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Abstract

We introduce a heterogeneous connection model for network formation to capture

the effect of cost heterogeneity on the structure of efficient networks. In the proposed

model, connection costs are assumed to be separable, which means the total connection

cost for each agent is uniquely proportional to its degree. For these sets of networks,

we provide the analytical solution for the efficient network and discuss stability impli-

cations. We show that the efficient network exhibits a core-periphery structure, and for

a given density, we find a lower bound for clustering coefficient of the efficient network.
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1 Introduction

Network formation models are increasingly being used in a variety of economic contexts

and other multi-agent systems. These models often study the structural conditions of effi-

ciency, network social welfare, and stability, which is a measure of individual incentives to

form, keep or sever links

We build our model based on the Connection model proposed by Jackson and Wolinsky

(1996)1 in which agents can benefit from both direct and indirect connections, but only

pay for their direct connections. Benefits of indirect connections generally decrease with

distance. Jackson and Wolinsky (1996) demonstrated that, for the homogeneous case, the

efficient network can only take one of three forms: a complete graph, a star or an empty

graph depending on connection cost and benefits. Several models have been proposed to

introduce heterogeneity into the connection model, (see for instance: Galeotti et al. (2006);

Jackson and Rogers (2005); Persitz (2010); Vandenbossche and Demuynck (2013)); the focus

has mainly been on conditions for stability, with few references to efficiency. Finding general

analytical solutions for the efficient networks with heterogeneous costs can be intractable,

see for example Carayol and Roux (2009).

Here, we focus on finding efficient networks for a particular model of cost heterogeneity

that we refer to as the separable connection cost model, in which shares of nodes’ costs from

each connection are heterogeneous, yet fixed and independent of to whom they connect.

This is motivated by networks in which heterogeneous agents are each endowed with some

resources (time, energy, bandwidth, etc) and the total resource needed to establish and

maintain connections for each node can be approximated to be proportional to its degree.

We further assume homogeneous benefits decaying with distance. We provide an exact

analytical solution for efficient connectivity structures under these assumptions and show

1Jackson and Wolinsky (1996) developed their model based on the notion of pairwise stability or two-

sided link formation where a link is formed upon the “mutual consent” of two agents. There is also another
line of literature from Bala and Goyal (1997); Goyal (1993) that studies one-sided and non-cooperative link
formation, where agents unilaterally decide to form the links with another agent.
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that such networks have at most one connected component, exhibit a core-periphery structure

and have diameters no larger than two. We further provide a lower bound for the clustering

coefficient and discuss the pairwise stability implications of efficient networks.

2 Model

For n agents, let b : {1, ..., n− 1} → R represent the benefit that an agent receives from

(direct or indirect) connections to other agents as function of the distance between them in a

graph. Following Jackson and Wolinsky (1996), the (distance-based) utility function of each

node, ui(g), in a graph g and the total utility of the graph, U(g), are as follows:

ui(g) =
∑

j 6=i:j∈Nn−1(g)

b(dij(g))−
∑

j 6=i:j∈N(g)

cij

U(g) =
n

∑

i=1

ui(g)

(1)

where dij(g) is the distance between i and j, cij is the cost that node i pays for connecting

to j, and b is the benefit that node i receives from a connection with another node in the

network. We assume that b(k) > b(k + 1) > 0 for any integer k ≥ 1.

The network g̃ is efficient, if U(g̃) ≥ U(g′) for all g′ ⊂ gN , which indicates that g̃ =

argmaxg
∑n

i=1 ui(g). Assuming the separable cost model as introduced earlier, connection

costs in Equation 1, for a link between i and j can be written as cij = ci, cji = cj. We then

introduce a connection cost vector, C, and without loss of generality rename nodes such that

c1 < c2 < ... < cn.

2.1 Efficient Structures under Separable Connection Costs

In Lemma 1, we determine the efficient structure for a connected component. Then in

Proposition 1, we determine the structure of the efficient network in general.
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Lemma 1 If the efficient network with separable cost model is connected then it has a “gen-

eralized star” structure with the following characteristics: (a) All nodes are connected to

node 1 ( the node with minimum connection cost). (b) Nodes i and j (i, j 6= 1) are connected

iff b(1)− b(2) > .5(ci + cj).

Proof. Let N represents nodes in the connected network. If there exists a subset of nodes

M = {v1, ..., vm} (M ⊂ N) that are not connected to node 1, we show that the network is

not efficient. Since N is connected, there exists a set of links, L = {l1, ..., lm} where li is

adjacent to vi
2. Suppose li connects vi to wi ( wi 6= 1 by definition). Now, if we remove all

lis and connect all vis to node 1, we have reduced the total connection cost of the network

by mc1 −
m
∑

k=1

cvk < 0.

Now, to address the benefits, note that we have not changed the number of links; there-

fore direct benefits remain the same. Furthermore, the diameter of the new network is 2.

Therefore every distance that is not 1 is capped at 2, making the total benefit larger than

that of the original network. This results in at improvement in the total utility, indicating

that the original network was not efficient.

Furthermore, having established that the maximum distance in the efficient network is

no larger than two, every node i and j (i, j 6= 1) are connected iif b(1)− b(2) > .5(ci + cj).

Proposition 1 determines the structure of the efficient network and shows that the efficient

network is a spectrum of solutions.

Proposition 1 In the connection model, for a finite set of agents, N = {1, .., n}, if cij = ci

for all i, j ∈ N , where ci ∈ C = {c1, c2, ..., cn} and assuming, c1 < c2 < · · · < cn, the

structure of the efficient network is as follows: Let m be the largest integer between 1 and n

such that 2b(1) + 2(m− 2)b(2) > (cm + c1). If i > m, then i is isolated. If i ≤ m, then there

2For any subset M = {v1, · · · , vm} of a connected network N (M 6≡ N), we can show that there are
links L = {l1, · · · , lm} in N such that vi is adjacent to li.
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is exactly one link between i and 1; also there is one link between i and j (1 < i, j ≤ m) iff

b(1)− b(2) > .5(ci + cj).

Proof.

First, we show there is at most one connected component in the efficient network. Next,

we find the condition for each node to be in the connected component, which has the gener-

alized star structure according to Lemma 1.

Assume that the efficient network has more than one (e.g. two) connected components

with (mi, ℓi) being respectively the number of nodes and links in connected component

i. According to Lemma 1, each connected component has a generalized star structure.

The total benefit of each component is B1 = 2ℓ1b(1) + (m1(m1 − 1) − 2ℓ1)b(2) and B2 =

2ℓ2b(1)+(m2(m2−1)−2ℓ2)b(2) respectively. Suppose h and h′ are nodes with minimum costs

in component 1 and 2 respectively and without loss of generality ch < ch′ . If we disconnect all

links connected to h′ and connect them directly to h, total cost decreases by (ch′−ch) per link.

This also results in the total benefitB = (ℓ1+ℓ2)b(1)+((m1+m2)(m1+m2−1)−2(ℓ1+ℓ2))b(2),

which is strictly greater than (B1 +B2).

To determine which nodes belong to the connected component, GC , in the efficient net-

work, we define, for node i, Ai , 2b(1) + 2(k − 2)b(2) − c1 − ci where k is the number of

nodes in the connected component GC . We show that i is in GC iff Ai ≥ 0. First, Ai > 0 is

the sufficient condition for i to be in GC . This is because connecting i to node 1 increases

the total utility by exactly Ai, as the diameter of GC is at most 2, according to Lemma 1.

Also if Ai < 0, then i will be isolated so Ai ≥ 0 is also the necessary condition. This is

because i cannot be only connected to 1 since Ai < 0, so the only way for i to be connected

is by having more than one link. From Lemma 1, for i to have a link to j 6= 1, we must have

ci + cj < 2b(1)− 2b(2). But: ci + cj > c1 + ci > 2b(1) + 2(k − 2)b(2) > 2b(1)− 2b(2), where

we use the fact that cj > c1 and Ai < 0, so i cannot have more than one connection either,

thus i will be isolated. Note that Ai > 0 also means Aj > 0 for all j < i since cj < ci, thus

all lower cost nodes will also be in GC , so the smallest i for which Ai < 0 provides the size

5



of the connected component in the efficient network.

2.2 Stability

Assuming heterogeneous, separable connection costs, are there structures that are simul-

taneously efficient and stable? To investigate this, we use the notion of pairwise stability3.

According to Proposition 1, for a (pairwise) stable network to also be efficient, it has to have

a single connected component with a generalized star structure.

We demonstrate that there are pairwise stable networks in the form of a generalized star.

Such structures have one connected component withm′ nodes, wherem′ is the largest integer

between 1 and n such that cm′ < b(1) + (m′ − 2)b(2). With N ′ as the set of every node i

where ci ≤ b(1)− b(2), we show that for a stable network with a generalized star structure:

1) N ′ is a complete graph, 2) Any i ∈ N ′ can be the hub, h, and every j /∈ N ′ for which

b(1)− b(2) < cj < b(1) + (m′ − 2)b(2) is connected to the hub, h.

Given ci < b(1) − b(2), any two agents in N ′ benefit from forming a link, so N ′ is a

complete graph. No agent i ∈ N ′ has an incentive to sever any of its links (inside or outside

of N ′) as it pays ci < b(1)− b(2) per connection. Once all (e.g. m′) nodes are connected to

node h ∈ N ′, severing a link by j /∈ N ′ for which cj < b(1)+(m′−2)b(2) decreases its utility.

Moreover, there are no two agents j and j′ where j /∈ N ′ and j′ 6= h who can improve their

utilities by agreeing on forming a mutual link given cj > b(1)− b(2).

The described structure is not the only possible stable structure as one can in general

construct stable structures with diameters bigger than 2 4, nor does this structure ensure

efficiency. However for certain cost vectors we can create structures that are simultaneously

stable and efficient. For example, let C = {c1, . . . , ck, . . . , cm, . . . , cn}. Suppose we have

3According to Jackson and Wolinsky (1996), the network g is pairwise stable if:

(i) for all ij ∈ g, ui(g) ≥ ui(g − ij) and uj(g) ≥ uj(g − ij) and

(ii) for all ij ∈ g, if ui(g + ij) ≥ ui(g) then uj(g + ij) < uj(g).

4For instance, if n=4 and for each agent i, b(1)−b(3) < ci < b(1), a line structure is also a stable network
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k such that ck ≤ b(1) − b(2) and ck+1 > 2(b(1) − b(2)). Suppose we have m such that

cm < (m − 1)b(2) and cm+1 > b(1) + (m − 2)b(2). If all i ≤ k form a complete graph and

every j(k < j < m) is connected to node 1, the resulting network is both stable and efficient.

2.3 Characteristics of Networks with Separable Cost Model

2.3.1 Core-Periphery structure

We show that the efficient network has a Core-periphery structure, a widely observed

structure in various social and economic networks (i.e. see for example Zhang et al. (2014);

Rombach et al. (2014)). We adopt the formal definition from Bramoullé (2007), which

states that a graph g has a core-periphery structure when agents can be partitioned into

two sets, the core C and the periphery P , such that all partnerships are formed within the

core and no partnership is formed within the periphery. For an efficient network, let k be

the largest integer between 2 and n such that b(1) − b(2) > .5(ck−1 + ck). The efficient

network can be partitioned into a set C = {1, . . . , k}, which forms a complete subgraph and

a set P = {k + 1, . . . , n} which can only have connections to the complete subgraph. If

b(1) − b(2) > (ck−1 + ck) then k and k − 1 are connected and there is also a link between

every node i, j(i, j ≤ k and ci, cj ≤ ck), which forms a complete subgraph. Similarly, we can

show that for every i ∈ P , which is connected to a node j, cj ≤ ck and j 6∈ P .

2.3.2 Clustering coefficient

We find the global clustering coefficient of the efficient network and a lower bound for

it. For a given density, the following structure results in minimum clustering coefficient

for the connected component in the efficient network: Let m be the number of nodes and

ℓ(ℓ ≥ m−1) represent the number of links in the connected component. Having nodes sorted

according to connection costs and without violating the conditions for efficiency, we connect

every two nodes such that minimum number of triangles are made as follows: Starting from

node k = 1, we establish a link from node k to every node i > k. We repeat this process for
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k = 1, . . . , n until the total number of links reaches ℓ. Therefore, we have ℓ =
∑p

k=1(n−k)+J

where J < n−p+1. At the k-th iteration, the total number of connected triplets is increased

by
(

n−k

2

)

+
(

J

2

)

and the total number of triangles is increased by (k−1)(n−k)+pJ . Therefore

we have 5 :

C(g) =
3× number of triangles

number of connected triplets of nodes
=

3× {
∑p

k=1(k − 1)(n− k) + pJ}
∑p

k=1

(

n−k

2

)

+
(

J

2

)

≥
3×

∑p

k=1(k − 1)(n− k)
∑p

k=1

(

n−k

2

)

(2)

3 Conclusion

Heterogeneous yet separable connection costs cover important classes of real networks.

We showed that efficient structures for such networks can be solved exactly and have diameter

no larger than two; we also discussed the transitivity and core-periphery nature of such

networks. Moreover, we showed the possibility of having simultaneous efficient and stable

structures for these classes of network under certain cost vectors and benefit functions.

Although benefits are still assumed to be homogeneous, one can easily take into account

heterogeneity of direct benefits, as long as the separability assumption is maintained, i.e.

cost and direct benefit terms appear together in all analysis and cost terms can capture

heterogeneity of direct benefits by embedding them as an off-set in the fixed costs of nodes.

There are cases where the separable cost assumption does not hold, for example when

the link cost is the function of how similar the two nodes are. These cases in general can

be intractable and approximate methods such as island models as discussed in Jackson and

Rogers (2005) can be used.

5For n ≥ 3 and with some algebra we can show the inequality.
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