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ABSTRACT Measurement error is a usually met distortion factor in real-world applications that
influences the outcome of a process. In this paper, we examine the effect of measurement error
on the ability of the EWMA control chart to detect out-of-control situations. The model used is
the one involving linear covariates. We investigate the ability of the EWMA chart in the case of
a shift in mean. The effect of taking multiple measurements on each sampled unit and the case
of linearly increasing variance are also examined. We prove that, in the case of measurement
error, the performance of the chart regarding the mean is significantly affected.

Key Worps: Exponentially weighted moving average control chart, average run length,
average time to signal, measurement error, Markov chain, statistical process control

Introduction

Control charts are a well-known tool in today’s industry, and Shewhart control
charts are the best known of these. Despite their popularity, they are unable to
detect small shifts in a process quickly enough. For this reason other charts have
been implemented, such as the Cumulative Sum (CUSUM) and the Exponentially
Weighted Moving Average (EWMA) charts.

A problem faced in the context of control charts generally is the measurement
error variability. This problem is the result of the inability to measure accurately
the variable of interest X. The use of imprecise measurement devices affects the
ability of the control chart to detect an out-of-control situation. Moreover, the
variable under interest may be related through a covariate with the measurement
system used.

Mittag & Stemann (1998) examined the effect of measurement error on the
joined X — S control chart assuming the model of the form Y= X+¢, where X is
the actual value of the variable and Y is the measured value because of the
random error & Linna & Woodall (2001) extended the preceding model by
assuming one with covariates and they investigated the effect of this model on
the X and S? control charts. Linna et al. (2001) examined the effect of the model
with covariates in the case of a multivariate Shewhart chart for the mean.

This paper deals with the performance of the EWMA control chart for the
mean under the effect of measurement error, assuming a model with covariates.
In the next section, the EWMA chart for the mean is presented. The EWMA
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chart, when we have a model with covariates, is given in the third section 3. The
subsequent two sections introduce multiple measurements and linearly increasing
variance in the EWMA chart, when we have the model with covariates, respec-
tively. The methods for evaluating a control charts’ performance and the results
of the measurement error model in the EWMA are given in the sixth section.
Finally, in the appendix, we provide the theory for the computation of the run
length distribution and its first moment in our cases.

The EWMA Control Charts for Monitoring the Process Mean

Let the mean u and standard deviation ¢ of a process be known. The EWMA
chart for individual observations is defined as

Z;=1%+ (=21, Zo=p,

where ¥; is the mean of the sample of observations in time i=1, 2,..., and 1 is
a smoothing parameter that takes values between 0 and 1, and Z, is the initial
value. When the value of A is close to 0, the EWMA chart can detect small to
moderate shifts in the process mean, when /4 is close to unity the EWMA can
detect large shifts in the process mean and when /=1 it is actually the X chart.
As a starting value, instead of the in-control process mean, we can use the target
value. The control limits of this chart are

UCL=u+L\?n\/<2ii>[l—(l_;u)2i] )

LCLz,u—Ljn\/<2f/1>[1—(1—}v)2i] )

where L is a constant used to specify the width of the control limits, u is the

mean and
A )
ﬁ/<z_z>“—“—m

is the standard deviation of Z, when the process is in control. In case the EWMA
chart is used for some time, or for simplification, instead of control limits (1)
and (2), we may use their limiting values

UCL:/1+Lan\/<2fi> (3)
LCL:M—L”n\/<2fi>, (4)
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(see for example Lucas & Saccucci, 1990). In this case, is the asymptotic
standard deviation of Z,.

The EWMA chart has attracted the attention of several researchers the last
years. Some of the references for an interested reader on this subject are Crowder
(1987), Ng & Case (1989), Champ & Rigdon (1991), Reynolds (1996), Gan
(1998), Steiner (1998, 1999), Borror et al. (1999), Henderson (2001) and
Stoumbos & Sullivan (2002).

The EWMA Chart Using Covariates

Assume that we have again a process were the true value of the characteristic X
under investigation is normally distributed with mean u and variance o> when
the process is in control. However, we are not able to observe this true value but
rather a value Y, which is related to X with the formula Y=A4 + BX +¢, where A
and B are constants and ¢ is the random error distributed independently of X as
a normal random variable with mean zero and variance 2. We assume here that
all model parameters are known.

From the formula relating Y and X it is straightforward that Y is normally
distributed with mean A4 + Bu and variance B?c?+ ¢2. We need to construct an
EWMA chart for the measured quantity Y since, in this way, we can keep
variable X under control. Assume that at each sampling point we collect n values
of ¥, we calculate the mean of these observations ¥; and we compute the EWMA
statistic Z, using the formula

Z,=2Yi+(1=2)2Z,_,Zy=A+Bu

where Y, is the mean of the observations collected at time i=1, 2,... and / is
again the smoothing parameter.
The control limits are

A _B*¢*+a}
UCL=A+Bu+L (5 1-(1-»*]— " (5)
2—1 n
'BZ 2 2
LCL=A+Bu—L/(L)[l—(l-i)”]6;6'", ©)

where L is a constant used to specify the width of the control limits and

A+ Bu and
yl ,nB*a*+ay,
\/(24)[1—(1—&) 17

are the mean and standard deviation of Z, respectively, when the process is in
control. In case the EWMA chart is used for some time, instead of the control
limits (5) and (6), we may use their limiting values
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J \B*c*+a2
UCL=d+Bu+L [(55 ) )

J \B%c?+02
LCL=d+Bu—L [(57 )" ®)

(see for example Lucas & Saccucci, 1990). In this case,

5 \B*c*+a2
2—4 n

is the asymptotic standard deviation of Z,.

Multiple Measurements

A technique suggested by Linna & Woodall (2001) in order to decrease the
measurement error effect is to take more than one measurement in each sampled
unit. Taking several measurements and averaging them leads to a more precise
measurement. Moreover, the variance of the measurement error component in
the average of the multiple observations becomes smaller as the number of
multiple measurements increases. Therefore, ideally, if the number of multiple
measurements becomes infinite the variance of the measurement error component
will become zero. Consequently, the larger the number of multiple measurements
the better, always keeping in mind the additional cost and time needed for these
observations. We must also understand that, in the absence of measurement
error, multiple measurements will not contribute anything to the control charting
methodology, in fact they will add the cost of measuring the extra observations.

In the case of enough multiple measurements, we can assume that our
process actually operates without measurement error. However, the cost of extra
measurements and time are factors that cannot be overlooked. Therefore, a
careful examination of these factors in the specific application we are working
on is essential. We have to stress though that the measurement error variance has
to be large enough and the two factors small enough for the extra observations to
have a practical value.

In order to compute the EWMA statistic we assume that, at each sampling
point, we collect k measurements for each of n observations of Y, we calculate
the overall mean of these observations Y;, and we compute the EWMA statistic
0, using the formula

0,=2Y+(1-2)0,_1,0,=4+By,

where Y; is the mean of the observations collected at time i=1, 2,..., and A is
a smoothing parameter that takes values between 0 and 1, while Q, is the initial
value. Additionally, we assume that the k& observations collected at the same
sampling unit are independent. If k=1, we face the measurement error case
discussed in the third section.
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It is straightforward to prove (Linna & Woodall, 2001) that the variance of
the overall mean is

B?’¢? o2

m

n nk’

Therefore, the control limits are

UCLom A+ BusL (-2 Yi—a—nm (B 4o 9
o=A+bp+ y A= — =+ )

LCL,=A+Bu—1L Z R i 10
o=A+Bu— 5 = =D7 — =+ ). (10)

where L is a constant used to specify the width of the control limits and

A+ Bu and
A\ gy B o
\/<2—/1>[1 ) ]< n +nk

are the mean and standard deviation of Q; respectively, when the process is in
control. In case where the EWMA chart is used for some time, instead of control
limits (9) and (10), we may use their limiting values

UCL,=A+Bu+L i\(Be o 1
=A+but 2\ T Tk (1)
LCLy=A+Bu—1L Lo\(B o 12

=A+bu— 22— n +nk (12)

Linearly Increasing Variance

Although the model with covariates considered in the third section 3 assumes
constant variance it is not unlikely to have a model with variance that depends
on the mean level of the process. Specifically, both Montgomery & Runger (1994)
and Linna & Woodall (2001) refer to practical problems indicating situations
where this phenomenon occurs in industry.

We assume that the variance changes linearly with variable X. The model we
use is again Y=A4+ BX+¢ with the same assumptions as in the third section,
except that ¢ is distributed as a normal variable with mean 0 and variance
C+ Du. As in the third section, all model parameters are assumed known. From
the relation between Y and X we deduce that Y is normally distributed with
mean 4+ Bu and variance B*6?+ C+ Du. The EWMA statistic will be exactly
the same as in the third section.
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We can prove that the control limits of the EWMA statistic are

2 2
UCLV=A+B,u+L\/<2};)>[1—(1—i)2i] (W) (13)

LCLV:A+Bu—L\/<2ﬁ;>[1—(1—i)2i]<Ba+C+D#>’ (14)

n

where L is again a constant used to specify the width of the control limits and

A+ Bu and
) L1y B*6*+C+Du
2_/1 [ _( - “) ] n

are the mean and standard deviation of the EWMA statistic respectively, when
the process is in control. When the EWMA chart is used for a suitable number
of points in time, instead of the control limits (13) and (14), we can use their

limiting values
yi B*¢*+C+ Dyu
UCLy=A4+Bu+L 7 p (15)

) BZ 2+C+D
LCLV=A+Bu—L\/<ZiA>< id p “) (16)

Effect of the Measurement Error

In a control chart we have two objectives. First, when we are in control, we want
our chart to signal (false alarm) as we have planned it to do. In statistical terms,
we want the chart to operate with the planned probability of the mean plotting
outside the control limits if we are in control. Secondly, when the control chart
is out of control, we want it to signal as soon as possible. In statistical terms we
want the probability of the mean plotting in control if we are out of control to
be as small as possible. Different measures for evaluating the performance of a
chart concerning the previous two objectives have been proposed. The best
known measure is the average run length (ARL), which is based on the run
length (RL) distribution. The number of observations (individual data), or
samples (data in subgroups), needed for a control chart to signal is a run length
or alternatively one observation of the RL distribution. The mean of the RL
distribution is the ARL, which is actually the average number of observations
needed for a control chart to signal. Alternatively, the ARL is expressed as the
average number of observations to signal (ANOS). A measure similar to the
ARL is the average time to signal (ATS), which is the average time needed for a
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Table 1. ARL for the covariate model for different values of ¢2/5>

Shift No Error 0.1 0.2 0.3 0.5 1

0 370.22 370.27 370.27 370.27 370.27 370.26
0.5 41.13 45.22 49.26 53.23 60.96 79.06
1 10.25 11.21 12.18 13.16 15.15 20.26
1.5 5.18 5.57 5.96 6.36 7.16 9.20
2 3.46 3.69 391 4.13 4.57 5.67
2.5 2.65 2.80 2.94 3.09 3.37 4.08
3 2.19 2.29 2.40 2.50 2.71 322

control chart to signal and it is actually a product of the ARL and the sampling
interval used in the case of fixed sampling.

In the context of EWMA charts, there are two ways of computing the
previously stated measures of performance. The integral equation method and
the Markov chain method (see for example Lucas & Saccucci, 1990; Domangue
& Patch, 1991). The integral equation method is the more accurate one but it
cannot be computed in all cases. The Markov chain method can be implemented
in those cases where the previous method cannot, but it is not as accurate as the
integral equation method unless we discretize the continuity of the process using
many steps. In this paper we use the Markov Chain method in all the computa-
tions. The theory used for computing the ARL is given in the Appendix.

In Table 1, we can see the ARL results of the covariate model for different
values of the ratio ¢2/6? where B=1. The in control ARL value is the same for
all combinations in order to achieve a fair comparison. From the table, we see
that there is an increasing effect on the out of control ARL as the ratio of
o2/a? increases. This result is similar to the one in Linna & Woodall (2001). In
Table 2, we can see the ARL results of the covariate model for different values
of B. The results are displayed with the same parameters as in Table 1 when
o2/a*=1. We observe that as the value of B increases, the effect on the ARL
diminishes. This result is again in accordance with Linna & Woodall (2001).
Furthermore, in both Tables 1 and 2 the effect of the measurement error on the
ARL values lessens as the shift increases. We have to state also that 4 does not
affect the ARL performance in this study.

Table 2. ARL for the covariate model for different values of B

Shift No Error 1 2 3 5

0 370.22 370.27 370.27 370.27 370.27
0.5 41.13 79.06 51.25 45.67 42.78
1 10.25 20.26 12.67 11.31 10.63
1.5 5.18 9.20 6.16 5.61 5.33
2 3.46 5.67 4.02 3.71 3.55
2.5 2.65 4.08 3.01 2.81 2.71

3 2.19 3.22 245 2.31 2.23




452 P E. Maravelakis et al.

Table 3. ARL for multiple measurements k=35, B=1 for different values of ¢2/c?

Shift No Error 0.1 0.2 0.3 0.5 1

0 370.22 370.26 370.26 370.27 370.27 370.27
0.5 41.13 41.96 42.78 43.59 45.22 49.26
1 10.25 10.44 10.63 10.82 11.21 12.18
1.5 5.18 5.25 5.33 5.41 5.57 5.96
2 3.46 3.51 3.55 3.60 3.69 391
2.5 2.65 2.68 2.71 2.74 2.80 2.94
3 2.19 2.21 2.23 2.25 2.29 2.40

In Table 3, we can see the ARL results for the covariate model with multiple
measurements for different values of ¢2/6> when k=5 and B=1. It is obvious
that if the practitioner has the ability to take five measurements in each unit
then for values of ¢2/6? less than 0.3 we may say that the process operates
actually without measurement error. For values larger than 0.3 the effect is
seriously reduced in comparison to the k=1 case, which corresponds to the
results in Table 1, even for g2/a*=1. Table 4 presents the results in the case of
multiple measurements for different values of B. We see that, as the value of B
increases, the effect on the ARL diminishes. This result is in accordance with the
results in Table 2. Moreover, in Table 5 we have results in the case of multiple
measurements for different k values. As the value of k increases, the measurement
error effect reduces. However, since the cost and time needed for the extra

Table 4. ARL for multiple measurements k=5, ¢2/c*=1 for different values of B

Shift No Error 1 2 3 5

0 370.22 370.27 370.26 370.28 370.27
0.5 41.13 49.26 43.18 42.05 41.46
1 10.25 12.18 10.73 10.46 10.33
1.5 5.18 5.96 5.37 5.26 5.21
2 3.46 391 3.57 3.51 3.48
2.5 2.65 2.94 2.72 2.68 2.66
3 2.19 2.40 2.24 2.21 2.20

Table 5. ARL for multiple measurements for different values of &

Shift No Error 5 10 20 50

0 370.22 370.27 370.27 370.26 370.26
0.5 41.13 49.26 45.22 43.18 41.96
1 10.25 12.18 11.21 10.73 10.44
1.5 5.18 5.96 5.57 5.37 5.25
2 3.46 391 3.69 3.57 3.51
2.5 2.65 2.94 2.80 2.72 2.68

3 2.19 2.40 2.29 2.24 2.21
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Table 6. ARL for linearly increasing variance for different values of D

Shift No Error 1 2 3 5

0 370.22 370.27 370.28 370.27 370.28
0.5 41.13 231.40 282.70 306.34 328.76
1 10.25 102.95 161.16 198.80 244.30
1.5 5.18 50.14 90.14 122.03 168.52
2 3.46 28.10 53.72 76.89 115.28
2.5 2.65 17.79 34.49 50.85 80.43
3 2.19 12.39 23.73 35.38 57.77

measurements are important factors, the practitioner will have to do a trade-off
between these two concerns and the measurement error s/he can put up with.
We have to stress here that the results displayed in this case are for the worst
case, since we choose B=1 and ¢2/6* =1, which correspond to the most affected
combination. Therefore, one may conclude that the results in the other cases will
be even better.

The results in the case of linearly increasing variance are displayed on Tables
6 and 7. In Table 6 we have the ARL values when B=1, C=0 and ¢}/c*=1 for
different values of D. We see that even for small values of D there is a more
serious effect than in the no error case. Additionally, as the value of D increases,
this effect is getting larger. This result is expected because, as D increases, so
does the variance of the error component in the model. In this special case of
measurement error, extra precaution is needed because the ability of the EWMA
chart to detect fast small shifts is cancelled out. Consequently, serious distortion
factors may go undetected for a long time, costing a lot in money, time and
credibility. Table 7 presents the ARL results when B=1, D=1 and ¢2/6*=1 for
different values of C. Analogously to Table 6, increasing values of C cause an
increasing measurement error effect on the ARL. However, this effect is not of
the same magnitude as the effect of D. This result is also expected since D is
multiplied by the mean y, increasing faster than the error variance as D increases
whereas C is just added to this variance.

In all the computations we used 211 states for the Markov Chain method.
Moreover, the values of the constants are A=0.25 and L=2.898. In order to

Table 7. ARL for linearly increasing variance for different values of C

Shift No Error 0 1 2 3

0 370.22 370.27 370.29 370.27 370.27
0.5 41.13 231.40 239.08 245.96 252.14
1 10.25 102.95 110.13 116.95 123.44
1.5 5.18 50.14 54.53 58.84 63.06
2 3.46 28.10 30.72 33.34 35.95
2.5 2.65 17.79 19.43 21.09 22.75

3 2.19 12.39 13.49 14.59 15.71
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detect small shifts fast the A value usually used is 0.1 or less. However such small
values are not able to detect small to moderate shifts and this is the reason for
the 4 value chosen. Note also that in all the cases the control limits used are the
ones with the limiting values.

Conclusions

In this paper, the performance of the EWMA control chart for the mean, when
there is a measurement error effect, assuming a model with covariates, was
presented. It was found that this error can affect the ARL performance of this
chart. Multiple measurements proved to be a solution to this problem. However,
the extra money and time needed is another problem. A properly designed
economic study on this matter in each specific problem may reveal the possibility
of such an action. On the other hand, the additional time needed may not be a
problem since, in today’s industry, the measurements are usually done in an
automated way. Linearly increasing variance was also discussed and proved to
be the type of measurement error that affects the performance of the chart to a
larger extent.
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Appendix

In order to compute the probability density function, the cumulative distribution
function and the first moment of the run length distribution of the EWMA chart
for the mean we may approximate it as a discrete Markov Chain by dividing the
distance between the control limits in 2m + 1 states, each of which has width 26.
We say that the statistic Z, remains in state j as long as §;— 6 <Z,<S;+ 6 where
—m<j<mand S is the midpoint in the jth interval. When Z, crosses the control
limits we say that it is in the absorbing state. On the other hand, when the
process is in control we say that it is in a transient state.

The transition probability matrix for the EWMA chart for the mean is

computed as
R (I-R)
o [R (-R)
0r 1

where R is a sub-matrix containing the transient states, I is a ¢ x ¢ identity matrix
and 1 is a ¢ x 1 vector of unities. The jkth element of the sub-matrix R is given
by pu=PLS;—0<iy;+(1—7)S;<S;+]. In the case of the normal distribution
with the assumed model with covariates of our case the probabilities are given by

o[ Syt - =S i+ B _ [(Sy=0)—(1=A)S:—iA+Bp)
Pi= I (B2a? 4 a2)in B IN(B*6*+a2)n ’

When we have multiple measurements the probabilities are

o] (St (DS A+ By | [(Sy=0)—(1 =S4+ B
Jk InJ(B?aln*+a2/nk InJ(B*aln*+a2/nk

and in the case of linearly increasing variance the probabilities are

(Syj+0)—(1=2)S:— A+ Bp) (Syj—0)—(1—=2)S:— A+ Bp)
Pix=2 ) =0 .
! JJ(B*6*+ C+ Du)in IJ(B*6*+ C+ Dp)ln

Let 7 denote the run length of the EWMA then P(r<?)=(I—R"1 and therefore
P(r=1)=R'""'—R"1 for t>1. The ARL can be computed using the formula
E(t)=X2,tP(t=1)=(I—-R™H1.



