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“I’m only rich because I know when I’m wrong...I basically

have survived by recognizing my mistakes.”

— George Soros

1 Introduction

Investing is non-trivial. An investor has to carry out a thorough analysis of available

information to make a prediction about the future stock price and to initiate the appropriate

position in the stock. It will take some time to determine if the prediction is correct or not –

as more information will be revealed, and the stock price will evolve over time. The investor

has to appropriately update his forecast as new information arrives. It is possible that he

had a very optimistic forecast initially, but then some bearish news about the company are

revealed. Will the investor account for this and revise his expectations?

Personal experience and academic studies tell us that this may be a difficult task. People

tend to suffer from “discomfirmation bias”, whereby they are reluctant to agree with argu-

ments opposing their prior opinions1. In various disciplines, admitting an error may be a

difficult task due to personal behavioral traits, as well as due to institutional implications

(e.g. making a serious mistake may lead to a loss of a job.) For example, physicians find

it difficult to deal with human error (Leape (1994)), managers often continue to invest in

losing projects (Shimizu and Hitt (2004)), while admitting mistakes may prove very costly

for politicians (Sheldon and Sallot (2009)). Investors tend to hold on to losers for too long,

possibly because they don’t want to admit they made the wrong market call2.

I study the implications of the reluctance to admit you are wrong on investor decision-

making and the financial markets. I propose a model where investors are uncertain about

the true state of the market. The investors observe signals which convey partial information

about this state and appropriately update their beliefs. The updating is biased in the sense

that investors tend to maintain their prior beliefs and initially do not revise their opinions

much. Later the investors’ beliefs change significantly enough, and they realize that they are

wrong. In those situations they drastically change their opinions about the market.

1See Lord, Loss, and Lepper (1979) and Edwards and Smith (1996).
2This explanation has been offered by Shefrin and Statman (1985) and Barber et. al (2007), among

others.
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I derive closed-form expressions for the equilibrium in the last period. These allow me to

carry out some initial analysis for how the relevant variables in the model depend on agent

beliefs. I show that the agent who is more convinced in his beliefs pushes the price closer to

his forecast for the asset payoff. As a result, he expects to earn lower profits in comparison

to the agent whose conviction is not as strong. Equilibrium holdings and expected profits

rise with greater difference of opinions between the agents. However, when an agent has very

strong opinions, he pushes the price so much, that his expected profits decline if his opinions

become even stronger.

I then look at a simplified structure of the model, where the signal can take on one of two

values (low and high), and if the state is good, the signal always takes on the high value. If

the state is bad, the signal can take on either the high or the low value. The agents disagree

on the probability with which the signal takes on the low value in the bad state. I find that if

uncertainty about the true state persists, price rises over time because agents become more

convinced that the true state is good. The holdings of an agent tend to be increasing as

time passes as long as the agent believes that if the state is bad, the low signal is less likely

to occur in comparison to the other agent. The patterns for expected profits are non-trivial

since they depend on how the difference of opinions and the conviction of the more bullish

agent change over time.

Finally, I consider the full specification for the model. Here, the signal can still take

a finite number of values, but its distribution is more general. Furthermore, I incorporate

the key component, whereby if an agent’s belief about the true state crosses a pre-specified

threshold, then the agent not only drastically changes his opinions about the state, but also

about the distribution of the signal. I then use simulations to analyze the dynamics for

price, holdings, and expected profits in the case when the true state is bad, but the agents

initially believe that it is good. I find that price initially decreases slowly, and then later

decreases faster as agents realize they may be wrong. It is actually possible for the price to

increase in some situations right before an agent realizes he is wrong which is consistent

with the “support and resistance levels” phenomenon observed in the financial markets. By

analyzing correlations in price movement I find that price can experience both momentum

and reversals, depending on the prior beliefs of the agents and the probability thresholds for
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changing their opinions.

My work contributes to the Differences of Opinion (DO) literature studying the behavior

of agents with heterogeneous beliefs. The idea with agents differently interpreting public

signals has been explored over the past two decades, with recent models proposed by Banerjee

and Kremer (2010) and Barbosa (2011). In those papers agents observe signals, which are

noisy estimates of the terminal payoff. Investors interpret these signals differently, which

results in different valuations of the risky asset, and generates dynamic trading.

In my model, investors observe signals about the state, which is a binary variable. There-

fore, at any point in time, an agent’s belief comes down to his perceived probability of the

true state. This allows me to explicitly study how an agent’s beliefs (perceived probabili-

ties) change with response to new information, and how they are tied to his positions in the

risky asset. To my knowledge, very few other papers have looked at the two-state set-up for

studying Differences of Opinion. Siemroth (2014) looks at risk-neutral traders in a binary

prediction market and their information acquisition problem. Palfrey and Wang (2012) and

Ottaviani and Sørensen (2015) analyze traders with heterogeneous beliefs in a binary market.

My paper uses a similar framework and incorporates a novel component whereby traders can

realize they are wrong and drastically switch their beliefs.

In terms of big picture, I am looking at the interaction between bulls and bears – a concept

which is popular among some technical analysts and professional traders. A portion of traders

believe prices will rise, while another portion believe prices will fall. Prices move because new

information arrives and/or the traders change their opinions about the fundamentals. While

this seems like a plausible word description of what is happening in the financial markets, my

paper provides a theoretical treatment of this concept, focusing on the changing of opinions

piece of the story.

2 Literature Review

My framework combines two important aspects that have been modeled in the academic

finance literature. The first is Differences of Opinion (DO) and is related to how agents with

heterogeneous beliefs about certain aspects of the market will trade with one another. The
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second is Overconfidence, whereby some investors have excessive confidence in their own

opinions, and may be reluctant to revise them.

The early DO models assumed agents have private information, which is a noisy sig-

nal of a value related to fundamentals. He and Wang (1995) analyze the implications for

trading volume in a model with public and private information, and random supply of the

stock. Kim and Verrecchia (1994) propose a dynamic model where investors have an oppor-

tunity to obtain private information about fundamentals at a cost; this may result in greater

disagreement around earnings announcements.

A more recent paper, by Banerjee and Kremer (2010), assumes agents observe public

signals, but interpret them differently. Their model is used to analyze how belief dispersion

relates to volume and volatility. Investors are assumed to think only their beliefs are correct

and ignore the beliefs of others. Barbosa (2011) addresses this potential shortcoming by

allowing investors to adjust their beliefs after observing what others think.

A few models have considered agents with different priors about the signal. This way,

even if all agents observe the same signal, their posterior about the fundamentals is dif-

ferent. Kandel and Pearson (1995) consider a simple model with traders using different

likelihood functions to interpret public information. Hong and Stein (2003) introduce short-

sales constraints into a DO framework and show that this leads to a delayed release of

bearish information and potential market crashes. Cujean and Hasler (2014), and Andrei,

Carlin, and Hasler (2014) develop continuous settings in which investors trade while using

heterogenous models about the evolution of fundamentals.

The two-state set-up in my model has been employed in a few recent papers. Siemroth

(2014) looks at risk-neutral traders in a prediction market with two possible terminal out-

comes. Investors can pay for informative signals. Siemroth shows that more wealthy agents

will be more likely to acquire information and as a result have better forecasts. Ottaviani

and Sørensen (2015) analyze traders with heterogeneous beliefs in a binary market. In equi-

librium there is price underreaction to information, which leads to short-run momentum

and long-run reversals. Xiouros (2011) develops a model with two risk-averse agents in an

endowment model, where the endowment growth depends on a binary state and is uncer-

tain. Palfrey and Wang (2012) use a similar model to mine with two states and two possible

6



values of the signal. They show that heterogeneous posteriors of the agents upon observing

the same public information may lead to overpricing of the risky asset.

The new ingredient in my model is agents realizing they are wrong and changing their

beliefs about the distribution of the signal. To my knowledge, my paper is the first to focus

on this phenomenon in the context of how investor opinions change over time and translate

into price and trade dynamics.

Overconfidence can be viewed as a case of Differences of Opinion. Some agents be-

lieve their forecasts are more accurate than they actually are, and furthermore, are re-

luctant to change their beliefs. Daniel, Hirshleifer, and Subrahmanyam (1998) propose a

prominent model for handling this phenomenon. Investors exhibit overconfidence and biased

self-attribution, which leads to momentum over short horizons and corrections over longer

horizons. Gervais and Odean (2001) model traders who learn their ability while subject to

biased self-attribution, and show that overconfidence, and increased trading volume, will rise

at the end of bull markets and fall at the end of bear markets. Scheinkman and Xiong (2003)

consider a continuous model with two types of agents who overestimate the precision of their

forecasts, which may generate asset bubbles.

Finally, I summarize a few influential papers in the literature providing empirical evi-

dence for the financial market phenomena generated by my model. The first is momentum.

Jegadeesh and Titman (1993) were the first to document this anomaly, whereby stocks with

superior recent returns tend to continue to outperform stock with poor recent returns. As-

ness, Moscowitz, and Pedersen (2013) show that momentum holds for a broad range of asset

classes (not just stocks), while Moscowitz, Ooi, and Pedersen (2012) document momentum

in the time series of returns for securities across various asset classes and different countries.

There is also evidence for reversal in stock returns, both at very long horizons (De Bondt,

Thaler, 1985) and at very short horizons (Bremer, Sweeney, 1991 and Chan, 2003). In my

model both short-term and long-term reversals are possible for particular cases of agent prior

beliefs about fundamentals.

The concept of resistance levels in price has been well-established among practitioners

using technical analysis, but has not received much support in academia. Nevertheless,

a few papers have documented the success of using support and resistance levels. Brock,
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Lakonishok, and LeBaron (1992) find that the trading range break rule produces a profitable

investment strategy, while Osler (2000) shows that support and resistance levels provided

to customers by foreign exchange trading firms have short-term predictive power. The use

of support and resistance has been advocated in popular trading books, including Murphy

(1999) and Lefevre (1923).

3 The Model

There is one risky asset and one riskless asset that can be traded at dates 0, 1, . . . , T .

The riskless asset is in perfectly elastic supply and pays a zero interest rate. The risky asset

is in zero net supply and pays a liquidating dividend F at time T + 1. The distribution of

the dividend depends on the state of the world S. The state S can take on two possible

values: 1 (good state) or 2 (bad state). For now, the state will not change throughout the

horizon.

The distribution of the liquidating dividend is as follows:

F =











µ1, if S = 1

µ2, if S = 2

Without loss of generality I assume µ2 = 0 and µ1 = µ.

There are two agents trading the assets. The agents don’t know what the true state

is. At date 0, agent 1 believes the probability of a good state is p1,0; agent 2 believes this

probability is p2,0. Throughout the investment horizon agents observe signals related to the

state and update their beliefs accordingly. I will use the term perceived probability to define

the probability that the true state is the good one, as perceived by an agent.

Before each date t = 1, . . . , T a public signal st is revealed. The signal st has distribution

Fk(z) if the state S is equal to k, for k = 1, 2. Traders disagree about these distributions;

trader i believes that the distribution of the signal is Fi,k(z) if the state S is equal to k.

The set-up so far assumes the agents do not change their perceived distributions of the

signal in the states. Later I will incorporate the phenomenon whereby if the perceived prob-
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ability of the good state changes significantly enough (in comparison to the initial perceived

probability), then the agent drastically changes his opinions about the distribution of the

signal.

Agents 1 and 2 have initial wealth W1,0 and W2,0, respectively. They maximize mean-

variance utility over terminal wealth Wi,T+1:

Ui = Ei(Wi,T+1)−
λ

2
vari(Wi,T+1)

where the mean and variance are computed using the beliefs of agent i.

I will restrict my equilibrium definition to assume that both agents know the beliefs of

both themselves and the other agents, the way in which updating is done, and the preferences.

Hence, at every date, an agent will submit his demand as if he knows what the beliefs of both

agents are, and how the price will evolve in every possible scenario during the subsequent

dates (because the agents behave as if there is perfect information). Since there are only

two agents, an agent who knows his own demand and the price in the previous period can

determine the demand of the other agent. Therefore, it is intuitive to assume that the agent

knows the beliefs of the other agent as well. That being said, it may be possible that other

equilibria exist; I have not explored this possibility in this paper and rather focus on a simple

equilibrium which captures how investor opinions translate into prices, holdings, and profits.

I start with a simplified model, where the signal can take on one of two values (low and

high), and if the state is good, the signal always takes on the high value. I derive closed-

form recursive formulas for equilibrium price and expected profits of each trader. The model

provides some basic intuition for how investor disagreement affects the market, and how it

changes over time. I then consider a more general setting for the distributions of the signals.

For the rest of the paper, I will use the following conventions. Period t is the period of

time between dates t−1 and t. It the information set at the end of period t (after the signal

st is revealed). Ei,t(X) and vari,t(X) are the expected value and variance, respectively, of a

random variable X as perceived by agent i at time t. For an event A, Pi,t(A) is the perceived

probability of event A by agent i at time t.
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4 Simple Model

4.1 Model Set-up

The distribution of the signal depends on the state as follows.

if S = 1 then st = 1 wp (with probability) 1

if S = 2 then st =











1, wp 1− r

−1, wp r

Thus, if the state is good, the signal only takes on the high value 1, while if the state is bad,

the signal may take on the high value 1 or the low value −1. Agents agree on the distribution

of the signal in the good state, but disagree on the value of r in the bad state. If the state

is bad, agent i believes that the signal is low with probability ri, for i = 1, 2.

I assume the state does not change throughout the whole horizon. Furthermore, the

agents maintain their perceptions r1 and r2 and do not adjust them due to new information.

4.2 Probability Updating

Agents update their beliefs about the true state based on the signals. Denote by pi,t the

perceived probability for agent i during period t, after signal st has been revealed. More

formally, pi,t = Pi,t(S = 1). After observing the value of the signal z, agent i updates this

probability to pi,t+1 according to the Bayes Rule:

pi,t+1 =
Pi,t(st+1 = z|S = 1)Pi,t(S = 1)

Pi,t(st+1 = z|S = 1)Pi,t(S = 1) + Pi,t(st+1 = z|S = 2)Pi,t(S = 2)
(1)

We now make the following observation. If at any time the agents observe a low signal

then they immediately recognize the true state is bad with probability 1. In economic terms,

these are situations when a big shock occurs. An agent who thought the true state is probably

a bad one realizes he is correct, whereas an agent who thought the state is probably a good

one realizes he is wrong.

Consider date t. If for all times t̃ ≤ t, the signal st̃ was equal to 1, the agents are still
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uncertain what the state is and only have some beliefs pi,t on the probability that the state

is good. Now period t+ 1 begins and signal st+1 is revealed. In view of (1) the updating of

the probabilities p1,t, p2,t is as follows. If a shock occurs:

pi,t+1 = 0 if st+1 = −1 (2)

Otherwise, there is still uncertainty about the state, and we have:

pi,t+1 =
pi,t

pi,t + (1− pi,t)(1− ri)
if st+1 = 1 (3)

Thus the updating rule is different for the agents if uncertainty persists, but there is agree-

ment on the state in case of a shock.

4.3 Equilibrium

I solve the model backwards to obtain closed-form formulas for the equilibrium.

First, I introduce some more notation. Let Wi,t be the wealth of agent i at time t and Πi,t

be the profits for the remaining horizon. Let Pt be the equilibrium price at time t. Because

of each agent’s belief at time t reduces to his perceived probability pi,t of the state being

good, and the agents only update this probability over time, then at any time t the state of

the system depends only on the time t and the perceived probabilities p1,t, p2,t. Therefore,

the time t profits Πi,t = Πi,t(p1,t, p2,t) and price Pt = Pt(p1,t, p2,t) can be written as functions

of p1,t and p2,t only.

At time t agent i is maximizing:

Ui,t = Ei,t(Wi,t +Πi,t)−
λ

2
vari,t(Wi,t +Πi,t)

Since Wi,t|It is constant, the problem is equivalent to maximizing:

Ei,t(Πi,t)−
λ

2
vari,t(Πi,t) (4)

If st = −1 at any time t ≤ T , both agents know with perfect certainty that the true state
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is bad and the final payoff will be 0. Therefore the price at date t and all subsequent dates

is zero; equilibrium holdings are zero, and PnL for the remaining horizon is also zero.

I now consider what happens at times when st = 1. Denote by xi,t the equilibrium

holdings of agent i at time t.

4.4 Equilibrium – Last Period

Consider date T and suppose so far the signal has been equal to 1 all the time. Then the

equilibrium price and holdings take the following simple form:

Proposition 4.1. Suppose st = 1 for t ≤ T . Then the equilibrium price is:

PT (p1,T , p2,T ) =
p1,Tp2,T (2− p1,T − p2,T )

p1,T (1− p1,T ) + p2,T (1− p2,T )
µ (5)

The expected value of profits for agent i, i = 1, 2, is:

Ei,T (Πi,T (p1,T , p2,T ))) =
(p1,T − p2,T )

2pi,T (1− pi,T )

λ(p1,T (1− p1,T ) + p2,T (1− p2,T ))2
(6)

Proof. See Appendix.

Proposition 4.1 allows me to get some initial intuition about how the equilibrium depends

on the difference in beliefs. I analyze how the risky asset price, agent holdings3, and expected

profits depend on the perceived probabilities p1,T , p2,T of the good state.

I find that the agent with “the stronger” belief pushes the price in his direction. Because

the price is closer to his expected payoff, the agent expects lower profits than the agent with

beliefs that are not as strong. Consistent with general intuition, equilibrium holdings and

expected profits increase with greater disagreement between the agents. However, I obtain

an interesting result whereby if the beliefs of an agent are strong enough, the he expects to

earn lower profits if his beliefs become even stronger.

The parameters involved are the payoff in good state µ, the risk aversion coefficient

λ, and the two perceived probabilities p1,T , p2,T . The payoff in the good state enters as a

multiplicative factor in the price and the holdings and so is not too important. Similarly,

3The formula for agent holdings is provided in the proof of Proposition 4.1 in the Appendix.
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the risk aversion coefficient only enters as a multiplicative factor in the holdings and the

expected price. Therefore, I fix µ = 1 and λ = 3 and only vary the perceived probabilities.

For notational convenience, I drop the time subscript and use p1 = p1,T , p2 = p2,T .

I consider p1 varying in the interval [0%, 100%] and three values for p2: 20%, 50%, and

80%. Due to the symmetry in the model I need to consider the full range of values for only

one of the probabilities, and I do this for probability p1. Note that for values of p1 equal

to 0% and 100% I replace the values for the price, holdings, and expected profits with their

limits; the formulas for these limits are provided in the Appendix.

Figure 4.1 plots the equilibrium price. We see that it is increasing in the perceived

probabilities of the agents. The increase is non-linear, and more rapid for “strong” beliefs

of agent 1, i.e. perceived probabilities that are close to 0% or to 100%. When agent 2 has

weak beliefs about the true state with p2 = 50%, the price is increasing close to linearly in

p1.

To understand which agent has a larger impact on the price as a result of his beliefs, I

look at which of the two expected payoffs of the agents the price is closest to. With µ = 1

the expected payoff of agent i is just his perceived probability pi. I can write the equilibrium

price P as a weighted average wp1 + (1 − w)p2 of the probabilities, and analyze how w

depends on these probabilities. A larger value of w signifies a larger weight on the beliefs of

agent 1. From Proposition 4.1 it follows that the formula for w is very simple:

w =
p2(1− p2)

p1(1− p1) + p2(1− p2)
(7)

Formula (7) shows that the weight is symmetric for p1 around the value of 0.5, and

furthermore a stronger opinion by the agent results in a smaller value for p1(1 − p1) in the

denominator, and therefore a larger weight. I conclude that if an agent is more sure that

the state is good (p1 close to 100%) or that the state is bad (p1 close to 0%) then he pushes

the price more in the direction of his belief. Figure 4.2 plots the weight as a function of the

perceived probabilities. We see that the weight on the beliefs of agent 1 is low and changes

slowly for values of perceived probability around 0.5, but rises fast as this probability gets

close to 0% and 100%. It also looks quite parabolic as a function of p1 (although the actual
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p2 = 20% and p2 = 80% overlap exactly.
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form is not a parabola).

I next look at the equilibrium holdings. Because net supply of the risky asset is zero,

it suffices to only consider the holdings of agent 1, as the negative value of these holdings

gives the holdings of agent 2. We see that the holdings are zero when agents have the same

beliefs, and is positive if and only if agent 1 has a higher perceived probability of the good

state in comparison to agent 2. The holdings are increasing in the beliefs of the agent, since

as the agent becomes more bullish, he is inclined to take larger and more positive positions

in the risky asset. Finally, as with the price, equilibrium holdings change more rapidly with

p1 as p1 gets closer to 0% or 100%.

-1.75

-1.25

-0.75

-0.25

0.25

0.75

1.25

1.75

H
o

ld
in

g
s

Agent 1 Probability of Good State p1

Agent 1 Equilibrium Holdings, Last Period

p2 = 20%

p2 = 50%

p2 = 80%

Figure 4.3: Equilibrium holdings of agent 1 in the last period. Note that the holdings
of agent 2 are just the negative of the holdings of agent 1.

I also calculate equilibrium profits for the agents. Even though the agents have symmetric

holdings, their expected PnL is not the same because they have different beliefs on the

distribution of the payoff. Figure 4.4 shows the expected profits for agent 1. We see that

the expected PnL is zero when the agents have the same beliefs, and rises as the difference

in the opinions of the agents increases. However, I observe a very interesting effect. As

the belief of agent 1 becomes strong enough (p1 close enough to 0% or 100%), his expected

profits actually start to fall. The fall is quite rapid when the difference of opinions is large

(e.g. when p2 = 20%, and p1 gets close to 100%, see the blue curve). The fall in profits is
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caused by the fact that agent 1 pushes the price in his direction so much, that it gets very

close to his expected payoff, and so he expects to make much less per unit of holdings of

the risky asset. Even though the magnitude of his holdings increases, it is not enough to

offset the decrease in this expected PnL per unit of holdings, and so expected profits fall.

Figure 4.5 plots the profits for agent 2. As with agent 1, the expected profits are zero

when the agents have the same beliefs and rise as these beliefs diverge more. This rise is

slower than for agent 1 when p1 is close to 50%. The intuition behind this is that in such

situations the weight w of agent 1’s opinion on the price is lower, so agent 2 is pushing the

price more, and hence expecting lower profits. When p1 gets further away from 50%, agent

1 is the one who starts pushing the price, so there is a large deviation between the price and

the beliefs of agent 2, therefore agent 2 expects to make more money in such situations. For

extreme values of p1 close to 0% and 100%, the expected PnL of agent 2 rises drastically.

Note that the expected PnL of agent 2 never gets arbitrarily large. If p1,T = 0, using (6)

the expected profits for agent 2 are:

E1,T (Π1,T (0, p2,T )) =
p2,T

λ(1− p2,T )
(8)

The formula for the case when p1,T = 1 is similar.

I conclude that during the last period price is increasing in the beliefs of the agents, and

is changing more rapidly as these beliefs become stronger. Equilibrium holdings increase

with a larger disagreement, and the agent with the more bullish forecast on the payoff holds

a positive amount of the asset. Finally, each agent is expecting higher profits as his opinions

diverge more in the comparison with the other agent. The exception to this phenomenon is

when the agent has very strong opinions (perceived probability of the good state close to 0%

or to 100%), in which case he pushes the price so much in the direction of his belief, that

his expected profits go down.

4.5 Equilibrium - Full Horizon

I now show how to recursively calculate the equilibrium over the full time horizon. Con-

sider date t (with t ≤ T − 1) so that signal st has already been revealed. I again assume for
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all times t̃ ≤ t, the signal st̃ was equal to 1, so that the agents are still uncertain what the

state is.

Assume the price the agents face is P . Consider agent 1. He considers holding x units of

the risky asset and cares about profits Π1,t for the remaining horizon. There are two cases

of what can happen next period depending on what the value of the signal st+1 is.

Case 1: st+1 = −1. Then agents realize S = 2 for sure, and price at time t+ 1 is 0. The

PnL of agent 1 is x(0− P ).

Case 2: st+1 = 1. Then the agents are not sure what the true state is, and update their

perceived probabilities of the state. The PnL of the agent is:

Π1,t = x(Pt+1(p1,t+1, p2,t+1)− P ) + Π1,t+1(p1,t+1, p2,t+1)

Since agent 1 believes S = 1 with probability p1,t, I can easily derive his perceived

probabilities of occurrence of cases 1 and 2. From there, I can fully describe the distribution

for this profits:

Π1,t =











x(0− P ), wp (1− p1,t)r1

x(Pt+1(p1,t+1, p2,t+1)− P ) + Π1,t+1(p1,t+1, p2,t+1), wp 1− (1− p1,t)r1

(9)

The above relation shows how Π1,t recursively depends on Π1,t+1. Using the mean-

variance preferences of the agents I derive how his expected profits and the price depend

on the beliefs of the agents, the next period expected profits, and the next period price.

In particular, I obtain relatively simple formulas for how current period price and sum of

expected profits depend on the next period price and sum of expected profits for the agents.

Define Di,t(p1,t, p2,t) as the expected profits for agent i at time t:

Di,t(p1,t, p2,t) = Ei,t(Πi,t(p1,t, p2,t))

Because the profit Πi,t depends only on time t and the perceived probabilities, then so does

the expected profit Di,t. Define Dt(p1,t, p2,t) as the sum of the expected profits of the two
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agents at time t:

Dt(p1,t, p2,t) = D1,t(p1,t, p2,t) +D2,t(p1,t, p2,t)

Proposition 4.2. Let t ≤ T − 1 and suppose st̃ = 1 for t̃ ≤ t. Let p1,t+1 and p2,t+1 be the

perceived probabilities of the good state if the signal st+1 is equal to 1. Then the following

relation holds for equilibrium price:

Pt(p1,t, p2,t) =
b1b2(2− b1 − b2)− λb1b2(1− b1)(1− b2)Dt+1(p1,t+1, p2,t+1)

b1(1− b1) + b2(1− b2)
Pt+1(p1,t+1, p2,t+1)

(10)

where:

b1 = 1− (1− p1,t)r1 ; b2 = 1− (1− p2,t)r2 (11)

For the sum of expected profits, we have:

Dt(p1,t, p2,t) =
(b1 − b2)

2 + λb1b2(2− b1 − b2)Dt+1(p1,t+1, p2,t+1)

λ(b1(1− b1) + b2(1− b2))
(12)

Proof. See Appendix.

The formulas (10) and (12) allow me to fully solve for the equilibrium prices in the

model. In the appendix I also provide the recursive formulas for expected profits for each

agent individually. They are slightly more complicated than the ones above, but are still

closed-form.

I analyze how equilibrium prices, holdings, and expected profits change over time. I also

look at how they depend on the disagreement of the agents, and their beliefs about the

distribution of the signal.

I find that price tends to rise as agents become more convinced that the true state is

the good one. The holdings of an agent i tend to be increasing or decreasing over time

depending on if probability ri is higher or lower, respectively, in comparison to the other

agent. Expected profits are often non-monotone functions of time because they depend on

the time-varying magnitude of the difference of beliefs, as well as by how much the more

bullish agent is pushing the price.
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As with the last period, I fix the values µ = 1 and λ = 3 for the payoff in the good state

and the risk aversion coefficient, respectively. There are four more parameters in the model:

the initial perceived probabilities of the good state p1,0, p2,0 and the probabilities relating to

the beliefs about the signal distribution r1, r2. For simplicity I use p1 = p1,0 and p2 = p2,0.

I fix the beliefs of the second agent at p2 = 20%, r2 = 20%, and only vary the beliefs of

the first agent. I consider four cases: p1 equal to 10% and 30%, and r1 equal to 10% and

30%. I found that the behavior of the model is similar for other parameter values4.

Note that I look at the relevant variables in the model assuming the value of the signal

in each period is high. This way there is still uncertainty in the model as time progresses.

Recall that if the signal ever takes on the low value, both agents realize the true state is bad,

equilibrium price drops to 0, and there is no more trading.

Figure 4.6 shows price as a function of time for the four cases of parameters. Price is

increasing with time, because for each subsequent period when a high signal is revealed,

both agents become more confident that the true state is good, and hence expect a larger

terminal payoff. The speed of this rise depends on how fast the perceived probabilities pi,t

increase. For low values of r1, equal to 10%, agent 1 faces more uncertainty about which

state is good when he observes a high signal. Therefore his belief that the true state is good

does not increase as much, and the corresponding equilibrium price rises slowly (see the blue

and the green curves on the chart). For higher values of r1, equal to 30%, this increase in

beliefs occurs faster, leading to a more rapid rise in price (see the red and the purple curves).

I next analyze how holdings evolve over time. Figure 4.7 plots the equilibrium holdings

of agent 1; the negative of these holdings gives the equilibrium holdings of agent 2 since net

supply of the risky asset is zero. I also plot in figure 4.8 the perceived probabilities of the

high signal occurring in the next period5. Comparing the two charts we see that the agent

with the higher perceived probability for a high signal tends to hold a positive amount of

the asset. For example, for the case p1 = 10%, r1 = 30% (red curve), agent 1 starts out

with a negative position in the early periods, and over time this position increases and turns

positive around date 11. From figure 4.8 we see that agent 1 (red curve) initially has a lower

4Note that for these parameter values, the probabilities b1 and b2 never get too close to 0% or 100%, so
we never need to deal with “degenerate” cases for the formulas in Proposition 4.2.

5These are the probabilities bi,t in Proposition 4.2.
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perceived probability for the high signal next period in comparison to agent 2 (light blue

curve). The red curve rises faster and around date 11 becomes higher than the light blue

curve. Thus the time when an agent becomes more bullish in terms of the signal coincides

with the time when his position turns positive. The same phenomenon is observed for the

other three cases.

Holdings for agent 1 are increasing with time for high values of r1 (red and purple

curves), and decreasing for low values of r1 (blue and green curves). The intuition behind

this phenomenon is as follows. When r1 = 10%, agent 1 realizes that his perceived probability

of a low signal, conditional on the state being bad, is lower than for agent 2 (since r2 = 20%).

Therefore, every time the agents observe a high signal, agent 1 will be less convinced the

true state is good relative to his earlier belief, in comparison to agent 2. (This is assuming

both agents have the same prior on the probability of the good state). As more high signals

arrive, agent 2 will increase his perceived probability of the good state faster than agent

1, and towards the end of the horizon this probability will be higher for agent 2 than for

agent 1, so agent 2 will be more bullish and expect to hold a positive amount of the stock.

Furthermore, since the perceived probability p2,t will be close to 100% at that point, he will

be demanding a large amount in the stock due to his very high confidence in beliefs. Both
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agents realize this, and therefore the holdings of agent 1 will decrease more and more with

time, as observed in the chart. When r1 = 30%, the same logic applies, except now agent 1

becomes more bullish than agent 2 with time.

Finally, I look at the expected profits of the agents. Figure 4.9 shows the expected PnL

of agent 1, while figure 4.10 plots the PnL of agent 2.

I first compare the expected profits between the two agents. As we get closer to the end of

the time horizon, both agents are quite bullish, with at least one of them having a very strong

opinion on the state being a good one (pi,t close to 100%). If agent 1 is the more bullish one

(red and purple curves), he is pushing the price a lot and expecting lower profits than agent

2. If agent 2 is the more bullish one (blue and green curves), he is the one pushing the price

and hence expecting lower profits than agent 1. Recall that whether an agent is more bullish

or not towards the end of the time horizon depends on whether ri for them is higher than for

the other agent. We can therefore conclude that the agent with the higher value of ri will be

expecting lower profits than the other agent after a large amount of time has passed, and a

lot of signals have been revealed. Since the agents “work backwards” to calculate expected

profits in earlier periods, and their beliefs about the unconditional probability of the signal

being equal to 2 are similar, it follows that the agent with the higher value of ri will be

expecting lower profits than the other agent throughout the whole horizon.

I also consider how expected PnL changes over time. I will look at each of the four cases

individually. For the case p1 = 10%, r1 = 10%, agent 1 is initially less bullish than agent

2, and as time passes by remains less bullish (since r1 < r2). At the same time, agent 2

becomes even more convinced the true state is good, so that p2,t becomes close to 100%.

He ends up pushing the price more, so agent 1 expects higher profits after more signals are

revealed; we see this is in the blue curve in figure 4.9. As for agent 2, in the early periods, he

becomes more bullish than agent 1, while the difference of opinions between the two agents

increases. As a result, he expects higher profits as more signals are revealed. Towards the

middle and end of the investment horizon the difference in opinions starts to decrease, while

the belief p2,t of agent 2 becomes close to 100%, so that he pushes the price so much, that

he now expects to make lower profits than in earlier periods. This behavior is evident from

the blue curve in figure 4.10.
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When p1 = 30%, r1 = 10%, the behavior for agent 1 towards the end of the horizon is

similar to when p1 = 10% – namely agent 1 is less bullish than agent 2, while agent 2 pushes

the price, so agent 1 expects larger profits. However, during the early periods agent 1 is

more bullish than agent 2, and the difference between their opinions decreases in subsequent

periods. Therefore in those periods expected profits for agent 1 fall. After that agent 2

becomes more bullish than agent 1, and expected profits start to rise again – as we see in

figure 4.9 from the green curve. The expected PnL for agent 2, shown in figure 4.10 (green

curve), follows a different pattern. Initially, agent 2 is less bullish, however the difference of

opinions decreases with time, so expected profits also decrease. After that, agent 2 is more

bullish and pushing the price a little, so his expected profits rise marginally or decrease.

If p1 = 10%, r1 = 30%, agent 1 is initially less bullish, but becomes more bullish with

time. This is the same case as for agent 2 in the case p1 = 30%, r1 = 10%, so the same

pattern is observed: a rapid decrease in expected profits (as difference of opinions decreases),

then a slight increase or decrease in subsequent periods as agent 1 starts to push the price

(red curve in figure 4.9). For agent 2 we actually observe the same pattern – because even

though agent 2 is less bullish towards the end of the horizon, his beliefs are also very strong,

so he is expecting lower profits.

The last case is p1 = 30%, r1 = 30%. Here, agent 1 is more bullish than agent 2

throughout the whole investing horizon; however the difference in opinions first increases,

reaches a maximum at date 6, and then decreases. Both agents become very bullish with

time and so expect lower profits towards the end of the horizon. Initially, the expected

profits for both of them rise (as difference of opinions increases), and then start to fall. We

see this in the purple curves in figures 4.9 and 4.10.

The simple model gives us a clear picture of how difference in beliefs and strength of

opinions influence equilibrium price, holdings, and expected profits. Price rises over time,

and rises more rapidly when the agents become more bullish faster. The holdings of an agent

tend to be increasing (decreasing) if the probability of a low signal in the bad state for the

agent is higher (lower) than for the other agent. This is because towards the end of the

horizon the agent with the higher value of this probability will be the more bullish one.

The patterns for the expected profits vary significantly depending on the parameter
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values. However, they are largely consistent with our results for the last period profits: as

difference of opinions increases, agents expect higher profits; when an agent starts to become

very convinced the true state is good, he expects lower profits. Over time, the difference

in opinions may increase or decrease depending on the agent priors p1, p2 and beliefs about

signal distributions r1, r2. Thus it is possible that expected profits initially rise (as difference

of opinions increases) and then fall (as an agent becomes very bullish or the difference

decreases). On the other hand, it is possible that the difference of opinions decreases from

the initial date, and/or an agent becomes very bullish early in the time horizon, so expected

profits decrease (and sometimes marginally increase) throughout the whole period.

While I already get some interesting results with the current set-up, the model is still quite

limited, because agents can only become more bullish with time (unless a low signal arrives,

so that price drops to zero). I next extend the model to allow for situations when agents

may both increase and decrease their perceived probabilities of the good state depending on

the realization of the signal.

5 Discrete Distribution of the Signal

I extend the simple model to incorporate a distribution of the signal that is still discrete,

but now includes more than two values. The signal can take the values z1, z2, . . . , zn, with

different probabilities depending on the state. The two agents disagree on the distribution

of the signal in each state. This is the piece that will drive the model. Agent i believes that

signal st takes on the value j with probability fi,k(zj) if state S is equal to k. The beliefs fi,k

about the signal are not updated throughout the investing horizon; later I allow the agents

to update the beliefs about the signal distribution if they realize they are wrong.

The rest of the model is the same as before.

Agents still update their beliefs p1,t, p2,t about the probability of the good state according

to the Bayes Rule formula (1). With the current set-up, the formula for updating probability

pi,t for agent i after observing signal st+1, is:

pi,t+1 =
pi,tfi,1(st+1)

pi,tfi,1(st+1) + (1− pi,t)fi,2(st+1)
(13)
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The update depends on the current belief pi,t and the relative likelihood ratio:

fi,1(st+1)

fi,2(st+1)
(14)

We can model an agent who is reluctant to update his beliefs as follows. Suppose agent 1 is

quite convinced the true state is the good one. Then for all the possible values of the signal

st+1, the likelihood ratio is greater than 1, or smaller than 1, but still quite close to 1. This

way, upon observing a new signal, the agent either becomes even more convinced that the

true state is good, or he only marginally decreases his belief pi,t for the probability of the

good state. As time passes, it is possible that the agent’s perceived probability of the good

state becomes low enough for the agent to realize he is wrong.

I solve for equilibrium using the same approach as in the simple model. The structure

of the final payoff is the same, therefore Proposition (4.1) still holds. However, the recursive

formulas are more complicated, because there are more cases for the signal value next period,

and there is no “degenerate” case when after a certain realization of the signal there is no

more uncertainty.

Consider date t ≤ T − 1. Both agents currently know each other’s beliefs p1,t, p2,t. They

also both know how these beliefs will change next period when signal st+1 arrives. Let

p1,t+1,j, p2,t+1,j be these updated beliefs if the value of this signal is zj. Define the following,

for agent i = 1, 2 and signal st+1 value zj, j = 1, 2, . . . , n:

ai,j = pi,tfi,1(zj) + (1− pi,t)fi,2(zj)

Rj = Pt+1(p1,t+1,j, p2,t+1,j)

Di,j = Ei,t+1(Πi,t+1(p1,t+1,j, p2,t+1,j))

These parameters are enough to pin down the relation for the price and expected profits

between the current period and the next period.

Proposition 5.1. Let t ≤ T − 1. Then the equilibrium price is:

P =
w2,tµ1,t + w1,tµ2,t

w1,t + w2,t

(15)
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where:

µi,t =
n

∑

j=1

ai,jRj − λ

n
∑

j=1

ai,jRjDi,j + λ(
n

∑

j=1

ai,jDi,j)(
n

∑

j=1

ai,jRj) (16)

wi,t =
n

∑

j=1

ai,jR
2

j − (
n

∑

j=1

ai,jRj)
2 (17)

The expected PnL of agent i is:

Ei,t(Πi,t) =
µi,t − P

λwi,t

(

(
n

∑

j=1

ai,jRj)− P
)

+
n

∑

j=1

ai,jDi,j (18)

Proof. See Appendix.

6 Realizing You Are Wrong

I now introduce the realization of being wrong into the model. Agents are usually quite

convinced of their own beliefs and marginally update their opinions in response to the signals.

However, if over time their opinions change significantly enough, then they realize their beliefs

are incorrect and drastically change them. The agents don’t just update their perceived

probability of the good state, but also update their perceived distribution of the signal.

I assume that at any point in time each agent belongs to a particular typem = 1, 2, . . . ,M .

This type uniquely determines the beliefs of the agent about the probability distribution of

the signal. For most types, the agents are quite stubborn, so that they don’t significantly

update their perceived probability of the state being a true one. However, if this perceived

probability changes drastically enough over time, the agent changes his type as well as his

perceived distribution of the signal.

The evolution of the agent types is modeled as follows. Let mi,t be the type of agent i

at date t. I assume that there is a one-to-one relation between the agent type mi,t and his

perceived probability of the good state pi,t.

Each agent i has probability thresholds γi,0 = 0, γi,1, . . . , γi,M = 1 which do not change
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throughout the time horizon. The agent type is determined as follows:

mi,t = m iff γi,l−1 ≤ pi,t < γi,l for m = 1, 2, . . . ,M (19)

Finally, I describe how the perceived distribution of the signal is updated over time. Each

agent of type m has a baseline distribution gmi,k(z) of the signal in state k At date t+ 1, the

agent uses his perceived signal distribution g
mi,t

i,k (z) and probability pi,t of good state from

time t to determine the perceived probability pi,t+1 of the good state at time t + 1. Using

(19) the agent updates his type mi,t+1; this type could be the same as in the previous period,

but could also change if the perceived probability changes drastically enough from time t to

t+ 1. The perceived signal distribution at time t+ 1 is then g
mi,t+1

i,k (z).

7 Numerical Results for Discrete Model

The discrete model offers a clear framework that generates many interesting patterns for

price and agent holdings as they change over time. I present two sets of results obtained

using my framework. The first are exact values for the variables in the model for a particular

market setting. Agents initially believe the true state is good, but observe a low signal in

each period; thus over time they realize they are wrong. I am able to obtain clear intuition

on how agents’ changing beliefs influence their holdings and equilibrium price. The second

set of results are generated by simulating the evolution of signal values through time. I look

at the behavior of prices most prevalent across the simulated price paths. I find that the

model can replicate a lot of the important phenomena in real-world markets, including short

run momentum and reversals over longer horizons.

7.1 Persistent Bad News

I want to analyze how the agents in the model react to persistent bad news. Recall that

the agents don’t like to admit they are wrong. Therefore, if they are initially optimistic about

the true state, it will take them some time to realize their beliefs are incorrect. Once they

do realize they may be wrong, they will adjust their opinions more rapidly as well as change
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Good Bad

High 80% 75%

Low 20% 25%

High 60% 40%

Low 40% 60%

High 25% 20%

Low 75% 80%

State

Type = 1

S
ig

n
a

l 
V

a
lu

e

Type = 2

Type = 3

Probability of signal taking

High/Low value conditional on state

Table 7.1: Perceived probability distributions for the signal by each type of agent. Each cell lists
the probability of the signal taking on the high or low value, conditional on the state being high or
low. The signal value is specified across the rows, while the state is specified across the columns.

their beliefs about the distribution of the signal. I find that price experiences different rates

of decrease over time depending on the changing investor opinions. Agents tend to exhibit

“support and resistance” behavior when they get close to their belief thresholds whereby

they sometimes hold a positive (negative) position in the risky asset even though they are

more bearish (more bullish) on the fundamentals. In extreme situations this can lead to an

increase in price in spite of arrival of bad news.

To keep the model more tractable and the results easier to interpret, there will be only

two possible values the signal can take: 1 (high value) and −1 (low value).

I will consider a time horizon with T = 15 periods, followed by another period after

which the liquidating dividend is paid out. At each date the low signal is released. so that

st = −1 for t = 1, 2, . . . , T .

Each agent can belong to one of three different types. The first type is bullish. These

agents are convinced the good state is the true one and think the signal value will most likely

be a high one. Upon seeing a low signal they revise their perceived probability of the good

state downwards, but quite marginally. The second type of the agent is uncertain. An agent

of this type drastically changes the perceived probability upwards if he sees a high signal,

and downwards if he sees a low signal. The third, and last, type of agent is bearish. These

guys are convinced the true state is bad, and being stubborn, do not significantly increase

their perceived probability upon observing a high signal.

Table 7.1 lists the probability distributions of the signal as perceived by each type of

agent.
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I fix the final payoff µ = 1 and risk aversion coefficient λ = 3. The initial perceived prob-

abilities are p1,0 = 90% and p2,0 = 70%. These probabilities, combined with the thresholds

for the agent types, pin down the initial types of the agents.

The only thing I vary in the model are the probability thresholds γ. I assume the

thresholds are the same for each agent so that γi,1 = γ1, which varies between 80% and 60%,

and γi,2 = γ2 varying between 40% and 20%. I will refer to γ1 as the high threshold and to

γ2 as the low threshold.

Figure 7.1 plots price as a function of time for the four cases, while figure 7.2 plots the

agent types. We see that in each case price initially declines slowly, then drops more rapidly,

and finally decreases slowly again towards the end of the horizon. This is caused by the fact

that initially both agents are of type 1, or agent 1 is of type 1 and agent 2 is of type 2. The

agents of type 1 marginally decrease their perceived probabilities upon observing a low signal.

After a few periods the perceived probabilities drop enough to cross the high threshold, so

agents of type 1 become type 2, and drastically decrease their perceived probabilities in

subsequent periods. A little later the probabilities drop further and cross the low threshold.

At that point the agents become type 3, and again don’t significantly revise their perceived

probabilities.

The patterns for the rate of price decrease depend on the agent types and their perceived

probabilities. If the agent just switched from type 2 to type 1, but is very bullish, then

he believes there is a large probability a high signal will occur in the next period. If that

happens, the agent will significantly revise his perceived probability upwards and have an

even higher probability than in the previous period, and become type 1 again. Thus observing

a low signal will not result in a large drop in price (see for example periods 0 and 1 for the

blue and green curves, where agent 2 has type 2 but is bullish). On the other hand, if the

agent is bearish, he anticipates a high likelihood of a low signal in the next period, and

further evidence of a bad state, resulting in a lower price. Observing a low signal produces

a substantial price fall in this case, as can be observed from periods 3 and 4 in the blue and

green curves.

The beliefs of both agents matter here. Consider the red curve in periods 7 and 8, where

we see a substantial price drop while agent 1 has type 1, and agent 2 has type 3. Agent 2 is
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Figure 7.2: Agent types as they change over time. Each row corresponds to a different case for
the threshold values, listed on the right. Green color represents type 1, yellow represents type 2,
and red represents type 3.
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very convinced the true state is bad, and is anticipating a further decrease in price. Agent

1 is not yet of type 2, but is close to the high threshold. Because his perceived probability

is now quite low (around 60%), then a subsequent low signal would turn him into a type 2

agent who is bearish – and expecting a further price decrease. Thus, the price experiences a

large drop, before agent 1 even realizes he is wrong in his bullish beliefs.

I observe a surprising phenomenon whereby price is initially higher for higher threshold

values. Even though with a larger high threshold an agent is more likely to switch from type

1 to type 2 and thus become more bearish than before, there is still a large probability a

high signal will follow, pushing the agent to become type 1 again (and actually more bullish

than before). Thus observing a low signal still maintains the bullishness of the agents – and

in periods 0 and 1 the blue and green curves with larger values of the high threshold (80%)

are above the red and purple curves with a smaller high threshold (60%).

At the same time, a larger low threshold means the agent realizes he is wrong faster, and

stops revising his perceived probability downwards so drastically with each subsequent low

signal realization. At that point price does not drop as substantially, and towards the end

of the horizon the blue and red curves with a large low threshold (40%) are above the green

and purple curves with a small low threshold (20%).

I next analyze how holdings evolve over time. Figure 7.3 plots the equilibrium holdings

for agent 1; the negative of these holdings gives the equilibrium holdings of agent 2. The

patterns for the four cases are quite different, and I discuss them one at a time.

For the case γ1 = 80%, γ2 = 40% (blue curve) holdings start out quite large and positive

(around 2 shares of the risky asset), and then drop close to zero in date 9 and stay there

until the end of the horizon. Intuitively this makes sense: agent 1 is more bullish than agent

2 throughout the whole horizon and thus wants to go long the asset. Furthermore, in dates

0 to 3 agent 1 has type 1, while agent 2 has type 2, while in dates 4 to 8 agent 1 has type

2, while agent 2 has type 3. Thus agent 1 has a different type from agent 2 and one that

anticipates a higher probability of a high signal. In date 9 and later, both agents are of

type 3 and thus have the same perceived distribution of the signal. Even though they still

disagree on the perceived probability of the good state, this difference is not too large. As a

result, holdings are close to zero in those periods.
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Figure 7.3: Equilibrium holding of agent 1 in the last period. Note that the holding of
agent 2 is just the negative of the holding of agent 1.

Note that in date 9 the position is slightly negative even though agent 1 is more bullish.

This is because, while the two agents have similar expectations for next period’s price, the

first agent is expecting a larger differential in profits between if the signal high and if this

signal is low in the next period. The agents have similar price expectations since by this

time their perceived probabilities are quite close, and since they are of the same type. In

terms of expected profits, both agents, being type 3, recognize that a high signal would make

them revise their perceived probability upwards and lead to a greater difference of opinions,

thus providing greater potential profits. Since agent 1 is more bullish than agent 2, a high

signal would make his perceived probability further away from the “extreme” opinion of 0%

and hence provide higher PnL relative to the case of a low signal, than for agent 2.

In economic terms, the above phenomenon makes sense. Agent 1 has just crossed his

psychological “breaking point” and realized he is wrong. He is thus very bearish just like

agent 2, but furthermore expects high profits in case of a high signal, with more bullish

expectations than agent 2; thus profits covary more with price, so utility has a lower coeffi-

cient for holdings in terms of the expected profits component, as well as a lower coefficient

overall since price expectations are similar. Agent 1 will therefore hold a negative position

in equilibrium.
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The green curve plots agent 1’s holdings for the case γ1 = 80%, γ2 = 20%. It looks

similar to the blue curve – agent 1 holds a relatively large positive position, until he switches

to type 3 at date 11. At that point he holds a negative position for a few periods (for the

same reasons as for the blue curve at date 9), and then again a small positive one for the

remaining horizon.

There are a few minor differences between the blue and the green curve. In dates 4 and

5 agent 1’s holding drops quite significantly. This is because in those dates both agents have

the “uncertain” type and expect large price volatility the next period; being risk-averse, they

choose to hold smaller magnitudes of the risky asset.

The other difference we observe is in date 10, when agent 1 increases his holdings right

before he realizes he is wrong in date 11. This is a nice desirable phenomenon that the

model generates – people increasing their stakes when they are close to the limit when they

realize they are wrong. Here, this happens because both agents forecast a significantly lower

variance in the next period, and hence take on larger positions.

The two cases for γ1 = 60% are also interesting. Even though agent 1 is more bullish

than agent 2, he holds a large negative position in the risky asset in the early periods. Just

like for date 9 for the blue curve, here both agents have similar perceived probabilities but

disagree on the expected profits they can potentially earn. Agent 1 realizes that a low signal

would lead to a greater difference of opinions and his opinion being not as extreme, and

thus expects to make greater profits with a low signal next period in comparison to a high

signal. Since agent 1 has perceived probability that is closer to 100% than for agent 2, he

therefore expects a smaller profit differential between how much he makes if a low signal

occurs in comparison to if a high signal occurs in the next period. Thus profits covary more

with price, so agent 1 holds a negative position in equilibrium.

In later periods for γ1 = 60% the pattern for holdings is similar to the cases for γ1 = 80%

we already discussed. Namely, agent 1 holds a positive position as he still has type 1, while

agent 2 has type 2 or 3. Later he still holds a positive (but smaller) position as he has type

2, while agent 2 has type 3. In the last few periods, both agents become type 3 and holdings

are close to zero since there is little difference in opinions at that point.

I thus make the following conclusions about agent holdings:
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• If the agents have a large deviation in their perceived probabilities, the more bullish

agent holds a positive position.

• If both agents are of type 1 or 3 and not close to their thresholds, the more bullish

agent holds a small positive position.

• If both agents are of type 2 and not close to their thresholds, the more bullish agent

holds a large positive position.

• If the agents have similar perceived probabilities, and the more bullish agent is close

to the low threshold but is quite bearish, he holds a negative position6.

• If the agents have similar perceived probabilities, and the more bearish agent is close

to the high threshold but is quite bullish, then he holds a positive position7.

In the Appendix I also consider the expected profits of the agents. Figure 9.1 shows the

expected PnL for agent 1, while figure 9.2 plots the PnL for agent 2. The general pattern

for each agent and for each of the four cases is the same: initial low expected profits, then

higher profits sometime in the middle of the horizon, and then again low profits (in fact,

close to zero) close to the liquidation date. This is due to the fact that towards the middle of

the investment horizon the agents have a large difference of opinions (and usually different

beliefs about the signal distribution), whereas in the early and late periods this difference is

much smaller.

I now consider a situation where agents have “extreme overconfidence” in their beliefs

about the distribution of the signal when they belong to the bullish and the bearish types.

This way they very marginally update their perceived probabilities upon observing new

information. The perceived distributions of the signal for each type are listed in table 7.2.

The rest of the framework and model parameters are the same as before. Agents still initially

believe the true state is good, and a low signal arrives in each period.

Figure 7.4 shows how price moves over time, and figure 7.5 shows the types of the agents.

The general pattern for the price is the same as with the earlier situation I considered.

6In particular this happens when both agents are of type 3, and the more bullish agent is close to the low
threshold; see the red and green curves at date 11.

7This occurs, for example, when both agents are of type 1, and the more bearish agent is close to the
high threshold; see the red and purple curves at dates 0 and 1.
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Good Bad

High 80% 78%

Low 20% 22%

High 60% 40%

Low 40% 60%

High 22% 20%

Low 78% 80%

State

Type = 1
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e

Type = 2

Type = 3

Probability of signal taking

High/Low value conditional on state

Table 7.2: Perceived probability distributions for the signal by each type of agent, when agents of
type 1 and 3 have extreme overconfidence in their beliefs. The highlighted cells are the only cases
when the perceived distribution is different from the distributions considered earlier in Table 7.1.

In particular, price starts to drop slowly, then this drop accelerates as agents realize they

are wrong and become type 2, and then price declines slowly again towards the end of the

horizon. The rate of the decline during the early and late periods is smaller than for the

earlier set of parameters because now if agents are of type 1 or 3, they revise their perceived

probabilities at a slower rate upon observing a low signal.

The intriguing phenomenon I want to draw attention to is the fact that sometimes price

increases with the arrival of a low signal. If we look at the blue curve (γ1 = 80%, γ2 = 40%),

price rises in date 3 and date 10. This also happens for the green curve (γ1 = 80%, γ2 = 20%)

in dates 5 and 10. I discuss why these price increases occur.

For the blue curve in date 3, agent 2 is of type 2 and is still quite bullish on the state.

He is close to the low threshold and will become type 3 if another low signal occurs. At

the same time, agent 1 will remain type 1 regardless of the signal value in the next period.

Therefore, a low signal will lead to a greater difference in opinions and in beliefs about the

signal distribution for the agents, and result in much higher expected profits, than if a high

signal occurs. Price will still be higher if a high signal occurs next period, therefore the

next period price and expected profits have a large negative covariance. This leads to a high

equilibrium price in the current period, which is in fact higher than the price in the period

before. The same situation occurs for the green curve in date 5. We thus see that as agent

2 is about to realize he is wrong (by switching from type 2 to type 3), then he exhibits very

strong resistance and causes the price to rise.

Price increases in dates 10 for both the blue and the green curve. I argue that this
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happens because of an “extra” drop in price in date 9. For both curves agent 2 has already

been of type 3 for some time, and so will not switch to type 2 upon arrival of either a high

or a low signal. On the other hand, agent 1 has just switched to type 2 after being type 1.

A high signal in the next period will make him type 1 again, and in fact having a higher

perceived probability than in the period before. A high signal will then produce a larger

difference in opinions as well as in the agent types (agent 1 will be type 1 and agent 2 will be

type 3). Hence a high signal next period will lead to larger expected profits than a low signal.

Price will still be higher in the case of a high signal; therefore the covariance between next

period price and expected profits is positive and large. As a result, price drops significantly

in date 9. In date 10, after there is no longer the possibility of agent 1 switching to type

2 with a high signal, the covariance is much smaller in magnitude, while price expectations

are similar. This causes the date 10 price to be higher than the price in date 9. I conclude

that in this situation agent 1, after realizing he is wrong, depresses the price substantially.

7.2 Price Behavior

I next analyze price behavior when both good and bad news can arrive. I simulate

the realizations of the signal in each period and look at predictability in price movement.

Different price patterns are possible depending on the initial beliefs of the agents, as well as

the thresholds for switching these beliefs. When one agent is very bearish on the state, while

the other is very bullish, prices tend to experience reversals, which are particularly strong

at longer horizons. On the other hand, when agents have similar beliefs and have high

conviction about them, significant trending is observed. Finally, if one agent is convinced in

his opinions and the other is very uncertain, then price movement is highly dependent on

the agent belief thresholds.

I use the same parameter values as when looking at the persistent bad news in the previous

section. The terminal payoff is µ = 1, risk aversion coefficient λ = 3, and the agents’ beliefs

about the distribution of the signal are listed in Table 7.1. As before, I assume both agents

have the same thresholds with the high threshold γi,1 = γ1 varying from 60% to 80% and

the low threshold γi,2 = γ2 varying from 20% and 40%.

There are three cases for the initial beliefs of the agents. The first is when agents have very
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Figure 7.5: Agent types at each date when agents are subject to extreme overconfidence. Green
color represents type 1, yellow represents type 2, and red represents type 3.
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different opinions: agent 1 is bullish with p1 = 90% and agent 2 is bearish with p2 = 10%.8

The second case is when agent 1 has high conviction in his beliefs (p1 = 90%) while agent 2

is very uncertain about the true state (p2 = 50%). The final case has the two agents with

very similar beliefs and quite convinced they are right, so that p1 = 90%, p2 = 85%.

The evolution of the signal is now stochastic. I consider the most “basic” distribution

whereby the signal in each period is high with probability 50% and low with probability

50%. This way, if the agents knew the true distribution of the signal, they would realize

that the signal contains no information about the true state, and hence not change their

beliefs throughout the horizon. Therefore equilibrium price would stay constant. However,

since agents have beliefs about the signal distribution which are very different from the true

distribution, they revise their opinions over time, and the price moves. I want to understand

this price movement for different cases of agent beliefs and belief thresholds.

The particular statistics of interest are the serial correlation in price changes from the

start of the investment horizon. For various values of the number of lags k, I calculate the

following correlation:

ρk = ρ(Pk − P0, P2k − Pk) (20)

Here, ρ is the correlation operator. In the above expression it measures the correlation

between price move over the first k periods and the price move over the k periods after

that. I look at two specific values for k: k = 1 representing short-run correlation, and k = 5

corresponding to long-run correlation.

The correlation values are listed in table 7.3. We see that correlation exhibits different

patterns depending on the number of lags used and depending on the case for the initial

beliefs of the agents.

When agents have very different beliefs (top two sub-tables), we observe price reversals

at both the short and long horizons. The short-run correlation in price moves is negative

and small. The main explanation for this is as follows. The agent who is further away from

the threshold closest to him in terms of perceived probabilities is the one pushing the price9.

8For notational convenience I denote by p1 = p1,0 and p2 = p2,0 for the initial perceived probabilities of
the agents.

9It is possible that the agents are equally close to their closest thresholds, e.g. if p1 = 90%, γ1 = 80% and
p2 = 10%, γ2 = 10%.
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60% 64% 68% 72% 76% 80% 3% 64% 68% 72% 76% 80%

20% -2% -3% -5% -7% -9% -10% 20% -42% -45% -47% -54% -60% -63%

24% -5% -6% -7% -9% -9% -9% 24% -41% -44% -46% -51% -57% -60%

28% -6% -7% -8% -9% -9% -7% 28% -35% -38% -39% -45% -51% -53%

32% -6% -6% -7% -8% -7% -5% 32% -27% -32% -33% -39% -46% -47%

36% -5% -6% -6% -7% -6% -3% 36% -25% -30% -32% -38% -44% -45%

40% -4% -5% -5% -6% -5% -3% 40% -21% -25% -27% -35% -41% -42%

60% 64% 68% 72% 76% 80% 60% 64% 68% 72% 76% 80%

20% 7% 7% 9% 12% 15% 15% 20% 23% 16% 10% -2% -17% -21%

24% 9% 6% 9% 15% 18% 18% 24% 25% 18% 10% -5% -22% -31%

28% -7% -13% -7% 6% 17% 20% 28% 12% 4% -4% -19% -34% -39%

32% 33% 35% 39% 43% 43% 39% 32% 17% 9% 1% -13% -27% -35%

36% 56% 57% 58% 57% 55% 50% 36% 13% 4% -4% -18% -31% -36%

40% -3% -3% 0% 3% 3% 1% 40% 15% 7% -1% -14% -30% -39%

60% 64% 68% 72% 76% 80% 60% 64% 68% 72% 76% 80%

20% 5% 5% 4% 4% 4% 6% 20% 16% 15% 14% 11% 2% -5%

24% 5% 5% 4% 4% 4% 6% 24% 16% 15% 14% 11% 3% -4%

28% 6% 5% 4% 4% 3% 6% 28% 16% 15% 14% 11% 3% -4%

32% 5% 5% 4% 4% 3% 6% 32% 16% 15% 14% 11% 4% -3%

36% 5% 5% 4% 4% 4% 5% 36% 16% 15% 14% 11% 4% -4%

40% 5% 5% 4% 4% 3% 6% 40% 16% 15% 14% 12% 4% -4%
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Table 7.3: Correlations in price change at various lags and for various initial beliefs of the agents.
I list the correlation between the price move in the k next periods (starting from date 0), and the
price move in the k periods after that, where k is the specified number of lags. The values for the
number of lags considered are 1 (short-run) and 5 (long-run). The initial perceived probabilities of
the agents are listed at the top of each sub-table. The cells with the correlation numbers contain
bars, that are green if the value is negative, and red if the value is positive; the size of the bar
corresponds to its magnitude in the [0%, 65%] range.
For each case, I perform 1,000 runs of 10,000 simulations of signal paths, measuring the correlation
using each sample of the simulated paths. The resulting 1,000 values are then averaged out to get
the estimate of correlation. For each case, the standard errors do not exceed 0.25%.
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Without loss of generality assume the bullish agent is the one pushing the price. If a bad

signal arrives in the first period, price decreases; however the potential moves in the price

will not be as different depending on if a bad or a good signal arrives in the next period,

because at that point the bullish agent is not pushing the price as much. On the other hand,

if a good signal arrives in the first period, price increases and the bullish agent is pushing

the price even more. Then, a bad signal in the next period will result in a greater change in

perceived probability of the bullish agent, than if another good signal comes – and therefore

price will move substantially more in that case, in the direction opposite to its move in the

first period. This results in a negative correlation. The magnitude of this correlation is small

because over a single period the relative differences between potential moves in the price are

not large.

Over longer horizons the above effect amplifies significantly. After the first five periods,

one of the agents is pushing the price; again, assume it is the bullish agent. Over the next

five periods, his perceived probability would move a lot more on the downside than on the

upside because of his perceived distributions in the signal and the potential change in beliefs

because of crossing a belief threshold. Therefore, on average price will experience a much

greater move in direction opposite to the one over the first five periods, which leads to a

large negative correlation.

I next look at the case when agent 1 has high conviction in his beliefs (p1 = 90%) while

agent 2 does not (p2 = 50%). The corresponding correlation values are shown in the middle

two sub-tables of table 7.3. At short horizons price usually experiences momentum; it is

particularly strong for low threshold values of γ2 = 32%, 36%. The reason for this is the

fact that price tends to experience a particularly large move in period 2 if a bad signal

arrives in that period, following a bad signal in the first period. This way price drops for two

subsequent periods, with these moves being larger than for the other cases of signal values.

Price drops so much in period 2 because agent 2 switches from type 2 to type 3 (this happens

for γ2 = 32%, 36%), and/or because price just generally moves more on the downside due to

agent 1 pushing the price.

At long horizons we observe price reversals for high values of the high threshold (72% ≤

γ1 ≤ 80%). Here, agent 1 is pushing the price and will often cross the high threshold in
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terms of his beliefs over the first five periods, or at least get close to it, causing a large price

move on the downside. This would usually be followed by a large move on the upside, since

either agent 1 will become type 1 again (after being type 2), and/or agent 2 will become type

2 again (after being type 3). The combination of these large moves in different directions

over five-period intervals leads to a negative correlation in price movement; sometimes this

correlation is large in magnitude when the agents start out closer to the thresholds.

For lower values of the high threshold price tends to experience reversals. This is due to

the fact that agent 1 is now further away from the high threshold. As a result, following a

decrease in perceived probability in the first five periods, he would experience a larger further

decrease in this probability over the next periods (in comparison to a potential increase).

As for agent 2, this move in the next five periods is also usually negative, especially if the

low threshold is small. This combination of subsequent negative moves gives a positive

correlation value.

The final case for the initial agent beliefs is when they are both very bullish on the

true state (bottom two sub-tables in table 7.3). Price experiences weak momentum over

short horizons and strong momentum over long horizons (except for the case of a large high

threshold). The momentum in price can again be explained by the fact, that a bullish agent,

after revising his beliefs downwards, will revise them further downwards more upon arrival of

a low signal, than upwards upon arrival of a high signal in the next period. This phenomenon

is stronger over long horizons, where the bullish agent often ends up switching his type from

1 to 2 after crossing the high threshold. The exception is for the value of high threshold of

γ1 = 80%, where agents often already switch from type 1 to 2 in the first five periods, and

then can potentially switch back to type 1, resulting in price reversals.

I conclude that the model generates both momentum and reversals in price. Price expe-

riences momentum when both agents have high conviction in their beliefs, and these beliefs

are similar. On the other hand, when these beliefs are drastically different, reversals are

observed. Finally, if only one agent has high conviction, then there is usually trending over

short horizons as well as over longer horizons when the agent who is unsure about his be-

liefs is close to his belief threshold and is likely to switch his type. When instead the high

conviction-agent is close to his belief threshold, reversals tend to occur.

43



8 Conclusion

I propose a new model for analyzing how changing investor opinions influence dynamic

trading and prices. I focus on a particular behavioral aspect, whereby investors are reluctant

to admit they are wrong about their perceptions of market fundamentals. The difference of

opinions between agents in the model and the eventual realization of being wrong lead to

interesting and realistic dynamics for prices, investor holdings, and expected profits.

I start with a simple framework for how information about fundamentals arrives and

how agents revise their beliefs using this information. I derive closed-form expressions for

variables of interest in the last period. These allow for some initial intuition with regards to

how difference of opinions and agent conviction influence prices. The main result is that the

agent who is more confident in his beliefs end up “pushing” the price in the direction of his

beliefs, sometimes so much, that he actually expects to earn lower profits.

The model allows for an explicit formula of computing equilibrium prices over the full

investment horizon. The risky asset price tends to increase over time as agents become more

convinced that the terminal payoff on the asset is high. Equilibrium agent holdings increase

over time whenever that agent revises upwards his perceived probability of the true state by

a greater amount than the other agent upon observing a good signal.

I next consider an advanced model with a more complicated structure of agent opin-

ions about the signal distribution. If an agent revises his perceived probability of the true

state substantially enough, he realizes he is wrong and completely changes his perceived

distribution of the signal. I look at price behavior when agents are initially bullish on the

fundamentals, but persistent bad news arrive, causing them to gradually reduce their fore-

casts for the terminal payoff. Price initially declines slowly due to overconfidence in agent

beliefs, and then more rapidly as agents admit they are wrong and revise their opinions

faster. When agents are close to realizing they are wrong, they often exhibit support and

resistance behavior; for extreme cases of their beliefs this generates a price increase even

though bad news keep arriving.

Finally, the model can produce both momentum and reversals in prices. When agents

have very different opinions about the true state, there is significant negative correlation in
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price movement, especially over longer horizons. When investors have similar beliefs and high

conviction in them, price tends to experience trending. If only one agent has high conviction

in his beliefs, price behavior is very sensitive to belief thresholds, with momentum being the

more prevalent pattern.

It is common for a person to be convinced they are right and to be unwilling to accept

they are wrong in their beliefs. This paper provides a tractable framework for understanding

this phenomenon and demonstrates that it can have a substantial impact on investor trading

and price behavior.
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9 Appendix

9.1 Proof of Proposition 4.1

Consider the optimization problem for agent 1. So far, the value of the signal has been

high in each period, hence there is still uncertainty about what the final payoff will be. Agent

1 believes that the distribution of this payoff is:

F =











µ, wp p1,T

0, wp 1− p1,T

Suppose the current price (at date T ) is P . If the agent considers holding x units of the

risky asset, his expected value and variance of profits are:

E1,T (Π1,T ) = E1,T (x(F − P )) = p1,Tµx− xP

and:

var1,T (Π1,T ) = vari,t(x(F − P )) = var1,T (xF )

= (p1,Tµ
2 − (p1,Tµ)

2)x2 = p1,T (1− p1,T )µ
2x2

The optimization problem in (4) becomes:

max
x

p1,Tµx− xP −
λ

2
(p1,T (1− p1,T )µ

2x2)

The optimal demand of agent 1 is:

x1,T =
p1,Tµ− P

λp1,T (1− p1,T )µ2

Similarly, the optimal demand of agent 2 is:

x2,T =
p2,Tµ− P

λp2,T (1− p2,T )µ2
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Then, the equilibrium price at time T is:

PT (p1,T , p2,T ) =
1

1

λp1,T (1− p1,T )µ2
+

1

λp2,T (1− p2,T )µ2

( p1,Tµ

λp1,T (1− p1,T )µ2
+

p2,Tµ

λp2,T (1− p2,T )µ2

)

This simplifies to:

PT (p1,T , p2,T ) =
p1,Tp2,T (2− p1,T − p2,T )

p1,T (1− p1,T ) + p2,T (1− p2,T )
µ (21)

The expected value of profits for agent 1 is:

E1,T (Π1,T (pT , qT )) =
(p1,Tµ− P )2

λp1,T (1− p1,T )µ2
(22)

We have:

p1,Tµ− P = p1,Tµ−
p1,Tp2,T (2− p1,T − p2,T )

p1,T (1− p1,T ) + p2,T (1− p2,T )
µ =

(p1,T − p2,T )p1,T (1− p1,T )

p1,T (1− p1,T ) + p2,T (1− p2,T )
µ

Substituting into (22), the expected value of profits for agent i, i = 1, 2, is:

Ei,T (Πi,T (p1,T , p2,T ))) =
(p1,T − p2,T )

2pi,T (1− pi,T )

λ(p1,T (1− p1,T ) + p2,T (1− p2,T ))2
(23)

9.2 Limits for Variables in the Last Period

When one of the perceived probabilities p1,T , p2,T in the last period is equal to 0 or 1, the

values for some of the variabels in the model become degenerate. In order to incorporate

such situations in the model, I replace these values with their limits, which are calculated

below. Recall that the variables of interest are the price, the holdings, and the expected

profits.

I consider the cases when p1,T ∈ {0, 1}; the cases when p2,T ∈ {0, 1} give analogous

results due to symmetry in the model.

Case 1.1: p1,T = 0, p2,T ∈ (0, 1).
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Equation (21) gives:

P = lim
p1,T→0

p1,Tp2,T (2− p1,T − p2,T )

p1,T (1− p1,T ) + p2,T (1− p2,T )
µ = 0 (24)

Equilibrium holdings of the agents are:

x1,T = lim
p1,T→0

(p1,T − p2,T )

λ(p1,T (1− p1,T ) + p2,T (1− p2,T ))µ
= −

1

λ(1− p2,T )µ
(25)

x2,T = −x1,T (26)

Expected profits are:

E1,T (Π1,T ) = lim
p1,T→0

(p1,T − p2,T )
2p1,T (1− p1,T )

λ(p1,T (1− p1,T ) + p2,T (1− p2,T ))2
= 0 (27)

E2,T (Π2,T ) = lim
p2,T→0

(p1,T − p2,T )
2p2,T (1− p2,T )

λ(p1,T (1− p1,T ) + p2,T (1− p2,T ))2
=

p2,T

λ(1− p2,T )
(28)

Case 1.2: p1,T = 0, p2,T = 0.

I assume p1,T = p2,T = q with q approaching 0. Equation (21) gives:

P = lim
q→0

2q2(1− q)

2q(1− q)
µ = 0 (29)

Equilibrium holdings of the agents are:

x1,T = lim
q→0

(q − q)

λ(2q(1− q))µ
= 0 (30)

x2,T = −x1,T = 0 (31)

Expected profits are:

E1,T (Π1,T ) = lim
q→0

(q − q)2q(1− q)

λ(2q(1− q))2
= 0 (32)

E2,T (Π2,T ) = 0 (33)
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Case 2.1: p1,T = 1, p2,T ∈ (0, 1).

Equation (21) gives:

P = lim
p1,T→1

p1,Tp2,T (2− p1,T − p2,T )

p1,T (1− p1,T ) + p2,T (1− p2,T )
µ = µ (34)

Equilibrium holdings of the agents are:

x1,T = lim
p1,T→1

(p1,T − p2,T )

λ(p1,T (1− p1,T ) + p2,T (1− p2,T ))µ
=

1

λp2,Tµ
(35)

x2,T = −x1,T (36)

Expected profits are:

E1,T (Π1,T ) = lim
p1,T→1

(p1,T − p2,T )
2p1,T (1− p1,T )

λ(p1,T (1− p1,T ) + p2,T (1− p2,T ))2
= 0 (37)

E2,T (Π2,T ) = lim
p2,T→1

(p1,T − p2,T )
2p2,T (1− p2,T )

λ(p1,T (1− p1,T ) + p2,T (1− p2,T ))2
=

1− p2,T

λp2,T
(38)

Case 2.2: p1,T = 1, p2,T = 1.

I assume p1,T = p2,T = q with q approaching 1. Equation (21) gives:

P = lim
q→1

2q2(1− q)

2q(1− q)
µ = µ (39)

Equilibrium holdings of the agents are:

x1,T = lim
q→1

(q − q)

λ(2q(1− q))µ
= 0 (40)

x2,T = −x1,T = 0 (41)

Expected profits are:

E1,T (Π1,T ) = lim
q→0

(q − q)2q(1− q)

λ(2q(1− q))2
= 0 (42)
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E2,T (Π2,T ) = 0 (43)

Note that I do not consider the cases p1,T = 0, p2,T = 1 and p1,T = 1, p2,T = 0. In those

cases holdings and expected profits become arbitrarily large.

9.3 Proof of Proposition 4.2

I solve the optimization problem of agent 1; the result for agent 2 is similar. Define:

a = (1− p1,t)r1 ; b = 1− (1− p1,t)r1

R = Pt+1(p1,t+1, p2,t+1)

D = E1,t+1(Π1,t+1(p1,t+1, p2,t+1))

G = (1− (1− p1,t)r1)E1,t+1(Π1,t+1(p1,t+1, p2,t+1))

Since the agent has mean-variance preferences, I need to calculate his expected value and

variance of profits. Using (9) the expected value of PnL is:

E1,t(Π1,t) = ax(0− P ) + bx(R− P ) + bD = x(bR− P ) +G (44)

The variance is more complicated. We use the conditional variance formula:

var(Π1,t|It) = E(var(Π1,t|It+1)|It) + var(E(Π1,t|It+1)|It) (45)

where all the variances and expectations are calculated using the beliefs of agent 1. We have:

var(Π1,t|It+1) = var(x(P1,t+1(p1,t+1, p2,t+1)− P ) + Π1,t+1(p1,t+1, p2,t+1)|It+1)

= var(Π1,t+1(p1,t+1, p2,t+1)|It+1)
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which is independent of x. The other term is more important:

var(E(Π1,t|It+1)|It) = var(E(x(Pt+1(p1,t+1, p2,t+1)− P ) + Π1,t+1(p1,t+1, p2,t+1)|It+1)|It))

= var1,t(xPt+1(p1,t+1, p2,t+1) + E1,t+1(Π1,t+1(p1,t+1, p2,t+1)))

We know the term in brackets is equal to 0 with probability a, and is equal to xR+D with

probability b. Therefore:

var(E(Π1,t|It+1)|It) = b(xR +D)2 − b2(xR +D)2 = b(1− b)(xR +D)2 (46)

Using (44), (45), (46), the optimization problem for agent 1 reduces to:

max
x

U1,t(x) = x(bR− P )−
λ

2
b(1− b)(xR +D)2 +K

where K is some constant independent of x. Differentiating with respect to x we get:

∂

∂x
Ui,t = bR− P − λb(1− b)(xR +D)R

Then, the optimal demand of agent 1 is:

x1,t =
b1R− λb1(1− b1)RD1 − P

λb1(1− b1)R2

where bi = 1 − (1 − pi,t)ri, Di = Ei,t+1(Πi,t+1(p1,t+1, p2,t+1)). Similarly, the demand of agent

2 is:

x2,t =
b2R− λb2(1− b2)RD2 − P

λb2(1− b2)R2

Then equilibrium price is:

P =
1

1

b1(1− b1)R2
+

1

b2(1− b2)R2

×
(b1R− λb1(1− b1)RD1

b1(1− b1)R2
+

b2R− λb2(1− b2)RD2

b2(1− b2)R2

)
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Simplifying, we get:

P =
b1b2(2− b1 − b2)− λb1b2(1− b1)(1− b2)(D1 +D2)

b1(1− b1) + b2(1− b2)
R (47)

The expected value for PnL for agent 1 is:

E1,t(Π1,t) = x1,t(b1R− P ) + b1D1 =
b1R− λb1(1− b1)RD1 − P

λb1(1− b1)R2
(b1R− P ) + b1D1

We have:

b1R− P =
(b1 − b2) + λb2(1− b2)(D1 +D2)

b1(1− b1) + b2(1− b2)
b1(1− b1)R

And also:

b1R− λb1(1− b1)RD1 − P =
(b1 − b2) + λb2(1− b2)D2 − λb1(1− b1)D1

b1(1− b1) + b2(1− b2)
b1(1− b1)R

Therefore we get a recursive formula for expected PnL of agent 1:

E1,t(Π1,t) =
(b1 − b2) + λb2(1− b2)D2 − λb1(1− b1)D1

λ(b1(1− b1) + b2(1− b2))

×
(b1 − b2) + λb2(1− b2)(D1 +D2)

b1(1− b1) + b2(1− b2)
× b1(1− b1) + b1D1

The formula for agent 2 is similar:

E2,t(Π2,t) =
(b2 − b1) + λb1(1− b1)D1 − λb2(1− b2)D2

λ(b1(1− b1) + b2(1− b2))

×
(b2 − b1) + λb1(1− b1)(D1 +D2)

b1(1− b1) + b2(1− b2)
× b2(1− b2) + b2D2

The sum of the profits is:

E1,t(Π1,t) + E2,t(Π2,t) =
(b1 − b2) + λb2(1− b2)D2 − λb1(1− b1)D1

λ(b1(1− b1) + b2(1− b2))

×
(b1 − b2)b1(1− b1) + (b1 − b2)b2(1− b2)

b1(1− b1) + b2(1− b2)
+ b1D1 + b2D2
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We can further simplify this to:

E1,t(Π1,t) + E2,t(Π2,t) =
(b1 − b2)

2 + λb2(1− b2)(b1 − b2)D2 − λb1(1− b1)(b1 − b2)D1

λ(b1(1− b1) + b2(1− b2))

+b1D1 + b2D2

Simplifying further, we get:

E1,t(Π1,t) + E2,t(Π2,t) =
(b1 − b2)

2 + λb1b2(2− b1 − b2)(D1 +D2)

λ(b1(1− b1) + b2(1− b2))
(48)

as desired.

9.4 Proof of Proposition 5.1

The proof is similar to the one for the recursive relations in the simple model. I solve the

optimization problem for agent 1; for agent 2 the result is similar.

Suppose the current price (at date t) is P , and agent 1 considers holding x units of the

risky asset. The distribution of the profit Π1,t for the agent, conditional on signal st+1, is as

follows:

Π1,t(p1,t, p2,t) = x(Rj − P ) + Π1,t+1(p1,t,j, p2,t,j), if st+1 = zj (49)

At time t agent 1 believes the probability of the good state is p1,t, and therefore, he believes

that st+1 = zj with probability a1,j:

P1,t(st+1 = j) = P1,t(S = 1)P1,t(st+1 = zj|S = 1) + P1,t(S = 2)P1,t(st+1 = zj|S = 2)

= p1,tf1,1(zj) + (1− p1,t)f1,2(zj) = a1,j

(50)

Since the agent has mean-variance preferences, I need to calculate his expected value and

variance of profits. Using (49) and (50) the expected value of PnL is:

E1,t(Π1,t) =
n

∑

j=1

a1,j

(

x(Rj − P ) +D1,j

)

= x
(

(
n

∑

j=1

a1,jR1,j)− P )
)

+
n

∑

j=1

a1,jD1,j

(51)
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For the variance I use the conditional variance formula as in the simple model:

var(Π1,t|It) = E(var(Π1,t|It+1)|It) + var(E(Π1,t|It+1)|It) (52)

where all the variances and expectations are calculated using the beliefs of agent 1. Following

the same derivation as with the simple model, only the second term depends on x, and can

be written as:

var(E(Π1,t|It+1)|It) = var1,t(xPt+1(p1,t+1, p2,t+1) + E1,t+1(Π1,t+1(p1,t+1, p2,t+1)))

The term in brackets is constant conditional on the value of st+1:

xPt+1(p1,t+1, p2,t+1) + E1,t+1(Π1,t+1(p1,t+1, p2,t+1)) = xRj +D1,j if st+1 = zj

From (50) we know the distribution of st+1. This is enough to calculate the variance:

var(E(Π1,t|It+1)|It) =
n

∑

j=1

a1,j(xRj +D1,j)
2 − (

n
∑

j=1

a1,j(xRj +D1,j))
2 (53)

Using (51), (52), (53), the optimization problem for agent 1 reduces to:

max
x

U1,t(x) = x
(

(
n

∑

j=1

a1,jR1,j)− P )
)

−
λ

2

(

n
∑

j=1

a1,j(xRj +D1,j)
2

− (
n

∑

j=1

a1,j(xRj +D1,j))
2

)

+K

where K is some constant independent of x. Differentiating with respect to x we get:

∂

∂x
U1,t = (

n
∑

j=1

a1,jRj)− P − λ

n
∑

j=1

a1,jRj(xRj +D1,j) + λ
(

n
∑

j=1

a1,j(xRj +D1,j)
)

(
n

∑

j=1

a1,jRj)

= µ1,t − P − λw1,tx
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where for i = 1, 2:

µi,t =
n

∑

j=1

ai,jRj − λ

n
∑

j=1

ai,jRjDi,j + λ(
n

∑

j=1

ai,jDi,j)(
n

∑

j=1

ai,jRj) (54)

wi,t =
n

∑

j=1

ai,jR
2

j − (
n

∑

j=1

ai,jRj)
2 (55)

The optimal demand of agent 1 is:

x1,t =
µ1,t − P

λw1,t

Similary, the demand of agent 2 is:

x2,t =
µ2,t − P

λw2,t

Then equilibrium price is:

P =
w2,tµ1,t + w1,tµ2,t

w1,t + w2,t

(56)

Using (51) the expected PnL of agent i is:

Ei,t(Πi,t) = xi,t

(

(
n

∑

j=1

ai,jRj)− P )
)

+
n

∑

j=1

ai,jDi,j

=
µi,t − P

λwi,t

(

(
n

∑

j=1

ai,jRj)− P )
)

+
n

∑

j=1

ai,jDi,j (57)

9.5 Expected Profits for Persistent Bad News

I present and analyze the patterns for expected profits of the agents for the discrete model

in the case when a bad signal arrives in each period. Figures 9.1 and 9.2 plot the expected

profits of agents 1 and 2, respectively, as they change over time.

Each of the curves on the expected profits charts has exactly one peak. This peak occurs

at different times depending on the agent and the case. For agent 1, the cases for large high

threshold (blue and green curves) offer high expected profits in early periods. Expected PnL

then continues to rise, more so for the blue curve – since in dates 4 and 5 agent 1 is bullish
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and of type 2, while agent 2 already has type 3. So there is a large difference of opinions,

while agent 2 is less likely to adjust his opinion to potential high signals, leading to greater

expected profits for agent 1, than if agent 2 was of type 2. After that expected profits start

to drop as the agents start to converge in their beliefs. The drop is more rapid since agent

1 becomes type 3 faster due to the higher low threshold at which point expected profits are

very low.

Continuing with agent 1, the cases for small high threshold (red and purple curves) offer

lower profits in early periods. The profits then continue to rise; more rapidly for the red

curve – again because agent 2 becomes type 3 faster. For the purple curve, profits first rise

slowly, and then grow very rapidly, as agent 1 still has type 1, but agent 3 has type 3, so

there is a large difference in opinions. As with the blue and green curves, the expected profits

then drop as the beliefs converge, and agent 1 becomes type 3 along with agent 2 who by

that time has switched to type 3 several periods earlier.

The pattern for agent 2 is similar. It is interesting that the curves with similar high

(low) threshold are a lot more similar for agent 2 than for agent 1. This is likely because the

peak occurs for agent 2 when he has type 2 (or has just become type 3) – since after that

he pushes the price too much and is too convinced in his beliefs to expect a large difference

in opinions later on. Thus the location of the high threshold matters a lot more for agent 2.
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Figure 9.1: Expected profits of agent 1 as a function of time.
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Figure 9.2: Expected profits of agent 2 as a function of time.
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