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Abstract

We develop a urban economic model in which agents locate in cities of dif-

ferent size so as to maximize the net output of the whole system of cities in a

country. From this model two new city size distributions are exactly derived. We

call these functions “threshold double Pareto Generalized Beta of the second kind”

and “double mixture Pareto Generalized Beta of the second kind”. In order to test

empirically the theory, we analyze the US urban system and consider three types of

data (incorporated places from 1900 to 2000, all places in 2000 and 2010 and City

Cluster Algorithm nuclei in 1991 and 2000). The results are encouraging because

the new distributions clearly outperform the lognormal and the double Pareto log-

normal for all data samples. We consider a number of different tests and statistical

criteria and the results are robust to all of them. Thus, the new distributions de-

scribe accurately the US city size distribution and, therefore, support the validity

of the theoretical model.
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1 Introduction

Cities are complex systems, which tend to self-organize and where everything is inter-

connected (Krugman, 1996; Batty, 2008, 2013; Bettencourt and West, 2010; Arcaute

et al., 2014). Therefore, their study can and must be addressed from different points of

view. This work aims to shed some light, both from a theoretical and from an empirical

perspective, to the analysis of city size distributions. The empirical part focus on the

US urban system, taking data from 1900 to 2010.

A first question which should be justified is why it is relevant to study city size dis-

tributions. In other words, why it is worth devoting effort to describe, as accurately as

possible, the shape of the mentioned distributions. Following Malevergne et al. (2011)

we can put forward three essential arguments. One, the shape can be very informative

when trying to understand the mechanisms associated to the growth generating process.

Two, the specific shape of the distribution (unimodal of not, skewed or not, leptokurtic

or not) has consequences on many socio-economic aspects affecting citizens in the real

world. And three, the upper tail is, by definition, quantitatively important in terms of

population.

According to the content of the previous paragraph, the literature on city size dis-

tributions is ample. Without pretending to be exhaustive and citing only contribu-

tions of this century, we have Overman and Ioannides (2001); Black and Henderson

(2003); Ioannides and Overman (2003, 2004); Eeckhout (2004); Soo (2005, 2014);

Anderson and Ge (2005); Bosker et al. (2008); Giesen et al. (2010); Holmes and Lee

(2010), Berry and Okulicz-Kozaryn (2012);1 Ioannides and Skouras (2013); González-

Val et al. (2015); Luckstead and Devadoss (2014a,b) and Berliant and Watanabe (2015).

It is not easy to summarize the preceding papers. Notwithstanding, we will point out

the main characteristics of this body of literature.

First, the most studied geographic area is that of the United States. Secondly, the

1 Where you can find an excellent survey of the history of city size distributions in its Section 2.

1



two most studied distributions, by a far amount, are the Pareto I or power law (a partic-

ular case of this is the so-called Zipf’s law or, in its deterministic version, the rank-size

rule) and the lognormal. Thirdly, the definition of what is considered a city is not neu-

tral to the results obtained finally. Indeed, researchers in this field usually have to take

two decisions: on the one hand, the consideration or not of a cut-off or truncation point

of the population variable (and, if affirmative, of what size) and, on the other hand,

the specific definition of the objects of study.2 Fourthly, there is a certain consensus

(Desmet and Rappaport (2014) take it for granted to build up their article), about that

the US city size distribution is lognormal and approximately Zipf at the upper tail, or

at least, Pareto; see also Levy (2009).3 Finally, a number of recent papers argue that

for an excellent fit to the data for the whole range of possible sizes, it is necessary to

consider more than a single functional form, since the different parts of the distribution

present different behaviors. Indeed, Giesen et al. (2010) distinguish between the tails

and the body, and Ioannides and Skouras (2013) do it between the upper tail and the

rest of the distribution. We will return to this idea in Sections 2 and 4.

Against this background, the present paper attempts to define a new framework to

analyse city size distributions, both from a theoretical and from an empirical point of

view.

The theory will be addressed in Section 4, where we develop a urban model in

which the population distributes itself so as to maximize the net output of the system

of cities of the country. From this model the new density functions proposed in this

paper, called “treshold double Pareto Generalized Beta of the second kind”, (tdPGB2),

and “double mixture Pareto Generalized Beta of the second kind”, (dmPGB2) can be

exactly deduced.

In the empirical part of this paper, we will compare the tdPGB2 and dmPGB2 with

2As an illustrative example, in the case of US, Rozenfeld et al. (2011) tell us that the distribution of

places or legal cities is broadly lognormal, while the distribution of geography-based agglomerations (City

Clustering Algorithm nuclei or CCA nuclei or simply, clusters, hereafter), is quasi-Zipf.
3An exception to this consensus can be found in Bee et al. (2013).
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two well-known distributions previously considered when studying city size, namely

the lognormal (lgn) and the double Pareto lognormal (dPln).4 For the case of US places,

we will consider as well the Generalized Beta of the second kind (GB2) distribution

that is obtained directly from an economic model by Parker (1999), on which we base

our further developments of Section 4. The densities newly introduced herein system-

atically improve the performance of all the distributions used up to now.

The rest of the paper is structured as follows. In Section 2 we will detail the prin-

ciples underlying our approach. Section 3 defines the densities that are estimated later,

namely, the lognormal, the double Pareto lognormal, the Generalized Beta of the sec-

ond kind and the new tdPGB2 and dmPGB2. Section 4 develops the theoretical model

in which the net output of the whole urban system is maximized, yielding as a result the

new distributions. Section 5 describes the data sets used in the empirical application.

Section 6 gives an account of the empirical results. Finally, we give some Conclusions.

2 Motivation of our approach

This paper is based on the following principles (one in each paragraph), many of them

standard in the Urban Economics literature.

From our point of view, to find statistical distributions that fit the data much better

than the ones known in the literature is an interesting contribution by itself. But it

is even much more interesting if these new distributions are derived from a theoretical

economic model, in which functions that have clear economic implications are defined,

and explicitly, agents fulfill their rule of behaviour according to the usual optimization

techniques. See, in this sense, Section 4.

The study of city size distributions should be, to the possible extent, a long-term

4We do not specifically show a separate study for the Pareto distribution as it is encoded at the tails of the

new tdPGB2 and dmPGB2. Moreover, the new densities are overwhelmingly better than a single power law

for all the range of city sizes.
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analysis (Parr, 1985; Gabaix and Ioannides, 2004). In particular, we use different data

sets concerning the United States from 1900 to 2010, although not all results are shown

for the sake of brevity.

It seems that there is no single density function capable of providing adequate de-

scription of the distribution for all values of the city size population variable. This is

an accepted statement in the literature on income size distribution.5 We consider ap-

plicable this idea, in line with Schluter and Trede (2013) and Bee et al. (2013), also to

the study of city size distribution. Consequently, in our approach, we divide the overall

distribution in three parts: the lower tail, the body, and the upper tail. Each of these

three parts has a specific treatment in the economic model that we develop in Section 4.

A principle that is derived directly from the previous paragraph is that big urban

nuclei (upper tail) do matter and require a special attention. This is a generally accepted

fact in the Urban Economics literature (Zanette (2015), for example, clearly highlights

the problems associated with the modeling of city sizes for low ranks), where even the

largest cities receive a special designation (“dragon kings”, “king effect”, ”king plus

vice-roy effect”) and generally are considered to be outliers with respect to the the

hypothesized distribution (see, e.g., Giesen and Suedekum (2012)).

Also, in parallel with the preceding two paragraphs, we have the certainty that small

nuclei (lower tail) do matter and also require an specific treatment. Contrary to what

is generally accepted for the larger cities, this approach is fairly overlooked, with the

possible exception of Reed (2002, 2003). Therefore, we consider, as Eeckhout (2004)

does in his pioneering work, all entities of population, without any truncation point.

The importance of small nuclei has already been highlighted from a theoretical point

of view in the models of Blank and Solomon (2000) and Lee and Li (2013). From

5Explicitly, Dagum (1979) points out in the page 16, citing (Macaulay, 1922, p. 393): “it seems unlikely

that any useful mathematical law describing the entire distribution can ever be formulated” or (Mandelbrot,

1960, p. 82): “The above reason makes it unlikely that a [...] single empirical formula could ever represent all

the data” and (Budd, 1970, p. 250): “it is virtually impossible to describe empirical distributions accurately

by just one function”.
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an empirical perspective, small urban nuclei are not relevant for the percentage of the

population they represent, but this is not the case with regards to the total number of

nuclei. We will see in Section 6 that the empirical results obtained confirm the necessity

of taking into account the lower tail specifically.

The parsimony in terms of the number of parameters of the distribution to be es-

timated is always a goal to be pursued. This is one of the reasons for the success of

power laws and Zipf’s law: they fit reasonably well the data, especially at the upper tail,

and computationally they are not costly.6 Notwithstanding this, the new distributions

that we propose in this paper seem not to be particularly parsimonious at first sight.

But we can defend this option based on four arguments. Firstly, with the currently

available computing capabilities, to estimate a moderately high number of parameters

is not particularly expensive. Secondly, the information criteria used in Section 6 in or-

der to discriminate between the studied distributions, namely the Akaike Information

Criterion (AIC) and the Bayesian or Schwarz Information Criterion (BIC), explicitly

penalize the number of parameters of an hypothesized distribution. The penalty func-

tions are rooted on solid information-theoretical arguments (Burnham and Anderson,

2002, 2004). Thirdly, there already exist examples in the literature where a mere in-

creasing of the parameters of the distribution does not always lead to a better fit in

information-theoretic terms.7 And fourthly, as we will see in the empirical applica-

tion of Section 6, the descriptive power of the new densities is extremely high, so a

rather complex system like a complete urban structure, with thousands of urban nuclei

and millions of people involved, can be accurately described by means of a distribu-

tion with ten parameters or less. The descriptive power of the parameters is, therefore,

comparatively large in per capita terms.

The results are more valid and powerful as they are robust to different alternatives.

6Although the determination of the optimal cut-off population value for the Hill (Hill, 1975) estimator

takes a lot of calculations.
7See, for example, the case of Switzerland in Giesen et al. (2010), where the lognormal (two parameters)

outperforms the double Pareto lognormal (four parameters), and other examples in González-Val et al. (2015)

where the log-logistic (two parameters) also outperforms the dPln.
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In the first place, we have used three definitions of US cities (they are not all of the ex-

isting ones, but we believe it is a number high enough): incorporated places, all places

and CCA clusters of Rozenfeld et al. (2011). Secondly, we will consider a number of

different criteria in order to assess the quality of the empirical fits. Indeed, we will

use three different statistical tests which are very powerful for the large sample sizes

at hand (Razali and Wah, 2011), and for which the non-rejections occur only if the

deviations (statistics) are really small. They are the Kolmogorov–Smirnov (KS) test,

Crámer–von Mises (CM) test and, as recommended by Cirillo (2013), the Anderson–

Darling (AD) test. Furthermore, we reinforce the metrics with additional criteria very

well suited to the study of city size distributions, namely the msd (mean squared differ-

ences) and pseudo-R2 quantities of Duranton (2007). Also, and as already mentioned,

in order to discriminate between the hypothesized theoretical distributions, we use the

AIC and BIC information criteria. Finally, in the third place, one may wonder whether

these results are also applicable to other geographical areas. The paper of Puente-

Ajovı́n and Ramos (2015) carries out the empirical analysis for four major European

countries: France, Germany, Italy and Spain. In all of these cases (for Italy and Spain

data for more than one hundred years are employed), a particular case of one of our

hypothesized distributions, the so called therein “tdPSM”, is the one which offers the

best performance amongst the studied ones.

We do not take into account that the city size distribution can be affected by ge-

ographical aspects. In other words, our approach is not spatial in nature. Although

Behrens et al. (2014) have found that spacial frictions do not significantly influence the

city size distribution, it is a potentially relevant subject which has already received at-

tention in several recent articles (Favaro and Pumain, 2011; Rybski et al., 2013; Rauch,

2014; Hsu et al., 2014).

6



3 Description of the distributions used

In this Section we will introduce the distributions used along this paper.

3.1 The lognormal (lgn)

The well-known lognormal (lgn) distribution for the population of cities have been

proposed in the field of Urban Economics by Parr and Suzuki (1973) and afterwards

by Eeckhout (2004) when considering all cities. The corresponding density is simply

fln(x, µ, σ) =
1

xσ
√
2π

exp

(

−
(lnx− µ)2

2σ2

)

where µ, σ > 0 are respectively the mean and the standard deviation of lnx, x being

the population of the urban units under study.

3.2 The double Pareto lognormal (dPln)

The second distribution in our study will be the double Pareto lognormal distribution

(dPln), introduced by (Reed, 2002, 2003; Reed and Jorgensen, 2004):

fdPln(x, α, β, µ, σ)

=
αβ

2x(α+ β)
exp

(

αµ+
α2σ2

2

)

x−α

(

1 + erf

(

lnx− µ− ασ2

√
2σ

))

−
αβ

2x(α+ β)
exp

(

−βµ+
β2σ2

2

)

xβ
(

erf

(

lnx− µ+ βσ2

√
2σ

)

− 1

)

where erf is the error function associated to the normal distribution and α, β, µ, σ > 0

are the four parameters of the distribution. It has the property that it approximates

different power laws in each of its two tails: fdPln(x) ≈ x−α−1 when x → ∞ and

fdPln(x) ≈ xβ−1 when x→ 0, hence the name of double Pareto. The body is approx-

imately lognormal, although it is not possible to exactly delineate the switch between
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the lognormal and the Pareto behaviors (Giesen et al., 2010). In this last reference it is

shown that the dPln offers a good fit for a number of countries. In this line, see also the

work of Giesen and Suedekum (2014) and González-Val et al. (2015).

3.3 The threshold double Pareto Generalized Beta of the second

kind (tdPGB2)

We introduce here a new distribution. By construction, the tdPGB2 has a Generalized

Beta of the second kind (GB2) body and Pareto tails, the three regions exactly delin-

eated by two thresholds: ǫ > 0 separates the Pareto power law in the lower tail from

the GB2 body, and τ > ǫ separates the body from the Pareto power law in the upper

tail.

The specific description is as follows. We first define the building block functions,

setting

fGB2(x, a, b, p, q) =
axap−1

bapB(p, q) (1 + (x/b)
a
)
p+q (1)

cdfGB2(x, a, b, p, q) =
1

B(p, q)
B

(

(x/b)a

1 + (x/b)a
, p, q

)

(2)

l(x, ρ) = xρ−1 (3)

u(x, ζ) =
1

x1+ζ
(4)

The fGB2 (cdfGB2) is the Generalized Beta of the second kind density (resp., cumula-

tive distribution function, cdf) (McDonald, 1984; McDonald and Xu, 1995; Kleiber and

Kotz, 2003),B(z, p, q) =

∫ z

0

tp−1(1 − t)q−1 dt with z ∈ [0, 1] is the incomplete Beta

function and B(p, q) = B(1, p, q) is the Beta function. The four parameters a, b, p, q

are positive and b is a scale parameter, and a, p, q are shape parameters. The functions

l(x, ρ) and u(x, ζ) will model, except for a multiplicative positive constant, the Pareto

lower (l) and upper (u) tails of our distribution, where ρ > 0 and ζ > 0 are the Pareto
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exponents.

We impose continuity of the composite density function at the two threshold points

and overall normalization of the former to the unit. The resulting density reads

ftdPGB2(x, ρ, ǫ, a, b, p, q, τ, ζ) =























b4 e4 l(x, ρ) 0 < x < ǫ

b4 fGB2(x, a, b, p, q) ǫ ≤ x ≤ τ

b4 a4 u(x, ζ) τ < x

where the constants are given by (they are effectively constants because the functions

below are evaluated at the specific values ǫ, τ and, therefore, do not depend on x)

e4 =
fGB2(ǫ, a, b, p, q)

l(ǫ, ρ)
(5)

a4 =
fGB2(τ, a, b, p, q)

u(τ, ζ)
(6)

b−1
4 = e4

ǫρ

ρ
+ cdfGB2(τ, a, b, p, q)− cdfGB2(ǫ, a, b, p, q) +

a4
ζ τζ

(7)

This distribution depends on eight parameters (ρ, ǫ, a, b, p, q, τ, ζ) to be estimated.

3.4 The double mixture Pareto Generalized Beta of the second kind

(dmPGB2)

The last distribution, also new, that we will consider in this paper is a variant of the

previous tdPGB2. Now, the Pareto parts at the two tails are mixed (by means of convex

linear combinations, see, e.g., Combes et al. (2012)) with the GB2 density, and the

body is exclusively GB2. The thresholds ǫ and τ retain their roles and meanings.

We also impose continuity of the composite density function at the two threshold

points and overall normalization of the former to the unit, as well as two weighting

conditions for the components of the mixing at the tails (Ioannides and Skouras, 2013).
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The resulting density reads

fdmPGB2(x, ρ, ǫ, ν, a, b, p, q, τ, ζ, θ)

=























b5[(1 − ν) d5 fGB2(x, a, b, p, q) + ν e5 l(x, ρ)] 0 < x < ǫ

b5 fGB2(x, a, b, p, q) ǫ ≤ x ≤ τ

b5[(1− θ) c5 fGB2(x, a, b, p, q) + θ a5 u(x, ζ)] τ < x

In order to maintain good properties of the log-likelihood estimators we will only con-

sider the case for which ν ∈ (0, 1) and θ ∈ (0, 1), that are new parameters with respect

to the tdPGB2, representing the relative weight of the Pareto component in, respec-

tively, the lower and the upper tail.

Now, the constants above are given by

d−1
5 = 1− ν +

ǫ−ρ ν ρ cdfGB2(ǫ, a, b, p, q) l(ǫ, ρ)

fGB2(ǫ, a, b, p, q)

e−1
5 =

(1− ν) ǫρ

ρ cdfGB2(ǫ, a, b, p, q)
+

ν l(ǫ, ρ)

fGB2(ǫ, a, b, p, q)

c−1
5 = 1− θ +

ζ θ τζ (1 − cdfGB2(τ, a, b, p, q))u(τ, ζ)

fGB2(τ, a, b, p, q)

a−1
5 =

(1− θ) τ−ζ

ζ (1− cdfGB2(τ, a, b, p, q))
+

θ u(τ, ζ)

fGB2(τ, a, b, p, q)

b−1
5 = e5

ǫρ

ρ
+ cdfGB2(τ, a, b, p, q)− cdfGB2(ǫ, a, b, p, q) +

a5
ζ τζ

This distribution depends on ten parameters (ρ, ǫ, ν, a, b, p, q, τ, ζ, θ) to be estimated.

Note that the tdPGB2 is a limiting case of the dmPGB2 when ν → 1 and θ → 1 (the

GB2 components at the tails, multiplied by (1− ν) and (1 − θ), simply disappear).
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4 The theoretical models generating the new distribu-

tions

The most common functions used to describe city size distributions have all an underly-

ing theoretical model from which they are derived. Thus, Gabaix (1999) and Córdoba

(2008) deduce power laws and, more specifically, Zipf’s law. The same law, although

in a very different setting, is also obtained by Hsu (2012), while, in turn, Eeckhout

(2004) proposes a model for the lognormal. The more recent double Pareto lognor-

mal comes from the theoretical models proposed by Reed (2002), Reed and Jorgensen

(2004) and Giesen and Suedekum (2014). Other theoretical work in this line that should

be mentioned, although they do not generate a specific statistical distribution, but do

address theoretical aspects of Gibrat’s law and Zipf’s law, are Duranton (2006, 2007)

and Rossi-Hansberg and Wright (2007).

The model presented in this Section is an adaptation of that of Parker (1999). It is

not of a statistical nature as they are, to some extent, the productivity random shocks

model of Eeckhout (2004) and, specially, the random growth-Gibrat model of Gabaix

(1999). As a result, we move away from the type of approaches for which the resulting

city size distribution is the steady state of a stochastic process of growth that, generally,

is governed by a Brownian motion.

In Parker (1999), within a neoclassical labour market model where firms maximize

profits, it is exactly deduced the density of the Generalised Beta of the second kind

distribution presented above. What it is interesting about this model is that it allows,

mutatis mutandis, to apply it to the case of urban nuclei to get our new distributions of

Section 3: the tdPGB2 and dmPGB2. This shows the flexibility and versatility of the

approach of Parker (1999).

We separate the study of city size distributions on three different regions: lower

tail, body and upper tail. The lower tail will be exactly delineated from the body at the

11



threshold value ǫ > 0. Likewise, the body and the upper tail will be exactly delineated

at the threshold value τ > 0 (and, of course, τ > ǫ).

We will denote the number of cities (of our baseline model, tdPGB2) on the interval

of population values x ∈ (0, ǫ) as n1(x); that on the interval x ∈ [ǫ, τ ] as n2(x),

and finally that on the interval x ∈ (τ,∞) as n3(x). The corresponding cumulative

numbers of cities are, on the respective intervals:

N1(x) =

∫ x

0

n1(x) dx , x ∈ (0, ǫ)

N2(x) = N1(ǫ) +

∫ x

ǫ

n2(x) dx , x ∈ [ǫ, τ ]

N3(x) = N2(τ) +

∫ x

τ

n3(x) dx , x ∈ (τ,∞)

The total number of cities, N3(∞), is obviously a constant and it is assumed to have a

finite upper bound, denoted by Θ, so that N3(∞) < Θ.

The theoretical model that we will develop shortly determines endogenously the

number of cities on each of the previous intervals relying on certain economic condi-

tions. If we want to obtain an overall continuous probability density function we have

to:

i) Assuming, as it is usual in the field, x to be a continuous variable,8 obtain the

continuity of ni(x), i = 1, 2, 3 on the respective intervals where they are defined.

This is achieved by the model in a natural way (the equations defining ni(x),

i = 1, 2, 3 in the next subsections correspond to continuous functions on their

respective intervals).

ii) Impose continuity of the previous functions at the threshold points, namely

lim
x→ǫ

n1(x) = lim
x→ǫ

n2(x) , lim
x→τ

n2(x) = lim
x→τ

n3(x) (8)

8This assumption is based on the high number of cities in the samples (see Table 1) and proves to be very

accurate in practice: see Section 6 on the empirical results.
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iii) Divide the number of cities ni(x), i = 1, 2, 3 by the total number of cities

N3(∞), so that ni(x)/N3(∞), i = 1, 2, 3 give the correct densities of cities

of population x on the respective intervals and also at the threshold points ǫ and

τ .

At the end, this process will lead exactly to the generation of the previously defined

tdPGB2.

We develop accordingly the model considering the three regions separately; after-

wards, we will consider the joint results.9

4.1 Model for the lower tail (variables and parameters with subindex

1) of the tdPGB2

The model consists on maximizing the net output function in monetary units of the

whole urban system of a country at a given time. The number of cities is finite, so, as

already mentioned, there exists an upper bound Θ so that the total number of cities is

strictly less than Θ.

As stated before, the size (population) of each city is denoted by x. The human

capital level of each city depends on the population according to the function ψ1(x),

being ψ1(0) = 0. We assume it to be positive and increasing. Let n1(x) be the number

of cities of population x. Each inhabitant supplies one unit of labour inelastically. The

gross output of the cities of population x is F1[n1(x), ψ1(x)], in such a way that it

depends on the number of cities of population x and on its level of human capital.

There are diminishing returns to the number of cities, i.e.,
∂F1

∂n1
> 0,

∂2F1

∂n2
1

< 0 at all

population levels. There are also monetary congestion costs c1(x) associated to a city

of population x. These costs reduce the gross output of each urban settlement. We

assume that c1(x) > 0 and c′1(x) > 0 (see Subsection 4.4 for an economic justification

9Obviously, the maximum of a sum of three addends (lower tail, body, and upper tail) is the sum of the

maxima of each of them.
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of all these assumptions).

Thus, the net output of the cities of population x ∈ (0, ǫ) is F1[n1(x), ψ1(x)] −

c1(x)n1(x), and the net output of all cities with populations between 0 and ǫ (the

lower tail) is the corresponding definite integral of this last quantity. In order to specify

more the problem, we assume further that F1[n1(x), ψ1(x)] = ψ1(x)n1(x)
β , where

β ∈ (0, 1) in order to satisfy the signs of the derivatives (see above) of the gross output

with respect to the number of cities.

Therefore, the cities’ optimal control problem for the lower tail, where the output

price has been normalised to unity, can be stated as

max
n1

∫ ǫ

0

(ψ1(x)n1(x)
β − c1(x)n1(x)) dx

subject to :
dN1(x)

dx
= n1(x)

N1(0) = 0

N1(ǫ) =

∫ ǫ

0

n1(x) dx < Θ

n1(x) ∈ (0,∞)

where the state variable is N1(x), which represents the cumulative number of cities up

to a population of x, and the control is n1(x). Note that the variable x is not time but

population.10

This problem can be solved by using Pontryagin’s Maximum Principle (Pontrya-

gin et al., 1962). The associated Hamiltonian function is simply (we take the same

convention as Parker (1999) for the Lagrange multiplier)

H1(x,N1, n1, λ1) = ψ1(x)n1(x)
β − c1(x)n1(x) − λ1(x)n1(x)

10This problem can be formulated as well as an ordinary variational problem, see Kamien and Schwartz

(1991) and Chiang (1992), but in the presented way the economic meaning of the imposed conditions is

clearer.
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The state and costate equations are the following11

dN1(x)

dx
= −

∂H1

∂λ1
= n1(x)

dλ1(x)

dx
=
∂H1

∂N1
= 0

and thus λ1(x) = λ1 = Constant. The control to be chosen n1(x) is the one which

maximizes the Hamiltonian and belongs to an open interval, so no corner solutions may

arise. The first order condition is just

∂H1

∂n1
= ψ1(x)βn1(x)

β−1 − c1(x) − λ1 = 0 (9)

The second order derivative is

∂2H1

∂n2
1

= ψ1(x)β(β − 1)n1(x)
β−2 < 0 , x ∈ (0, ǫ)

and therefore the first order condition becomes necessary and sufficient for a strict

global maximum. From equation (9) we can solve for n1(x) as follows

n1(x) =

(

βψ1(x)

c1(x) + λ1

)1/(1−β)

, x ∈ (0, ǫ)

It is time now, according to the behaviour imposed above to the human capital and costs

functions of a city of size x, to define specific functional forms for both functions:

ψ1(x) = A1x
γ1 , c1(x) = k1x

b1 , where A1 > 0, γ1 > 0, k1 > 0 and b1 > 0.

Consequently, we have

n1(x) =

(

β A1 x
γ1

k1xb1 + λ1

)1/(1−β)

, x ∈ (0, ǫ)

We want n1(x) to be a pure Pareto power law, that is, to be proportional to a power

11It is not necessary to impose the transversality conditions because N1(ǫ) < Θ.
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function. For that, it is necessary and sufficient that λ1 = 0.12 This condition has

an economic meaning. Indeed, (minus) the Lagrange multiplier −λ1 is “the marginal

valuation of the associated state variable N1(x) at population x. If there were an ex-

ogenous, tiny increment to the state variable at population x and if the problem were

modified optimally thereafter, the increment in the total value of the objective function

would be at the rate −λ1”. (Kamien and Schwartz, 1991, p. 138, adapted). If the

maximum net output of the cities does not vary when the total number of cities up to

population x increases by a small amount, then the mentioned marginal valuation van-

ishes. This is the economic characterization of the pure Pareto lower tail according to

our model.

Then, with λ1 = 0 we simply have n1(x) =

(

β A1

k1

)1/(1−β)

x
γ1−b1
1−β so in order to

have a pure Pareto lower tail we require that the corresponding Pareto exponent ρ (in

the notation of Section 3) satisfies ρ =
γ1 − b1
1− β

+ 1 > 0. The assumptions made so far

about the values of the parameters β, b1 and γ1 are compatible with the fulfillment of

this expression and the empirical analysis confirms that the estimations of ρ are always

positive.

4.2 Model for the body (variables and parameters with subindex

2) of the tdPGB2

In the body of the tdPGB2 distribution we assume a similar model than for the lower

tail on the corresponding interval [ǫ, τ ]. Therefore, the number of cities in the body can

be found to be

n2(x) =

(

βψ2(x)

c2(x) + λ2

)1/(1−β)

, x ∈ [ǫ, τ ]

12As already indicated, the proper probability density function on the interval x ∈ (0, ǫ) is n1(x)/N3(∞)
(see also Parker (1999)). Since N3(∞) is a finite positive constant we have a Pareto distribution in the lower

tail if and only if, as stated in the text, λ1 = 0. This footnote also applies to the power law in the upper tail

with the corresponding Lagrange multiplier, see Subsection 4.3.
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For the body, we do not expect it to be pure Pareto, so that we will consider that

λ2 > 0. Also, we define ψ2(x) = A2x
γ2 , c2(x) = k2x

b2 , where now we assume that

A2 > 0, γ2 > 0, k2 > 0, b2 > 0, so that

n2(x) =

(

β A2x
γ2

k2xb2 + λ2

)1/(1−β)

, x ∈ [ǫ, τ ]

Comparing this last expression with the definition of the GB2 distribution (see eq.

(1)) both functions can be properly related, so that n2(x)/N3(∞) is, up to a positive

multiplicative constant, the expression of fGB2(x, a, b, p, q) of (1). Indeed, we simply

have

n2(x) =

(

βA2

λ2

)1/(1−β)

B(p, q)
bap

a
fGB2(x, a, b, p, q) , x ∈ [ǫ, τ ]

with the identifications of the parameters

a = b2

b =

(

λ2
k2

)1/b2

p =
1

b2

(

1 +
γ2

1− β

)

q =
1

1− β
−

1

b2

(

1 +
γ2

1− β

)

Since β ∈ (0, 1), let us point out that it should happen that p+ q > 1 according to our

economic model.

4.3 Model for the upper tail (variables and parameters with subindex

3) of the tdPGB2

In the upper tail we assume a similar model than for the lower tail and body, but now

defined on the interval (τ,∞). The corresponding number of cities in the upper tail
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can be found to be

n3(x) =

(

βψ3(x)

c3(x) + λ3

)1/(1−β)

, x ∈ (τ,∞)

Now, we take ψ3(x) = A3x
γ3 , c3(x) = k3x

b3 , where A3 > 0, γ3 > 0, k3 > 0 and

b3 > 0. Thus

n3(x) =

(

β A3x
γ3

k3xb3 + λ3

)1/(1−β)

, x ∈ (τ,∞)

In this case, we want to obtain again a pure Pareto upper tail. Thus, we require that

λ3 = 0, with analogous economic interpretation to that in the lower tail. Then, we have

n3(x) =

(

β A3

k3

)1/(1−β)

x
γ3−b3
1−β and it must happen that the Pareto exponent ζ (in the

notation of Section 3) satisfies −ζ =
γ3 − b3
1− β

+ 1 < 0. The assumptions made so far

about the values of the parameters β, b3 and γ3 are compatible with the fulfillment of

this expression and the empirical analysis confirms that the estimations of ζ are always

positive.13

Finally, for the overall distribution, we can impose the following natural conditions,

namely, continuity of the human capital (ψ(x)) and effective cost functions (c(x) + λ)

at the threshold values ǫ and τ :

lim
x→ǫ

A1x
γ1 = lim

x→ǫ
A2x

γ2 , lim
x→τ

A2x
γ2 = lim

x→τ
A3x

γ3 (10)

lim
x→ǫ

k1x
b1 = lim

x→ǫ
k2x

b2 + λ2 , lim
x→τ

k2x
b2 + λ2 = lim

x→τ
k3x

b3 (11)

These conditions have the immediate consequence that (8) holds. And, as stated pre-

viously, dividing ni(x), i = 1, 2, 3 by the total number of cities N3(∞) provides

the exact probability density function on each interval and the threshold values corre-

13The empirical evidence corroborates that Zipf’s law holds especially for the larger cities. Thus, it is

obtained for the upper tail when ζ = 1 or, in other words,
b3 − γ3

1− β
= 2. In the estimations shown in

Table 2, ζ is statistically equal to one at the 5% significance level only for the sample of incorporated places

in 1900.
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sponding to the tdPGB2 of Subsection 3.3, and of course taking these quotients implies

overall normalization to the unit.14 Let us remark that in Subsection 3.3, the definition

of the e4, a4, b4 quantities by eqs. (5), (6) and (7) reflects exactly the conditions of the

overall probability density function to be continuous at the threshold values ǫ and τ and

to be normalized to the unit.

The distribution dmPGB2 can be obtained in a similar way, with the only distinction

that at the respective tails there are two types of cities: one whose marginal valuation

vanish (the corresponding Lagrange multiplier vanishes), and others whose marginal

valuation of the net output with respect to variations of the cumulative number of cities

is negative. The first type of these are formally equal to the n1(x) (resp. n3(x))

above for the lower (resp. upper) tail. They are combined convex and linearly with

the n2(x) above (but extended in domain to both tails). At the body, the n2(x) in the

dmPGB2 is the same as that of the tdPGB2. The conditions (10) and (11) (and, of

course, (8) as well) can be taken to hold also in this case. The cumulative numbers of

cities differ slightly from those of the tdPGB2 but can be computed in a straightforward

and analogous way.15

As a final outcome, we have demonstrated that we can obtain the tdPGB2 and

dmPGB2 probability distributions from theoretical economic models in which the pop-

ulation of a country locates in cities of different sizes so as to maximize the net output

of the overall urban system.

Different types of data might be best described by different density functions. As

we will see on Section 6, the tdPGB2 is very appropriate for describing US places and

the dmPGB2 for US CCA clusters. For places, we will compare as well the tdPGB2

with the baseline distribution GB2 obtained from the model of Parker (1999) in order

to see how the assumption of pure Pareto tails leads to a remarkable improvement.

14More details are available from the authors upon request.
15More details are available from the authors upon request, and we provide a MATHEMATICA notebook

with the corresponding Hamiltonians and optimization equations as supplementary material.
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For CCA clusters, the estimated parameters p, q of the GB2 are such that p + q < 1

so it cannot be derived directly from the economic model of Parker (1999) and the

corresponding results are omitted.

4.4 Economic explanations for the shape of the functions ψ(x) and

c(x)

There are two functions that define the most important characteristics of our model.

On the one hand, ψ(x) relates the stock of human capital in each city with its size x.

On the other hand, c(x) provides the cost function for each nucleus. With regards to

the first, the proposed functional form and values of the γ parameters in the previous

subsections, make it to be an increasing function (γ > 0). It is obvious that it has to

be increasing: larger cities have, on average, more human capital. It can be convex

(γ > 1), linear (γ = 1), or concave (γ < 1). In the first (third) case, if a city has a size

that is, for example, twice the size of another city, its human capital stock will be larger

(smaller) than twice the one of the smaller city. Our theoretical model is compatible

with the three options and, therefore, is an empirical question, out of the scope of this

paper, to determine which of them holds.

Of course, from an economic point of view, the most interesting scenario is that in

which human capital accumulates at rates that are increasing with respect to the size of

the urban settlements. We can justify this behaviour according to two arguments.

First, “there is some evidence suggesting that human capital accumulates more

quickly in urban areas” (Glaeser and Resseger, 2010). This empirical evidence is also

corroborated in Moretti (2004). In this last reference the nineteen MSAs of USA with

larger (and smaller) percent of college graduates in 2000, ranging from the 43.6% of

San Francisco, CA, to the 11.3% of Danville, VA, are presented. The average size of

the first (the calculation is ours) in 2000 is 1,087,157 inhabitants, while the latter is

nearly a quarter, namely 289,863 inhabitants. This supports that, in general, there is a
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positive relationship between accumulation of human capital and size of the city.

Secondly, the existence of agglomeration economies. Estimates of their magnitude

deduce that doubling the size or density of an urban area increases its productivity

between 2% to 8% (see the excellent and comprehensive surveys about the topic of

Rosenthal and Strange (2004), Melo et al. (2009), Puga (2010) and Combes and Gob-

illon (2015)). In our model, these productivity gains associated with a larger size are

due to human capital accumulation with respect to the population of the city: an urban

nucleus with twice the labour force than another has more than twice human capital

provided that γ > 1. This is one of the inputs in the production function, and there-

fore causes that the productivity per worker is higher in the larger city. The greater

accumulation in absolute and percentage terms of human capital in the biggest cities,

obviously, is not the only cause which may give rise to the emergence of agglomeration

economies and productivity gains (see the classic micro-fondations of sharing, match-

ing, and learning in Duranton and Puga (2004)), but it is one of the more plausible

and it has been empirically corroborated by Rauch (1993) (raising the average educa-

tion level of a metropolitan area by one year increases the total factor productivity by

2.8%).16

It is time now to justify the shape adopted for the cost function c(x), which is

increasing with respect to city size (b > 0). We label these costs, without loss of

generality, as congestion costs. Now, we are thinking about the factors related to all

the “bad” that is traditionally associated with bigger cities. This is why these costs

reduce the gross output of each urban nucleus and give rise to the obtention of the net

output, available for consumers and maximized in our model. Some of these factors are

the following: crime, traffic, diseases, pollution and housing prices. All of them tend

16It is outside the scope of this work to deepen into the economic mechanisms that explain why larger cities

might accumulate human capital more quickly and are, on average, more productive. Useful references to

this regard are the seminal article by Lucas Jr. (1988), in particular its sixth section devoted to “Cities and

growth”; Glaeser (1998), which emphasizes the role of cities as nodes for interaction and learning, and

Glaeser (2011), where you can find an informative exposition, with many actual examples, of all these ideas.

See also Yankow (2006) and Combes et al. (2008), which analyze human capital divergences as a key driver

of earning differences (wage premium in bigger cities).
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to increase in absolute terms with city size. In per capita or relative terms things are

not so clear. Bettencourt and West (2010) report that the magnitude of crime, traffic,

and certain diseases is multiplied by 2.3 if the population of a city is doubled; in this

case b > 1. Regarding pollution there is a certain consensus about the fact that larger

cities are, on average, greener (Glaeser, 2011), see also Glaeser and Kahn (2010) for

the intensity of CO2 emissions; in this case b < 1. Finally, The connection between

city size and housing prices is a complex topic which depends on local geography,

regulatory policies and internal spatial structure of the cities: see Saiz (2010), Glaeser

et al. (2012), and references therein for an overview; in this case b > 1 or b < 1. Again,

as for the ψ(x) function, our theoretical model is compatible with all the possibilities

and, therefore, is an empirical question to determine whether c(x) increases with city

size at a more than proportional rate (b > 1) or not (b < 1). It is not the aim of this

paper to deal specifically with this interesting applied topic.

We want to remark, as a reflection, an important feature of our theoretical model.

That is, the parameters of the overall distribution so obtained, the tdPGB2, depend on

the elasticities of the gross output with respect to the number of cities with a given

population (β), of the human capital stock with respect to population (γi, i = 1, 2, 3)

and of the city costs with respect to the population as well (bi, i = 1, 2, 3). In particular,

the Pareto exponents at the lower and upper tails are related to the previous parameters.

These elasticities might vary over time, mainly due to economic reasons, so we obtain

that city size distribution is explained at a given time by the economic conditions that

determine it. Therefore, this model may help in explaining the observed persistence

of the city size distribution in the short term (Black and Henderson, 1999; Kim, 2000;

Beeson et al., 2001), because the previously mentioned elasticities probably have a

slow time variation. However, in the long term the variations can be quite remarkable,

as Batty (2006) points out.

The content of the last paragraph lead us to two important outcomes. First, the
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urban policy implications of the previous discussion are, in our opinion, very important.

Secondly, the interpretation of city size distribution as a steady state (by definition, with

no time changes at all) of a stochastic process seems to be questionable.

Finally, Section 6 shows that our new distributions describe the actual data with an

extremely high precision. This is an example of how the interaction and feedback be-

tween empirics and economic modeling might lead to a new theoretical understanding,

in this case, of the way city size distributes.

5 The databases

In this article, we use data about US urban centers from three sources. The first is

the decennial data of the US Census Bureau of “incorporated places” without any size

restriction, for the years 1900, 1950 and 2000. These include governmental units clas-

sified under state laws as cities, towns, boroughs or villages. Alaska, Hawaii and Puerto

Rico have not been considered due to data limitations. The data have been collected

from the original documents of the annual census published by the US Census Bu-

reau.17 This data was first introduced in González-Val (2010), see therein for details,

and later used in other works like González-Val et al. (2015).

The second source consists of all US urban places, unincorporated and incorpo-

rated, and without size restrictions, also provided by the US Census Bureau for the

years 2000 and 2010. The data for the year 2000 was first used in Eeckhout (2004)

and later in Levy (2009), Eeckhout (2009), Giesen et al. (2010), Ioannides and Sk-

ouras (2013) and Giesen and Suedekum (2014). The two samples were also used in

González-Val et al. (2015).

The third comes from a different and recent approach to defining city centers, de-

scribed in detail in Rozenfeld et al. (2008, 2011). They use a so called “City Clustering

17http://www.census.gov/prod/www/decennial.htmlLast accessed: April 30th , 2015.
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Algorithm” (CCA) to get “an automated and systematic way of building population

clusters based on the geographical location of people.” (op. cit.) We use their US clus-

ters data based on the radii of 2 and 3 km. (the samples with higher sample sizes) and

for the years 1991 and 2000. This kind of data has been used in Ioannides and Skouras

(2013) and Giesen and Suedekum (2014).

We do not consider, on the other hand, types of data like Economic Areas of Berry

and Okulicz-Kozaryn (2012); Core Based Statistical Areas (CBSA), popularized by

Duranton (2007) and also employed by Lee and Li (2013); MSAs (see, e.g., Ioannides

and Skouras (2013) for their definition) and used in many papers. These three types

violate our principle that the small nuclei also matter and that there should be no trun-

cation point: there are only 366 MSAs, 940 CBSAs, and less than 200 Economic Areas

in 2010.

The descriptive statistics of the data sets used in this paper can be seen in Table 1.18

6 Results

We show briefly in this Section how our new distributions, the tdPGB2 and the dmPGB2,

perform in the fit of the size of US places (incorporated and all) and CCA nuclei, com-

pared to well-known distributions of city size as the lognormal (lgn) and the double

Pareto lognormal (dPln). For the case of US places, we show also the corresponding

results of the Generalized Beta of the second kind (GB2).

Firstly, we show in Table 2 (places) and 3 (CCA nuclei) the estimation results for

the used distributions. We observe that the estimations are rather precise in all cases.19

18The results for the remaining years of incorporated places in the period 1900-2000, and for the CCA

nuclei with radii 4 and 5 km. are similar and are not shown for the sake of brevity. They are avaliable from

the authors upon request. The previous statement also applies to all of the Tables in Section 6.
19We show the estimators and the standard errors (SE) computed according to the procedure of McCul-

lough and Vinod (2003) and Efron and Hinkley (1978). Also, we have checked that all of our estimations

satisfy the requirements raised on the first of these references. The dmPGB2 cannot be always be estimated

for places samples, and the tdPGB2 yields worse results than the dmPGB2 for CCA clusters. This means

that the two types of data (places, clusters) are essentially different. These differences have already been
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We show in Table 4 the results of the Kolmogorov–Smirnov (KS), Crámer–von

Mises (CM) and Anderson–Darling (AD) tests for the studied samples and used density

functions. The AD test is very appropriate when one wants to assess the adequacy of

the distributions at the tails, see, e.g., Cirillo (2013). The first remarkable result is

that the lognormal (lgn) is strongly rejected always, so this specification seems not to

be as good as a parametric description in practice, at least for US places and CCA

clusters.20 The second observation is that a similar thing happens for the double Pareto

lognormal (dPln) and GB2: they are rejected almost always, with the only exception

of the sample of incorporated places in 1900. The third observation is that for places,

the GB2 offers always lower values of the tests’ statistics than the dPln, meaning that

an immediate adaptation of the economic model of Parker (1999) may yield a better

city size description than that of the latter distribution (see also, to corroborate this

outcome, the values of the AIC and BIC information criteria for the dPln and GB2 in

Table 6).

In addition, at the same time and with the same techniques, the herein proposed

tdPGB2 (for places) and dmPGB2 (for clusters) are not rejected in the 100% of the

cases by the three tests, and not by a slight margin precisely. To this respect, the

differences in the statistics of the used tests are huge when going from the lognormal to

the dPln and then to either the tdPGB2 or the dmPGB2, depending on the type of data.

This means that both the tdPGB2 and dmPGB2 are two robust and excellent parametric

specifications for the size of US places and CCA clusters, respectively. We also see that

our modification of the economic model of Parker (1999) in order to account for pure

Pareto tails (for places), is crucial for obtaining an excellent fit, versus the consideration

of a single GB2 for all the range of city sizes.

As a complementary analysis we have computed also the metrics defined in Duran-

ton (2007) in order to see “how good approximation the used parametric distributions

pointed out by Giesen and Suedekum (2014).
20This last fact has been previously highlighted by Giesen and Suedekum (2014).
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give in quantitative terms”. We take all of the US cities on our study (Duranton uses

232 and 922 French and US nuclei, respectively), but nevertheless it is possible to

compute the quantities msd and the pseudo R2 as follows:

msd =
1

m

m
∑

j=1

[Actual log Size(j)−Mean log Simulated Size(j)]
2

R2 = 1−
msd

var

where var is the empirical variance for log city sizes and m is the number of cities

(j = 1, . . . ,m) in the empirical sample and msd is (see the formula) the mean of the

squared differences between the actual log-sizes data and the means of the log simu-

lated sizes by the corresponding distribution. After performing simulations generating

100 random samples21 we show the corresponding results in Table 5. We see that the

msd quantities are overwhelmingly lower for the tdPGB2 and dmPGB2 than for the

other studied distributions. This is also reflected in the R2 values, which also favour

these distributions.

Finally, we show in Table 6 the results of the Akaike Information Criterion (AIC)

and the Schwarz or Bayesian Information Criterion (BIC), which are standard in the

literature, in order to choose between the proposed distributions. We see that for places

the selected specification is clearly the tdPGB2 by both AIC and BIC criteria. For CCA

clusters, a similar thing happens for the dmPGB2.

In short, by all of the studied criteria, we obtain a very strong result: the US city

size distribution of places can be safely taken as our new tdPGB2. For CCA clusters,

an analogous statement holds for our new dmPGB2.22

To end the empirical part of this paper we offer an informal graphical approxima-

21Each of these samples is of the sample size of the empirical data. The total generated observations

range from about 1,005,000 to 3,002,000 for each case under study. We have chosen a number of generated

samples reasonably high enough while maintaining computational feasibility.
22We have also compared the distributions introduced in Ioannides and Skouras (2013): they are also

outperformed by our new ones. Likewise, our results also outperform those of Berliant and Watanabe (2015).

More details are available from the authors upon request.
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tion to our best distributions (Figure 1). We have chosen for all places the last available

Census data on 2010, and for CCA clusters the sample of year 2000, 3km. For other

possible cases the results are very similar. We see that the fits at the tails and of the

entire densities are, also visually, extremely good.

7 Conclusions

This work tries to contribute, both from a theoretical perspective and from an empirical

approach, to the literature on city size distributions.

To summarize, the contributions from a theoretical point of view are the follow-

ing. The main result is that the new statistical distributions introduced in this paper,

namely the “treshold double Pareto Generalized Beta of the second kind” (tdPGB2)

and “double mixture Pareto Generalized Beta of the second kind” (dmPGB2) are ex-

actly deduced using a simple model in which the population of a country locates in

cities of different sizes so as to maximize the net output of the system of cities. There

are four basic features of this model. Firstly, that it is built up piecewise, taking into

account the specific particularities of the lower tail, the body and the upper tail. Sec-

ondly, the production function is increasing and concave in the number of cities, so that

it complies with the law of diminishing returns. Thirdly, the human capital stock of a

city is increasing with respect to city size. And fourthly, the congestion costs that lessen

the gross output of each urban unit are also increasing with respect to cities population.

The theoretical parameters of the overall distribution are given explicitly, at any

given time, in terms of the elasticities of the gross output with respect the number of

cities, of human capital stock with respect to city size, and of costs with respect to city

size, as well. Economic conditions may change and accordingly the associated elas-

ticities, thus determining the resulting city size distribution. This fact opens the door

for urban economic policy recipes trying to govern the economic conditions previously
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mentioned. Therefore, our approach is rooted in economic modeling, rather than in

pure statistical reasoning.

Empirically, the data sets we consider are those of the US incorporated places in

1900, 1950, and 2000. Also, all US places in 2000, 2010 and the CCA Clusters of

Rozenfeld et al. (2011) for the years 1991, 2000 and radii of 2 and 3 km. As men-

tioned, we have introduced the tdPGB2 and dmPGB2 distributions. The first is pure

Pareto at both tails and Generalized Beta of the second kind (GB2) on the body. The

second has convex linear combinations of Pareto and GB2 at the tails, and again, GB2

on the body. Both of these two new density functions systematically outperform the

most widely used ones in the literature, namely, the Pareto, the lognormal and the dou-

ble Pareto lognormal (dPln). In fact, the tdPGB2 is the distribution chosen to describe

US places, incorporated and all. In turn, the dmPGB2 is the one chosen to describe

US CCA clusters. These results are robust to a battery of different independent cri-

teria: Kolmogorov–Smirnov, Crámer–von Mises, Anderson–Darling tests; msd (mean

squared differences) and pseudo-R2 metrics of Duranton (2007); Akaike Information

Criterion and Bayesian Information Criterion. All of these results point out clearly

to the fact that the US city size distribution can be safely taken by either the tdPGB2

(places) or by the dmPGB2 (clusters).

In this sense, from an empirical point of view the main contributions of the paper

are the following:

i) A classical distribution, with underlying theoretical model (Eeckhout, 2004) as

the lognormal is widely surpassed by new ones like the tdPGB2 or dmPGB2,

depending on the type of data.

ii) A newer distribution, as it is the dPln, also with underlying theoretical foun-

dations (Giesen and Suedekum, 2014), is outperformed by new ones, again the

tdPGB2 or dmPGB2.
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iii) The mentioned new distributions confirm something that has been known for a

long time: that the upper tail can be taken as Pareto (pure or mixed). Moreover,

also the lower tail can be taken as Pareto (pure or mixed).

iv) Against all evidence accumulated so far, the best body is not lognormal but Gen-

eralized Beta of the second kind, and this distinction has an economic theoretical

origin.

The empirical results are in an extremely good agreement with the theoretical mod-

els developed, based on economic foundations. Both theory and strong empirical sup-

port may lead to a new way of looking at city size distributions.
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Rybski, D., Garcı́a-Cantú-Ros, A., and Kropp, J. P. (2013). Distance-weighted city

growth. Physical Review E, 87:042114.

Saiz, A. (2010). The geographic determinants of housing supply. The Quarterly Jour-

nal of Economics, 125(3):1253–1296.

Schluter, C. and Trede, M. (2013). Gibrat, Zipf, Fisher and Tippet: City size and

growth distributions reconsidered. Working Paper 27/2013 Center for Quantitative

Economics WWU Münster.

Soo, K. T. (2005). Zipf’s Law for cities: A cross-country investigation. Regional

Science and Urban Economics, 35(3):239–263.

Soo, K. T. (2014). Zipf, Gibrat and geography: evidence from China, India and Brazil.

Papers in Regional Science, 93(1):159–182.

37



Yankow, J. J. (2006). Why do cities pay more? an empirical examination of some

competing theories of the urban wage premium. Journal of Urban Economics,

60(2):139–161.

Zanette, D. H. (2015). Zipf’s law and city sizes: a short tutorial review of multiplicative

processes in urban growth. Advances in Complex Systems. Forthcoming.

38



Table 1: Descriptive statistics of the US data samples used

Sample Obs. % of US pop. Mean SD Min. Max.

Inc. places 1900 10,596 46.99 3,376 42,324 7 3,437,202

Inc. places 1950 17,113 63.48 5,613 76,064 1 7,891,957

Inc. places 2000 19,296 61.49 8,968 78,015 1 8,008,278

All places 2000 25,358 73.98 8,232 68,390 1 8,008,278

All places 2010 29,461 74.31 7,826 65,494 1 8,175,133

CCA 1991 (2000m) 30,201 97.46 8,180 104,954 1 12,511,237

CCA 1991 (3000m) 23,499 97.46 10,513 147,360 1 15,191,634

CCA 2000 (2000m) 30,201 96.08 8,977 108,342 1 12,734,150

CCA 2000 (3000m) 23,499 96.08 11,537 154,157 1 15,594,627

Table 2: Estimators and standard errors (SE) of the parameters of the dPln, GB2 and

tdPGB2 for the US places samples. The estimators for the lognormal are the mean and

the standard deviation of the logarithm of population data

lgn

µ σ
Inc. places 1900 6.65 1.26

Inc. places 1950 6.84 1.50

Inc. places 2000 7.18 1.78

All places 2000 7.28 1.75

All places 2010 7.11 1.82

dPln

α β µ σ
Inc. places 1900 0.92 (0.01) 2.64 (0.06) 5.95 (0.01) 0.58 (0.01)

Inc. places 1950 0.80 (0.01) 2.15 (0.04) 6.06 (0.01) 0.78 (0.01)

Inc. places 2000 0.87 (0.01) 3.62 (0.09) 6.31 (0.01) 1.36 (0.01)

All places 2000 1.22 (0.01) 3.15 (0.08) 6.78 (0.01) 1.52 (0.01)

All places 2010 1.12 (0.01) 3.03 (0.07) 6.54 (0.01) 1.55 (0.01)

GB2

a b p q
Inc. places 1900 1.879 (0.015) 276 (3) 1.479 (0.018) 0.509 (0.005)

Inc. places 1950 1.242 (0.007) 252 (3) 1.922 (0.017) 0.688 (0.005)

Inc. places 2000 0.370 (0.001) 13 (0) 15.460 (0.067) 3.168 (0.013)

All places 2000 0.1645 (0.0002) 0.0107 (0.0001) 96.358 (0.171) 14.223 (0.025)

All places 2010 0.2480 (0.0005) 8 (0) 22.506 (0.056) 6.813 (0.017)

tdPGB2

ρ ǫ a b
Inc. places 1900 1.88 (0.17) 58 (7) 2.350 (0.030) 242 (3)

Inc. places 1950 1.43 (0.07) 62 (2) 1.063 (0.005) 49 (1)

Inc. places 2000 1.51 (0.07) 43 (4) 0.699 (0.003) 36 (1)

All places 2000 1.52 (0.03) 102 (4) 0.473 (0.002) 223 (3)

All places 2010 1.32 (0.02) 132 (3) 0.497 (0.003) 318 (5)

tdPGB2

p q τ ζ
Inc. places 1900 1.271 (0.018) 0.305 (0.005) 2,472 (227) 1.001 (0.018)

Inc. places 1950 7.882 (0.068) 0.679 (0.006) 15,968 (1,164) 1.082 (0.028)

Inc. places 2000 7.201 (0.055) 0.895 (0.007) 55,595 (2,537) 1.380 (0.043)

All places 2000 4.592 (0.027) 2.182 (0.011) 54,016 (3,094) 1.445 (0.042)

All places 2010 3.068 (0.022) 1.878 (0.010) 56,703 (3,238) 1.430 (0.040)
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Table 3: Estimators and standard errors (SE) of the parameters of the dPln and dmPGB2

for the US CCA clusters samples. The estimators for the lognormal are the mean and

the standard deviation of the logarithm of population data

lgn

µ σ
CCA 1991 (2000m) 8.33 0.85

CCA 1991 (3000m) 8.32 0.89

CCA 2000 (2000m) 8.44 0.87

CCA 2000 (3000m) 8.43 0.91

dPln

α β µ σ
CCA 1991 (2000m) 1.95 (0.01) 1.85 (0.01) 8.360 (0.003) 0.138 (0.007)

CCA 1991 (3000m) 1.76 (0.02) 1.86 (0.02) 8.291 (0.006) 0.11 (0.01)

CCA 2000 (2000m) 1.86 (0.01) 1.82 (0.01) 8.449 (0.004) 0.183 (0.007)

CCA 2000 (3000m) 1.66 (0.02) 1.83 (0.02) 8.371 (0.006) 0.16 (0.01)

dmPGB2

ρ ǫ ν a b
CCA 1991 (2000m) 0.570 (0.025) 1,470 (37) 0.342 (0.015) 4.317 (0.021) 4,287 (14)

CCA 1991 (3000m) 0.585 (0.032) 1,302 (43) 0.344 (0.018) 4.317 (0.024) 4,184 (15)

CCA 2000 (2000m) 0.556 (0.025) 1,669 (47) 0.293 (0.013) 3.583 (0.017) 4,524 (16)

CCA 2000 (3000m) 0.566 (0.032) 1,374 (45) 0.320 (0.018) 3.756(0.021) 4,358 (17)

dmPGB2

p q τ ζ θ
CCA 1991 (2000m) 0.595 (0.004) 0.626 (0.004) 17,034 (387) 0.967 (0.031) 0.788 (0.021)

CCA 1991 (3000m) 0.578 (0.004) 0.632 (0.004) 16,178 (302) 0.864 (0.024) 0.894 (0.017)

CCA 2000 (2000m) 0.728 (0.004) 0.685 (0.004) 21,205 (654) 0.931 (0.036) 0.668 (0.026)

CCA 2000 (3000m) 0.663 (0.005) 0.630 (0.004) 20,539 (551) 0.862 (0.027) 0.817 (0.022)

40



Table 4: p-values (statistics) of the Kolmogorov–Smirnov (KS), Cramér–Von Mises

(CM) and Anderson–Darling (AD) tests for the US places and CCA clusters samples

and the density functions used. Non rejections at the 5% significance level are in bold

lgn dPln

KS CM AD KS CM AD

Inc. places 1900 0 (0.07) 0 (17.22) 0 (100.47) 0.17 (0.01) 0.11 (0.34) 0.10 (1.97)
Inc. places 1950 0 (0.06) 0 (17.56) 0 (104.90) 0 (0.02) 0 (1.40) 0 (10.48)

Inc. places 2000 0 (0.04) 0 (9.40) 0 (53.66) 0 (0.02) 0 (1.95) 0 (12.63)

All places 2000 0 (0.02) 0 (3.03) 0 (19.12) 0 (0.02) 0 (1.45) 0 (8.98)

All places 2010 0 (0.02) 0 (4.57) 0 (29.48) 0 (0.02) 0 (1.73) 0 (11.73)

GB2 tdPGB2

KS CM AD KS CM AD

Inc. places 1900 0.568 (0.008) 0.358 (0.161) 0.276 (1.177) 0.978 (0.005) 0.971 (0.032) 0.989 (0.205)
Inc. places 1950 0.010 (0.013) 0.013 (0.695) 0.002 (5.191) 0.994 (0.003) 0.990 (0.025) 0.989 (0.206)
Inc. places 2000 0.001 (0.015) 0.001 (1.153) 0 (8.403) 0.986 (0.004) 0.974 (0.031) 0.986 (0.214)
All places 2000 0.012 (0.011) 0.012 (0.717) 0.005 (4.482) 0.969 (0.003) 0.936 (0.039) 0.971 (0.249)
All places 2010 0 (0.018) 0 (1.389) 0 (11.639) 0.899 (0.004) 0.814 (0.060) 0.769 (0.478)

lgn dPln

KS CM AD KS CM AD

CCA 1991 (2000m) 0 (0.09) 0 (92.68) 0 (567.01) 0 (0.02) 0 (1.71) 0 (18.47)

CCA 1991 (3000m) 0 (0.10) 0 (89.36) 0 (536.38) 0 (0.03) 0 (2.25) 0 (23.18)

CCA 2000 (2000m) 0 (0.09) 0 (73.24) 0 (450.94) 0 (0.02) 0 (1.18) 0 (13.67)

CCA 2000 (3000m) 0 (0.09) 0 (66.57) 0 (405.72) 0 (0.02) 0.001 (1.26) 0 (13.94)

dmPGB2

KS CM AD

CCA 1991 (2000m) 0.858 (0.004) 0.867 (0.051) 0.874 (0.374)
CCA 1991 (3000m) 0.842 (0.004) 0.869 (0.051) 0.895 (0.351)
CCA 2000 (2000m) 0.876 (0.004) 0.817 (0.060) 0.817 (0.432)
CCA 2000 (3000m) 0.839 (0.004) 0.860 (0.053) 0.917 (0.326)

Table 5: Values of the msd (in units of 10−3) and of the pseudoR2 of Duranton (2007)

for the US places and CCA clusters samples and the used distributions. The most

favoured values are marked in boldface.

lgn dPln GB2 tdPGB2

msd R2 msd R2 msd R2 msd R2

Inc. places 1900 72.40 0.9545 24.32 0.9847 25.69 0.9838 0.40 0.9997
Inc. places 1950 127.40 0.9435 16.34 0.9928 11.06 0.9951 0.39 0.9998
Inc. places 2000 34.00 0.9893 24.13 0.9924 8.42 0.9974 0.21 0.9999
All places 2000 9.60 0.9969 4.29 0.9986 2.99 0.9990 0.19 0.9999
All places 2010 15.20 0.9954 7.34 0.9978 6.35 0.9981 0.39 0.9999

lgn dPln dmPGB2

msd R2 msd R2 msd R2

CCA 1991 (2000m) 103.74 0.8345 40.64 0.9433 3.70 0.9948
CCA 1991 (3000m) 116.08 0.8529 45.43 0.9424 3.10 0.9960
CCA 2000 (2000m) 94.22 0.8744 36.37 0.9515 3.22 0.9957
CCA 2000 (3000m) 105.89 0.8723 39.21 0.9527 2.37 0.9971
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Table 6: Maximum log-likelihoods, AIC and BIC for the distributions used and the US

places and CCA clusters data. The lowest values of AIC and BIC for each sample are

in bold

lgn dPln

log-likelihood AIC BIC log-likelihood AIC BIC

Inc. places 1900 -87,943 175,891 175,905 -87,254 174,516 174,545

Inc. places 1950 -148,254 296,512 296,528 -147,593 295,194 295,225

Inc. places 2000 -177,127 354,258 354,274 -176,931 353,870 353,901

All places 2000 -234,773 469,550 469,566 -234,710 469,428 469,461

All places 2010 -268,748 537,499 537,516 -268,657 537,323 537,356

GB2 tdPGB2

log-likelihood AIC BIC log-likelihood AIC BIC

Inc. places 1900 -87,246 174,500 174,529 -87,230 174,476 174,535
Inc. places 1950 -147,566 295,140 295,171 -147,471 294,958 295,020
Inc. places 2000 -176,871 353,751 353,782 -176,770 353,556 353,619
All places 2000 -234,680 469,367 469,400 -234,628 469,272 469,337
All places 2010 -268,616 537,239 537,273 -268,520 537,056 537,122

lgn dPln

log-likelihood AIC BIC log-likelihood AIC BIC

CCA 1991 (2000m) -289,460 578,923 578,940 -284,288 568,584 568,617

CCA 1991 (3000m) -226,140 452,284 452,300 -221,851 443,711 443,743

CCA 2000 (2000m) -293,311 586,627 586,643 -288,879 577,765 577,798

CCA 2000 (3000m) -229,171 458,347 458,363 -225,494 450,996 451,028

dmPGB2

log-likelihood AIC BIC

CCA 1991 (2000m) -283,583 567,186 567,270
CCA 1991 (3000m) -221,216 442,453 442,533
CCA 2000 (2000m) -288,307 576,634 576,717
CCA 2000 (3000m) -225,019 450,057 450,138
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Figure 1: First row: Empirical and estimated tdPGB2 and dmPGB2 ln(cdf) for the

lower tail. Second row: Empirical (Gaussian adaptive kernel density) and estimated

tdPGB2 and dmPGB2 density functions. Third row: Empirical and estimated tdPGB2

and dmPGB2 ln(1−cdf) for the upper tail. First column: US all places (2010). Second

column: US CCA clusters (2000, 3km).
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