (expanding) estimations; DL-R10: Diebold and Li (2006) estimates based 10-year rolling windows; TVP: a time-varying parameter model
without macro information; DL-M: factor dynamics in Diebold and Li (2006) are augmented with three macro variables: fund rate, inflation and industrial
production, using recursive estimations; DL-SW: factor dynamics in Diebold and Li (2006) are augmented with with three principal components (see Stock and
Watson (2002)) of our macro-finance data, using recursive estimations; RW: Random Walk.

70



Table 9: Relative MAFE Performance of Term Structure Models

FH 1 3

Maturity DMA DMS TVP TVPM DL DLR10 DLM DLSW DMA DMS TVP TVPM DL DLR10 DLM DLSW

3 0.851† 0.890 0.866 0.858 0.968 1.050 0.979 1.275 0.884† 0.948 0.939 0.926 1.077 1.301 1.092 1.527

6 0.976† 1.036 1.025 1.007 1.101 1.218 1.120 1.462 0.957† 1.019 1.021 1.028 1.189 1.391 1.206 1.621

12 1.023† 1.047 1.021 1.039 0.984 0.963 1.013 1.324 0.987† 1.031 1.017 1.041 1.059 1.128 1.067 1.408

24 1.028† 1.053 1.041 1.047 1.047 1.059 1.054 1.272 1.006† 1.034 1.039 1.053 1.122 1.201 1.127 1.289

36 0.990† 1.010 1.011 1.015 1.062 1.142 1.073 1.131 1.013† 1.033 1.047 1.044 1.145 1.242 1.151 1.194

48 0.973† 0.987 1.000 0.992 1.065 1.164 1.072 1.049 1.012† 1.020 1.041 1.031 1.145 1.255 1.149 1.128

60 0.976† 0.986 1.000 0.988 1.061 1.167 1.066 1.023 1.011† 1.013 1.035 1.028 1.130 1.254 1.134 1.096

72 0.984† 0.995 1.006 1.000 1.051 1.160 1.059 1.030 1.008† 1.011 1.031 1.028 1.110 1.243 1.113 1.090

84 0.993† 1.006 1.014 1.013 1.041 1.140 1.047 1.050 1.003† 1.011 1.027 1.028 1.082 1.218 1.091 1.094

96 0.997† 1.014 1.020 1.025 1.030 1.110 1.038 1.071 0.998† 1.011 1.023 1.028 1.059 1.186 1.068 1.108

108 1.004† 1.023 1.027 1.037 1.015 1.069 1.029 1.091 0.994† 1.014 1.021 1.031 1.039 1.150 1.048 1.126

120 1.010† 1.028 1.034 1.044 1.004 1.028 1.019 1.110 0.988† 1.013 1.017 1.030 1.018 1.109 1.029 1.139

Mean 0.988† 1.008 1.008 1.009 1.036 1.104 1.047 1.143 0.991† 1.015 1.023 1.027 1.098 1.220 1.106 1.224

Notes: 1. This table shows 1-month and 3-month ahead forecasts of bond yields with maturities ranging from 3 months to 120 months. The predictive duration is
from 1983:10 to 2013:11.
2. The MAFE-based statistics relative to the RW are reported. The dagger (†) indicates, in terms of the sum of predictive log-likelihood, the model has the preferred
value among all models at certain maturities (or in total), see Geweke and Amisano (2010).
3. In this table, we use following abbreviations. MAFE: Mean Absolute Forecasting Error; Mean: Averaged MSFE across all sample maturities. DMA (Dynamic
Model Averaging) averages all the models with probabilities in each step, while DMS (Dynamic Model Selection) chooses the best model with the highest probability
at any point in time. TVP-M: a time-varying parameter model with three macro variables: fund rate, inflation and industrial production, similar to Bianchi Mumtaz
and Surico (2009) but estimated with a fast algorithm without the need of MCMC; DL: Diebold and Li (2006) model, i.e. constant coefficient Vector Autoregressive
model with recursive (expanding) estimations; DL-R10: Diebold and Li (2006) estimates based 10-year rolling windows; TVP: a time-varying parameter model
without macro information; DL-M: factor dynamics in Diebold and Li (2006) are augmented with three macro variables: fund rate, inflation and industrial
production, using recursive estimations; DL-SW: factor dynamics in Diebold and Li (2006) are augmented with with three principal components (see Stock and
Watson (2002)) of our macro-finance data, using recursive estimations; RW: Random Walk.
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Table 10: Relative MAFE Performance of Term Structure Models

FH 6 12

Maturity DMA DMS TVP TVPM DL DLR10 DLM DLSW DMA DMS TVP TVPM DL DLR10 DLM DLSW

3 0.951† 1.009 1.020 1.003 1.206 1.360 1.249 1.522 1.028† 1.074 1.078 1.127 1.220 1.321 1.296 1.374

6 0.999† 1.055 1.068 1.061 1.250 1.411 1.290 1.581 1.054† 1.098 1.101 1.141 1.245 1.365 1.313 1.438

12 0.995† 1.052 1.044 1.047 1.131 1.236 1.148 1.445 1.031† 1.085 1.073 1.082 1.190 1.308 1.229 1.389

24 0.999† 1.040 1.036 1.033 1.165 1.263 1.176 1.348 1.055† 1.095 1.093 1.068 1.242 1.392 1.274 1.363

36 1.017† 1.040 1.046 1.027 1.187 1.297 1.197 1.290 1.063† 1.092 1.097 1.054 1.258 1.433 1.287 1.313

48 1.022† 1.036 1.046 1.024 1.187 1.305 1.194 1.243 1.061† 1.086 1.089 1.046 1.259 1.448 1.287 1.291

60 1.017† 1.029 1.040 1.021 1.174 1.296 1.177 1.212 1.054† 1.079 1.080 1.039 1.250 1.448 1.276 1.287

72 1.008† 1.022 1.033 1.019 1.153 1.277 1.155 1.199 1.048† 1.073 1.070 1.034 1.239 1.442 1.266 1.295

84 0.999† 1.015 1.025 1.016 1.127 1.250 1.128 1.196 1.041† 1.069 1.062 1.029 1.227 1.431 1.254 1.313

96 0.993† 1.011 1.020 1.014 1.102 1.227 1.104 1.205 1.032† 1.066 1.054 1.025 1.212 1.415 1.239 1.336

108 0.985† 1.008 1.015 1.012 1.079 1.205 1.080 1.215 1.019† 1.061 1.045 1.020 1.193 1.393 1.219 1.357

120 0.979† 1.007 1.012 1.012 1.061 1.183 1.061 1.228 1.007† 1.056 1.038 1.016 1.171 1.369 1.198 1.378

Mean 0.998† 1.028 1.034 1.025 1.153 1.276 1.164 1.306 1.042† 1.079 1.075 1.060 1.227 1.395 1.264 1.346

Notes: 1. This table shows 6-month and 12-month ahead forecasts of bond yields with maturities ranging from 3 months to 120 months. The predictive duration is
from early 1983 to the end of 2013.
2. The MAFE-based statistics relative to the RW are reported. The dagger (†) indicates, in terms of the sum of predictive log-likelihood, the model has the preferred
value among all models at certain maturities (or in total), see Geweke and Amisano (2010).
3. In this table, we use following abbreviations. MAFE: Mean Absolute Forecasting Error; Mean: Averaged MAFE across all sample maturities. DMA (Dynamic
Model Averaging) averages all the models with probabilities in each step, while DMS (Dynamic Model Selection) chooses the best model with the highest probability
at any point in time. TVP-M: a time-varying parameter model with three macro variables: fund rate, inflation and industrial production, similar to Bianchi Mumtaz
and Surico (2009) but estimated with a fast algorithm without the need of MCMC; DL: Diebold and Li (2006) model, i.e. constant coefficient Vector Autoregressive
model with recursive (expanding) estimations; DL-R10: Diebold and Li (2006) estimates based 10-year rolling windows; TVP: a time-varying parameter model
without macro information; DL-M: factor dynamics in Diebold and Li (2006) are augmented with three macro variables: fund rate, inflation and industrial
production, using recursive estimations; DL-SW: factor dynamics in Diebold and Li (2006) are augmented with with three principal components (see Stock and
Watson (2002)) of our macro-finance data, using recursive estimations; RW: Random Walk.
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Appendix D Term Premia of Diebold-Li and NS-DMA

Figure 15: Time-Varying Term Premia of 36-and 120-Month Bonds

Notes:

1. The top panel is the 36-month term premia and the bottom is the 120-month term premia. The EH consistent 36- and
120-month and bond yields are estimated using Eq. (4.2); we then calculate the term premia using Eq. (4.5).
2. In addition to NS-DMA, we plot the recursively estimated term premia employing the methods proposed by Diebold and
Li (2006).
3. Shaded areas are recession periods based on the NBER Recession Indicators. The unit is percentage.

73


	Introduction
	Methods
	The Nelson-Siegel Restrictions
	Yield Factor Dynamics
	Model Selection
	Uncertainty about Macro-Finance Factors
	Prior Selection


	Data and Results
	Evidence on Parameter Instability
	Model Dynamics
	Forecasting Performance
	Point Forecasts
	Density Forecasts and Time-Varying Volatility
	Robustness: Do We Need Strict Arbitrage-Free Restrictions?


	Dynamics of Term Premia
	Expectation Hypothesis and Term Premium
	Predictability of Excess Returns
	Economic Value
	In-Sample and Out-of-Sample Performance
	Model-Implied Term Premia

	Conclusion
	Appendix Econometric Methods
	Bayesian Kalman Filter with Forgetting Factor
	Probabilities for Dynamic Selection and Averaging
	A Backward Smoother for the TVP-VAR

	Appendix Interpretation of Factor Dynamics
	Appendix Dynamic Prior Selection and Forecasting Results
	Appendix Term Premia of Diebold-Li and NS-DMA

