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A new monetary theory is set out to resolve the “Uncovered Interest Parity Puzzle (UIP Puz-

zle)”. It explores the possibility that liquidity properties of money and nominal bonds can

account for the puzzle. A key concept in our model is that nominal bonds carry liquidity pre-

mium due to their medium of exchange role as either collateral or means of payment. In this

framework no-arbitrage condition ensures a positive comovement of real return on money and

nominal bonds. Thus, when inflation in one country becomes relatively lower, i.e., real return

on this currency is relatively higher, its nominal bonds should also yield higher real return. We

show that their nominal returns can also become higher under the economic environment where

collateral pledgeability and/or liquidity of nominal bonds and/or collateralized credit based

transactions are relatively bigger. Since a currency with lower inflation is expected to appre-

ciate, the high interest currency does indeed appreciate in this case, i.e., the UIP puzzle is no

longer an anomaly in our model. Our liquidity based theory in fact has interesting implications

on many empirical observations that risk based explanations find difficult to reconcile with.
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1 Introduction

In a seminal paper, Fama (1984) presented that relatively high interest rate currencies tend to

appreciate on average. Interestingly, regardless of the increasing sophistication of the econo-

metric techniques employed and of the increasing quality of the data sets utilized, researchers

generally keep documenting similar results.1 What is more important is that this empirical find-

ing is an anomaly in a sense that high interest rate currencies have predictably positive excess

returns, which contradicts the very foundation of the UIP condition. Accordingly, this anomaly

has been widely referred to as the UIP or “forward premium” puzzle in the literature.

Yet, as Burnside, Eichenbaum, and Rebelo (2009) and Backus, Gavazzoni, Telmer, and Zin

(2010) put it, a vast literature is empirically oriented, and relatively little theoretical attempts

has been made to tackle the puzzle. Even among the theoretical literature, no consensus seems

to be reached. For instance, most prevailing theories revolve around the idea that the failure of

the UIP has a close connection with the way the risk premium behaves.2 Nevertheless, many

recent studies have become critical on these risk-based explanations.3 Deficiency of prevail-

ing explanations does not end here. The UIP evidence is primarily about return on assets, i,e.,

bonds and currencies. However, the literature, focusing too much on risk aspects of the asset

return, has overlooked equally important aspects of the latter, liquidity, which could potentially

solve for the puzzle.4

In this paper we set out a new liquidity-based monetary model of international asset pric-

ing, and study under what conditions the model rationalizes the UIP puzzle. Our approach is

novel for the following reasons. First, we model the economy where nominal bonds and cur-

rencies explicitly play a liquidity role during the exchange process, and macro fundamentals,

i.e., monetary policy, endogenously determine their liquidity values. Second, we take a radical

departure from the conventional approach by entirely abstracting from risk considerations. In

other words, asset pricing in this framework is only driven by changes in liquidity values of

assets. This approach allows one to isolate the role of asset liquidity, if any, in solving the UIP

puzzle.

1See Bacchetta and Wincoop (2010), Backus, Gavazzoni, Telmer, and Zin (2010), and the references therein for a
recent survey of empirical findings and the literature

2Some recent studies offer non-risk-based explanations. For instance, see Corsetti, Dasgupta, Morris, and Shin
(2004), Burnside, Eichenbaum, and Rebelo (2009), Bacchetta and Wincoop (2010), and Ilut (2014).

3For instance, Burnside, Eichenbaum, and Rebelo (2009) point out, “It has been extremely difficult to tie devia-
tions from uncovered interest parity to economically meaningful measures of risk”. Also, see Burnside (2007) and
Burnside, Eichenbaum, Kleshchelski, and Rebelo (2008) for a critical review of recent risk-based explanations of
the puzzle.

4For instance, Atkeson, Alvarez, and Kehoe (2007) argue that standard monetary policy models are not suitable
for studying exchange rate and therefore, call for a new monetary model of exchange rates in which time-varying
liquidity drives fluctuations in the excess return on foreign bonds. In fact, Brunnermeier, Nagel, and Pedersen
(2008) is the first one that introduces a liquidity channel through which the UIP puzzle is rationalized. We come
back to this study and discuss similarities and differences with ours in detail later.
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To concertize these novel features, our model adopts a microfounded monetary framework

developed by Lagos and Wright (2005). The basic structure of the model goes as follows. There

are two countries, and each country issues its own currency and nominal bond. For each pe-

riod, trade in goods first takes place separately for each country. Agents in goods markets trade

in a pairwise meeting. Furthermore, the trading process in goods market exhibit frictions such

as anonymity and limited commitment. These trading frictions are precisely what makes assets

endogenously emerge as a medium of exchange (MOE), thereby creating asset liquidity values.

Specifically, we allow bonds to serve as collateral in some pairwise meetings, while they com-

pete with money as a direct means of payment in some other meetings. Once the goods trade

ends, all agents move into a perfectly integrated Walrasian financial market where they fric-

tionlessly reshuffle their portfolio of assets in the anticipation of the next period’s goods trade.

The key feature of this framework lies in a transmission mechanism of monetary policy, i.e.,

change in money supply, into nominal bond return. Intuitively, monetary policy not only af-

fects real value of currency but its relative scarcity as a medium of exchange. This in turn has

an effect on the liquidity value or return of other competing MOEs, i.e., nominal bonds. What

is crucial is that this liquidity-based transmission mechanism opens up new possibilities for a

richer set of joint dynamics between currency and nominal bond return in a way that the tradi-

tional Lucas (1982) model of international asset pricing could never generate.5

To understand the rich joint dynamics of our liquidity-based story, it’s useful to first re-

view how the conventional Lucas (1982) model poses the UIP puzzle. In the latter, a sudden

increase in interest rate, for example, would lead to an instantaneous appreciation of the cur-

rency, to be followed by an expected depreciation. Technically speaking, the nominal intertem-

poral marginal rate of substitution (i.e., nominal bond price) of a country is negatively correlated

with its inflation rate. Thus, the Fisher effect holds true in equilibrium, thereby implying the UIP

condition.6 The bottom line here is that the classical dichotomy, i.e., the separation between

money supply and intertemporal marginal rate of substitution, effectively forces the nominal

bond price to move in the opposite direction of inflation rate, which always ensures the UIP

condition in equilibrium.

Our story is also built upon similar premises of the conventional monetary approach such as

fully flexible prices and complete FX market. But, we break down the classical dichotomy since

the intertemporal marginal rate of substitution is augmented by exchange value of assets, which

in turn depends upon money supply in our model economy. What is of utmost importance is

that our framework allows the correlation between anticipated inflation rate and nominal bond

yield to critically hinge upon market microstructure of pairwise meetings. For instance, sup-

5See Hu and Rocheteau (2015) for an extensive review on monetary search models where correlation between
the currency and bond return could go either way.

6For more detailed explanation on the rigorous relationship between monetary policy, pricing kernel, and the
UIP puzzle, one can refer to Bekaert (1994), Bekaert and Hodrick (2001), Backus, Foresi, and Telmer (2001), and
Alvarez, Atkeson, and Kehoe (2009).
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pose that nominal bonds are perfectly illiquid, meaning that no one in our model economy

accepts bonds as any kind of MOE in pairwise meetings. Then, our model is effectively equiv-

alent to Lucas (1982), and the Fisher effect always holds true in equilibrium. Likewise, one can

also design our model economy such that bonds and money are perfect substitutes for each

other. For instance, no collateralized credit transactions take place in any pairwise meeting,

and no exogenous liquidity differential between money and bonds exist as a direct means of

payment. In this case, the no-arbitrage principle always guarantees a constant zero nominal

interest rate, i.e., open market operations become irrelevant.

Yet, suppose now that money cannot perfectly substitute nominal bonds. In line with our

initial model setup, let us restrict our model economy in a way that some portion of pair-

wise meetings must use collateralized credit as a MOE. This effectively creates somewhat extra

exchange value of bonds compared to money. If this extra exchange value of bonds is high

enough, the inflation elasticity of real bond price can be sufficiently higher than that of money.

Since a higher anticipated inflation leads to a higher real money price, the former can induce

the real bond price to increase even further to the extent that the nominal rate of return on bonds

actually decreases. Moreover, the higher anticipated inflation always means the expected cur-

rency depreciation relative to its partner currency. In all, a low interest currency is expected to

depreciate in this scenario and therefore, the UIP in fact ends up being violated in equilibrium.

The main message of this paper is well reflected upon the aforementioned examples. In our

microfounded monetary model of international asset pricing, the UIP does not have to hold

uniformly. In particular, the negative relationship between anticipated inflation and nominal

bond yield is shown to be sufficient for the UIP deviation. Crucially, our framework implies that

nominal bonds must somehow exhibit extra exchange value in order to guarantee the sufficient

condition. We show in the model that the sufficiently higher exchange value of bonds can be

indeed achieved when the portion of collaterlized-credit-transaction-based pairwise meetings

is large and/or the pledgeability of bonds as collateral is high and/or exogenous illiquidity

discount on bonds as a direct means of payment is low.

One may question if our framework where bonds exhibit the higher exchange value is em-

pirically substantive. Yet, we argue that it is by no means a pure theoretical abstraction based on

a recent empirical work by Krishnamurthy and Vissing-Jorgensen (2012). They basically show

that U.S. Treasury bonds exhibit superb liquidity properties just like money. One can then ad-

dress another potential concerns. First, not every nominal bonds, especially those issued by

emerging economies, are same as the U.S. Treasury bonds. Second, the bond liquidity is surely

time-varying, e.g., extreme dry-up of bond liquidity during the recent liquidity crunch episode.

Very interestingly, these two issues are what precisely leads to the non-uniform UIP devia-

tion in our framework. Put it another way, our model implies that the sufficient condition for

the UIP deviation cannot be met whenever bonds are illiquid enough. This bond illiquidity is

one of the defining characteristics of emerging market bonds and the liquidity crisis. Thus, our
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model predicts that the UIP should be confined to emerging economies and the liquidity crunch

period. These two predictions are well supported by prominent empirical studies as well as our

own empirical evidence reported in Table 1. Bansal and Dahlquist (2000) empirically confirm

that the UIP deviation is pervasive only among developed currency pairs. In addition, Brunner-

meier, Nagel, and Pedersen (2008) demonstrate that interbank liquidity crunch has a strongly

negative correlation with carry trade returns, i.e., the UIP tends to hold true when measures of

market liquidity shrink. In short, our model can provide a microfoundation for what Bansal

and Dahlquist (2000) and Brunnermeier, Nagel, and Pedersen (2008) have found, which many

risk-based explanations find hard to justify.

As for the related literature, we do not intend to thoroughly review a vast number of theo-

ries that have been proposed to make sense of the UIP evidence.7 Broadly speaking, the theories

can be assigned into two big categories, non-rational expectation based models and rational expec-

tation based models. The former is relatively scarce and based on the idea that expectational

errors or behavioral biases of investors drive the UIP deviation, e.g., behavioral biases based

explanation by Froot and Thaler (1990) and peso problems based explanation by Lewis (1995).

Yet, most theoretical attempts to solve the UIP puzzle have maintained the assumption of ra-

tional expectations. Our explanation also fits into this category. As mentioned already, most

conventional rational expectation based theories argue that the failure of UIP is attributed to

the behavior of the risk premium, e.g., Lustig and Verdelhan (2007) and Lustig, Roussanov, and

Verdelhan (2011) among others. Non-risk based models include, but are not limited to OTC FX

market based explanation of Burnside, Eichenbaum, and Rebelo (2009), the rational inattention

model of Bacchetta and Wincoop (2010), and the long run risk based explanation of Bansal and

Shaliastovich (2013).

Among the rational expectation based models, Backus, Gavazzoni, Telmer, and Zin (2010)

have in common with our story to the extent that monetary policy jointly determines exchange

and interest rates. The difference is they explicitly abandon the model of money in favor of the

Taylor rule. They show that asymmetries in foreign and domestic Taylor rules can account for

the UIP deviation. They admit, however, that their approach is partial where the consumption

process and asymmetric Taylor rule coefficients are exogenously specified, while ours is a fully-

fledged general equilibrium approach. Brunnermeier, Nagel, and Pedersen (2008) also have a

close connection to our theory in terms of the role that liquidity plays. They focus on liquid-

ity frictions that carry traders face as a driving force behind why the UIP deviation cannot be

eliminated quickly in the short run, and how marketwide liquidity crunch affects carry trade

speculations and eventually a sudden shift in the UIP relation. Our story differs in that aggre-

gate liquidity needs of the country on top of the behavior of particular carry trade speculators

can also drive the UIP relation. In this respect, our theory is complementary to Brunnermeier,

7One can refer to many excellent papers for the extensive review, e.g., Engel (2015) and Verdelhan (2010) among
others.
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Nagel, and Pedersen (2008).

In terms of methodology, our paper is also related to a growing body of money-search litera-

ture that studies how monetary policy affects asset prices through the liquidity of assets. Many

find that higher nominal interest rates raise asset prices by fueling liquidity premia: for instance

Geromichalos, Licari, and Suarez-Lledo (2007), Jacquet and Tan (2012), Lester, Postlewaite, and

Wright (2012), and Nosal and Rocheteau (2012). Recently, others such as Hu and Rocheteau

(2015) and Lagos and Zhang (2014) found the opposite. Our framework can in fact nest both

of these cases by allowing the correlation between nominal interest rates and inflation to go ei-

ther way depending on the microstructure of decentralized market. This paper also contributes

to the money-search literature that tackles traditional asset pricing puzzle through the notion

of asset liquidity. Lagos (2010) explains the equity premium and risk-free rate puzzle, while

Geromichalos and Simonovska (2014) studies how the home asset bias puzzle can be solved

under the explicit modeling of assets as facilitators of trade.

The rest of the paper is organized as follows. In Section 2, we describe the physical envi-

ronment. Section 3 studies the agents’ optimal behavior. In Section 4, we define a stationary,

symmetric, and two-country equilibrium, and study how the UIP condition is related to mone-

tary policy and market microstructure of pairwise meetings. Section 5 concludes.

2 Physical Environment

Time is discrete and infinite. Each period is divided into two subperiods. There are two coun-

ties, A and B. Each country has two types of agents, buyers and sellers, both of which are

populated with a continuum of 1. The identity of buyers and sellers is fixed over time. All

agents live infinitely and consider dynamics with a discount factor equal to β ∈ (0, 1). They

discount future only between periods, but not between subperiods. We will often refer to a

buyer (seller) from country i as buyer i (seller i) for notational simplicity. There are three kinds

of nonstorable and perfectly divisible goods: a general good produced by all agents and a spe-

cial good i produced only by sellers in each country i ∈ {A,B}.

There are also two different types of (financial) assets in this model. First, a perfectly divis-

ible and storable fiat currency is issued by each country’s monetary authority. We denote this

asset as moneyi, i ∈ {A,B}. The moneyi supply is stochastically determined by each country’s

monetary authority who injects or withdrawsmoneyi via lump-sum transfers or taxes to buyers

of country i at the end of every period. Specifically the moneyi stock is initially given by Mi,0 ∈

R++, and thereafter it grows at a stochastic rate γi,t (i.e., Mi,t+1 = γi,tMi,t), which is assumed to

follow a Markov process defined by its transition function F (γ′, γ) = Pr(γi,t+1 ≤ γ′ | γi,t = γ)

where F : R+ × R
+ → R is continuous. Assume that the process defined by F has a stationary

distribution Φ( · ) as well as a unique solution to Φ(γ′) =
∫
F (γ′, γ)dΦ(γ), and that F has the
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Feller property. The second type is nominal bond. In each country, a new set of Lucas (1978)

trees are born every period. Each unit of the tree in country i delivers di units of a general good

in the next period, and dies immediately afterwards. We assume that di always equals the real

value of moneyi in terms of a general good in every period as if each unit of the tree in country

i delivered one unit of moneyi in the next period. This crucial assumption makes the share of

these trees in country i equivalent to one-period nominal bonds of that country. For this reason

we will hereinafter refer to shares of trees from country i as (nominal) bondi. The supply of

bondi is fixed over time and denoted by Bi.

We now proceed to a detailed description of the subperiods characterized by different eco-

nomic activities. We start with the second subperiod, and move backward. In the second sub-

period, all agents have a linear technology that transforms a unit of labor into a unit of general

good. All agents can then trade the general good and all types of financial assets, i.e., moneyi

and bondi, ∀i, within one single Walrasian or centralized market (henceforth, FM ). ϕi,t and ψi,t

respectively denotes the FM price of moneyi and bondi in terms of the general good at period t.

Further, the nominal exchange rate at time t is defined as the FM price of moneyB in terms of

moneyA: Et = ϕB,t/ϕA,t. Notice that the perfectly competitive FM assumption allows agents to

trade two monies at the market clearing exchange rate. Thus the law of one price holds every

period.

In the first subperiod, a decentralized goods market opens separately for each country

(henceforth GM ). We assume that agents can only trade in their ‘domestic’ market during

the first subperiod. As a result, only buyer i and seller i can trade special good i in GM of

country i.8 Within any GM , trade is bilateral and anonymous. In addition, agents cannot make

binding commitments, and trading histories are private in a way that precludes any borrow-

ing and lending. This premise necessitates a medium of exchange (MOE) in any GM trade.

What is crucial here is that we differentiate GM in each country into two types of sub-markets,

depending on methods of payment: Goods Market 1 (henceforth GM1) and Goods Market 2

(henceforth GM2).

InGM1, when seller imeets buyer i, the latter can pay the former with a combination of any

asset, i.e., moneyi and bondi, ∀i, in exchange for a special good i. For simplicity, we assume that

the seller i is endowed with a linear technology, i.e., a unit of labor is transformed to produce

a unit of special good i. A key point here is that we adopt the mechanism design approach

pioneered by Wallace (2001) and Zhu and Wallace (2007) for the terms of trade determination.

We propose a trading mechanism in the GM1 that induces allocations to be pairwise Pareto

8 This assumption precludes our model from considering international trade in goods, and studying its impli-
cations on the UIP puzzle. One could surely relax this assumption to make our model empirically more relevant.
However doing so would greatly complicate the analysis, particularly trading protocols in Section 3.2, without
providing any critical insight to the model. Furthermore, most studies that offered explanations for the UIP puz-
zle have stressed investment behavior in financial markets rather than trade-related factors. Given this emphasis,
we also think that the no-international-trade assumption here is not a major caveat of our model.
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optimal, but treats assets asymmetrically depending on their types as well as nationality. This

trading mechanism is meant to capture two intuitive notions. First one is that agents receive

better terms of trade in a country by using domestic assets rather than foreign ones. The second

is that bonds can be accepted as payment by sellers but for less output than what the buyer

could have obtained with money, i.e., the illiquidity of bonds. A main advantage of the pro-

posed trading mechanism is that despite asymmetric treatment of the assets, it leaves no gains

from trade unexploited, i.e., allocations are socially efficient, which is not generally the case

for other mechanisms (e.g., Nash Bargaining). On top of that, it yields nominal exchange rate

determinacy without imposing any ad-hoc cash-in-advance type restrictions.9

Unlike the GM1, GM2 only allows credit as a method of payment. Notice that the GM2 in-

tuitively stands for a fraction of GM where transactions involve some form of credit, following

Williamson (2012).10 Specifically the credit in the GM2 means a promise that buyer i will pay

back to seller i a certain amount of general good in the coming FM in exchange for special good

i. Due to anonymity and limited commitment, the buyer i cannot pay with unsecured credit

(e.g., an IOU). Hence she needs to offer the seller i bonds held in a form of collateral to back the

credits. The credit limit is determined by the real value of bonds the buyer i places as collateral

and the pledgeability parameter h ∈ [0, 1) - the extent to which they can be used to secure loans.

Similar to theGM1, we also adopt a trading mechanism that has good efficiency properties, i.e.,

pairwise Pareto optimality, but treats domestic and foreign bonds asymmetrically for the terms

of trade determination. For instance, this proposed mechanism does not impose any constraint

on the use of domestic or foreign bonds as collateral. However, it does lead to a better terms

of trade for a buyer i when placing bondi rather than bond−i as collateral. Detailed descriptions

of the pricing mechanism in the GM1 and GM2 will be provided in Section 3.2. Lastly, agents

from country i visit GM1 (GM2) with probability θ (1 − θ) where θ ∈ (0, 1), and therefore all

buyers and sellers match each other within each county.

Following Lagos and Wright (2005) (LW henceforth), the utility of buyer i and seller i is

respectively given by

E0

∑∞
t=0 β

t{U(xt)− ht + u(qt)},

E0

∑∞
t=0 β

t{U(xt)− ht − qt},

9 Kareken and Wallace (1981) showed that the nominal exchange rate indeterminacy is pervasive in monetary
models unless ad-hoc frictions such as the cash-in-advance constraint, i.e., agents trade only with their domestic
currency in their home market, are imposed. Yet, as Nosal and Rocheteau (2011) have argued, the cash-in-advance
constraint seems particularly odd when the two currencies have different rates of return, i.e, inflation. Also see
Wallace (2010) for various disadvantages of cash-in-advance type models from a monetary theorist’s point of view.

10 Introduction of the GM2 in an empirically relevant way within this model is not an end itself. As will be
analyzed later, it actually boosts liquidity properties of bonds to the extent that the comovement of exchange rate
and nominal interest rate can violate the UIP condition in equilibrium. Therefore modeling decentralized markets
without credit secured by assets as collateral in this framework is not without loss of generality for studying the
UIP puzzle.
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where xt and ht stand for the consumption of general good and labor inputs to produce that

good in the second subperiod of period t, respectively. qt represents the amount of special

good i produced by the seller i and consumed by the buyer i in the first subperiod of period

t. Without loss of generality, we assume the disutility from producing qt for the seller i is

linear. In addition, we denote the utility function for the general good (the special good i) by

U : R+ → R
+ (u : R+ → R

+). We also assume that both are twice continuously differentiable,

increasing, strictly concave and bounded by B on support Ξ ⊆ (−∞,∞) with u(0) = U(0) = 0,

u′(0) = U ′(0) = ∞ and u′(∞) = U ′(∞) = 0. E0 denotes the expectation with respect to the

probability measure induced by the random trading process in the GM1 and GM2. Figure 1

illustrates the timing of events.

Figure 1: Timing of Events

3 Value Functions and Optimal Behavior

3.1 Value Functions in the Financial Market and Goods Market

First, let wt = (mA,t, aA,t,mB,t, aB,t) denote the portfolio of any agent at period t. Note that

mi,t and ai,t represents units of moneyi and bondi at period t respectively. Define ℓt = (ℓA,t, ℓB,t)

as a portfolio of credit (or loan) in terms of the general good which the buyer i borrowed from

seller i she met in GM2 of previous subperiod, and should pay back at the beginning of the
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second subperiod of t. Note that ℓi,t means the credit borrowed against bondi in the GM2 of

period t. In addition, let st = (γA,t,MA,t, γB,t,MB,t) denote the aggregate state of the economy

at period t. Then the Bellman’s equation for buyer i, who enters FM with a portfolio wt and ℓt

is given by11

WB
i (wt, ℓt, st) = max

xt,ht,wt+1

{
U(xt)− ht + βEt

[
V B
i (wt+1, st+1)

]}

s.t. xt + φ′
twt+1 = ht + φtwt − ℓt + ϕA,tT (γA,t)I{i=A} + ϕB,tT (γB,t)I{i=B},

where φ′
t = (ϕA,t, ψA,t, ϕB,t, ψB,t), φt = (ϕA,t, ϕA,t, ϕB,t, ϕB,t), and φ′

twt+1 (φtwt) denotes the dot

product of φ′
t (φt) and wt+1 (wt). T (γi,t) denotes the monetary transfers in country i, and equals

to (γi,t − 1)Mi,t. I{i=n}, n ∈ {A,B}, is an indicator function that equals 1 if i = n. The function

V B
i (wt+1, st+1) represents theGM value function of the buyer i next period. We can easily verify

that xt = x̃, ∀t at the optimum where x̃ is such that U ′(x̃) = 1. Based on this fact, we can plug

ht in the budget constraint into WB
i . It leads to

WB
i (wt, ℓt, st) = φtwt − ℓt + ΛBi,t, (1)

where ΛBi,t ≡ U(x̃) − x̃ + Ti,t + max
wt+1

{
−φ′

twt+1 + βEt
[
V B
i (wt+1, st+1)

]}
.12 In line with models

based on LW, the buyer i’s FM value function becomes linear in asset holdings as well as credit

owing to quasi-linearity of the preference. This implies that there exists no wealth effects on the

choice of wt+1.

Now we consider the FM value function of a seller i. She will never leave the FM with

any money or bond holdings because she does not need any liquidity service from those assets

in the forthcoming GM simply due to her fixed identity as a seller of the special good (see

Rocheteau and Wright (2005) for a rigorous proof). Nevertheless, when she enters the FM , she

will generally hold a portfolio of money, bonds, and credit received as payment in either GM1

or GM2. The Bellman’s equation for her is then given by

W S
i (wt, ℓt, st) = max

xt,ht

{
U(xt)− ht + βEt

[
V S
i (0, st+1)

]}

s.t. xt = ht + φtwt + ℓt.

11 The budget constraint implies that the buyer i always pays back the credit borrowed in a previous subperiod.
This is in fact not an assumption but an equilibrium outcome. In principle, she could instead default and let the
seller i whom she met in a previous GM2 take collateral she placed, i.e., bonds. However, as will be seen in Section
3.2, this type of strategy becomes always inferior to paying back the credit due to the pledgeability parameter h,
less than one. In other words, she would always lose 1− h portion of her real bond balances by defaulting on the
seller i. Hence, allowing for less than perfect pledgeability of bonds as collateral is not only empirically relevant,
but prevents our model from considering more complex equilibrium default cases.

12
Ti,t is a short expression for ϕA,tT (γA,t)I{i=A} + ϕB,tT (γB,t)I{i=B}
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Similar to the buyer i, the seller i will also choose xt = x̃, ∀t. Replacing ht from the budget

constraint into W S
i yields

W S
i (wt, ℓt, st) = φtwt + ℓt + ΛSi,t, (2)

where ΛSi,t ≡ U(x̃)− x̃+ βEt
[
V S
i (0, st+1)

]
.

Next we consider the value functions in theGM . First, consider a value of the typical buyer i

who enters the GM with a portfolio wt. Let qGMj
i,t , j ∈ {1, 2} denote the consumption of special

good i that the buyer i obtained from GMj at period t. pt = (pmA
t , paAt , pmB

t , paBt ) represents

a portfolio of assets exchanged in a meeting with a seller in GM1 at period t. For instance,

pmi
t (pait ) denotes the units of moneyi (bondi) handed over to the seller in GM1 at period t. All

these terms will be determined in Section 3.2. Since the buyer i visits the GM1 (GM2) with the

probability of θ (1− θ), her GM value function is given by

V B
i (wt, st) = θ

[
u(qGM1

i,t ) +WB
i (wt − pt,0, st)

]
+ (1− θ)

[
u(qGM2

i,t ) +WB
i (wt, ℓt, st)

]
. (3)

The typical seller i visits the GM1 or GM2 with the same probabilities as the buyer i. The

GM value function of the seller iwith no money and bonds carried over from a previous period

is given by

V S
i (0, st) = θ

[
−qGM1

i,t +W S
i (pt,0, st)

]
+ (1− θ)

[
−qGM2

i,t +W S
i (0, ℓt, st)

]
.

3.2 The Trading Mechanism in Goods Market

In this section, we study the trading mechanism and the associated terms of trade for eachGMj

in detail. First, consider a meeting in GM1 between seller i and buyer i who carries a portfolio

wt. As explained in Section 2, we propose a mechanism that maximizes social welfare given

frictions in the economic environment, i.e., limited commitment and anonymity, and social

conventions, i.e., buyers receive better terms of trade when using domestic assets rather than

foreign assets, and bonds are generally less liquid than money as means of payment. Given this

intuition, one can conceptually understand the proposed mechanism in two stages.

In the first stage, the buyer i makes a take-it-or-leave-it offer to the seller i under restrictions

that the former can only use moneyi and bondi for payment, and is able to transfer at most a

fraction g ∈ [0, 1] of her bondi holdings, i.e., if g = 0, then bonds are completely illiquid, and

if g = 1, then they are perfectly liquid.13 Then, they move together to the second stage where

13 In fact, the usefulness of g in this framework is not limited to its empirical relevance. This type of restriction
on the illiquidity of bonds has been suggested as a most basic solution for the rate-of-return dominance puzzle (see
Hu and Rocheteau (2013) for an extensive literature review). We adopt the g for a similar reason. Given the
introduction of GM2, our model induces somewhat higher liquidity properties of nominal bonds than money to
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no restrictions on the use of any asset exist. The final terms of trade, which are actually imple-

mented, is determined by maximizing the surplus of the seller i, while maintaining the buyer

i’s surplus at the first stage payoff level. As a result, the final allocation will be pairwise Pareto

efficient. Nevertheless, the buyer i can obtain additional gain neither from using foreign assets

nor from paying with more bondi and less moneyi. Thus, our mechanism can in fact allows

asset-specific transaction restrictions i.e., the cash-in-advance constraint (only domestic assets

used in domestic markets) and the exogenous illiquidity of bonds, to be fully endogenized in

equilibrium.

Let us now look at the buyer i’s surplus at the first stage of the mechanism, Ub
11(wt). Fol-

lowing intuitive descriptions above, it can be expressed as

U
b
11(wt) = max

qi,t,pt

{
u(qi,t) +WB

i (wt − pt, 0, st)−WB
i (wt, 0, st)

}

s.t.− qi,t +W S
i (pt,0, st)−W S

i (0,0, st) = 0,

with the liquidity augmented feasibility constraint pt ≤ w̃t where w̃t = (mA,t, gaA,t,mB,t, gaB,t)

and the cash-in-advance constraint p
m−i

t = p
a−i

t = 0. Note that the subscript ‘kj’ of Ub
kj denotes

the k th stage in the GMj, k, j ∈ (1, 2). Given the linearity of WB
i and W S

i , Ub
11(wt) simplifies to

U
b
11(wt) = max

qi,t, p
mi
t , p

ai
t

{u(qi,t)− ϕi,t(p
mi
t + pait )}

s.t.− qi,t + ϕi,t(p
mi
t + pait ) = 0,

and pmi
t ≤ mi,t, p

ai
t ≤ gai,t.

Interpretation of the problem above is standard. The buyer i’s payoff is obtained by choos-

ing her consumption and and the transfer of her domestic money and bonds in order to max-

imize her surplus. It is important to note that while she can transfer moneyi up to her entire

moneyi holdings, an upper bound for her bondi transfers is a fraction of g of her bondi holdings.

Furthermore, the aim of the first stage is to pin down a payoff level for the buyer i. It is worth

emphasizing that the terms of trade chosen in this stage are not necessarily the ones that are

finally implemented.

Next, we move to the second stage where the buyer i is allowed to use any of her assets to

pay without any exogenous liquidity restrictions. The actual terms of trade for GM1 are de-

termined such that the seller i maximizes her surplus, taking the predetermined surplus level

of the buyer i from the first stage as given. The seller i’s surplus at the second stage of the

prevail in equilibrium, i.e., the zero nominal interest rate bound will be violated. However, as will be analyzed in
Section 4, the g can potentially offset this effect by making money more liquid than nominal bonds in GM1, and
therefore the nominal interest rate does not necessarily goes below zero in equilibrium.
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mechanism, Us
21(wt) where wt denotes the buyer i’s portfolio holdings, is then expressed as

U
s
21(wt) = max

qi,t,pt

{
−qi,t +W S

i (pt,0, st)−W S
i (0,0, st)

}

s.t. u(qi,t) +WB
i (wt − pt, 0, st)−WB

i (wt, 0, st) = U
b
11(wt),

and the feasibility constraint pt ≤ wt. Given the linearity of WB
i and W S

i , Us
21(wt) again simpli-

fies to

U
s
21(wt) = max

qi,t,pt

{−qi,t + φtpt}

s.t. u(qi,t)− φtpt = U
b
11(wt),

and pt ≤ wt.

Notice that the buyer i is never restricted to use any of her assets as means of payment.

Furthermore, the feasibility constraint does not impose any asymmetric liquidity restrictions

(e.g., bonds are now fully liquid, i.e., g = 1). Further, the constraint that the buyer i’s surplus

must equal to U
b
11 guarantees that the final allocation is pairwise Pareto efficient. The next

lemma describes the results of the proposed pricing mechanism in GM1.

Lemma 1. Define q∗ = {q : u′(q) = 1}. The total real balances of the buyer i are denoted as z(wt) ≡

φtwt. Finally, define z∗ = u(q∗) − U
b
11 and p̃(wt) as the set of (mA,t, aA,t,mB,t, aB,t) such that φt ·

p̃(wt) = z∗. When the buyer iwith a portfolio wt meets seller i inGM1, the proposed pricing mechanism

yields the following results. The terms of trade in the first stage are given by qi,t ≡ qi(wt), p
mi
t ≡

pmi(wt), and pait ≡ pai(wt) such that qi(wt) = ϕi,t (p
mi(wt) + pai(wt)) = min{q∗, ϕi,t(mi,t + gai,t)}.

The actual terms of trade determined in the second stage are given by

qi(wt) =




q∗, if z(wt) ≥ z∗,

bt, if z(wt) < z∗.
p(wt) =




p̃(wt), if z(wt) ≥ z∗,

wt, if z(wt) < z∗,

where bt = u−1
[
z(wt) + U

b
11(wt)

]
. The surplus for the buyer i and the seller i is respectively given by

U
b
11(wt) =

{
u(q∗)− q∗, if ϕi,t(mi,t + gai,t) ≥ q∗,

u(ϕi,t(mi,t + gai,t))− ϕi,t(mi,t + gai,t), if ϕi,t(mi,t + gai,t) < q∗,

U
s
21(wt) =





0, if ϕi,t(mi,t + gai,t) ≥ q∗,

u(q∗)− q∗ −U
b
11(wt), if ϕi,t(mi,t + gai,t) < q∗ and z(wt) ≥ z∗,

u(bt)− bt −U
b
11(wt), if ϕi,t(mi,t + gai,t) < q∗ and z(wt) < z∗.

Proof. See the appendix.
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It is straightforward to interpret the first stage outcome. Only the buyer i’s domestic asset

holdings determine the terms of trade (qi, p
mi , pai). More importantly, when her bond-illiquidity

augmented domestic real balances, ϕi,t(mi,t+gai,t) exceeds the first best quantity, q∗, she receives

the latter, and hands over any combination of moneyi and bondi whose total real value exactly

equals to q∗. On the other hand, if ϕi,t(mi,t + gai,t) falls short of q∗ then, she is liquidity con-

strained and therefore, gives up all her moneyi and bondi. In return, she receives as much qi as

her ϕi,t(mi,t+gai,t) allows. Then, her first stage surplus Ub
11(wt) equals to total gains from trade

due to a take-it-or-leave-it offer by her, and is non-decreasing in ϕi,t(mi,t + gai,t).

For the second stage outcome notice again that only the buyer i’s total real balances deter-

mine the actual terms of trade. When z(wt) exceeds z∗ that guarantees the first best outcome

for the seller i, the buyer i also receives the first best, q∗ in return for any combination of her

asset holdings whose real value equals to z∗, i.e., p̃(wt). Otherwise, the buyer i is liquidity con-

strained. Hence, she gives up her entire portfolio in order to obtain as much qi,t as possible,

subject to the constraint that her net consumption utility of qi,t in GM1 equals to U
b
11(wt). The

seller i’s second stage payoff Us
21(wt) in Lemma 1 then immediately follows by replacing the

buyer i’s participation constraint into her objective function.

There are three key observations worth emphasizing here. First, the fact that Us
21(wt) is non-

negative given the same level of buyer surplus as in the first stage indicates that the proposed

mechanism yields a pairwise Pareto efficient outcome.14 Second, Ub
11(wt) is never affected by

foreign asset holdings of the buyer. Thus, it is immediate that she will never choose to hold

any foreign asset in equilibrium with positive asset holding costs, i,e., the cash-in-advance con-

straint rises endogenously. Lastly, although no restrictions on the illiquidity of bonds are im-

posed, i.e., g = 1, in the second stage, the buyer i gets exactly the same payoff that she would

have obtained in a model with the exogenous liquidity constraint, i.e., g affects the level of

U
b
11(wt). Therefore, our mechanism also endogenously derive, rather than impose, the bond

illiquidity constraint.

Now, let us look at the details in the GM2 where credit is only accepted in payments. We

take the same steps as in the GM1. In the first stage, the buyer i makes a take-it-or-leave-it offer

to the seller i under restrictions that only bondi can be used as collateral to obtain credit, and the

buyer i can acquire that credit only up to a fraction h of her real bondi balance. In the second

stage, we remove the restriction that only domestic bonds should be used as collateral. Then,

we let the seller i choose the actual terms of trade by maximizing her surplus subject to the

credit constraint that now applies to both ℓi,t and ℓ−i,t. Importantly, she also has to make sure

that the buyer i’s surplus remains at the first stage payoff level.

14 See Nosal and Rocheteau (2011) for detailed graphical illustration of the Pareto improvement from the first
stage to the second, as well as the shapes of Pareto frontiers for the two stages.
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The first stage surplus for the buyer i is then given by

U
b
12(wt) = max

qi,t,ℓt

{
u(qi,t) +WB

i (wt, ℓt, st)−WB
i (wt, 0, st)

}

s.t.− qi,t +W S
i (0, ℓt, st)−W S

i (0,0, st) = 0,

and ℓ−i,t = 0 with the credit limit constraint ℓi,t ≤ hϕi,tai,t. The linearity of WB
i and W S

i simpli-

fies Ub
12(wt) to

U
b
12(wt) = max

qi,t, ℓi,t
{u(qi,t)− ℓi,t}

s.t.− qi,t + ℓi,t = 0,

with the same constraints above.

In the second stage, the restriction on the use of foreign bonds as collateral, i.e., ℓ−i,t = 0, is

removed. Thus the pricing mechanism is given by

U
s
22(wt) = max

qi,t,ℓt

{
−qi,t +W S

i (0, ℓt, st)−W S
i (0,0, st)

}

s.t. u(qi,t) +WB
i (wt, ℓt, st)−WB

i (wt, 0, st) = U
b
12(wt),

and the credit limit constraints ℓi,t ≤ hϕi,tai,t, ∀i. Using the linear value functions, Us
22(wt) is

again simplified to

U
s
22(wt) = max

qi,t, ℓi,t, ℓ−i,t

{−qi,t + ℓi,t + ℓ−i,t}

s.t. u(qi,t)− ℓi,t − ℓ−i,t = U
b
12(wt),

and ℓi,t ≤ hϕi,tai,t, ∀i.

The following Lemma 2 summarizes the solutions to the proposed mechanism in GM2.

Lemma 2. Define the total real value of the buyer i’s bond holdings as za(wt) ≡ ϕA,taA,t + ϕB,taB,t,

and aht as a set of (hϕA,taA,t, hϕb,taB,t). Finally, let ℓ̃ denote the set of (ℓA,t, ℓB,t) such that ℓA,t + ℓB,t =

u(q∗) − U
b
12(wt), and define z∗a = u(q∗) − U

b
12. When the buyer i with a portfolio wt meets seller i in

GM2, the proposed pricing mechanism yields the following results. The terms of trade in the first stage

are given by qi,t ≡ qi(wt) and ℓi,t ≡ ℓi(wt) such that qi(wt) = ℓi(wt) = min{q∗, hϕi,tai,t}. The actual

terms of trade determined in the second stage are given by

qi(wt) =




q∗, if za(wt) ≥ z∗a,

ct, if za(wt) < z∗a.
ℓ(wt) =




ℓ̃, if za(wt) ≥ z∗a,

aht , if za(wt) < z∗a,
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where ct = u−1
[
za(wt) + U

b
12(wt)

]
. The surplus for the buyer i and the seller i is respectively given by

U
b
12(wt) =

{
u(q∗)− q∗, if hϕi,tai,t ≥ q∗,

u( hϕi,tai,t)− hϕi,tai,t, if hϕi,tai,t < q∗,

U
s
22(wt) =





0, if hϕi,tai,t ≥ q∗,

u(q∗)− q∗ −U
b
12(wt), if hϕi,tai,t < q∗ and za(wt) ≥ z∗a,

u(ct)− ct −U
b
12(wt), if hϕi,tai,t < q∗ and za(wt) < z∗a.

Proof. The proof follows similar steps as in Lemma 1, and it is, therefore, omitted.

These results are intuitive, and admit almost identical interpretation as in Lemma 1. A key

difference is that in GM2 money holdings are irrelevant, and the liquidity restriction on bonds

as collateral is now reflected by the pledgeability parameter h. Following these differences,

outcomes in each stage are straightforward to understand. The terms of trade in the first stage

now depend on the buyer i’s credit pledgeability augmented real bondi balance, i.e., hϕi,tai,t. If

this is less than the first best amount, q∗ then, she becomes liquidity constrained, and therefore

place all her bondi holdings as collateral to get as much credit as possible. Otherwise, she just

borrows q∗ by placing whatever amounts of bondi as collateral needed to obtain that q∗. In the

second stage no restrictions on the use of bond−i exist any more. Therefore, whether the buyer

i is liquidity constrained or not depends on the relative value of her total real bond balances,

za(wt), to the first best amount which is now z∗a. Then, the solution to the second stage terms

of trade again follows trivially. Similar to the GM1 mechanism, the actual allocation in GM2 is

also pairwise Pareto efficient, i.e., Us
22(wt) is non-negative. Likewise, it implies endogenously

driven cash-in-advance constraint in equilibrium, i.e., bond−i has no effect on U
b
12(wt).

3.3 Euler Equations

This section describes the optimal portfolio choice of buyers. The optimal behavior can be

derived by solving the maximization problem in (1). To that end, lead eq.(3) by one period

and substitute the emerging expression into (1). Notice that the buyer i’s portfolio choice, i,e.,

wt+1, does not depend on her private trading history. Furthermore, the fact that V B
i (wt, st) is

a concave function of z(wt) implies that total real balances held by buyer i will be degenerate

in equilibrium (see Lagos and Wright (2005) for a rigorous proof). The necessary and sufficient

first-order conditions for the buyer i’s choices of wt+1 = (mA,t+1, aA,t+1,mB,t+1, aB,t+1) are given
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by

ϕi,t ≥ βEt
∂V B

i (wt+1, st+1)

∂mi,t+1

with equality if mi,t+1 > 0, ∀i ∈ {A,B},

ψi,t ≥ βEt
∂V B

i (wt+1, st+1)

∂ai,t+1

with equality if ai,t+1 > 0, ∀i ∈ {A,B}.

Substitute solutions from Lemma 1 and 2 into eq.(3), and lead the emerging function by one

period again. Finally, by taking this function’s first derivative with respect to mi,t+1 and ai,t+1,

∀i ∈ {A,B}, one could achieve the following Euler equations for the buyer i.

ϕi,t = β

∫ {
(1− θ) + θu′

(
qGM1
i (·)

)}
ϕi,t+1dF (γ−i,t+1, γ−i,t)dF (γi,t+1, γi,t), (4)

ψi,t = β

∫ {
τ1 + τ2u

′
(
qGM1
i (·)

)
+ τ3u

′
(
qGM2
i (·)

)}
ϕi,t+1dF (γ−i,t+1, γ−i,t)dF (γi,t+1, γi,t), (5)

ϕ−i,t ≥ β

∫
ϕ−i,t+1dF (γ−i,t+1, γ−i,t) (6)

“ = ”if m−i,t+1 > 0,

ψ−i,t ≥ β

∫
ϕ−i,t+1dF (γ−i,t+1, γ−i,t) (7)

“ = ”if a−i,t+1 > 0.

where qGM1
i,t+1 (·) ≡ qGM1

i (φt+1wt+1), q
GM2
i,t+1 (·) ≡ qGM2

i (h · ϕi,t+1ai,t+1), τ1 = (1− θ)(1− h) + θ(1− g),

τ2 = θg, and τ3 = (1− θ)h.

Interpretation of these Euler equations above is standard. The left side of each condition

refers to a marginal cost of purchasing moneyi or bondi, ∀i, while the right side represents the

expected marginal benefit from carrying that asset into GM . For instance, condition (4) is the

buyer i’s Euler equation for moneyi. The left side simply means the real cost of purchasing

a unit of moneyi. On the other hand, the right side represents the weighted average of the

discounted gain from this marginal moneyi in the following period, i.e., she carries the moneyi

until the second subperiod of t + 1 to consume ϕi,t+1 units of general goods if she happens to

visit GM2 with probability 1− θ, while she can instead gain consumption utility in GM1 from

using that moneyi to purchase special good i, i.e., u′
(
qGM1
i (·)

)
ϕi,t+1, with probability θ.

Condition (5) is the buyer i’s Euler equation for bondi. A key difference here is that the

discounted expected benefit from carrying additional unit of bondi into the following period

has three components. First, if she happens to visit GM1 in the next period then, she enjoys

consumption utility from placing the bondi as means of payment, i.e., τ2u
′
(
qGM1
i (·)

)
ϕi,t+1. On

the other hand, if she visitsGM2 instead, she can gain consumption utility by using that bondi as

collateral, i.e., τ3u
′
(
qGM2
i (·)

)
ϕi,t+1. Lastly, regardless of which GM she enters, she will effectively

face a certain restriction on the use of the bondi as a consequence of the pricing mechanism
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explained earlier, i.e., there always exists illiquid portion of the bondi that can not be liquidated.

Then, she effectively carries that portion of the bondi into the second subperiod, and consume

whatever amounts of general goods it allows her to purchase, i.e., τ1ϕi,t+1.

Condition (6) and (7) is respectively the buyer i’s Euler equation for money−i and bond−i.

Notice that she never gains any additional benefit from carrying foreign assets into GM , and

only values them as the claim to the next period’s general goods, i.e., the right side of (6) and

(7) is only the discounted expected value of ϕi,t+1. To interpret this, it is useful to rewrite the

terms within the max operator in the buyer i’s portfolio choice problem (1). Substitute (3) into

(1) and rearrange terms within the max operator using solutions to U
b
1j from Lemma 1 and 2.

Then, one can arrive the following expression.

max
wt+1

(−φt + βEtφt+1)wt+1 + βEt
[
θUb

11(wt+1) + (1− θ)Ub
12(wt+1)

]
.

Notice that her discounted expected benefit from GM trade in the next period is pinned

down by βEt
[
θUb

11(wt+1) + (1− θ)Ub
12(wt+1)

]
which is never affected by her money−i or bond−i

holdings according to Lemma 1 and 2. Thus, the buyer i never appreciates the liquidity value of

foreign assets in the forthcoming GM . One can also relate this intuition directly to the pricing

mechanism proposed in the GM trade. Our mechanism induces the buyer i to obtain worse

terms of trade if she chooses to purchase special good i with foreign assets than domestic ones

in both GM1 and GM2. For instance, without loss of generality, consider buyer i who enters

GM1. From the constraint for Ub
11(wt) in Section 3.2, one can show that she can obtain a unit of

special good i in return for an additional unit of real moneyi (bondi), i,.e., 1/ϕi,t (1/(gϕi,t)). Yet,

according to the constraint for U
s
21(wt), she gets less than or equal to a unit of the good, i.e.,

1/u′(qGM1
i,t ) ≤ 1, with an additional real money−i (bond−i). This implies that domestic assets are

always superior to foreign ones in terms of the marginal surplus generated in the GM1. Same

results follow trivially for the GM2. Thus agents in each country will hold only domestic assets

in all states, i.e., condition (6) and (7) hold with strict inequality, even though no restrictions on

the use of any asset exist.

4 Equilibrium and Characterization

In this section, we describe the definition of a recursive equilibrium and then, derive expres-

sions for functions of the equilibrium prices such as nominal interest rate for each country and

exchange rate. Finally, we will discuss how these variables interrelate with each other, and

specify conditions under which the UIP puzzle is resolved.
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4.1 Definition of Equilibrium

Before we proceed for the definition of equilibrium, let us first define a few more variables.

The transition function F along with the stochastic process for γi,t, ∀i also yield a transition

function for the aggregate state of the economy, st. Specifically, if s = (γA,MA, γB,MB) and s
′ =

(γ′A,M
′
A, γ

′
B,M

′
B) then, Pr(st+1 ≤ s

′ | st = s) =
∏
i

I{γiMi≤M ′

i}
F (γ′i, γi) ≡ F (s′, s). Also let Ψ be the

associated stationary distribution, i.e., let Ψ be the unique solution to Ψ(s′) =
∫
F (s′, s)dΨ(s).

We define a recursive equilibrium where all prices are time-invariant functions of the aggregate

state st: φ
′
t = φ′(st) = [ψA(st), ϕA(st), ψB(st), ϕB(st)] and Et = E(st).

Definition 1. A recursive equilibrium is a list of individual decision rules for buyer i, ∀i ∈ {A,B},

wt+1=w(st) =[mA(st), aA(st),mB(st), aB(st)], pricing functions φ′
t=φ′(st) and Et = E(st), bilateral

terms of trade in GM1: Qi(st) = qi(w(st)) and P (st) = p(w(st)), ∀i ∈ {A,B} where qi(·) and p(·)

are given by Lemma 1, and bilateral terms of trade in GM2: Q̃i(st) = qi(w(st)) and C(st) = ℓ(w(st)),

∀i ∈ {A,B} where qi(·) and ℓ(·) are given by Lemma 2 such that:

(i) the decision rule w(·) solves the individual optimization problem (1), taking prices as given;

(ii) prices are such that the FM clears, i.e., wt+1 = [γA,tMA,t, BA, 0, 0] for buyer A and wt+1 =

[0, 0, γB,tMB,t, BB] for buyer B;

(iii) the law of one price holds, i.e., ϕA(st)E(st) = ϕB(st).

In the remainder of the paper we only focus on a symmetric-recursive equilibrium case

where all exogenously given parameters in this model are same across countries. That is θ, g, h

are identical across the two countries, and BA = BB = B̄. This fact implies that the list of

equilibrium objects does not depend on the agent’s citizenship but only on the aggregate state

of the economy, st.

Definition 1 reveals some important properties of equilibrium. The fact that mi(st) = γi,tMi,t

for all i in all states implies that the equilibrium is always monetary, meaning ϕi(st) > 0 for

all i and st. Intuition is straightforward. By construction, a unit of bondi yields ϕi(st) units of

general good. Therefore, if the non-monetary equilibrium prevails then, the bondi must yield

no general goods in any states. This means that both moneyi and bondi are never valued so that

no GM trade takes place in the equilibrium which would surely be inferior to any monetary

equilibrium outcome, i.e.,moneyi, ∀i is always essential in this economy. Secondly, as explained

earlier, the competitive nature of the FM does not allow any arbitrage in currency trade to arise

in equilibrium, i.e., ϕA(st)E(st) = ϕB(st) for all states. Lastly, the fact that m−i(st) = 0 and

a−i(st) = 0, i.e., no international diversification in asset holdings occurs, follows naturally from

the optimality in Section 3.3.

In order to study equilibrium prices in the next section, one needs to consider “general
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equilibrium” counterparts of Euler equations in Section 3.3. To that end, letZi(st) denote “bond-

illiquidity-augmented” equilibrium total real balances held by country i in state st. Likewise,

define Za
i (st) as “pledgeability-augmented” equilibrium real bondi balances held by the country

i in state st as follows.

Zi(st) ≡ ϕi(st)[Mi,t + gB̄], and Za
i (st) ≡ h · ϕi(st)B̄.

In equilibrium, the Euler equations for moneyi and bondi holdings are then given by

ϕi(st) = β

∫
L[Zi(st+1)]ϕi(st+1)dF (st+1, st), (8)

ψi(st) = β

∫
N [Zi(st+1), Z

a
i (st+1)]ϕi(st+1)dF (st+1, st), (9)

where the stochastic liquidity factors for moneyi and bondi are respectively given by L[Zi(st+1)]

and N [Zi(st+1), Z
a
i (st+1)] as below.

L[Zi(st+1)] ≡ (1− θ) + θu′ (min{Zi(st+1), q
∗}) , (10)

N [Zi(st+1), Z
a
i (st+1)] ≡ L[Zi(st+1)]− θ(1− g) [u′ (min{Zi(st+1), q

∗})− 1] (11)

+ (1− θ)h [u′ (min{Za
i (st+1), q

∗})− 1] .

Note that L [Zi(st+1)] ≥ 1 for all moneyi growth rate realizations γi,t+1 ∈ Ξi, with strict

inequality if γi,t+1 ∈ Γmi
(st), where

Γmi
(st) = {γi,t+1 ∈ Ξi : ϕi(γi,t+1, γi,tMi,t)[γi,tMi,t + gB̄] < q∗},

Interpretation of L[Zi(st+1)] is standard. It is stochastic and endogenously driven by the aggre-

gate state of the economy. Most importantly, it captures the extra exchange value of moneyi in

addition to its store of value. Thus, it is always bounded below by 1. It becomes unity, i,.e., the

extra exchange value disappears, only when buyers already achieve the first best in the GM1,

i.e., Zi(st+1) ≥ q∗ in (10), or no opportunity to visit GM1 exists, i.e., θ = 0 in (10).

On the other hand, the stochastic liquidity factor for bondi, N [Zi(st+1), Z
a
i (st+1)] is richer

and more interesting. If moneyi and bondi are perfect substitutes (e.g., h = 0 and g = 1) then,

it should equal to L[Zi(st+1)] for all st. This result complies with the rate-of-return dominance

puzzle literature. When no illiquidity constaints on the use of bonds endogenously arise in our

framework due to social conventions, money and bonds must be valued equally to prevent

arbitrage. Thus, the nominal bond must yield zero nominal return, i.e., the right side of eq.(8)

and (9) must be equalized.

However, our proposed GM trade mechanism endogenously induces the equilibrium to

nest imperfect substitutability cases as well. If social conventions dictate that h > 0 and g < 1
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then, the stochastic liquidity value of bondi exhibits two offsetting components that potentially

make N [Zi(st+1), Z
a
i (st+1)] deviate from L[Zi(st+1)]. First, since only up to g portion of bondi

holdings can be fully liquidated in GM1, the net liquidity value of the bondi has to be pro-

portionally discounted relative to that of moneyi, i.e., −θ(1 − g) [u′ (min{Zi(st+1), q
∗})− 1] in

eq.(11). On the contrary, a unit of bondi, serving as collateral in GM2, generates extra liquidity

value relative to moneyi, i.e., (1 − θ)h [u′ (min{Za
i (st+1), q

∗})− 1]. Which of these two offsetting

forces dominates critically determines nominal bond yields relative to the zero nominal money

return. In fact, structural parameters of the economy such as g, h, and θ turn out to be signif-

icant in this context. Suppose no GM2 exists, i,e., θ = 1, or bonds are completely useless as

collateral, i.e., h = 0, then, the second effect vanishes and therefore, the bondi is always traded

at a discount compared to moneyi, i.e., nominal bonds always dominate money in terms of the

rate of return. Instead, let us imagine a economy where bonds are almost as liquid as money in

GM1, i.e., g ≈ 1. In this case, the bondi becomes an almost perfect substitute for moneyi in the

GM1. Additionally, the former can still exhibit extra liquidity properties in GM2. This means

nominal bonds must be sold at a premium in relation to money, meaning non-positive nominal

interest rate prevails in this economy.

4.2 Inflation Rate

The price of moneyi in terms of general goods is ϕi(st). The nominal price of a general good is

1/ϕi(st) in country i whose actual (gross) inflation rate between t and t+ 1 is then given by

πi(st+1 = s
′, st = s) ≡

ϕi(s)

ϕi(s′)
.

One can also devise expected (gross) inflation in country i in terms of change in the moneyi

price of a general good, conditional on the information available at st. Let us denote the ex-

pected (gross) inflation rate for country i at state st as π̃i(st). Without loss of generality, we

define the latter as the reciprocal of the harmonic mean of πi(st+1 = s
′, st = s) in the following

way.

1

π̃i(st)
≡

∫
1

πi(st+1 = s′, st = s)
dF (s′, s).

4.3 Nominal Exchange Rate

Due to the law of one price as an equilibrium condition, E(st) can be rewritten as ϕB(st)/ϕA(st).

The expected exchange rate is then given by Ee(st+1, st) = Et[ϕB(st+1, st)]/Et[ϕA(st+1, st)] owing
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to independent Markov process of γi,t for each country. The expected depreciation (apprecia-

tion) of the moneyA (moneyB) between t and t+ 1 is therefore given by

Ee(st+1, st)

E(st)
=

Et[ϕB(st+1, st)]/Et[ϕA(st+1, st)]

ϕB(st)/ϕA(st)
=

∫
1

πB(st+1,st)
dF (st+1, st)∫

1
πA(st+1,st)

dF (st+1, st)
=
π̃A(st)

π̃B(st)
. (12)

Proposition 1. The expected depreciation of a currency is positively correlated with its relative expected

inflation rate to the partner country’s, i.e., if π̃i(st) > π̃−i(st) then, Ee(st+1, st) is higher (lower) than

E(st) for i = A (i = B).

Proof. The proof is trivial, it it, therefore, omitted.

The expected nominal exchange rate here behaves exactly same as in DSGE models with

complete and Walrasian foreign exchange market.15 Under such conventional models, a key

equation that characterizes a joint stochastic process for nominal exchange rate and inflation is

given by

Et+1

Et
=
m∗
t+1

mt+1

πt+1

π∗
t+1

, (13)

where Et denotes the nominal exchange rate (price of foreign currency in units of domestic),

mt+1 denotes the inter-temporal marginal rate of substitution (IMRS) of the domestic represen-

tative agent (m∗
t+1 for the foreign counterpart), and lastly, πt+1 (π∗

t+1) is the domestic (foreign)

inflation rate. Notice that eq.(13) is identical to eq.(12) given that in our model, the IMRS for

buyer i, ∀i ∈ {A,B}, equals to a constant β. This constant IMRS is directly attributed to the

fact that equilibrium general good consumption for buyers is fixed at x̃ for every period, which

again is an artifact of the quasilinear preference in the FM .16

4.4 Nominal Interest Rate

Next, we characterize equilibrium nominal interest rate for each country. ψi(st) denotes the

state st price of bondi in terms of general goods, i.e., real price of nominal bondi in state st. Then,

ψi(st)/ϕi(st) is its moneyi denominated price, i.e., nominal price of the nominal bondi in state

st. Hence, we can define country i’s (gross) nominal interest rate in state st as its reciprocal,

15 A seminal paper in this line of research is Lucas (1982) who pioneered an international asset pricing model in
a two-country DSGE setup. See Backus, Foresi, and Telmer (2001) for an extensive literature review.

16 One could instead choose to work with stochastic IMRS by introducing a stochastic shock process for the
general good as in Lagos (2011). However, this would be redundant in our model. As will be seen in 4.5, doing
so would not affect the equilibrium relationship between currency and nominal bond prices, i.e., stochastic IMRSs
can affect the level of equilibrium currency and nominal bond prices but not a joint dynamics between those two.
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ϕi(st)/ψi(st). Using e.q.(8) and (9), it is given by

Ri(st) ≡
ϕi(st)

ψi(st)
=

∫
L [Zi(st+1)]ϕi(st+1)dF (st+1, st)∫

N [Zi(st+1), Za
i (st+1)]ϕi(st+1)dF (st+1, st)

. (14)

Before we proceed, we restrict our model economy in a way that zero nominal interest

rate bound is never violated. It is important to note that this constraint will not per se af-

fect equilibrium relationship between various variables, nominal interest rates and expected

inflation in particular. This will be discussed more with examples in the following Propo-

sition 2. However, what makes the zero nominal interest rate bound matter here is that it

does put a limit on monetary policy. Specifically, we will hereinafter only consider the set

of moneyi growth rate realizations, ensuring the greater numerator than the denominator in

eq.(14), i.e., L [Zi(st+1)] ≥ N [Zi(st+1), Z
a
i (st+1)] , ∀i, st. Technically speaking, we only consider

γi,t+1 ∈ ΓZLBi
(st), where

ΓZLBi
(st) =

{
γi,t+1 ∈ Ξi :

u′
(
min{hϕi(γi,t+1, γi,tMi,t)B̄, q

∗}
)
− 1

u′
(
min{ϕi(γi,t+1, γi,tMi,t)[γi,tMi,t + gB̄], q∗}

)
− 1

≤
θ(1− g)

(1− θ)h

}
. (15)

Next proposition reveals important equilibrium properties regarding the relationship be-

tween nominal interest rate and expected inflation in each country.

Proposition 2. Consider an economy with the zero nominal interest rate bound, i.e., γi,t+1 ∈ ΓZLBi
(st)

for all i and st. Then, Ri(st) and π̃i(st) are related in the following way.

a) If θ = 1 or h = 0 then, ΓZLBi
(st) = Ξi and ∂Ri(st)/∂π̃i(st) ≥ 0.

b) Otherwise, ΓZLBi
(st) ⊂ Ξi, and a sufficient condition for ∂Ri(st)/∂π̃i(st) < 0 is (1− θ)h ≥ (1− g).

Proof. See the appendix.

In order to interpret these results, it is useful to rewrite the nominal price of bondi at st,

ψi(st)/ϕi(st), in terms of three different values. Appendix shows the following.

ψi(st)

ϕi(st)
= 1− βθ(1− g)

∫
[u′ (min{Zi(st+1), q

∗})− 1]

πi(st+1, st)
dF (st+1, st) (16)

+ β(1− θ)h

∫
[u′ (min{Za

i (st+1), q
∗})− 1]

πi(st+1, st)
dF (st+1, st).

The nominal value of a unit bondi at st can be thought of a sum of three different components as

in (16). The first component which always equals to one refers to the nominal value of a unit of

moneyi at st. The negative component in the first line of eq.(16) represents the expected nominal

value of illiquidity discount on the bondi due to g in GM1. The third component in the second
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line of (16), on the other hand, captures the expected nominal premium value of the bondi as a

result of its collateral role in GM2.

Part a) of Proposition 2 characterizes the equilibrium relationship between Ri(st) and π̃i(st)

when the nominal bondi can not serve as collateral. A monetary policy in this case is never re-

stricted since the bondi always has lower liquidity properties than the moneyi, i.e., ψi(st)/ϕi(st)

always becomes less than or equal to unity regardless of γi,t+1. More importantly, it is straight-

forward to understand why ∂Ri(st)/∂π̃i(st) ≥ 0. Since anticipated inflation acts as a tax on

holding real balances, a higher π̃i(st) reduces the Zi(st+1) and Za
i (st+1). This in turn induces

their expected nominal liquidity value to rise in GM1 and GM2 respectively.17 Yet, the fact that

the GM2 is now irrelevant makes the premium value of the bondi disappear. It is therefore the

case that the higher expected nominal liquidity value of Zi(st+1) only amplifies the illiquidity

discount of the bondi, i.e., the second negative term in the first line of (16) gets bigger. Thus, the

nominal bondi price falls, i.e., Ri(st) increases.

This Fisher effect no longer prevails universally as soon as the bondi has some liquidity

properties as collateral in our model. Part b) of Proposition 2 implies that relatively high

pledgeability of bondi both as means of payment and collateral, and a relatively high portion

of credit based transactions in goods trade, i.e., (1 − θ)h ≥ (1 − g), guarantee a negative cor-

relation between Ri(st) and π̃i(st). Intuition follows clearly from a previous paragraph. Since

a higher π̃i(st) now amplifies both the illiquidity discount and the premium value of the bondi,

what matters is their relative size of effects. As the eq.(16) reveals, the sufficient condition,

(1 − θ)h ≥ (1 − g) secures a higher weight on the premium value of the bondi than the illiq-

uidity discount value. This intuitively explains why the higher π̃i(st) brings about increase in

the former overweighing that in the latter. To see intuition from a different angle, consider real

price change of moneyi and bondi. When π̃i(st) rises, the real price of both assets surely goes up

due to higher marginal utilities in GM associated with a fall in real balances. Yet, the condition

(1−θ)h ≥ (1−g) induces the bondi to exhibit somewhat higher exchange value as a facilitator of

special good i trade. Thus, no arbitrage condition makes sure that the real bondi price increases

more than that of moneyi, meaning the nominal bondi price should increase.

Notice that allowing for no illiquidity constraint in GM1 (g = 1) would make the sufficient

condition become redundant for ∂Ri(st)/∂π̃i(st) < 0. However, as seen in (15), this would in

fact make the zero-nominal-interest-bound (ZLB) inducing monetary policy in country i highly

restrictive. Basically such policy should result in the first best outcome in GM2 at all states,

but strictly less than the first best in GM1. A set of γi,t+1 that satisfies this condition would be

17 A higher Zi(st+1) or Za
i (st+1) surely causes a higher expected real liquidity value of itself due to the concavity

of u(·). The fact that the nominal liquidity value also goes up can be understood intuitively as follows. The
Euler equation for money holdings requires that (real) cost of carrying them must equal to the (real) net benefit
from doing so. This condition must hold true in nominal terms because one would divide both side of the Euler
equation by the same real price of money to arrive the nominal Euler equation. Then, the higher anticipated
inflation should raise both nominal cost and nominal benefit (nominal liquidity value) to ensure the optimality.
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particularly narrow when the supply of bondi is relatively small. In fact, it would be interesting

to study what should be a family of optimal stochastic monetary policies in our framework.

This, however, would be beyond the scope of this study. Thus, we leave this task for future

research.18

Before we go on studying implications of these effects on the UIP condition, it is worth em-

phasizing that the mechanism in which a negative comovement between nominal interest rates

and money supply (anticipated inflation) arises differs from the New Keynesian framework.

This inverse relationship, often called as liquidity effect of monetary policy, is one major charac-

teristics of traditional sticky-price New Keynesian models. Their key idea is that money supply

has a direct positive effect on equilibrium real money balances in the short run due to some

form of nominal rigidity. Since bonds only serve as a store of value in their framework, finan-

cial market equilibrium requires a positive movement between real bond price and real money

balances. Finally, the price stickiness ensures that nominal bond price moves in the same direc-

tion as money supply.

On the contrary, our proposed model abandons the price stickiness assumption, and cause

the liquidity effect through a different channel. In our model, a higher money growth rate

boosts real bond price not because of price stickiness but due to bonds’ role as a medium of

exchange. Since the fully flexible price movement tends to depress the nominal value of bonds

in the event of the higher money growth rate, the nominal bond price finally depends on the

relative size of increase in the real bond price. When bonds play an extra facilitator role com-

pared to money then, the real bond price effect tends to dominate, and the nominal bond price

rises, i.e., the liquidity effect, otherwise the latter vanishes.19

4.5 Uncovered Interest Parity Puzzle

We are finally ready to state main results of our paper. To ease presentation, let us rephrase

the UIP puzzle in terms of predictable excess returns on currencies. In our framework, one can

define a one-period excess moneyA return on moneyB at state st as

Q(st) = lnEe(st+1, st)− lnE(st) + lnRB(st)− lnRA(st). (17)

The UIP puzzle means that Q(st) is actually predictable because data supports a positive ef-

fect of interest rate differential, i.e., lnRB(st) − lnRA(st) on Q(st). So the task here is to find

18 Lagos (2011) studies a set of optimal stochastic monetary policies that implement the Friedman rule basically
in a nested version of our economy, i.e., g = 0 and θ = 1, with an inclusion of stochastic dividend paying equity.

19 This difference at least points to the possibility that open market operations could potentially generate richer
implications on monetary policy and asset prices than what nominal friction based New-Keynesian models imply.
See Lagos, Rocheteau, and Wright (2014) for more extensive literature review on how micro-founded monetary
economics based on search theory offers different monetary policy implications.
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conditions under which ∂Q(st)/∂ [lnRB(st)− lnRA(st)] > 0 for every st in our model. As an in-

termediate step, it is useful to define the real liquidity adjusted stochastic discount factor Mi,t+1.

Following the conventional international asset pricing model, inversing real (gross) return on

bondi should generate the expected Mi,t+1 in our model as well.20 Therefore,

Et(Mi,t+1) ≡ Mi(st) =
π̃i(st)

Ri(st)
, ∀i and st. (18)

Substituting (12) and (18) into (17) simplifies Q(st) as follows.

Q(st) = lnMA(st)− lnMB(st). (19)

Equation (19) reveals an important characteristic of excess returns on moneyB. The latter

is now completely driven by liquidity property differential. Notice that any IMRS differential

between two countries could have never affected Q(st) even if it existed. The reason is that its

effects on interest rate differential and the expected appreciation of moneyB will be completely

canceled out. In fact, this would be the same equilibrium property of conventional models

where the IMRS simply equals the stochastic discount factor. What makes our model differ

is that asset liquidity factors asymmetrically augment the stochastic discount factor for the in-

terest and exchange rate. This mechanically gives rise to the liquidity-differential dependent

excess returns on moneyB in (17). Next proposition finally states a sufficient condition for the

UIP violation in equilibrium.

Proposition 3. Under ΓZLBi
(st) ⊂ Ξi a sufficient condition for ∂Q(st)/∂ [lnRB(st)− lnRA(st)] > 0

for every st is (1− θ)h ≥ (1− g).

Proof. The proof is trivial given Proposition 2, and it is intuitively explained in the following

paragraph, therefore it is omitted.

Proposition 2 states that the condition (1 − θ)h ≥ (1 − g) under the zero nominal interest

rate bound always guarantees a negative effect of π̃i(st) on Ri(st) for all i and st. Combining

this result with (18) brings about a positive effect of anticipated inflation on the real liquidity

adjusted stochastic discount factor. This implies that a relatively higher anticipated inflation in

country A than B leads to higher excess returns on moneyB. In the meanwhile, the country A’s

higher anticipated inflation induces the country B’s nominal interest rate to become relatively

higher than its counterpart since ∂Ri(st)/∂π̃i(st) < 0. Therefore, Q(st), regardless of st, is al-

ways increasing in lnRB(st)− lnRA(st) under the sufficient condition.

20 As explained in footnote 16, this simplification is based on the fact that the standard IMRS, i.e.,
βU ′(Xt+1)/U

′(Xt), is a constant in our framework due to the fixed amount of general good consumption over
time.
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This proposition implies that the UIP violation critically hinges upon the extent to which

nominal bonds play a liquidity role. Under the conventional international asset pricing model,

a sudden increase in one country’s interest rate would lead to an expected depreciation of the

currency, thereby holding the UIP condition. Again, this is because nominal bonds, playing no

liquidity role, always yield inflation-only-dependent return. However, this mechanism is no

longer pervasive when bonds play a liquidity role. For instance, if the bonds exhibit somewhat

higher liquidity properties than money in a precise sense that (1 − θ)h ≥ (1 − g) within our

model, an increase in real return on money (i.e., fall in inflation rate) leads to a relatively big-

ger increase in real return on bonds (i.e., rise in nominal interest rate). Therefore, unlike the

conventional model, a sudden increase in one country’s interest rate would lead to an expected

appreciation of the currency, thereby causing the UIP violation. This intuition naturally brings

about the following corollary.

Corollary 1. Under ΓZLBi
(st) ⊂ Ξi ∂Q(st)/∂ [lnRB(st)− lnRA(st)] depends on st, and the sign is

ambiguous if (1− θ)h < (1− g).

Corollary 1 states that the UIP violation becomes no longer pervasive when liquidity prop-

erties of nominal bonds are relatively lower. That is, the UIP no longer violates uniformly when

the portion of credit based transactions are lower (1−θ is lower) and/or the bond pledgeability

and liquidity are lower (h and g are lower). This prediction is consistent with a couple of em-

pirical facts regarding the UIP puzzle. First, it is consistent with Bansal and Dahlquist (2000)’s

evidence and our empirical findings (Table 1). Caballero, Farhi, and Gourinchas (2008) argue

that pledgeability and/or liquidity of assets for emerging economies are generally lower than

developed economies. Furthermore, various measures for cross-country credit market and/or

financial market development can confirm that credit based transactions are relatively scarce

for emerging economies. Our model can capture a similar notion by assuming that g, h, and

1−θ are lower for emerging economies. Consequently, the model implies that the UIP no longer

violates uniformly for emerging economies.

Table 1 reports the results of the time-series cross-sectional regressions to present the so-

called UIP coefficients. In particular, the coefficients in regressions (1) and (2) support the the-

oretic result we mentioned above. The coefficient for the developed countries over the whole

sample period (regression (1)) is negative (-0.521), while for the emerging markets (regression

(2)) positive (+0.537). This observation suggests that there exists the forward premium puzzle

among developed economies, while it does not exist among emerging markets.

Corollary 1 also aligns with an empirical fact that the UIP does not violate when the ef-

fective liquidity of the economy suddenly shrinks. Among others, Brunnermeier, Nagel, and

Pedersen (2008) show that tightening interbank liquidity predicts carry trade losses (i.e., the

UIP suddenly holds). One can capture the sudden “drying up” of economy-wide liquidity by

a shock that reduces g, h, and 1− θ in our model. For instance, suppose that the liquidity shock
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changes (1 − θ)h ≥ (1 − g) to (1 − θ)h < (1 − g). Proposition 3 and Corollary 1 then sug-

gest that such a sudden liquidity shock can lead to a sudden carry trade return reversal in our

model. The regressions (3) and (4) in Table 1 reports an empirical evidence for this suggestion.

We divide the sample period of the developed countries into “during the period of 2008 and

2009” and “during the period except for 2008 and 2009” to investigate how the UIP coefficient

changes during the period when financial assets become illiquid. The coefficient during years

2008 and 2009 presents a great positive number (+11.30). However, during the period when the

two years are excluded from the sample period, the coefficient turns into a negative number

(-1.017), which implies the strong negative relationship between the expected exchange rates

and the forward premiums, relative to -0.521, which is exactly consistent with Brunnermeier,

Nagel, and Pedersen (2008).

Table 1: Forward Premium Regression

Regression Equation :

[
Ei,t+1 − Ei,t

Ei,t

]
= α0 + α1

[
Fi,t − Ei,t

Ei,t

]
+ ui,t+1

(1) (2) (3) (4)

Developed Emerging Developed Developed Economies

Economies Economies Economies during the period

during 2008-9 except for 2008-9

α1 -0.521 0.537*** 11.30*** -1.017

(0.414) (0.0741) (3.390) (0.611)

α0 8.52e-05 -0.000972 0.0139** -0.000778

(0.000934) (0.00146) (0.00473) (0.00144)

Period 1/1996-2/2015 1/1996-2/2015 1/2008-12/2009 excl. 08-09

Observations 2,339 1,667 238 2,101

R-squared 0.002 0.192 0.102 0.008

Number of state 11 9 11 11

State FE Yes Yes Yes Yes

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Monthly data on spot

exchange rates, and 3-month forward rates for 20 countries from Bloomberg are used in the regressions.

Fixed effects are included in all of the regressions, i.e., a country-specific intercept is added to each

regression. The developed countries include Switzerland, Hong Kong, Singapore, Japan, Belgium, Aus-

tria, Denmark, Canada, UK, Australia, Sweden, and the emerging countries include Czech Republic,

Malaysia, Argentina, Mexico, Thailand, Philippines, Indonesia, India, Turkey, Korea according to the

International Finance Corporation (IFC) of the World Bank. The exchange rates for the developed countries

are the US Dollar prices per unit and for the emerging countries the Malaysian Ringgit prices per unit.
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5 Conclusion

Recent monetary and finance theories tell that liquidity properties of assets can play a signif-

icant role for asset pricing. Furthermore, they also show that such liquidity aspects of assets

interact with monetary policy. This insight is a point of departure for our liquidity-based ex-

planation of the UIP puzzle. We have shown that monetary policy determines the liquidity

premium on nominal bonds, which can account for non-uniform deviations from the UIP con-

dition. Intuitively, the conventional wisdom says a high interest rate currency appreciates be-

cause it is riskier. We, on the other hand, argue that the high interest rate currency might be

appreciating because it is less liquid when the economy is confined to an environment where

bonds serve as a sole MOE in some goods transactions. This property of the model turns out to

be consistent with some UIP evidence that many conventional risk-based models find hard to

justify.

Last but not least, we admit that this liquidity-based explanation is certainly no panacea for

all those decades long discussions on the UIP puzzle. Yet, we hope that our approach can shed

new light on the debate by offering a new liquidity-based perspective. For instance, Backus,

Gavazzoni, Telmer, and Zin (2010) have speculated that carry trade returns are in some sense

a mirror image of monetary policy implementation costs. We offer a complementary view that

the arbitrage carry trade profits might reflect upon the cost of aggregate liquidity management.
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A Appendix

Proof. Proof of Lemma 1.
First, consider the second stage in the trading mechanism. We substitute the real balances term
in the buyer’s participation constraint (3.2) into the maximization objective function (3.2). Then,
bargaining problem in the second stage where the implemented terms of trade is determined is
given by

U
s
21(wt) =max

q1t ,pt

u(q1t )− q1t − U
b
11(wt)

s.t. u(q1t )− φt · pt = U
b
11(wt),

pt ≤ wt

If u−1
[
φt ·wt+U

b
11(wt)

]
≥ q̃, it is obvious that q1t will always be equal to q̃, and p̃t(wt) can be

any combination of money and assets such that φt ·p̃t(wt) = u(q̃)−U
b
11(wt). In addition, Us

21(wt)
will be equal to u(q̃) − q̃ − U

b
11(wt), which is zero in the case where ϕt(mt + at) ≥ q̃, because

U
b
11(wt) = u(q̃)− q̃. If u−1

[
φt ·wt+U

b
11(wt)

]
< q̃, the first best choice q̃ cannot be achieved, and so

the seller will make an offer to have the buyer hand over all of her real balances in order to sell
the special goods as many as possible. In this case, pt(wt) = wt and q1t = u−1

[
φt ·wt+U

b
11(wt)

]
.

Lastly, Us
21(wt) will be equal to u(q1t )− q1t − U

b
11(wt).

Likewise, the bargaining problem in the first stage is given by plugging the seller’s partici-
pation constraint (3.2) into the objective function (3.2) as follows.

U
b
11(wt) = max

qft , p
m
t , p

a
t

u(qft )− qft

s.t. − qft + ϕt( p
m
t + pat ) = 0

pmt ≤ mt, p
a
t ≤ at

If ϕt(mt + at) ≥ q̃, qft will be equal to q̃ and U
b
11(wt) is the same as u(q̃) − q̃. If ϕt(mt + at) < q̃,

then qft will be equal to ϕt(mt + at), because the buyer will give up all of her local money and

assets to purchase as many as she can. In this case, Ub
11(wt) is u(qft )− ϕt(mt + at).

Proof. Proof of Proposition 2.
Dividing equation (8) by ϕ(st) leads to

1 = β

∫
L[Zi(st+1)]

πi(st+1, st)
dF (st+1, st)

=
β

π̃i(st)
+ βθ

∫
[u′(min{Zi(st+1), q

∗})− 1]

πi(st+1, st)
dF (st+1, st)

=
β

π̃i(st)
+ βθXi(st)
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where Xi(st) =
∫ [u′(min{Zi(st+1),q∗})−1]

πi(st+1,st)
dF (st+1, st). Then,

βθXi(st) = 1−
β

π̃i(st)
.

By the implicit function theorem,

∂Xi(st)

∂π̃i(st)
=

1

θ[π̃i(st)]2
> 0.

On the other hand, we rewrite the nominal bond price at st in country i (equation (16)) as
follows.

ψi(st)

ϕi(st)
= 1− βθ(1− g)Xi(st)

+ β(1− θ)h

∫
[u′ (min{Za

i (st+1), q
∗})− 1]

πi(st+1, st)
dF (st+1, st).

Then, the partial derivative of the nominal bond price is

∂[ψi(st)/ϕi(st)]

∂π̃i(st)
= βθ(1− g)

∂Xi(st)

∂π̃i(st)
+ β(1− θ)h

∂Yi(st)

∂π̃i(st)
+
β(1− θ)h

[π̃i(st)]2

=
β[(1− θ)h− (1− g)]

[π̃i(st)]2
+ β(1− θ)h

∂Yi(st)

∂π̃i(st)

where Yi(st) =
∫ [u′(min{Za

i (st+1),q∗})−1]
πi(st+1,st)

dF (st+1, st). Now, it is obvious from the definitions of

Zi(st) and Za
i (st) that ∂Yi(st)

∂π̃i(st)
> 0, because ∂Xi(st)

∂π̃i(st)
> 0. Consequently, the sufficient condition for

∂[ψi(st)/ϕi(st)]
∂π̃i(st)

> 0 is (1− θ)h ≥ (1− g).
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