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ABSTRACT

The identification of thé out of control variable, or variables,
after a multivariate control chart signals, is an appealing
subject for many researchers in the last years. In this paper
we propose a iew method for approaching this problem based
on principal components analysis. Theoretical control limits
are derived and a detailed investigation of the properties and
the limitation§ of the new method is given. A graphical
technique which can be applied in some of these limiting
situations is also provided.
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1. INTRODUCTION

Multivariate control charts are a powerful tool in Statistical Process
Control for identifying an out of control process. Woodall and
Montgomery!"! in a review paper emphasized the need for much more
research in this area since most of the processes involve a large number of
variables that are correlated. As Jackson'® notes, any multivariate quality
control procedure should fulfill four conditions (1) Single answer to the
question “Is the process in control?”” (2) Specification of an overall Type I
error (3) The relationship among the variables must be taken into account
and (4) Procedures should be available to answer the question “If the
process is out of control, what is the problem?” The last question has
proven 'to be an interesting subject for many researchers in the last
years. Woodall and Montgomery!'! state that although there is difficulty
in interpreting the signals from multivariate control charts more work is
needed on data reduction methods and graphical techniques.

In this paper  we propose a new method based on principal
components analysis (PCA), for identifying the out of control variable, or
variables, when a multivariate control chart for individual observations
signals. We investigate this alternative procedure because it leads to a
more efficient and easily applied way of identifying the out of control
variable. Section 2 describes the existing methods for solving the above
stated problem. A presentation of the new method, together. with two
examples are given in Sec. 3. Some interesting points and discussion on
the performance and application of the new method is shown in Sec. 4.
Section 5 evaluates the performance of the proposed method in relation
to the existing methods that use PCA. A graphical method based on the
statistics proposed is presented in Sec. 6. Conclusions are summarized
in Sec. 7. L 3

2. LITERATURE REVIEW

If a univariate control chart gives an out-of-control signal, one can
easily detect what the problem is and give a solution since a univariate chart
is related to a single variable. In a multivariate control chart the problem is
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more complicated because any chart is related to a number, greater than
one, of variables and also correlations exist among them. In this
section we present methods for detecting, which of the p variables is out
of control.

A first approach to this problem was proposed by Alt"™ who suggested
the use of Bonferroni limits. Hayter and Tsui® extended the idea of
Bonferroni-type control limits by giving a procedure for exact simultancous
control intervals for each of the variable means, using simulation. A similar
control chart is the Simulated MiniMax control chart presented by
Sepulveda and Nachlas.”! This chart is based on monitoring the maximum
and the minimum standardized sample means of samples taken from
a multivariate process. Therefore, an out-of-control signal is dlrectly
connected with the corresponding out-of-control variable.

Alt*?! and Jackson!? discussed the use of an elliptical control region.
However, this process has the disadvantage that it can be applied only in the
special case of two quality characteristics. An extension of the elliptical
control region as a solution to the interpretation problem is given by
Chua and Montgomery.!® They use a multivariate exponentially weighted
moving average control chart for detecting the out of control situation and
the hyperplane method for identifying the variable, or variables, that caused
this problem.

A promising method is the use of 72 decomposition, which is
proposed by Mason et al.l’#! The main idea of this method is to decompose
the T? statistic into independent parts, each of which reflects the
contribution of an individual variable. The major drawback of this
méthod is that the decomposition of the T? statistic into p independent
T? components is not unique as p! different, non independent partitions
are possible. An appropriate computing scheme that can greatly reduce
the computational effort is given by Mason et. al.’! Mason et al.l'”
presented an alternative control procedure for monitoring a step process,
which is based on a double decomposition of Hotelling’s 7 statistic. Mason
and Young!'!! showed that by improving the model specification at the time
that the historical data set is constructed, it may be possible to increase the
sensitivity of the T2 statistic to signal detection. The methodologies of
Murphy,“z] Doganaksoy et al.,'3) Hawkins,['*1%) Wierda ' Timm,'”! and
Runger et al.,!'® are special cases of Mason et al.l”! partitioning of 77. Wade
and Woodall™ consider a cause-selecting control chart where
incoming variable X, is charted regardless of X, and outgoing quality X,
is monitored after using regression adjustment for the incoming quality.

Jackson' proposed the use of principal components for monitoring
a multivariate process. Since the principal components are uncorrelated,
they may provide some insight into the nature of the out of control
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condition and then lead to the examination of particular original
observations. Tracy et al.?” expanded the previous work and provided
an interesting bivariate setting in which the principal components have
meaningful interpretations. Kourti and MacGregor?!! expressed the T2 in
terms of normalized principal components scores of the multivariate normal
variables. When an out of control signal is received, the normalized scores
with high value are detected, and contribution plots are used to find the
variables responsible for the signal. A contribution plot indicates how each
variable involved in the calculation of that score contributes to it.
Computing variable contributions eliminates much of the criticism that
principal components lack of physical interpretation. This approach is
particularly applicable to large ill conditioned data sets due to the use of
principal components,

Fuchs and Benjamini'*® presented the multivariate profile chart,
which is a symbolic scatterplot, for simultaneously controlling a process
and interpreting an out-of-control signal. Summaries of data for individual
variables are displayed by a symbol, and global information about
the group is displayed by the location of the symbol on the scatterplot.
Finally, Sparks et al.”?® used the Gabriel biplot to detect changes in
location, variation, and correlation structure accurately.

[22]

3. A NEW METHOD

Let x;= (xy;, X955 . . - ,xpi)T denote the observation (vector) i for the p
variables of a process. Assume that x; follows a p-dimensional Normal
distribution N,(my,X,), where g, is the vector (p x 1) of known means
and X, is the known (p x p) variance-covariance matrix. We want to
keep this process under control. For this purpose we use a X control
chart given by the formula X? = (xi—po) " Zg "(x;—mp). If the value of this
statistic plots above X, ,i 1-o We get an out of control signal, where X; j, l—g 18
the chi-square distribution with p degrees of freedom and a is the Type I
error. The next problem is to detect which variable is the one that caused the
problem. )

A p xp symmetric, nonsingular matrix, such as the variance—
covariance matrix X, may be reduced to a diagonal matrix L by
premultiplying and postmultiplying it by a particular orthonormal matrix
U such that UTEUr:L. The diagonal elements of L, h,b,...,1, are
the characteristic roots, or eigenvalues of X, The columns of U:are the
characteristic vectors, or eigenvectors of . Based on the previous result
the method of PCA was developed (see, e.g., Jackson'?). The PCA trans-
forms p correlated variables X1sX2,...,X, into p new uncorrelated ones.
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The main advantage of this method is the reduction of dimensionality. Since
the first two or three PCs usually explain the majority of the variability in a
process, they can be used for interpretation purposes instead of the whole set
of variables.

The typical form of a PCA model is the following: Z; = uj X+
Uy Xy +usp Xz +--- + ukap, where Z, is the k PC, (uy, oy, ti3gs . - - upk)T
is the corresponding k eigenvector and X, ..., X, are the process variables.
The score for vector x; in PC k is Yy = uyexy; + X + -+ - + UppXp;.
Assuming that the process variables follow a multivariate normal distribu-
tion the PCs are also normally distributed.

Our purpose is to use PCA, when we have an out of control signal
in the X? control chart, to identify the variable or variables that are
responsible. For this objective two different methodologies are developed
one for the case that the covariance matrix has only positive correlations
and the second one for the case that we have both positive and negative
ones.

3.1. Covariance Matrix with Positive Correlations

Assume that using one of the existing methods for choosing PCs (see,
e.g., Jackson,”! Runger and Alt?*) we choose d < p significant PCs. The
proposed method in this case is based on ratios of the form

(gt + -+ )X 1
T = ey

where x;; is the jth value of variable X}, Y, j=1,...,d is the score of the
ith vector of observations in the jth PC (Bersimis®)). In this ratio, the
numerator corresponds to the sum of the contributions of variable X, in
the first d PCs in observation (vector) i, whereas the denominator is the sum
of scores of observation (vector) i in the first d PCs. Since we have assumed
that the variables follow a multivariate normal distribution the ratios are
ratios of two correlated normal variables.

The rationale of this method is to compute the impact of each of the p
variables on the out of control signal by using its contribution to the total
score. It is obvious that the use of only the first d PCs excludes pieces of
information. However, a multivariate chart is used when there is at least
moderate and usually large correlation between the variables. Under such
circumstances the first ‘'d PCs account for the largest part of the process
variability. The main disadvantage of using PCs in process control, as
reported by many authors (see, e.g., Runger and Alt;®* Kourti and
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McGregor®), is the lack of physical interpretation. The proposed method
eliminates much of that criticism. :

Since we have a ratio of two correlated normals its distribution can be
computed using the analytical result of Hinkley.”®! Specifically, if X;, X, are
normally distributed random variables with means w;, variances cr,?’, and
correlation coefficient p the distribution function of R = X,/X, is given
by the formula

K1 — Hal - Hp O2F — po;
0'10'2(!(") ’ [of)) ’ U;O’zd(l")

F(ry= L[

I uzr-m;.t_tg;azr—ml ~ . )
a1 02a(r) oy O GZ“(r)

where L(h; k; ) =(1/Q2rv1—y3) fi° [ exp{—( —2pxp +31)/2(1 — )} x
dxdy is the standard bivariate normal integral. - :

However, the proposed method has a correlation problem since
the ratios of different variables are interrelated. A simulation study
presented in Sec. 4 is implemented to test the effect on the performance
of the proposed procedure. In the following we present the method as a
stepwise procedure.

e Step 1. Calculate the X statistic for the incoming observation. If
we get an out of control signal continue with Step 2. -

e Step 2. Calculate ratios for all the variables using relation (1).
Calculate as many ratios for each variable as the number of
observations from the beginning of the process. If the proposed
process is not used for the first time, calculate as many ratios for
each variable, as the number of observations from the last out of
control signal till the out of control signal we end up with in Step 1.
Alternatively, calculate ratios for only the (last) observation that
caused the out of control signal (see Sec. 4).

e - Step 3. Plot the ratios for each variable in a control chart.
Compute the a and 1 — a percentage points of distribution (2)
with suitable parameters and use them as lower control limit
(LCL) and upper control limit (UCL), respectively.

o Step 4. Observe which variable, or variables, issue an out of
control signal. -

« Step 5. Fix the problem and continue with Step 1.”

In the case where all the variables are positively correlated as
Jackson' indicates, the first PC is a weighted average of all the variables.
Consequently, we can use only this PC for inferential purposes.
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3.2. Covariance Matrix with Positive and Negative Correlations

In this case we propose the computation of ratios of the form

o (i g + oo+ Weg) X
T = — —— = (3)
Y1+Y2++Yd

where x; is the ith value of variable X and —17]-, j=1,...,d is the score
of the jth PC using, in place of each X}, their in control values. The subscript
d stands for the number of significant principal components as in the
preceding case.

These ratios are the sum of the contributions of variable X; in the
first d PCs in observation (vector) i, divided by the sum of the in
control scores of the first d PCs. Since the denominator of this statistic is
constant we actually compute the effect of each of the p variables on the
out of control signal. The numerator of the ratios is normally distributed, as
already stated, whereas the denominator is just a value. Therefore the ratios
Eq. (3) are normally distributed.

Since the variables are correlated the statistic proposed in Eq. 3
for the k different variables may exhibit a correlation problem. As in
the previous case a simulation study is presented in Sec. 4 to test for the
effect of the correlation on the control limits performance of the proposed
procedure. The proposed method in steps is as follows:

o Step 1. Calculate the X 2 statistic for the incoming observation.
If we get an out of control signal continue with Step 2.

o Step 2. Calculate ratios for -all the variables using relation (3).
Calculate as many ratios for each variable as the number of
observations from the beginning of the process. If the proposed
process is not used for the first time, calculate as many ratios for
each variable, as the number of observations from the last out of
control signal till the out of control signal we end up with in Step 1.
Alternatively, calculate ratios for only the (last) observation that
caused the out of control signal (see Sec. 4).

« Step 3. Plot the ratios for each variable in a control chart.
Compute the a and 1-—a percentage points of the normal
distribution with suitable parameters and use them as LCL and
UCL, respectively.

o Step 4. Observe which variable, or variables, issue an out of
control signal.

« Step 5. Fix the problem and continue with Step 1.
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We have to mention that this procedure can not be applied when
we have standardized values since the denominator of the ratios in Eq. (3)
equals zero. :
3.3. Illustrative Examples

Two examples, one for each case are presented in the sequel.

Example 1. Assume that we have a process with known covariance matrix

100 T
70 100

80 80 100

75 85 75 100

75 80 80 80 100

| 75 7275 75 75 100 |

and in-control vector of means (100, 100, 100, 100, 100, 100)". We simulated
40 in control observations from a multivariate normal distribution with the
preceding parameters. Then, we simulated out of control ones with the same
covariance matrix but now with vector of means (100,115, 100,85,
100, 100)", until we get an out of control signal in the X2 test. The shift is
1.50 in the means of variables 2 and 4. We get a signal on the first out of
control observation and we plot each of the variables in a control chart
(Fig. 1) with the control limits from distribution (2) using & = 0.05. Note
that we used the average root method for simplicity and we ended up with
one significant principal component (see, e.g., Jackson!?).

It is obvious from Fig. 1 that the out of control variables were
identified and additionally the direction of the shift was also revealed.

Example 2. Assume that we have a process with known covariance matrix

[ 100

~70 100
80 —80 100 | |
75 -85 75 100
75 —80 80 80 100

| 75 =72 75 75 75 100 |

and in-control vector of means (100, 100, 100, 100, 100, 100)". We simulated
40 in control observations from a multivariate normal distribution with the
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Figure 1. Control charts for positive covariance matrix.

same parameters as in the previous example. Then, we 51mulated out of
control ones with vector of means (100,115,100, 85, 100, 100)" the same
covariance matrix till we get an out of control signal in the X? test. The
shift is again 1.5¢ in the means of variables 2 and 4. We plot each of the
variables in a control chart (Fig. 2) with the control limits from a normal
distribution using a = 0.05. As in example 1, we have one significant PC
using the average root method again (see, e.g., Jackson'). We have to
indicate that in Fig. 2 the ratios are standardized and the control limits
are properly modified. However, it is not necessary to do this when using
this technique.

From Fig. 2, we deduce that the out of control variables were
identified but the direction of the shift was not.

e i

4. FURTHER INVESTIGATION

Someone may observe that the ratios in both methods are inter-
related. This fact may affect the control limits of the charts. In order
to examine this possible correlation we performed a simulation study.
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Figure 2. Control charts for positive negative covariance matrix.

Table 1. - Type I Errors

Variable 1 2 3 4 5 6

Example 1 5040 = 5006 - 5007 . 4968 .- 5000 - 5096
Example 2 4941 .~ 4983 4898 4882 - 4906 5005

In particular, we simulated 100000 in control ratios from the known cov-
ariance matrices and vector of means of the two examples and we com-
puted the theoretical control limits as proposed in Sec. 3 with o = 0.05;
Then, we checked if each ratio is in or out of these limits and recorded it.
We used this information in order to approximate the Type I error of our
limits and compare it with the theoretical one. The results are presented in
Table 1. :

It should be noted that although the two examples are specific cases, a
large number of other cases revealed the same performance. Consequently,
we may draw the conclusion that the interrelation does not affect either of
the proposed processes. However, we have to point out that after careful
examination the procedure proposed for positive correlations can be used
only when we have positive values for thein control means. If a process does
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not have positive in control means, which is a rare event, we may use instead
the statistic (3) that is not affected in any case.

Another point which has to be checked is the performance of the
processes in identifying the out of control variables and the direction of
the shift. For this purpose a simulation study was conducted. Using the
covariance matrices and the in control means of the examples we computed
"in each case the theoretical control limits. Then, we simulated observations
from the out of control mean vector used in the examples until we got a
signal from the X? test using a = 0.05. Next, we computed the ratios
for each variable and plotted them in a chart with the corresponding control
limits. We checked each ratio if it is in or out of the control limits for every
variable and recorded which variable, or variables, have given an out of
control signal and in which direction. We repeated the whole process 10000
times and the results are presented in Tables 2 and 3. In the first row of
the tables (U), we have the number of times the generated ratios crossed
the UCL for each of the variables, in the second row (L) we have the
corresponding number of times the generated ratios crossed the LCL for
each of the variables and in the last line (Total) we have the number of times
the generated ratios crossed UCL or LCL for each of the variables. One may
observe that in some variables there is an inconsistency, since the sum
of rows U and L does not equal the Total. This happens because in one
iteration we may generate more than one observations (vectors) until we get
an out of control signal in the X? test—although this test is sensitive for
such shifts—and after computing the ratios for each variable it is possible
that for one variable the first ratio crosses UCL and the second ratio crosses
LCL. Therefore, we record one value in row U and one in row L but only
one in row Total.

From Table 2, we observe that the statistic used is very informative
since it is able to detect the out of control variables with very high precision
and also to identify the direction of the shift with absolute success. This kind
of behavior is similar in other examples also, keeping in mind the limitation
about the positive in control means. Note also that the total times the other
variables gave a false signal almost coincides with the Type I error of the
constructed limits.

In Table 3, we see that the statistic used detected the out of control
situation but not with the same degree of success as in the previous
case. Moreover, the direction of the shift was not identified. The false
alarm rate of the in control variables is not significantly different from the
theoretical one.

We already said that the X? test is sensitive in the sense that it gives
a quick signal when we have out of control observations. In order
to examine the ability of the last generated observation (the one that gives
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Table 2. - Out of Control Performance for Example 1

Variable 1 2 3 4 5 6
U 283 9371 228 0 275 233
L © 240 0 299 9429 231 245

Total 523 9371 527 9429 506 478

Table 3. V(i')u—t of Control Performance for Example 2

Variable * 1 2 3 4 5‘ 6
U 364 1 . 357 2 366 350
L 353 4627 394 4603 357 371

- Total” * . .~ 715 4628 - 748 . 4605 717 720

Table 4. Out of Control Performiance of the Last Observation
for Example 1

Variable 1 2 3 4 5 6
u 283 9370 228 0 275 233
| 240 0 299 9429 231 245
~ Total 523 9370 527 9429  506. 478

Table 5. Out of Control Performance of the-Last Observation
for Example 2

~ Variable - 1 2.3 4 5 6
u 3 1 316 - 2 324 315
L 32 4279 343 4251 310 333

Total 645 4280 659 4253 634 648

the signal on:the X 2 test) to identify the shifted variable we checked
their performance on the previous simulation study. The results are
displayed in Tables 4 and 5. '

From Table 4, we conclude that the performance of the statistic (1) is
almost totally explained by the ratios of the last observation meaning that
the ratios of the last observation are sufficient to draw a conclusion about



IDENTIFYING THE OUT OF CONTROL VARIABLE 2403

the out of control variable. On the other hand, from Table 5 we observe that
this does not happen for the statistic (3). One may argue that since the X*
test is sensitive we produce a small number of observations in each iteration
hence the performance in both cases is a result of this fact. When we have
small shifts, where we produce more observations, the last observation is not
that informative.

The proposed procedures are valid under the assumption of known
variance—covariance matrix. However, this is not a case usually met
in practice. Tracy et al?7 examined the performance of multivariate
control charts for individual observations when the covariance matrix is
known and unknown. They showed that the test statistics used in
cither case perform the same for a number of observations that depends
on the variables involved. This number of observations is small enough,
for instance when we have five variables we need 100 observations
(vectors) for the two statistics to give a close number. As Woodall and
Montgomerym note in today’s industry we have huge data sets therefore
such a number of observations should not be a problem. From this
number of observations we estimate the mean vector and the covariance
matrix used in our process. Although the control limits computed using
the procedures in this paper will not be exact under the estimation process,
we expect them to have a satisfactory performance if we use the required
number of observations.

5. A COMPARISON

As we already stated in Sec. 2, the competitive methods that use
principal components for the specific problem are Jackson’s,””! Tracy
et al’s? and Kourti and MacGregor’s.m] Kourti and MacGregorm]
provide an improved method in relation to Jackson’s.? Tracy et al?”!
have the disadvantage that their method is applied to a bivariate case.
Therefore, it would be interesting to compare the proposed method to the
one by Kourti and MacGregor.m]

In order to do this we perform a simulation study. We apply the
method of Kourti and MacGregor?!! to the data of Examples 1 and 2
of Sec. 3.3. As Kourti and MacGregor[zl] propose, we use Bonferroni
limits on the normalized scores and we calculate the contributions of
the variables with the same sign as the score, since contributions of the
opposite sign does not add anything to the score (in fact they make
it smaller). In the paper of Kourti and MacGregor?!! there is not a specific
rule on how to decide whether a contribution is significant or not. Since
in the two examples of Sec. 3.3 we have two variables shifted, we choose
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. Table 6. Performance of Kourti and MacGregor’s Method for Example 1

Variable V 1 2 3 4 s 6
Largest contribution’ - 2 5204 16 4717. 0 - 0
Second: largest contribution - 1511 2864 1865 3655 . .30 10

Total 1513 8068 1881 8372 30 12

~

Table 7. Performance of Koum and MacGregor s Method for Example 2

Variable ; ‘ 1 2 3 4 5 6
Largest contribution .-~ -~ 23 191 10 -2 51 02
Second largest contribution 64 63 47 74 19 12

Total -~ 87 254 57 76 70 14

to record the first and the second larger contributions in each iteration of
the simulation study if they exist. The simulation study was conducted
10000 times in order to have a credible estimate of the ability of Kourti
and MacGregor’s?! method to identify the out of control variables. In
Tables 6 and 7 we have the results of this simulation for Examples 1 and
2, respectively.

' From the results in Table 6 for Example 1, we observe that the method
of Kourti and MacGregor does not succeed in identifying the out of control
variables as many times as the proposed method does (see Tables 2 and 4).
Moreover, their mathod has an inherent inability to' point if there is-an
upward or a downward shift. The difference in performance can be seen
even better in Table 7 for Example 2. The method of Kourti and MacGregor
leads to recordable contributions very rarely, a fact that may lead the
practitioner to assume that the signal on the multivariate chart is due to
the Type I error. The ability of the new method to operate more effectlvely is
obvrous (see Tables 3 and 5).

6. GRAPHICAL TECHNIQUES

E The charts proposed in Sec 3 are Shewhart type. Therefore, they have
the ability to identify large shifts quickly but they are not that good for small
shifts. An alternative way to- plot these statistics is as -a Cumulative Sum
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(Cusum) chart. The definition of the Cusum chart for detecting upward
shifts is

S =0
Sy = max(0, S, + (X, — k)

where X, is the nth observation of variable X, and k is called the reference
value. The corresponding Cusum chart for detecting downward shifts is

SO_ =0
S, = max(0, S, + (k — Xpn))

In the usual concept of Cusum charts we evaluate an optimal value of
k depending on the distributional assumption (see Hawkins'**)). This value
of k is used along with the value A, which is the control limit, to characterize
the Average Run Length performance of a Cusum chart. In our case
the application of this theory for Cusum charts is cumbersome due
to the underlying distribution. However, we can use the previously defined
statistics for upward and downward shifts as a graphical technique
solely. The only thing remaining unknown is the value k we have to
use. A straightforward selection for k is to use in each case of statistics
(1) and (3) their in control counterparts. Specifically, for statistic (1) we
use in place of each x;; its in control value both in the numerator and the
denominator. A similar action takes place in statistic (3) but only in the
numerator this time.

To study the performance of these statistics in practice we
applied them to the examples of Sec. 3. We used the same 40 in control
observations but now we generated out of control ones with the same
covariance matrix as in Sec. 3, and vector of means (100,105, 100,95,
100, 100)", in both examples until we get an out of control signal in the
X2 test. The shift is 0.5¢ in the means of variables 2 and 4. In Example 1,
we simulated 12 observations till the out of control signal and 14 in
Example 2. We computed the Cusum values for the 52 and 54 values
for all six variables in Examples 1 and 2 respectively, and we plotted
them in the chart given in Fig. 3.

From Fig. 3 we easily deduce that the charts give a clear indication of
the out of control variables in both examples. As in the Shewhart type charts
of Sec. 3, the statistic (1) used in Example 1 detected also the direction of the
shift something that did not happen with statistic (3) in Example 2. We have
to mention here that the effectiveness of the Cusum as a graphical device for
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- Figure 3. Control charts for Cusum values.

shifts less than 0.5¢ is questionable. However, it is an easily interpreted
method that can give an indication. : ‘

7. CONCLUSIONS

In this paper we presented a method for identifying the out of control
variable when a multivariate control chart signals based on the method of
principal components. The theoretical control limits were derived as well as
the method in steps. We implemented thé proposed process in two examples
in order to get a clear view of how it works. A detailed investigation of the
properties and- the. limitations of the new method is given.” A graphical
technique that can be applied in these limiting situations is also provided.
Finally, a comparison between the proposed method and the existing ones
that use PCA showed that the new one has a better performance.

Summarizing, we note -that the. charts proposed are an easily
applied alternative to most of the existing methods since the computational
effort is diminished. Furthermore, we try to give an answer to the problem
under a control charting perspective giving operational control limits or
design strategies that are not difficult for a practitioner to apply. - '
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